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Abstract—The integration of cyber-physical systems (CPS)
with Industrial Internet of Things (IloT) requires reliable and
efficient thermal management, yet existing control methods
often degrade under nonlinear thermal dynamics and unreliable
wireless links. This paper investigates cyber-physical control of a
nonlinear thermal system, where a remote controller regulates the
temperature of a thermal plant over a wireless communication
network. We first establish a cyber-physical thermal system
(CPTS) model that explicitly incorporates nonlinear heat-transfer
mechanisms (conduction, convection, and radiation) together with
wireless transmission impairments (fading and noise). Based on
this model, we formulate an optimal temperature tracking control
problem and characterize the structural properties of the optimal
solution using the homotopy perturbation method. To enable
practical implementation under real-time constraints, we develop
a model-assisted structured deep reinforcement learning (DRL)
framework, in which a deep neural network (DNN) approximates
only the residual high-order terms of the control law while
structured update rules guide the effective learning process. The
almost sure convergence of the proposed learning scheme is
established using Lyapunov stability analysis. Numerical eval-
uations are performed under a furnace temperature control
setup using simulation data generated from the proposed CPTS
model parameterized by typical furnace settings, which accu-
rately capture the underlying furnace dynamics. The proposed
scheme achieves a best tracking error of about 0.01 in terms of
mean square error (MSE) and converges within 50 iterations.
This corresponds to a 20dB reduction in MSE and a twofold
improvement in convergence speed compared with state-of-the-
art control schemes, thereby demonstrating both the effectiveness
and robustness of the proposed approach for wireless CPTS.

Index Terms—Cyber-physical systems, wireless networks, real-
time signal processing, nonlinear thermal control, reinforcement
learning, Lyapunov stability.

I. INTRODUCTION

C YBER-physical thermal systems (CPTS) are integral
to numerous industrial applications, including advanced
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Fig. 1: Architecture of a cyber-physical thermal control system over a wireless
network.

manufacturing, data center cooling, and energy-efficient build-
ing climate control [1]. With the proliferation of Internet-
of-Things (IoT) technologies [2], thermal management de-
vices can be rapidly deployed, wirelessly interconnected,
and intelligently coordinated, facilitating adaptive, distributed,
and real-time temperature regulation. We consider a repre-
sentative CPTS comprising a thermal plant and a remote
temperature controller, as illustrated in Fig. 1. The thermal
plant consists of a heat source and a target object requiring
precise temperature control. The remote controller employs
real-time signal processing of temperature feedback from the
thermal plant to generate thermal control commands, which are
transmitted over a wireless communication channel. The heat
source promptly adjusts the temperature of the target object
according to the received noisy commands. However, wireless
transmission introduces fading, interference, and noise that
compromise signal integrity and degrade CPTS temperature
control, making effective mitigation of these impairments
crucial for robust performance.

Temperature control in CPTS is challenging, largely because
accurate regulation depends on precise thermal modeling,
whereas many existing works oversimplify system dynamics.
Some studies [3] reduce CPTS behavior to linear or Au-
toRegressive Moving Average with eXogenous inputs (AR-
MAX) models, while [4] relies on deep neural networks
(DNNs) trained purely on empirical data without theoretical
guarantees. Physically informed approaches [5], [6] improve
fidelity, but [5] considers only heat conduction and overlooks
source—object interactions, whereas [6] models convection but
insufficiently captures key spatiotemporal dynamics. More
comprehensive formulations [7] integrate both conduction and
convection, yet nonlinear thermal phenomena such as radiative



transfer remain inadequately represented. Consequently, these
modeling simplifications limit the robustness of temperature
control schemes in practical CPTS settings, particularly under
dynamic thermal loads, external disturbances, and wireless-
induced signal distortions.

