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Abstract—This paper presents an enhanced sparse vector
coding scheme tailored for short-packet communication over noisy
wireless channels. Conventional SVC often uses random (Gaus-
sian, Bernoulli) or structured (partial Hadamard) spreading/pro-
jection matrices with baseline decoding based on naive projection
scores to recover the sparse signal support, which may suffer from
reliability degradation under fading conditions. To address this,
we introduce an enhanced decoding approach leveraging LLR-
based attention-weighted projection, which dynamically reweights
received signal measurements according to their reliability, giving
more importance to more reliable measurements. Simulation
results over both Rayleigh flat fading and 3GPP TDL-C/TDL-D
frequency-selective channels show that the proposed LLR-based
attention-weighted projection decoding outperforms baseline
projection decoding with both structured and random projection
matrices. Moreover, we extend our analysis to a short-packet (3-11
bits) transmission framework over the 3GPP PUCCH. The results
highlight that the proposed SVC scheme, employing a partial
Hadamard spreading matrix combined with LLR-based attention-
weighted projection decoding, can competitively rival 3GPP RM
codes under optimal maximum likelihood (ML) decoding at
very low BLER targets, while offering significant computational
complexity advantages, making it a promising short-packet coding
candidate for ultra-reliable, low-latency 6G short-block-length
uplink/downlink channels.

Index Terms—Sparse Vector Coding, Short Packet Commu-
nications, LLR-based Attention-Weighted Projection decoding.

I. INTRODUCTION

Short-packet transmission has become a critical element
in emerging communication systems, including ultra-reliable
low-latency communications (URLLC) and Internet of Things
(IoT) networks. In recent years, particularly with the advent
of beyond-5G technologies, significant efforts have been
devoted to improving short-packet transmission, with a strong
focus on signal coding and receiver design aspects [I[—
[4]. In this context, sparse vector coding (SVC) techniques,
which encode information into sparse vectors, are gaining
popularity due to their ability to convey information efficiently
with reduced bandwidth, low latency, low complexity, and
high reliability. Since its introduction in [S], SVC has been
extensively investigated as an efficient transmission paradigm
for short-packet URLLC [6]-[10]. Several extensions have
focused on improving reliability by enriching the information-
bearing structure of sparse vectors. In particular, enhanced
SVC (ESVC) and sparse superposition—based schemes en-
code information jointly in the support and in the non-zero
values, often relying on complex-valued constellations at
the support elements to increase spectral efficiency [6], [7].
While these approaches achieve notable BLER gains, their
reliance on complex signaling and sophisticated decoding
may increase processing latency and hardware complexity,
which can be undesirable in ultra-low-latency regimes. In
parallel, conventional SVC methods, as presented in the
seminal work of Ji ef al. [5]], often rely on random measurement

matrices, typically Gaussian or Bernoulli ensembles, owing
to their theoretical guarantees for sparse recovery. Despite
these advantages, random matrices present practical challenges:
they require substantial storage and computational resources,
and their inherent randomness hinders structured hardware
implementation. Complementary to symbol-domain and code-
design enhancements, recent works have highlighted the role
of structured measurement matrices in SVC and ESVC to
reduce complexity and enable efficient implementations [S].
Structured measurement matrices for SVC, such as partial
Hadamard matrices, therefore spark growing interest. Their
deterministic construction enables fast transforms and low-
complexity implementations. Nonetheless, classical decoding
methods based on fixed correlations treat all measurements
equally, which can lead to suboptimal performance when noise
disproportionately corrupts certain measurements.

Motivated by these observations, the present work focuses
on a real-valued, bipolar ESVC framework that is particularly
well suited for short-packet transmission under stringent
latency constraints. Unlike prior works that primarily enhance
SVC through constellation design or code and spreading
matrix construction, our contribution targets the receiver stage
by introducing an adaptive decoding framework leveraging
LLR-based attention-weighted Hadamard projections that
dynamically reweight received signal measurements according
to their reliability. In this respect, the attention weights are
derived from per-element log-likelihood ratios (LLRs) that
quantify the reliability of each received signal observations
while accounting for the statistics of the transmitted sparsity-
aware signal.

