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Abstract: We present Maximum-Likelihood (ML) approaches
to semi-blind estimation of multiple FIR channels. The first
approach, DML, is based on a deterministic model. The second
one, GML is based on a Gaussian model in which the input sym-
bols are considered as Gaussian random variables: this model
leads to better and more robust performance than DML. Algo-
rithms are presented to solve DML and GML and the significant
improvement of GML w.r.t. DML is demonstrated. A soft deci-
sion strategy is also presented to improve ML performance: the
most reliable decisions taken at the output of an equalizer built
from a semi-blind ML channel estimate are treated as known
symbols and semi-blind ML is reiterated with an augmented
number of known symbols.

I Introduction

Blind multichannel identification has received considerable
interest over the last decade. In particular, second-order meth-
ods have raised a lot of attention, due to their ability to perform
channel identification with relatively short data bursts. These
methods suffer from several drawbacks though. They leave an
ambiguity in the channel determination (in a single-user con-
text, they can only determine the channel up to a phase fac-
tor) and cannot identify certain ill-conditioned channels. This
motivates the development of various other methods to alle-
viate this problem. Semi-blind estimation techniques exploit
the knowledge of certain input symbols and appear superior to
purely blind and training sequence methods as much for their
performance as for their ability to perform identification for any
channel for few known symbols [1].

We present two semi-blind Maximum-Likelihood (ML)
methods to estimate multipleFIR channels. The first one, DML,
is based on a deterministic model and combines a blind ML cri-
terion with a training sequence criterion: a low-complexity so-
lution is proposed. The other method, GML, based on a Gaus-
sian model in which the symbols are considered as Gaussian, is
solved by the method of scoring. The significant improvement
of GML w.r.t. DML is demonstrated. A soft decision strat-
egy is also proposed in which the decisions on the most reliable

y The work of Elisabeth de Carvalho was supported by Laboratoires
d’Electronique PHILIPS under contract Cifre 297/95. The work of Dirk Slock
was supported by Laboratoires d’Electronique PHILIPS under contract LEP
95FAR008 and by the EURECOM Institute

symbol estimates given by an equalizer built from the semi-
blind ML channel estimate are considered as correct. The cor-
responding symbols are taken as known and semi-blind ML is
reiterated with an augmented number of known symbols. Sim-
ulations illustrate the different algorithms.

II Problem Formulation

We consider a single-user multichannel model: this model re-
sults from the oversampling of the received signal and/or from
reception by multiple antennas. Consider a sequence of sym-
bolsa(k) received throughm channels of length N and coeffi-
cientsh(i):

y(k) =
N�1X
i=0

h(i)a(k�i) + v(k); (1)

v(k) is an additive independent white Gaussian circular noise
with rvv(k�i) = Ev(k)v(i)H = �2vIm �ki.

The symbol constellation is assumed known. When the input
symbols are real, it will be advantageous to consider separately
the real and imaginary parts of the channel and received signal
as:

�
Re(y(k))
Im(y(k))

�
=

N�1X
i=0

�
Re(h(i))
Im(h(i))

�
a(k�i)+

�
Re(v(k))
Im(v(k))

�
(2)

Let’s renamey(k) = [ReH (y(k)) ImH (y(k))]H , and idem for
h(i) andv(k); we get again (1), but this time, all the quantities
are real. The number of channels gets doubled, which has for
advantage to increase diversity. Note that the monochannel case
does not exist for real input constellations.