Second, most existing works on CPTS controller design
assume oversimplified communication channels between re-
mote controllers and physical thermal plants. For instance, [§]
employs offline pole placement, while [9], [10] adopts PID
control to regulate system temperatures over static channels.
However, these heuristic approaches lack optimality. To ad-
dress this limitation, some recent works [11], [12] propose
optimal control schemes based on linear quadratic tracker
(LQT) and model predictive control (MPC) designs, yet the
approach still relies on the assumption of fixed-gain connec-
tions between controllers and thermal plants. Notably, all these
works [8]-[11] neglect the impacts of time-varying wireless
fading and nonlinear thermal interactions, both of which
critically affect the control performance of CPTS operating
over wireless networks.

To address the nonlinear dynamics inherent in cyber-
physical systems (CPS), reinforcement learning (RL) has
emerged as a promising strategy [13]. However, classical RL
methods often suffer from the curse of dimensionality [14]
due to continuous state and action spaces, and discretization-
based approaches such as [15] introduce quantization errors
that degrade performance. Deep reinforcement learning (DRL)
alleviates these limitations by using DNNs to approximate
control solutions, thereby reducing the problem to learning
a finite set of parameters [16]-[18]. For instance, [19] applied
DRL to intrusion detection in IoT and demonstrated the
effectiveness of double deep Q-networks (DDQN). In [20],
deep Q-networks (DQN) were used for anomaly detection
with partially labeled data, improving generalization, while
[21] employed an evolutionary DRL-based detection model
for insider misuse with limited training data. Despite these
advances, the use of arbitrarily structured DNNs in DRL often
leads to slow convergence and inefficient learning because they
fail to exploit problem-specific structures. Although model-
assisted DRL can incorporate system knowledge to generate
synthetic data and improve efficiency [18], the design of
DRL architectures tailored explicitly for optimal CPS control
remains largely underexplored. This challenge becomes even
more pronounced in CPTS over wireless networks, where
nonlinear thermal dynamics and stochastic, time-varying wire-
less channels further exacerbate the convergence issues of
conventional black-box DRL methods.

There are some recent works that consider DRL-based
control over oversimplified wireless communication channels
[22], [23]. Specifically, [22] models the communication link as
an on—off packet-drop channel without accounting for practical
wireless fading. In [23], the channel is represented by an over-
simplified, location-dependent, time-invariant SNR model that
depends solely on vehicle positions and does not capture any
temporal evolution of the fading process; once the positions
are fixed, the channel remains constant. Therefore, neither [22]
nor [23] incorporates a realistic time-varying wireless fading
model into the control loop. Under a realistic time-varying

fading channel between the temperature controller and the
thermal plant, the channel gain evolves stochastically over
time. As a result, the associated optimality conditions must
be reformulated to explicitly include the wireless fading state.
Consequently, existing control approaches [22], [23] cannot be
directly applied because they do not adapt to temporal fluctu-
ations in the fading process and would experience significant
degradation in control performance.

In this work, we address temperature control in CPTS with
nonlinear thermal dynamics over wireless fading channels by
proposing a structure-aware RL algorithm tailored for CPTS.
Unlike the generic applications of reinforcement learning
commonly adopted in existing works [16]-[18], we explicitly
exploit the intrinsic structure of the optimal solution derived
from first-principles thermal laws and develop a structure-
aware RL framework that only approximates the unknown
residual structured component of the CPTS control solution.
This structure-exploiting design substantially reduces learning
complexity and achieves significantly faster convergence com-
pared with generic RL-based approaches [16]-[18]. Our key
contributions are summarized as follows.

o Comprehensive Physical Thermal Modeling for CPTS.
To enable effective thermal controller design, it is essen-
tial to develop a CPTS thermal model that captures the
key heat transfer mechanisms (conduction, convection,
and radiation) together with the impact of wireless im-
pairments on control-signal delivery. However, deriving
an explicit model that incorporates all these effects is
challenging due to the strong and stochastic nonlinear
couplings involved. To address this issue, we start from
first-principle energy balance equations, apply a weighted
residual (Galerkin) method to discretize the governing
PDEs, and obtain a tractable state-space representation
via reduced-order modeling augmented with random fad-
ing effects.