Simulation results demonstrate that the proposed LLR-
based attention-weighted projection decoding consistently
outperforms baseline projection decoding for both structured
(partial Hadamard) and random (Gaussian) spreading matrices,
particularly in challenging transmission scenarios involving
frequency-selective fading channels. Moreover, the analysis
is extended to a short-packet transmission framework with
payloads of 3—11 bits over the 3GPP physical uplink control
channel (PUCCH), comparing the proposed approach with
the current standard based on 3GPP Reed—Muller coded
transmission. We find that SVC using a partial Hadamard
spreading matrix combined with LLR-based attention-weighted
projection decoding can competitively rival 3GPP RM codes
under optimal maximum likelihood (ML) decoding at very
low block error rate (BLER) targets. From a computational
complexity perspective, the proposed SVC decoder exhibits sig-
nificant advantages over conventional ML decoding methods,
making it a promising ultra-reliable, low-latency short-packet
coding solution for next-generation communication systems.
The remainder of this paper is organized as follows. Section II
presents the general framework of sparse vector coding,
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Section III describes the system model, Section IV focuses
on the SVC receiver design, Section V provides numerical
results and performance analysis, and Section VI concludes
the paper.
II. GENERAL FRAMEWORK OF SPARSE VECTOR CODING
A. Basics of Sparse Vector Coding

A binary message of length B is mapped to a sparse vector
x € R™ with sparsity level k = ||x||p, which counts its non-
zero entries. The support of x, denoted supp(x) = S C
{1,...,n}, satisfies |S| = k. Each entry in the support, ¢ € S,
is assigned a bipolar amplitude x; € {—1,+1}. The total
number of bits per message, including sign bits, is

g

Sign bits

[bits]. (1)

Position bits
Formally, the binary message is encoded into a sparse vector
through the following two-step procedure:

e Support (active position) selection:
The support set S is chosen from the |C| = (}}) possible
combinations, thereby encoding a first message block
my of |log, (})] bits.

e Bipolar modulation (sign assignment) :
Each active position is assigned a symbol 1 from a
binary antipodal alphabet, thereby encoding a second
message block my of k bits.

1 )| +k
Thus, the total message structure m € FQL og2 (i) can be

expressed as m = [my mo| of B bits.
The sparse vector x € R™ is defined as
+1
-1
0 otherwise.

if 2 € § and the associated sign bit is 0,
2

X; = if ¢ € S and the associated sign bit is 1,

This mapping establishes a bijection between the binary
message m € M and the sparse vector x € X, since each
message m corresponds to exactly one sparse vector x, and
vice versa.

LM—=X | x=L(m), 3)
where M denotes the set of transmitted binary messages, and
X ={x € {-1,0,+1}" : ||x|lo = k} represents the set of
encoded sparse vectors. The function £ is a discrete mapping
implemented as a lookup table (LUT), defining a bijective
correspondence between the binary message m and the sparse
vector x. SVC, as defined here and conceptually illustrated in
Figure 1| for parameters n = 8 and k£ = 2, can be viewed as a
combinatorial encoding combined with bipolar modulation.
The mapping between binary message combinations and sparse-
vector pair-wise patterns, implementable as an LUT, is given in
Table[l] Positions marked with I in the sparse vector indicate
the locations of the bipolar symbols, thereby defining the
support of the sparse vector.

TABLE I
SVC MAPPING TABLE : n = 8,k = 2.
m : |log, (1) bits DEC Idx:(m1)10 Active Pos : C(Idx +1,:) SVC M:

Patterns
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Fig. 1. Conceptual illustration of Sparse Vector Coding (n = 8, k = 2).
B. Structured SVC with Partial Hadamard Matrices

Partial Hadamard matrices are effectively well suited to
overcome the limitations inherent in random measurement
matrices in SVC. Let H,, € {£1}"*™ denote the Hadamard
matrix of order n, which is a structured orthogonal matrix.
The projection matrix A € R™*™ is constructed from H,, by
randomly selecting m < n rows of H,;:

