Models, methods and waveforms for estimation and prediction of sparse time-varying channels

Benzine, Wissal; Bemani, Ali; Ksairi, Nassar; Slock, Dirk
IEEE Transactions on Wireless Communications, 23 December 2025

This paper investigates channel estimation for linear time-varying (LTV) wireless channels under double sparsity, i.e., sparsity in both the delay and Doppler domains. An on-grid approximation is first considered, enabling rigorous hierarchical-sparsity modeling and compressed sensing-based channel estimation. Guaranteed recovery conditions are provided for affine frequency division multiplexing (AFDM), orthogonal frequency division multiplexing (OFDM) and single-carrier modulation (SCM), highlighting the superiority of AFDM in terms of doubly sparse channel estimation. To address arbitrary Doppler shifts, a relaxed version of the on-grid model is introduced by utilizing multiple elementary Expansion Models (BEM) each based on Discrete Prolate Spheroidal Sequences (DPSS). Next, theoretical guarantees are provided for the precision of this off-grid model before further extending it to tackle channel prediction by exploiting the inherent DPSS extrapolation capability. Finally, numerical results are provided to both validate the proposed off-grid model for channel estimation and prediction purposes under the double sparsity assumption and to compare the corresponding mean squared error (MSE) and overhead performance when different wireless waveforms are used.


DOI
Type:
Journal
Date:
2025-12-23
Department:
Systèmes de Communication
Eurecom Ref:
8552
Copyright:
© 2025 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:

PERMALINK : https://www.eurecom.fr/publication/8552