o Structured Optimality Condition for CPTS Control
with Nonlinear Dynamics over Wireless Channels.
Conventional RL methods characterize optimal control
via the Hamilton—Jacobi-Bellman (HJB) equation of the
value or Q-function, together with a separate link between
the co-function and these functions. This two-step struc-
ture is inefficient for our setting, where wireless channel
impairments are typically ignored. To address this, we
seek a structured optimality condition defined directly
in terms of the co-function, explicitly capturing both
nonlinear thermal dynamics and wireless channel uncer-
tainty. The main difficulty lies in the coupling between
nonlinear thermal effects and stochastic channel gains,
which renders the dynamics highly nonlinear and time-
varying. We overcome this by applying the Pontryagin
maximum principle to the joint system—channel state
and exploiting closed-form thermal models to derive a
tractable structured optimality condition. To the best of
our knowledge, this is the first structured optimality
condition tailored to CPTS control over wireless networks
that jointly incorporates fundamental thermal laws and
wireless fading effects.
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Fig. 2: Connections between the key theorems, lemmas and corollaries.

o Structured CPTS Control Solution with Nonlinear
Dynamics over Wireless Channels. To facilitate efficient
learning of the optimal control solution, we leverage the
structural properties of the co-function induced by the
partially nonlinear thermal dynamics. Specifically, we
decompose the co-function into a linear kernel, corre-
sponding to the purely linear thermal dynamics, and a
higher-order perturbation term that satisfies a decomposed
optimality condition. Since the linear kernel can be de-
rived analytically offline, only the perturbation term needs
to be learned, which substantially reduces the complexity
of the learning process. However, this decomposition is
challenging because the linear and nonlinear terms of
the co-function are coupled in the original optimality
condition. To address this, we employ a homotopy-based
method that systematically separates the co-function into
a deterministic linear kernel and a residual perturbation.

o Structured Online RL Algorithm for CPTS Control
over Wireless Channels. The structured form of the
co-function, together with the decomposed optimality
condition, allows us to approximate only the higher-
order perturbation component using a lightweight neural
network (NN). The network parameters are optimized
by enforcing the structured optimality condition within
the proposed RL framework, and convergence is ensured
through Lyapunov analysis. Compared with black-box
methods that approximate the entire co-function, our
approach (i) achieves faster convergence, as reflected by
the faster decay of the gradient norm during learning, and
(ii) requires significantly lower computational complexity
than the quartic black-box bound, since only the residual
perturbation is learned with far fewer parameters under
structured update rules.

A flowchart that elucidates the connections between the key
lemmas, theorems and corollaries in this work is provided
in Fig. 2. The notations that will be used throughout this
article are summarized as follows. Bold uppercase and low-
ercase letters denote matrices and vectors, respectively. The
operators ()7 and Tr(-) represent the transpose and trace of a
matrix. Diag(a, b, ...) denotes a diagonal matrix with elements
{a,b,...}. The sets R™*" R, R, S%, S, Z, and Z represent
m x n real matrices, real numbers, positive real numbers, a X a
positive definite matrices, a X a positive semi-definite matrices,
positive integers, and non-negative integers, respectively. The
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Fig. 3: Diagram of the heat flow in the thermal plant.

spectral norm and the maximum eigenvalue of A are ||A|| and
A(A), respectively. [A], ; refers to the element at the a-th row
and b-th column. The Hadamard product of matrices A and B
is A®B. The b-th element of vector a is [a], and ||a|| denotes
its Ly norm. Given a = [ay, ..., a;]7 € R, its element-wise
b-th power is a® = [a?,...,a}]”. Identity and zero matrices
are denoted as I, (size s x s), I,«p (all ones, size a x b), Oy
(zero matrix, size s x s), and 0,y (zero matrix, size a X b).
The inner product of vectors a and b is (a, b). The indicator
function 1(,>0y € {0, 1} satisfies 1{,>0y = 1 if and only if
a > 0.