A = LPmHn, 4)

vm

where P,,, € {0,1}™*™ is a selection matrix composed of m
rows of the identity matrix corresponding to the chosen rows,
i.e., P, is a partial isometry. The normalization factor \/%
ensures that each column of A has approximately unit norm
(i.e., Vi ||a;]|3 = 1) and V(i, j) the entry a; ; = :I:ﬁ. The
coherence of A : ji(A) = max; ., |a/ a;| bounds the cross
terms by |a;—ag\ <p,stp< h)ng'
The sparse vector is multiplied by the spreading matrix also
referred to as the projection, sensing, or measurement matrix
to generate a compressed signal, as in compressive sensing. At
the receiver, the original sparse vector is reconstructed through
sparse recovery. Conventional decoders are greedy or convex
method-based like the well-known orthogonal matching pursuit
(OMP) [11]], and typically operate under a generic additive
white Gaussian noise (AWGN) assumption and do not account
for specific channel impairments like fading or interference.

In what follows, we show that SVC, employing orthogonal
spreading via a partial Hadamard matrix, can be efficiently
decoded using a sophisticated strategy based on LLR-driven
attention-weighted projections.

C. System Model

The system under consideration encodes a sparse vector
x € {-1,0,41}™ with sparsity k¥ = ||x||p < n into a
measurement vector u = Ax € R” via multiplication by
a partial Hadamard matrix A € R™*"™. The resulting signal
is impaired by a memoryless complex fading channel, where
the real and imaginary components of h; have variance o7
each, with means given by the real and imaginary parts of
L, respectively. The channel is modeled by a diagonal fading
matrix H = diag(hy, ha, ..., h,,), where h; ~ CN (up, 207),
and is subsequently transmitted over an additive white Gaussian
noise channel z ~ CA(0,202L,,). The received signal can

thus be expressed as
T .
vi=hi(a,x)+z,=hju;+z 1=1,2,....,m, (5
where a] € R'*" denotes the i-th row of A and u; =
(a;,x) = ;5 aijx; is a sum of at most k terms, each being

+1/y/m, hence |u;| < k/\/m.
Equivalently, (3) can be expressed in a more compact vector-
ized form as

y=h0o (Ax)+z=HAx+z,

where © denotes the Hadamard (element-wise) product.

(6)



ITI. RECEIVER DESIGN

At the receiver end, the objective is to reliably recover x
from the noisy observations y. A classical approach in SVC
consists of estimating the support of the sparse vector using
correlation or projection scores.
A. Baseline Projection Decoding (Simplified OMP)
First, in the considered scenario, namely transmission over
fading channels, an equalization procedure is applied to
mitigate channel-induced impairments:

*

i = R (M) Vi, (yoh) €C2 Ve>0. (7)
The baseline decoding technique, referred to as projection-
based support recovery (simplified OMP), involves using the
projection matrix A to correlate with the equalized received
signal.

c=A"y where cj = a]Ty =(a;,y), j=1,2,...,n.

®)
a; € R denotes the j—th column of A, and ¢ € R™ contains
the correlation scores.

The k indices with the largest correlation magnitudes are
subsequently selected to form the estimated support S.

S = argmax Z |Cj| = topy, (|cl) -
Sc{l,...,n},|S|=k

©))
JjES=supp(x)
where the operator top, (| - |) extracts indices of the & largest-
magnitude entries.
Finally, a naive estimate of the sparse vector x is obtained by
assigning signs to the entries corresponding to the estimated
support. ~
% = sign(c;) if j € ‘S.’, (10)
0 Otherwise.
At the message bit-level recovery stage, LUT-based demapping
via the inverse function £~! can be employed to reconstruct
the original binary message. This is made possible by L’s
bijective nature, which guarantees a unique inverse mapping:
LM | m=LN(%). (1)
B. LLR-Based Attention Weighted Projection Decoding
The conventional support recovery based on naive estima-
tion via baseline projection scores is sensitive to column
correlations in A, particularly in the presence of noise,
challenging channel conditions, or partial misdetection of
the true support (i.e., S # S). To address this limitation,
we propose a refined decoding strategy using LLR-driven
attention-weighted projections, where adaptive weights derived
from per-element LLRs reflect the reliability of each received
signal observation. Formally, the approach assigns different
weights to the elements of the received vector based on a
reliability assessment of each element. In other respects, the
LLR computation must account for the actual constellation
statistics (i.e., the symbol distribution) of the measurement
vector u. Let u; = a; x be a discrete distribution with the set

of possible values u; € {M ‘ 1=0,1,..