Assume we receiveM samples, concatenated in the vector
Y M(k):

Y M (k) = TM(h)AM+N�1(k) + V M (k) (3)

Y M(k) = [yH (k�M+1) � � �yH(k)]H , similarly for V M(k),

andAM (k) =
�
aH (k�M�N+2) � � �aH (k)

�H
, where(:)H

denotes Hermitian transpose.TM (h) is a block Toeplitz matrix
filled out with the channel coefficients grouped in the vectorh.
We assume that some symbols are known:Ak contains theMk

known symbols andAu, theMu unknown symbols. We shall



Y = T (h)A + V = Tk(h)Ak + Tu(h)Au + V (4)

III Semi-Blind ML

A Deterministic ML (DML)

In the deterministic model both input symbols and channel coef-
ficients are considered as deterministic. We are interested in the
joint estimation ofh and the unknown symbols (decoupled from
the estimation of�2v). DML maximizes the probability density
function of the observationsfY jA;h(Y ) = fV jA;h(Y �T (h)A)
and the DML criterion is:

min
Au;h

kY � T (h)Ak2 (5)

optimizing w.r.t. the unknown symbols, we get:

Au =
�
T H
u (h)Tu(h)

��1
T H
u (h) (Y � Tk(h)Ak) (6)

which is the output of the non-causal Minimum-Mean-Squared-
Error (MMSE) Zero-Forcing (ZF) decision-feedback equalizer
with feedback of the known symbols. Substituting (6) in (5) we
get the following minimization criterion forh:

min
h

(Y � Tk(h)Ak)
H
P?
Tu(h) (Y � Tk(h)Ak) (7)

whereP?
Tu(h)

= I�Tu(h)
�
T H
u (h)Tu(h)

��1
T H
u (h) is the pro-

jection on the orthogonal complement of the column space of
Tu(h).

B Gaussian ML (GML)

In the Gaussian Model [2],[3], the channel coefficients are still
considered as deterministic but the input symbols as Gaus-
sian random variables (to take their second-order statistics into
account). This hypothesis, although false, allows to robus-
tify the estimation problem and improves performance w.r.t.
DML [2, 1].

In the Gaussian model for (4),V � N (0; CVV ) is indepen-
dent ofA � N (Ao; CAA). Ao is the prior mean for the sym-
bols. In the Gaussian case, the estimation of the channel can
be done without the estimation of the unknown input symbols:
GML considers the joint estimation ofh and the coefficients of
CV V . Y � N (T (h)Ao; CYY ), CYY = T (h)CAAT H(h) +
CV V and the GML criterion ismax

h;�2
v

fY jh;�2
v
(Y ), or:

min
h;�2

v

n
lndetCYY+(Y �T (h)Ao)H C�1

Y Y (Y �T (h)Ao)
o
(8)

We will specialize this general model to the semi-blind case as

follows: Ao = P

�
Ak
0

�
andCAA = P

�
�I 0
0 �2aI

�
PH ,

whereP is a permutation matrix such thatA = P[AHk AHu ]H

and� is arbitrarily small. Furthermore, as already mentioned,
we takeCVV = �2vI.

In this section we assume that the known symbols are
grouped and at the beginning of the burst (P = I). We pro-
pose a semi-blind criterion mixing a deterministic and a Gaus-
sian point of view: it combines the blind DML criterion and a
training sequence criterion.
A Blind DML

In the blind case, criterion (7) becomes:

min
h
Y
H
P?
T (h)Y : (9)

We consider here that the blind DML identifiability conditions
are verified [1]: the channel is irreducible, the input symbols
are persistently exciting and the burst is sufficiently long. The
channel is then identifiable up to a scale factor and the regular-
izing constraintkhk = 1 is assumed.P?

T (h) is the orthogonal
projection onto the noise subspace (the orthogonal complement
of the column space ofT (h)).

The key to a computationally attractive solution of the DML
problem is a linear parameterization of the noise subspace. We
consider here a linear parameterization in terms of channel co-
efficients. LetH?(z) be such a parameterization; it verifies
H?(z)H(z) = 0 andT (h?)T (h) = 0; T (h?) is filled with the
coefficients ofH?(z) and spans the noise subspace. An exam-
ple is [4]:

H?(z) =

2
664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
......

...
... 0

Hm(z) 0 � � � 0 �H1(z)

3
775 :

(10)
SinceP?