II. CPTS MODEL

A. Heat Convection between Target Object and Heat Source

We consider a CPTS thermal plant with an effective thermal
cavity of dimensions 1 x I3 X I3, as shown in Fig. 3. At time
t € R, heat convection within the thermal cavity is described
by the heat convection law:

Gy, 2, 1) = by, 2)(TM (1) ~T(a,y, 2,0)), i € {2,y 2},
ey
where ¢'(x,y,2,t) and h;(x,y,z) denote heat flux density
and heat transfer coefficient for convection in the i-direction,
respectively; 7" (t) and T'(x, y, 2, t) represent the temperatures
of the heat source and thermal cavity. The triplet of (x,y, z)
denotes the three-dimensional Cartesian coordinates.
The Neumann boundary condition [24] for (1) is given by:

B. Heat Radiation in the Thermal Cavity

For i € {z,y, z}, heat radiation within the thermal cavity
is governed by the Stefan-Boltzmann law:

¢ (x,y, 2,t) = oe;(x,y, 2) ((Th(t))4 — Tz, y, z,t)) , (3

where ¢i(x,v, 2,t) denotes the heat flux density for radiation
in the i-direction, €;(z,y,z) € (0,1) is the emissivity, and
0 = 6.7 x 1078 is the Stefan-Boltzmann constant.

The Neumann boundary condition for (3) is given by:

7‘];‘(7%315) = Qi(%vt) =q, 1€ {x7yaz}' “4)



C. Heat Conduction in the Target Object

We model heat conduction within a target object of dimen-
sions j1 X j2 X js, centrally positioned within the thermal
cavity, under the following assumption.

Assumption 1 (Target Object Properties [25]): The surfaces
of the object in the xy and yz planes are insulated, and its
temperature field is uniform across these planes. ]

Consequently, the temperature field T°(y,¢) along the
spatial dimension y € [7%2, %] follows the transient heat
conduction equation:

T3 (y,t 02T3 (y,t
e (.1) _\ OT°(.1)
ot Oy?
where p, ¢, and A\ denote mass density, heat capacity, and

thermal conductivity of the object, respectively.
The Neumann boundary condition for (5) is given by:

s j2 8T5(yvt)
+72 4) = ), WY
q ( 5 ,t) As By

; &)

y=+2
=gz, £8,2,0) +¢l(e, £5,2,0), (6
where z € [f%, %] z € [f%‘, 353]
The boundary temperatures satisfy:
T (j:j;,t) T<x,j:j22,z,t>. 7

The conduction heat flux ¢*(y, ¢), which governs the tem-
perature within the object, is driven by the surface radiative
and convective fluxes ¢'(x,y,z2,t) and ¢'(z,y,z,t), where
i € {z,y, z}, within the thermal cavity.

D. Heat Process at the Heat Source

The thermal energy @(t) € R supplied by the heat source
generates effective heat energy Q(t) € R, which is transferred
to the thermal cavity. However, due to inefficiencies and losses,
only a fraction of this energy contributes effectively:

Q(t) = Cu(?),
where ¢ € (0,1) denotes the heat source efficiency.
According to the energy balance principle, the generated
heat Q(t) is equal to the sum of the heat transferred to the
cavity boundaries and the target object:

Q(t) = (2l1lz + 21113 + 212l3)(q0 + q1) +

Boundary heat losses

gijs [@° (8. 1) + ¢ (=%, 1)] -

Heat to target object

®)

€))

E. Overall Dynamic Model of the Thermal Plant

The overall dynamic model of the CPTS incorporates
heat conduction within the target object, heat convection and
radiation in the thermal cavity, and heat generation at the
heat source. Applying the weighted residual method [26] to
equations (1)—(9), we obtain the CPTS dynamics:'

T(t) = A1T(t) + Ay T*(t) + Ba(t) + ¢, T(0) = T, t > 0,
(10)

'See Appendix A for the detailed derivation of (10) and the resulting
properties A(A1) < 0 and A(A2) = 0.