i .,k} with prob-
ability P (u - M)

) = (];)2%, for all £ < m. Hence, the

actual range is u; € [—s, 0, +s| where s represents the typical

3 _ tk 3 _ =k
signal levels. Indeed, 1?33((8) = 5 and rsn<1101(3) = Z

Formally, we adopt a generalized ternary hypothesis: (1) Null
hypothesis (Hg): u; = 0, (2) Positive sign hypothesis (H):
u; = +s, and (3) Negative sign hypothesis (H_): u; =

—s, with probabilities P (u; = £s) =
P(u; =0) = (kljz)zik for all even k.
Under the coherent Gaussian model described in equation

(3). the complex Gaussian probability density function can be
lyi—hsu|? )
yihiwiP

20

3 (1 —P(u; =0)),

expressed as p(y; | u;,h;) := 525 exp (
However, note that the LLR {A;}7, we are seeking is for the
sign, even though in reality u; can be equal to zero. We will
therefore consider an LLR that compares the hypotheses H
su; >0and H_ : u; <0, ignoring Hp @ u; =0=y; =z
since in this case the LLR reduces to pure noise projected onto
the direction of h;. We rather want a metric that reflects the
reliability of the sign estimation. In the context of weighting,
we want a function that is positive if the estimated sign is
positive, negative if negative, and whose absolute value reflects
the reliability. The LLR is then obtained by applying Bayes’
rule a priori, conditioned on h;:

p(yi | wi = £s,h;) p(u; = *s)
p(ui = £s[yi, hy) = - (12)
( | ) p(yi | i)
Taking the ratio and logarithm, we obtain:
i | ug = +s,hy P =
A, = log pli | ui =+, b)plui =+5) 5
p(yi | wi = —s,h;) p(u; = —s)
Assuming equal priors, p(u; = +s) = p(u; = —s), they
cancel out, yielding:
i | ui =+sh;
A :logp(y | ui = +s,hy) (14)

p(yi | ui = —s,h;)
Substituting the probability density function into and
expanding the quadratic terms gives the simplified LLR
expression for the i-th measurement:

exp (_ |yi —;1;(24-5)\2)} " log {exp (_ |y _2}15.(2_8)|2>:|

_ —lyi —hi(+s)P +lyi —hi(=s)]* _ 2-s-R(hiy))
n 202 o o2

A; =log

15)
Notwithstanding, the LLR expression (I5) assumes that the
amplitude of u; is exactly equal to s (i.e., the maximum
amplitude). In practice, however, the amplitude may vary,
particularly when k£ > 2. A more accurate approach is therefore
to use the conditional mean amplitude, i.e., the conditional
expectation, which accounts for the statistical distribution of
the transmitted signal and better captures its average magnitude.
Proposition 1. (LLR Metrics for Sparse-Aware Signaling.)
In sparse-aware signaling under the typical sparsity regime
k < m, the LLR reflecting the reliability of the sign
estimates for the support of the sparse vector x is computed
by considering the conditional expectation of the magnitude of
the transmitted signal observations, namely the measurement
entries u;, as follows:

A~ 2203 Efjalx| | x £ 0] = 2200 B [ju| | x £ 0],
(16)

where explicitly E[|u;| | x # 0] = m(t(kﬁ_ﬁ/ﬂ)'

Proof. See Appendix Section AE] |

For a more compact notation of (T6), we define the sufficient
statistic Ty = 22N} and the sparsity-dependent constant