T (h) = PT H(h?), (9) can be written as:

min
khk=1

Y HT H(h?)R+T (h?)Y (11)

whereR = T (h?)T H (h?) and (:)+ denotes the Moore-
Penrose pseudo-inverse (T (h?) may not be full-row rank).
T (h?) being linear inh, a matrixY filled out with the el-
ements of the observation vectorY can be found such that
Yh = T (h?)Y . Then (11) becomes:

min
khk=1

hHYHR+Yh (12)

B Blind Pseudo-Quadratic DML (PQDML)

The principle of PQDML has been first applied to sinusoids in
noise estimation [5] and then to blind DML in [6]. The gradi-
ent of the DML cost function (12) may be arranged asP(h)h,
whereP(h) is (ideally) positive semi-definite with a single sin-
gularity. The ML solution verifiesP(h)h = 0, which is solved
under constraintkhk = 1 by the PQDML strategy as follows:
in a first stepP(h) is considered constant, and asP(h) is posi-
tive semi-definite, the problem becomes quadratic:h is chosen
in [6] as the eigenvector corresponding to the smallest absolute
eigenvalue ofP(h). This solution is used to reevaluateP(h)



finding the rightP(h), especially with the positive semi-definite
constraint. In our problem:

P(h) = YHR+Y � BHB (13)

T H (h?)B = B�h� with B =
h
T (h?)T H(h?)

i+
T (h?)Y

((:)� denotes complex conjugate). Asymptotically, the effect of
the second term is to remove the noise contribution present in
the first one, thenP(h) = XHR+X , whereXh = T (h?)X ,
X = T (h)A; this P(h) admitsh as singular eigenvector.
Asymptotically, there is global convergence: any initialization
of P(h) results in a consistent PQDML channel estimate and
the second iteration finds the global minimizer.

The matrixP(h) is indefinite for finiteM , and applying di-
rectly the PQDML strategy will not work as stated in [6], except
for high SNR. We introduce an arbitrary�, such that PQDML
becomes the following minimization problem:

min
khk=1;�

hH
�
YHR+Y � �BHB

	
h (14)

with semi-definite positivity constraint on the central matrix.h

is the minimal generalized eigenvector ofYHR+Y andBHB,
and � the minimal generalized eigenvalue. Asymptotically,
there is global convergence forh, as described previously, and
for � (to 1).

The stationary points of PQDML are the same as those of
DML, this is why PQDML has the same performance as DML.
Asymptotically PQDML gives the global ML minimizer.

C Semi-blind Criterion

Let’s decomposeY asY = [Y H
TS Y H

B ]H . Y B groups all
the observations where unknown symbols only appear.Y TS

groups all the observations containing known symbols, and es-
pecially theN �1 observations where a mixture of both known
and unknown symbols appear.

The symbols inY B are treated as deterministic and blind
DML is applied to it and solved by PQDML. InY TS , the
known symbols are treated as deterministic and the unknown
symbols as i.i.d. Gaussian random variables of mean0 and
variance�2a and GML is applied to it. In the GML criterion,
we neglect the first term (the determinant term): the resulting
criterion corresponds to the optimally Weighted Least-Squares
(WLS) problemkY TS � TTS(h)AoTSk

2
C�1
Y Y

(AoTS is the mean

of the symbols,C = CYTSYTS ), solved by initializing the de-
nominator and solving the LS problem.

AsY TS andY B are decoupled in terms of noise, the mixed
ML criterion will be the sum of DML forY B and WLS for
Y TS :

min
h;�2

v

Y H
BPT H

B
(h?)Y B + �2v kY TS � TTS(h)A

o
TSk

2
C�1 (15)

Only the information coming from the unknown symbols
present inY TS is lost, which is negligible as the number of
observationsY B will be usually large. At each iteration,h =

�2v
�
YHBR

+
BYB��B

H
BBB+�

2
vA

H
TSC

�1ATS

��1
AH
TSC

�1YTS
(16)

fers the advantage to be of low complexity.

V The Method of Scoring for GML

It appears difficult to find low complexity methods to solve
GML: we propose the iterative method of scoring. Compared
to PQDML used to solve DML, it represents an increase in com-
plexity but at the same time a gain in performance that can be
significant, as will be seen in the simulations (and predicted by
the performance studies). Furthermore, it offers more robust-
ness to ill-conditioned channels.