where T(t) = [T%(%2,1),7°(0,t),T5(—%2,t)]T e R3*!
represents the temperature state of the target object, and
T4(t) = [(T°(%,1)" (T°(0,1))", (T° (=%, 1))"]" € R
denotes its fourth-power temperature. The initial thermal state

is given by Ty € R3>*!. The thermal transition matri-
=545 95Xs =425
Mgsh pei3 pcj§3h
_ 3075 _ 8hg —60A 30 .0
ces are defined as A; = o el R S
54X 79535 42X ¢
00122 001'22 Pca'g
0] 0 0
and A, = e dege | The actuation matrix and
62 62
. . pcj13233
thermal bias are given by B = [ 0 1 and ¢ =
15¢
2pcj1273

(21319421913 +21313)(90+491)
pCci13233
0

. The heat transfer coefficient and

(15115 +151513+151313)(ag+a1)
pci1iois

emissivity satisfy ho = —hy(:p,%,z) = hy(x,—%,z) and
€ = fey(m,%,z) = ey(x,—%,2), for x € [-4, %] and
z € [7%7 %}

Remark 1 (Key Properties of A(A1) < 0 and A(Az) = 0).
Note that \N(A1) < 0 and A(A3) = 0 hold for all physically
meaningful values of p, ¢, and Xs. Specifically, for any
physically meaningful (i.e., strictly positive) p, ¢, and \s, we
have A, = pi—;gL, which is a positive scaling of the matrix

—54 95
30 — 3hgjg/As  —60

—42

L = 30 + 3hoja/As |- AS rigorously proved

54 —96 42

in Appendix A, \(L) < 0 for all such parameter values, and
it follows that \N(A1) < 0 always holds. Moreover, Ay is
a nilpotent matrix satisfying A3 = 0s, and thus all of its
eigenvalues are zero. Therefore, \(A2) = 0 for any physically
meaningful p, ¢, and Xs. It is worth noting that the fact
that M(A1) < 0 and MN(As) = 0 is fully consistent with
the heat balance law and physical intuition. Without external
heat input, the temperature of a thermal object must remain
bounded over time rather than diverging to infinity. This
fundamental behavior holds regardless of the specific values
of the mass density, heat capacity, or thermal conductivity of
the object.

F. Wireless Communication Model

We account for wireless signal distortions and model the
communication link between the remote controller and the heat
source as a wireless fading channel. Based on the temperature
feedback T(t), the remote controller generates a thermal
control signal u(t) € R, which is transmitted to the heat
source. The received signal at the heat source is given by:

w(t) = h(t)u(t) + v(t), (11)

where h(t) ~ N(0,€) denotes wireless fading with variance
¢ > 0, and v(t) ~ N(0,1) is additive white Gaussian noise
(AWGN).

It is worth noting that the thermal radiation inside the
furnace does not affect the quality of wireless communications
between the plant and the remote temperature controller, since
it lies in the infrared spectrum (typically 0.7-20 pm), whereas
industrial wireless systems operate in the sub-6 GHz bands



with carrier wavelengths on the order of 5-50 cm. As the
radiation wavelength is several orders of magnitude shorter
than the carrier wavelength, its direct coupling into the radio-
frequency band can be ignored. By contrast, the working
conditions of industrial sites (e.g., metallic furnace walls,
surrounding equipment, or heavy machinery) may introduce
multipath propagation, shadowing, and time-varying attenua-
tion that impact the communication quality. These effects are
well captured by the fading channel model h(t) adopted in
our formulation, whose variance ¢ characterizes the signal-to-
noise ratio (SNR) and thus the communication quality.

Remark 2 (Industrial Applicability of the CPTS Model).
The modeling framework in Section Il explicitly incorporates
the three fundamental heat transfer mechanisms: conduction,
convection, and radiation, which universally govern indus-
trial thermal processes. These mechanisms arise in diverse
applications, including regulating fuel input in reheating fur-
naces, controlling temperature trajectories in ceramic sinter-
ing, adjusting mold or chamber temperatures in composite
manufacturing, and maintaining safe operating temperatures
in battery modules. Therefore, the proposed control scheme is
broadly applicable to industrial thermal systems by specifying
the geometry, material properties, and operating parameters
for each specific application.