— __k k—1
Crm = 2k*1\/ﬁ(L(k71)/2J)'
The LLR can then be equivalently expressed as

Ai=CrpmTi, i=1,2,....m, with Cy,, >0. (17)
Uhttps://github.com/modiisii/IEEE-ICC2026/blob/main/LLR_Metric_
Derivation.pdf]
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Although the weights could be defined directly from the
LLR magnitudes via 3; = |A;] = Cim - T3], such a
straightforward formulation provides no guarantees on the
range of (3;. It inherits the potentially unbounded scale of the
LLRs and may suffer from numerical overflow ; specifically,
|T;| can grow arbitrarily large under high signal-to-noise ratio
(SNR) conditions. Hence, to obtain well-behaved weights,
we employ a weighting function f(|A|) that maps the LLR
magnitudes to weights bounded between 0 and 1, where f(-)
denotes a suitable bounded and monotonic transformation.
More importantly, the magnitude of an LLR directly reflects
its reliability: larger magnitudes indicate higher decision
confidence. This intrinsic reliability measure naturally justifies
using LLR magnitudes to form attention weights.
Thereafter, we define the attention weights 3 from the
magnitudes of the LLRs by applying a max-normalization
function f: Ry — [0,1], |Ai| — f(JA4])-
Formally, the weights 3; are positive and max-normalized
based on the LLR magnitudes, expressed as
Bi = f(IA]) = ‘AA| = Cgm|T;L ;
1r<n£EZX | z| +e 121@22;1 k,m| z|+6
(18)
where € > 0 is a small regularization constant. If strictly
positive weights are required, we assume |A;| > 0 for all 7 ;
hence f3; € (0, 1]. Subsequently, the diagonal weighting matrix
is constructed as

W = diag(pu, - .., Bm) = diag(8), (19)
which reweights the equalized received vector y prior to
correlation with the transpose of the projection matrix.

Proposition 2. (LLR-Based Attention-Weighted Projection.)

The decoding stage follows the procedure described in the
previous subsection. In particular, the decoder evaluates the
weighted correlation vector defined as

¢ = AT (W,y) where i) =a] (30¥) = (a;,80¥). (20)
The support of x is then estimated by selecting the indices cor-
responding to the & largest-magnitude entries of cW), Figure
provides a conceptual schematic of the SVC receiver employ-
ing LLR-based attention-weighted projection decoding, while

Algorithm [I] summarizes the associated decoding procedure.
Algorithm 1: LLR-Based Attention-Weighted Decoding.

Require: Projection matrix A, received vector y, channel dia-
gonal matrix diag(h), sparsity level k, Noise variance o2

hiy;

h; I2+E> ’

: Compute LLRs: A; = 2%{}‘ il Rllal x| | x # 0].

. [A;]

: Comput.e attentlon. we}ghts. /Bl.— e ThgTTe

Form diagonal weighting matrix W = diag(3) .

Compute weighted correlation: ¢ = AT (Wy) .

. Estimate support set: & = topy, (\C(W)D .

: Reconstruct sparse Vector X% with:
X; = 51gn( ) for j € S, and % %; = 0 elsewhere.

8: return X .

1: Equalized received vector: y; = R

LLR-Bascd Attention-Weighted Projec

m X n
<——| Demapping X _|Support Recovery § 4—f‘|7w cishiedibroiection I*'—‘ Equalization l‘—
User Data and ' Correlauon)
:
i

Reverse LUT

Sparse Vector
Estimation

,,,,,,,,,,,,,,,,,,
1A
max |A| + ¢

Fig. 2. Conceptual illustration of the SVC receiver employing LLR-based
attention-weighted projection decoding.

