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ABSTRACT

We propose two Matched Filter Bounds (MFBs) to charac-
terize the performance of receivers using reduced-order chan-
nel models. The �rst one (WMFB) uses the channel model
to perform the spatio-temporal matched �ltering that yields
data reduction from multichannel to single-channel form.
The rest of the processing remains optimal. The second
one (ICMFB) on the other hand bounds the performance of
the Viterbi algorithm with the reduced channel model. Two
methods of obtaining reduced-order channel models are dis-
cussed to illustrate these measures: blind channel estimation
by Deterministic Maximum Likelihood (which maximizes
WMFB) and channel estimation by training sequence.

1 Introduction

We consider here a FIR Multichannel model. The multiple
FIR channels are due to oversampling of a single received sig-
nal and/or the availability of multiple received signals from
an array of antennas (in the context of mobile digital com-
munications). To further develop the case of oversampling,
consider linear digital modulation over a linear channel with
additive noise so that the cyclostationary received signal can
be written as

y(t) =
X
k

h(t � kT )a(k) + v(t) (1)

where the a(k) are the transmitted symbols, T is the symbol
period and h(t) is the channel impulse response. The channel
is assumed to be FIR with duration NT (approximately). If
the received signal is oversampled at the rate m

T (or if m
di�erent received signals are captured by m sensors every T
seconds, or a combination of both), the discrete input-output
relationship can be written as:

y(k) =
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h(i)a(k�i) + v(k) = HAN (k) + v(k) ;
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H = [h(N�1) � � �h(0)] ; AN (k) =
�
aH (k�N+1) � � �aH (k)

�H
(2)

where the subscript i denotes the ith channel and super-
script H denotes Hermitian transpose. In the case of
oversampling, yi(k) ; i = 1; : : : ;m represents the m phases
of the polyphase representation of the oversampled signal:
yi(k) = y(t0 + (k + i

m )T ). In the polyphase representation
of the oversampled signals, we get a discrete-time circuit in
which the sampling rate is the symbol rate. Its output is a
vector signal corresponding to a SIMO (Single Input Multi-
ple Output) or vector channel consisting of m SISO discrete-
time channels where m is the sum of the oversampling fac-
tors used for the possibly multiple antenna signals. Let
H(z) =

PN�1
i=0 h(i)z�i = [HH

1 (z) � � �H
H
m(z)]

H be the SIMO
channel transfer function. Consider additive independent
white Gaussian noise v(k) with rvv(k�i) = Ev(k)vH (i) =
�2vIm �ki. Assume we receive M samples:

Y M(k) = TM (H)AM+N�1(k) + V M (k) (3)

where Y M(k) = [yH (k�M+1) � � �yH(k)]H and similarly for
V M (k), and TM(H) is a block Toepliz matrix withM block
rows and [H 0m�(M�1)] as �rst block row.

The classical Matched Filter Bound (MFB) indicates the
optimal symbol detection performance when the channel is
perfectly known. In section 2 of this paper, we present four
di�erent ways of interpreting this MFB in the multichannel
case. In practice, the channel impulse response length we
can a�ord to estimate is often shorter than the true channel
length. Therefore, in section 3, we de�ne two appropriate
MFBs when a reduced-order channel model is used. At last,
in section 4, two methods for obtaining reduced-order chan-
nel models are presented to illustrate the two MFBs: blind
Deterministic MaximumLikelihood estimation, and training
sequence based estimation.

2 Di�erent Matched Filter Bound De�nitions

2.1 Continuous Processing MFB

We present here four di�erent ways of computing the MFB
in the case of continuous transmission, for the multichannel
H(z), shown in Fig. 1, where the input symbols a(k) are
white and the additive noise v(k) is temporally and spatially
white. We introduced the following notation for the matched
�lter: Hy(z) =H

H(1=z�).
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Figure 1: Four Interpretations for the Continuous Processing
MFB from SNRs.

The MFB can alternatively be calculated as the sum of
the SNRs in the individual channels in (a), as the SNR of
the appropriate output sample of the matched �lter (MF)
when transmitting only one symbol in (b), as the SNR of
the output of the whitened MF (WMF) in (c) or �nally
as the SNR at the output of the MF from which past and
future symbol contributions (ISI) are eliminated. The MFB,
calculated from (a), (b), (c) or (d), is equal to kHk2�2a=�

2
v.