The method of scoring consists in an approximation of the
Newton-Raphson algorithm which finds an estimate�(i) at iter-
ationi from �(i�1), the estimate at iterationi�1, as:

�(i) = �(i�1) �

"
@

@��

�
@c(�)

@��

�H �����
�(i�1)

#�1
@c(�)

@��

����
�(i�1)

(17)
wherec(�) is the cost function and� contains the parameters
to estimate. The method of scoring approximates the second
derivative by its expected value, which is here the Fisher In-
formation Matrix (FIM). This approximation is justified in the
blind case by the law of large numbers as the number of data is
generally large. In the semi-blind case, the number of known
symbols being finite, this approximation is not valid anymore
but it will turn out to work very well in our simulations. Here
c(�) = ln fY jh;�2

v
(Y ). The expression of the FIM for GML can

be found in [2]. This iterative algorithm requires an initializa-
tion close to the global maximum, and may fall in local minima
if not correctly initialized.

The GML formulation has for advantage to take into account
known symbols even if they are not grouped. This is difficult
to do with methods combining a blind and a training sequence
criterion. This property will be particularly useful for the soft
decision strategy explained below.

Note that the method of scoring could also be applied to solve
DML in case the known symbols are not grouped. In this case,
the expression of FIM [2] needs to be averaged over the un-
known symbols.

VI Soft Decision Strategy

The soft decision strategy which is particularly well con-
nected to the general semi-blind context, is as follows:

1. From an estimate of the channel, an equalizer is built that
gives estimates of the unknown symbols. The most reli-
able estimates are selected and hard decisions on them are
considered as known symbols. The non reliable symbols
are still considered as unknown.

2. Semi-blind estimation is again applied with this aug-
mented number of known symbols. Steps 1 and 2 can be
reiterated.



where all the equalizer outputs would be considered as error-
free and then as known. Some algorithms exploiting the finite
alphabet nature of the input symbols [7] follow that scheme:
step 2 is replaced by a training sequence based channel esti-
mation where the training symbols are the hard decisions. This
kind of algorithms requires a good channel initializationand be-
cause the decision step may not be error-free, fall easily in local
minima. This could be avoided by the soft decision process.

Consider a MMSE-ZF equalizer as in (6) based on the true
channel. It gives as estimates for the unknown symbols:

Âu =
�
T H
u (h)Tu(h)

��1
T H
u (h) (Y � Tk(h)Ak)

= Au +
�
T H
u (h)Tu(h)

��1
T H
u (h)V :

(18)

Then for eachunknown symbol:â(k) = a(k) + v0(k) where
v0(k) is a centered Gaussian random variable, linear combina-
tion of elements ofV . Figure 1 shows the distribution ofâ(k).

We will consider here only the case of a BPSK; the principle
of soft decisions could be extended to other constellations. The
reliable symbol estimates will verifyjâ(k)j � �; they will be
all the more reliable as� is large: see figure 1 with� = 1, in
which case, asv0(k) is centered, approximately half the symbol
estimates would be considered as reliable.

This soft decision strategy introduces however correlations
betweena(k) (= dec(â(k))) andv0(k) and then between the
noiseV and the symbolsA originally independent. Figure 2
shows the joint distribution ofa(k) andv0(k) for the reliable
and non-reliablêa(k): in both cases,a(k) andv0(k) are cor-
related (for� = 1, the marginal distribution ofv0(k) remains
approximately unchanged).

Simulations proved GML and DML to be very sensitive to
these modifications in the correlations: you get better perfor-
mance when you do not add the hard decisions to the list of the
known symbols. The repercussions of these correlations in the
formulations of DML and GML are as follows:

� For DML, in fV jA;h(Y � T (h)A), correlations between
A andV are to be taken into account:v0(k)ja(k) does not
have a Gaussian distribution anymore, but half a Gaussian.