C. SVC for 3GPP PUCCH Formats 2, 3, 4

In the 3GPP standard, uplink control information (UCI) packets
ranging from 3 to 11 bits are conveyed on the PUCCH using
Reed Muller encoding, followed by rate matching, scrambling,
complex-valued QPSK modulation, in general, even if complex-
valued 7/2-BPSK modulation is allowed for PUCCH format 3
/ 4. The resulting complex-modulated symbols are then mapped
to subcarriers across multiple resource blocks using one or
multiple OFDM symbols. For channel estimation, a pseudo
random QPSK sequence is used as demodulation reference
signals, enabling the base station to resolve channel ambiguities
in time, frequency, or space prior to performing coherent
detection. Furthermore, the principle of Reed Muller coded
transmission for the 3GPP PUCCH is detailed in [[12].
Nevertheless, it appears increasingly clear that 3GPP
Reed—Muller codes, as currently designed to be decoded
using well-known maximum likelihood decoding, are not
optimal in certain respects, particularly from a computational
complexity standpoint. Decoding via exhaustive ML search is
effectively prohibitive, especially in the context of short-packet
transmissions targeting URLLC use cases. Therefore, in what
follows, we seek to address the following question: how can
sparse-aware vector-coded transmission emerge as a viable
alternative, potentially rivaling or even surpassing standard
3GPP RM-coded transmission in terms of both performance
and decoding complexity?

Figure [3| presents a conceptual illustration of sparse aware
vector coded transmission adapted to the 3GPP PUCCH
structure, using PUCCH Format 2 as a representative instance,
specifically in the resource mapping fashion.

o
DMRS :
' J 4k bit Mapping Table Spreading Matrix A H

{lugu (’) s
2 =
; Orthogonal Spreadin
SVC Encoding |—>| & T b|__>
v g b T SR |y

(k=2, n)

Fig. 3. Conceptual illustration of sparse vector coded tr;ﬁaf;fs?gﬁ E);m;sGPP
PUCCH (e.g., Format 2).
IV. NUMERICAL RESULTS

A. Proposed SVC vs Conventional Approaches
For illustrative purposes, we consider an SVC transmission
with a sparse vector length n = 64, sparsity level £ = 2, and
a spreading matrix A € R32X"_ This configuration operates in
the short blocklength regime and corresponds to an information
message m carrying a payload of B = 12 bits, which lies at the
lower end of the short-packet communication range, typically
on the order of a few tens of bits. The performance comparison
includes: (- —®- —) the proposed enhanced projection decoding
based on an LLR-based attention-weighted approach, ( ,

) - -) the baseline projection decoding employing either a
Hadamard projection matrix or a random Gaussian matrix,
and the optimal ML decoder (—), performing exhaustive
search either at the sparse vector level % = argemxin ly—Ax]|?,

or at the message-bit level 1 = argmax 2y Ax(m)—||Ax(m)|?,
M

me
thereby exhaustively evaluating all |a1]=2 102 (i) ]+* candidate
messages. In addition, the performance evaluation in this
subsection assumes perfect channel state information ; however,
the analysis can be straightforwardly extended to scenarios
wherein the channel state information is unknown. In such
cases, a pilot-assisted transmission scheme can be employed,
which will also be illustrated in the subsequent subsection
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Fig. 4. Block error rate (BLER) and average processing complexity analysis. SVC parameters: sparse vector length n = 64, sparsity k = 2, spreading matrix
A € R32%64 message ™ of 12 bits (mmq = 10 bits + mo = 2 bits), coding rate 12/64. Decoders: baseline partial Hadamard projection, baseline random
Gaussian projection, and LLR-based attention-weighted Hadamard projection. Channel configurations: perfect CSI, 1 x 4 SIMO with (a) Rayleigh flat fading,
(b) 3GPP TDL-C NLOS (long delay spread = 300 ns), and (c) 3GPP TDL-D LOS+NLOS (short delay spread = 30 ns); sampling rate fs = 30.72 MHz.