2.2 Burst Processing MFB

The MFB becomes symbol-dependent in the case of burst
(packet) transmission. Suppose we transmit the burst
AM+N�1(k). According to equation (3), the corresponding
multichannel output is: Y M (k) = TM(H)AM+N�1(k) +
V M (k). In the di�erent structures presented in Fig. 1, the
multichannelH(z) is replaced by the �ltering matrix TM (H)
in the time-domain, and the burst multichannel matched �l-
ter becomes T H

M (H). Since the MFB is symbol-dependent,
we shall in fact consider the average MFB over the symbols
in the burst. In a burst context, Fig. 1(b) is no longer of
interest, this is why we will not consider this con�guration
anymore.
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Figure 2: Four ways to get the Burst MFB from SNRs.

In Fig. 2(a), the burst signal covariance matrix at the
channel output is: �2aTM(H)T H

M (H). The noise variance is
�2vI. The SNR for the ith element of the output is then:
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�2v
(4)
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The signal component is diag(T H
M (H)TM (H))AM+N�1(k)

in (c) (where diag(.) denotes a diagonal matrix containing
of the main diagonal of its argument), hence its variance,

�2a
�
T H
M (H)TM(H)

�2
i;i
, for the ith element, for which the

noise variance is �2v
�
T H
M (H)TM (H)

�
i;i
. Thus we �nd:
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H
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(6)

Hence, we �nd the following equivalent expressions:
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The structure in Fig. 1(a) represents in fact a di�erent point
of view from (b) or (c). Indeed, the M + N � 1 outputs of
(b) and (c) are directly related to the the M + N � 1 input
samples; in (a) we get Mm output samples. The measure
in equation (7) can then be taken as a measure of the Burst
MFB. This leads to the following average MFB per symbol.
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(8)
Note that, as the length of the burst grows to in�nity, the
average MFB over the burst converges to the continuous
processing MFB. For structures (b) and (c) this follows from
the fact that the MFB in the middle of the burst converges
to the continuous processing MFB.

3 Matched Filter Bounds for Reduced-OrderMod-
els

The MFB computation considered in the previous section
requires knowledge of the channel. However, in channel es-
timation, a channel order misestimation may happen. Since
physical channel impulse responses tend to be of in�nite
length, this misestimation will often mean an underestima-
tion. Furthermore, the channel length assumed in the chan-
nel estimation is often limited due to complexity consider-
ations for the estimation procedure and/or the symbol de-
tection procedure. We now discuss appropriate MFBs when
a reduced-order channel model is used. Two levels of sub-
optimality ensue in that case. These correspond to the two
ways of implementing ML sequence estimation (MLSE) in
the multichannel case: either use a vectorial matched �l-
ter and work with a scalar signal, or work with the vector
received signal directly. These two strategies are only equiv-
alent if the further processing of the scalar signal obtained
in the �rst case is done in a speci�c way. Two measures
corresponding to these two strategies are proposed.



We denote by HN (z) the full-order multichannel. As-
sume we have a reduced-order model z�dHN 0 (z) of HN (z)
(d 2 f0; 1; : : : ; N�N 0g, 1 � N 0 � N ). In a �rst step of sub-
optimality, we can consider that in the data reduction step
frommultichannel to single channel, we use the MF matched
to the reduced model z�dHN 0 (z). However, after this sub-
optimal data reduction, we shall allow optimal processing
of the resulting single channel (this requires knowledge of

Hy
N 0 (z)HN (z) which represents less information thanHN (z)

itself). In order to �nd the conventional MFB for the pro-
cessing of the resulting scalar channel, it su�ces to whiten
the noise after the vector MF. The resulting scalar channel
then indeed becomes one of additive white noise n(k) as in-
dicated in Fig. 3 and becomes similar to Fig. 1(a) so that
the MFB can be calculated as in Fig. 1(a). We get for the
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Figure 3: WMFB: reduced-order multichannel MF followed
by a noise whitener.

continuous processing MFB:

WMFB =
�2a
�2v

1

2�j

I
Hy

N (z)PHN0 (z)HN (z)
dz

z
(9)

where PH(z) = H(z)(Hy(z)H(z))�1Hy(z). Note that it is

insensitive to the delay in the reduced order channel model.
It is interesting to analyze the variation of WMFB(N 0)

as a function of the reduced order N 0. For N = N 0 we get

WMFB(N )=
�2a
�2v

kHNk
2. It is not di�cult to show that, in

the limiting case N 0 = 1 (purely spatial channel model), we

get WMFB(1)=
�2a
�2v

�max

�
HH

NHN

�
. We then can derive

the following bounds

1 �
WMFB(N )