� For GML, in a Gaussian approximation forfY jh, the cor-
relations betweenA andV have to be taken into account.

The incorporation of these modifications in DML and GML are
the subject of ongoing studies. As an alternative approach, we
considered another type of interval of reliability: a symbol es-
timate is considered as reliable ifjâ(k) � dec(â(k))j � � (fig-
ure 3). With this choice of interval, the correlation between
symbols and noise disappears (as long as the interval is suffi-
ciently small): see figure 4. The marginal distribution of the
noise has changed though, and namely the variance ofv0(k)
associated to the reliable or non-reliable symbols is different.
Again, ongoing studies try to take intoaccount these modifi-
cations. Simulations showed that DML or GML as in (7) and
(9) were not very sensitive to them: we kept DML and GML in
their original formulation in this paper.

Note that the MMSE-ZF equalizer could be replaced by an
MMSE equalizer which gives a higher output SNR. At the out-

account, as well as its bias [8].

0-1 1
� = 1

Figure 1: Distribution of the symbol estimates at the output of
the MMSE ZF equalizer: reliable decisions such thatjâ(k)j � 1
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v
0(k)
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-1
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0

Non-reliable symbols

a(k)

v
0(k)

Figure 2: Joint distribution ofv0(k) anda(k) for the reliable
(left) and non reliable symbols (right)

0-1 1

Figure 3: Distribution of the symbol estimates at the output of
the MMSE ZF equalizer: reliable decisions such thatjâ(k) �
dec(â(k))j � �

VII Simulations

We propose to test the different algorithms in the following
sequence:

1. Initialization: the channel is estimated blindly by SRM [9]
up to a scale factor that we determine thanks to the training
symbols. When the channel is too ill-conditioned to be
correctly estimated blindly, training sequence estimation
is done instead.

2. Semi-blind PQDML.

3. Semi-blind GML solved by the method of scoring.

4. A MMSE-ZF equalizer is built from the previous channel
estimate and soft decisions are taken.GML based on the
soft decisions solved by the method of scoring.

These different steps are of increasing complexity but also of
increasing performance. We assume�2v known in our simula-
tions. We do not show the performance of the method of scoring
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Figure 4: Joint distribution ofv0(k) anda(k) for the reliable
(left) and non reliable decisions (right)

for DML: in our simulations it performed similarly to PQDML
of step 1, and, based on soft decisions, it performed worse than
soft GML of step 4. The MMSE equalizer was also tested in-
stead of the MMSE ZF, and gave worse performance.

Simulations are presented in figure 5, where the channel is
real with coefficients chosen randomly (m = 2, N = 3), and
the SNR is 5 dB, 10 dB and 20 dB; 3 symbols are initially
known. The normalized MSE (NMSE) of the channel estimate
is averaged over 100 Monte-Carlo runs of the noise for a given
input burst. Three iterations of PQDML and GML are done
(though usually 1 suffices), only the result of the final one is
shown. The last step, soft GML, is compared to semi-blind
GML based on the same number of known symbols (i.e. the ini-
tially known symbols augmented with the hard decisions) ran-
domly dispersed over the burst in order to see the impact of the
correlation changes explained in the previous section.

PQDML improves channel estimation w.r.t. SRM and GML
w.r.t. PQDML: their performance is close to the (deterministic
or Gaussian) CRBs at 10 dB and 20 dB. The soft decision step
improves again the results, but not as much as if the hard deci-
sions would have been located at random positions in the burst.
In this example, the advantage of the soft decisions may not be
obvious: indeed after semi-blind GML at step 2, the estima-
tion of the channel is already very good and the improvement
brought by the soft decision step can only be marginal.

To demonstrate, in another example, the good performance
of GML w.r.t. DML, we show in figure 6, the case of subchan-

nels with a nearly common zero[h(0) h(1)] =
�

1 1
1 0:98

�
at

10 dB and with 3 known symbols; the initialization is done by
training sequence estimation. For that ill-conditioned channel,
PQDML fails whereas GML performs remarkably well.
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