for 3GPP PUCCH using DMRS-assisted transmission. Here,
in the scenario of interest, SIMO diversity is exploited using
multiple receive antennas in conjunction with the maximal
ratio combining (MRC) algorithm, which performs optimal
weighted combining based on the channel gains to enhance
transmission reliability by mitigating fading and improving
the SNR. Both Rayleigh flat fading channels (Figure fa) and
frequency-selective channels modeled using the 3GPP tapped
delay line (TDL) models, specifically TDL-C (long delay
spread of 300 ns) and TDL-D (short delay spread of 30 ns)
for urban macro (UMa) scenarios [13] are considered, as
illustrated in Figures and respectively. TDL-C and
TDL-D capture multipath propagation with distinct delay
profiles and are tailored for non-MIMO channel assessments,
thus enabling a realistic evaluation of the proposed decoding
scheme under practical propagation conditions. In this multiple-
receive-antenna scenario, the attention weights are computed by
averaging the 3 values across the Ny receive antenna branches.
It is noteworthy that the LLR-based attention-weighted decoder
exhibits superior performance under challenging channel condi-
tions characterized by severe fading, noise, or interference. For
instance, in the TDL-C NLOS scenario, signal dispersion over
multiple weak multipath components complicates detection at
low SNR, as the receiver must reconstruct information from
fragmented and noisy signals. At a very low BLER threshold
of 0.001%, the proposed enhanced decoder—based on LLR-
based attention-weighted Hadamard projection demonstrates an
approximate 2 dB gain over the baseline Hadamard projection
decoder. These gains and performance differences are consis-
tently observable across all three channel types considered, as
shown in Figure ] Importantly, performance critically depends
on the properties of the projection matrix, particularly its
orthogonality and robustness to noise, fading, and interference.
Notably, configurations employing random Gaussian projection
decoding consistently exhibit the poorest performance, with
an error floor around 1% BLER. In contrast, configurations
utilizing a partial Hadamard matrix achieve significantly lower
BLER, with the LLR-based attention-weighted projection
decoding providing an additional performance improvement,
nearing the optimal performance bound achieved by ML
decoding.

Moreover, computational complexity, assessed via average
processing time on a semi-logarithmic scale, is reported in
Figure fd] The proposed decoder is evaluated both with
weights formed from max-normalized and unnormalized LLR
magnitudes, and is compared against the baseline and optimal
ML decoders. The enhanced decoder cycle comprises LLR

computation, weight formulation, and projection calculation,
simulated over 10* Monte Carlo trials at a given SNR. Relative
to the baseline, the proposed decoder incurs approximately
a 6x increase in processing time ; however, it remains
nearly 13x less complex than full ML decoding. Notably,
both the unnormalized and max-normalized LLR weighting
configurations yield identical BLER performance. Nonetheless,
the unnormalized variant is computationally more efficient, as
the max-normalization step introduces an additional overhead
of approximately 10 us per decoding instance. Furthermore,
Figure [3] illustrates the BLER performances and average
processing time complexity as a function of the measurement
dimension m. It is worth noting that the proposed receiver
achieves higher gains over the baseline counterpart when
the measurement dimension satisfies m < n/2. For larger
dimensions, particularly as m approaches n (i.e., when a
full Hadamard matrix is employed) and under perfect CSI
conditions, the performance improvement relative to baseline
projection becomes negligible. Specifically, when m = n
under perfect CSI, the performance of the proposed projection
decoder and its baseline counterpart is identical, as the
full orthogonality of the Hadamard projection matrix is
already fully exploited in both cases. From a complexity
perspective, the computational cost increases with the number
of measurements for all benchmark decoders. Hence, for low-
latency applications, a smaller measurement dimension m
should be adopted, while the attention-weighting mechanism
can compensate for the performance gap relative to the optimal
ML performance bound.

B. Proposed SVC vs 3GPP RM Coding over PUCCH 2

As described above, for illustrative purposes, we consider a
sparse vector-coded transmission on a 3GPP PUCCH Format 2
with n = 32, £k = 2, and measurement dimension m = 32.
The information message m has a payload of K = 10 bits,
which falls within the 3-11 bit short-packet range specified by
the 3GPP standard for RM-coded transmissions. A payload
of K = 11 bits is also considered for additional performance
analysis. Accordingly, we consider a scenario with unknown
channel conditions, and thus a DMRS-assisted transmission
configuration is deployed. A single OFDM symbol spans
four physical resource blocks (PRBs), in which 32 resource
elements (i.e., m elements of the measurement vector after
orthogonal spreading) are allocated to data REs, while the
remaining 16 REs are reserved for demodulation reference
signals (DMRSs). Channel estimation is performed using the
least squares method, followed by linear interpolation to track
the channel at the data positions. Consistent with previous
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Fig. 5. Block Error Rate (BLER) and average processing complexity for SVC with n = 64, k = 2, varying measurement dimension m, and 12-bit messages.
Perfect CSI, 1 x 4 SIMO TDL-C NLOS channel (long delay spread = 300 ns, fs = 30.72 MHz).