WMFB(1)
=

tr
�
H

H
NHN

�

�max

�
HH

NHN

� � min(m;N ) (10)

We see that a reduced-order model does not degrade WMFB
a lot: in the case of 2 subchannels the maximal degradation
will be a factor of 2, which could seem surprising when con-
sidering a purely spatial model only. The lower bound is
attained when h(i) � h(0); i = 1; : : : ; N�1. In that case,
HN (z) = h(0)H1(z)=h1(0). The spatio-temporal channel
factors into spatial �lter and a temporal one, and the op-
timal processing factors correspondingly: the full spatio-
temporal treatment gets replaced by the cascade of a purely
spatial combiner followed by a purely temporal treatment.

or HH
NHN � IN , whichever is of full rank. In that case,

the individual channel impulse responses are orthonormal.
In a statistical set-up, if the m channel impulse responses
are i.i.d., then the upper bound is approached as the delay
spread grows.
Consider now the case of burst processing. Let TN and

TN 0 denote TM (HN ) and TM(HN 0) respectively and con-
sider the Cholesky factorization T H

N 0TN 0 = LLH . Then the
M+N 0�1 reduced-order WMF outputs are

L�1T H
N 0Y = L�1T H

N 0TNA+ L�1T H
N 0V (11)

The covariance matrix of the noise component is �2vIM+N 0�1

while the covariance matrix of the signal part is
�2aL

�1T H
N 0TNT H

N TN 0L�H . The sum of the SNRs of all WMF
outputs is then
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i=1

�2a
�2v

�
L�1T H

N 0TNT
H
N TN 0L�H

�
ii
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N0
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H
N

�
(12)

This point of view corresponds to (a) in Fig. 2. To �nd
the equivalent of (c) in Fig. 2, consider passing the previous
WMF output L�1T H

N 0Y through the scalar MF T H
N TN 0L�H .

This gives the M+N�1 outputs

T H
N PT

N0
Y = T H

N PT
N0
TNA+ T H

N PT
N0
V (13)

As seen in section 2.2, the sum of the output SNRs in
Fig. 2(c) is equal to the expression in equation (12). It
is also possible to �nd the equivalent of (b) in Fig. 2, the
sum of output SNRs giving again (12). What we call burst
WMFB is again the average WMFB over the burst:

WMFB =
1

M + N � 1
tr
�
PT

N0
TNT

H
N

�
(14)

3.2 ISI Canceler Matched Filter Bound (ICMFB)

We now go all the way in suboptimality. We will not only
assume that the multichannel MF is based on the reduced
channel model but in fact that the whole receiver is. To
�nd the optimal performance in this case, consider MLSE.
The received burst through the channel HN (z) is Y M (k) =
TM(HN )AM+N�1(k)+V M (k). The channel estimation pro-
cedure has given a reduced-order model z�dHN 0 (z) in which
HN 0 (z) is known but the delay d may be unknown. Based
on the reduced-order model z�dHN 0 (z), the MLSE problem
is

min
a(i) 2 A

d 2 f0; 1; : : : ; N�N 0g

kY M (k)� TM(HN 0)AM+N 0�1(k�d)k
2

(15)
where A is the symbol alphabet. We obtain the ISI Canceler
Matched Filter Bound (ICMFB) by considering the detec-
tion of a single symbol a(i) assuming that the other symbols
are known. It is easy to see that the continuous processing
version of this leads to the structure in Fig. 4(a) (except



terms containing coe�cients of the channel estimation error
contribute to noise in the SNR computation. Hence, the
equivalent structures in (b) and (c).
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Figure 4: ICMFB: MFB for MLSE with the reduced-order
channel model.

The output SNR in Fig. 4(c) is:

ICMFB =

max
d2f0;:::;N�N 0g

kHN 0k2�2a

�2v��
2
akH

y
N 0 (z)(zdHN (z)�HN 0 (z))k2=kHN 0k2

(16)
In contrast to WMFB, the delay d in the reduced-order chan-
nel model plays a role in ICMFB. Note that the presence of
an adjustable delay creates local minima for MLSE. Remark
also that for N 0 = N , ICMFB=WMFB=MFB.