experiments, we adopt the 3GPP TDL-C NLOS channel model
with a long delay spread of 300 ns. The performance evaluation
considers three schemes: the proposed SVC with enhanced
projection decoding, the SVC with baseline projection decoding
employing either a Hadamard projection matrix or a random
Gaussian matrix, and 3GPP RM codes with optimal ML
decoding ( ) serving as a benchmark. The optimal ML
decoder is implemented via exhaustive search. For a fair
comparison, the same number of message bits is maintained
across both coding schemes, i.e., K bits (3GPP RM) = B =
|log, ()] + K bits (SVC). As reported in the previous
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Fig. 6. Block Error Rate comparison for 3GPP PUCCH Format 2 transmission.
PUCCH Configuration: 1 OFDM symbol, 4 PRBs, 32 data REs, 16 DMRS
REs. SVC Parameters: sparse vector length n = 32, sparsity k = 2, message
m of B = 10 bits, coding rate 10/32. 3GPP Reed-Muller: % (32, 10) code,
message of K = 10 bits, coding rate 10/32, QPSK modulation. Decoders:
baseline Hadamard projection vs. LLR-based attention-weighted Hadamard
projection vs. ML decoding for RM codes. Channel configurations: unknown
CSI, LS estimation with linear interpolation, 1 X 4 SIMO TDL-C NLOS
channel (long delay spread = 300 ns, fs = 30.72 MHz).
subsection, the conventional approach using SVC with a
Gaussian random spreading matrix and baseline projection
decoding remains less performant than all other configurations
considered in Figure [6] In contrast, SVC with a Hadamard
spreading matrix combined with LLR-based attention-weighted
projection decoding achieves performance comparable to 3GPP
RM-coded transmission under optimal ML decoding at very
low BLER targets. For example, at a BLER of 0.0001%,
both schemes demonstrate equivalent performance on PUCCH
Format 2. As the BLER target becomes more stringent,
the proposed SVC receiver is expected to outperform the
conventional ML receiver for 3GPP RM codes. Furthermore,
from a computational complexity perspective, as depicted in
Figure [6b] the proposed decoder offers approximately a 5x
reduction in processing time compared to 3GPP RM under ML
decoding, thereby contributing to the fulfillment of URLLC
requirements.
V. CONCLUSIONS

In this work, we have presented an enhanced SVC scheme
tailored for short-packet communication over noisy wireless
channels. We have shown that conventional SVC approaches
relying on random (Gaussian, Bernoulli) or structured (par-
tial Hadamard) spreading/projection matrices with baseline

projection decoding may suffer from reliability degradation
under fading conditions. To overcome this limitation, we
have introduced an enhanced decoding approach leveraging
LLR-based attention-weighted projection, which dynamically
reweights received signal measurements according to their
reliability, giving more importance to the most reliable mea-
surements. Through simulations over both Rayleigh flat fading
and 3GPP TDL-C/TDL-D frequency-selective channels, we
have demonstrated that the proposed LLR-based attention-
weighted projection decoding outperforms baseline projection
decoding with both structured and random projection matrices.
Furthermore, we have extended the analysis to a short-packet
(3—11 bits) transmission framework over the 3GPP PUCCH.
The results indicate that the proposed SVC scheme, when
combined with a partial Hadamard spreading matrix and LLR-
based attention-weighted projection decoding, can competi-
tively rival 3GPP RM codes under optimal ML decoding at very
low BLER targets, while exhibiting significant computational
complexity advantages.
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