4 Two Applications

4.1 Deterministic Maximum Likelihood Channel
Estimation

As a �rst example, we shall investigate the e�ect of model re-
duction in Blind Deterministic MaximumLikelihood (DML)
Channel Estimation. A complete description of this method,
which uses the IQML algorithm, is given in [1] and [2]. In [1],
it is proven that, asymptotically, the DML criterion approx-
imates the channel with a lower order model such that the
output SNR of the Whitened Matched Filter corresponding
to this lower order model gets maximized. Asymptotically,
the reduced-order channel estimate obtained with the DML
is the one that maximizes WMFB.
Some simulations were performed for m = 2 channels and

average SNR per subchannel of 10dB. In order to concen-
trate on the model reduction e�ects and not on the estima-
tion errors, the averaged likelihood function was maximized.
Blind methods only allow the estimation of the channel up
to a multiplicative constant. WMFB on the other hand is

spirit of blind methods, we have determined the magnitude
of this scale factor on the basis of the variance of the received
signal, which leads to kHN 0k = kHNk. The determination
of the phase of the scale factor is less obvious though. In
simulations we have avoided this issue by restricting to real
impulse responses.

We considered continuous processing WMFB and ICMFB
measures, but since the IQML method will normally be ap-
plied to a burst of data Y M (k), we also considered the burst
processing WMFB measure.
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Figure 5: WMFB as a function of N 0 = 1; : : : ; N for m = 2,
M = 50, N = 6 for orthonormal (left) and almost colinear
(right) impulse responses.

First, we illustrate equation (10) where the minimal and
maximal degradations when a model of reduced order 1 is
considered are shown. Fig. 5 shows the evolution of the con-
tinuous and burst processing WMFB as a function of N 0

for a case in which the two impulse responses are orthonor-
mal and a case in which they are almost colinear. In the
�rst case, we see a degradation of approximatively 1/2 from
N 0 = N to N 0 = 1 as predicted in (10). In the second case,
quasi no degradations are visible. We note here that the
burst WMFB is lower than its continuous processing ver-
sion. This is due to the degradations occurring at the edges
of the burst w.r.t. continuous mode performances.

Some other simulations were done for less particular chan-
nels. The evolution of WMFB and ICMFB as a function of



H1 =

�
1:0000 0:8000 0:5000 0:6000 0:1000 0:0050

�1:5000 1:4000 �0:9000 1:1000 �0:0300 0:0050

�

H2 =

�
1:0000 0:5000 �0:1500 0:0550 0:0145 �0:0014
1:5000 �0:9500 0:3050 0:0695 0:0431 �0:0043

�

(17)
Both continuous and burst mode WMFB are ploted, as well
as ICMFB.
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Figure 6: Comparison of WMFB and ICMFB as a function
of N 0 for channels H1 and H2, m = 2, N = 6, M = 50 in
the case of DML estimation.

We notice than WMFB is greater than ICMFB for all re-
duced orders N 0. The degradations due to reduced-order
modeling are less severe for WMFB than for ICMFB, espe-
cially for low orders. This veri�es equation (10), where we
saw that maximal degradation for WMFB due to a model
of reduced-order 1 is limited. Furthermore, degradations for
WMFB occur mostly for N 0 = 1. As DML reduced-order
models maximizes WMFB, WMFB is decreasing as N 0 de-
creases.
For channelH1, ICMFB decreases considerably when the

reduced model is of order 3. This is probably due to the
fact that the channel contains most of its energy in its �rst
4 coe�cients, which shows that ICMFB is sensitive to the
energy contained in the reduced-order channel.

4.2 Training Sequence based Channel Estimation

In this second example, the channel is estimated by a white
training sequence. The channel estimate of reduced-order

which contains the most energy. This estimation procedure
produces a value for the delay d. However, this value for
d may not be the best one for MLSE. Hence the problem
formulation in (15) and the ensuing bound in (16) with op-
timization over d are still meaningful. Nevertheless, the op-
timal d thus obtained will usually equal the d obtained with
channel estimation by training sequence.
We see in Fig. 7 that WMFB is not decreasing anymore,

but remains high and always greater than ICMFB. Although
training sequence based channel estimation does not max-
imize ICMFB, it tends to. Indeed, in equation (16), the
numerator kHN 0k2 gets maximized, and the coe�cient in z0

of Hy
N 0 (z)(zdHN (z) �HN 0(z)) becomes equal to 0. In par-

ticular, we see how ICMFB improves, for channel H2 when
the reduced-order channel is estimated by training sequence
compared to DML estimation.
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Figure 7: Comparison of WMFB and ICMFB as a function
of N 0 for channels H1 and H2, m = 2, N = 6, M = 50 in
the case of training sequence based channel estimation.
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