III. STRUCTURED TEMPERATURE CONTROL FOR CPTS
OVER WIRELESS NETWORKS

A. Problem Formulation for Optimal Temperature Control in
CPTS over Wireless Networks

Let t > 0 and T(0) = Ty. The evolution of the temperature
state T(¢) in the CPTS with partially nonlinear time-varying
(PNTV) dynamics is obtained by combining (10) and (11),
given by:

T(t) = A1 T(t) + AT4(t) + ¢ + h(t)Bu(t) + Bu(t). (12)

Suppose the target temperature profile r(t) € R3**! evolves
as:

r(t) = Gr(t), t>0, r(0)=r, (13)

where G € R3*3 characterizes the target thermal transition
matrix. The optimal temperature control problem for the
PNTV CPTS is formulated below.

Problem 1 (CPTS Temperature Control Problem).

T
min lim sup — /O E [r(T(t), v (t), h(t), u(t))] dt

™  T—oo
s.t. T(t) = AiT(t) + AyT(t) + ¢ + h(t)Bu(t) + Bu(t),
I‘(t) = GI'(t), T(O) = To, I‘(O) =Ty, (14)
where the temperature control policy is m = {u(t),t > 0}. The

per-stage reward function r(T(t),r(t),h(t),u(t)) is defined
as:

r(T(t),x(t), h(t),u(t)) = (T(t) — r(t))" Q(T(t) — r(t))
+ (R+ Mh2(t))u?(t),

where (T (t)—r(t))T Q(T(t)—r(t)) represents the temperature
tracking error cost, modeling the instantaneous deviation
between the target temperature state and the real-time temper-
ature state of the target object. (R + Mh?(t))u?(t) consists
of: (i) the control cost Ru®(t), representing the transmission
power over the wireless interface from the remote controller to
the heat source, and (ii) the thermal input cost Mh?(t)u?(t),
modeling the thermal energy consumption at the heat source.
The weighting coefficients are Q € S3, R € R,, and
M € R,. The expectation in the objective function is taken
with respect to (w.r.t.) the random CSI h(t) and the AWGN
v(t) at the heat source.

Remark 3 (Feasibility of Problem 1 and Stability of the
Thermal Dynamics (10)). Problem 1 is feasible provided
that the target trajectory r(t) remains bounded, owing to
the internal stability of the thermal dynamics (10). Note
that A(A1) < 0 and A(Az) = 0, as discussed in detail
in Remark 1 and rigorously proved in Appendix A. Conse-
quently, under the optimal input u*(t) € R, the closed-loop
system remains stable, ensuring a finite optimal cost, i.e.,
limsupy_, o & fo E[r(T(t),x(t), h(t), u*(t))|dt < oc. This
aligns with the energy-balance principle, which guarantees
bounded temperature evolution even without external heat
injection.Nonetheless, our objective extends beyond ensuring
stability alone; we aim to achieve precise temperature tracking
and efficient energy usage by minimizing the long-term cost
imsupy o 7 Jo Elr(T(t),r(t), h(t),u(t))]dt rather than
solely focusing on stability.

B. Structured Optimality Condition for CPTS Control

Traditionally, optimal CPTS temperature control is ob-
tained by solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion. Specifically, Problem 1 can be equivalently reformulated
as a linear quadratic regulator (LQR) problem.

Problem 2 (Equivalent Formulation for Problem 1).

T
min lim sup — /t E[r(T(t), h(t), u(t))]dt

T  Tooco =0
st D) = AT() + AoTh(t) + & + B(tult) + 9(1),
T(0) = T, (16)

where Ty = [TZ, ro]T € RS> is the aggregated initial state.
The expectation in (16) is taken w.rt. the random CSI h(t)
and the AWGN v(t) at the actuator. The equivalent per-stage

reward function r*('T(t), h(t), u(t)) is given by
r(T(t), h(t), u(t)) = TT (t)QT(t) + Ru?(t) + Mh2(t)u?(t),

17)
where T(t) = [TT(t), vT(t)]T € RS> is the aggregated
temperature state, Q = 7QQ ’QQ} € S8 is the aggregated

weighting matrix, A; = Diag(A1,G) € R*6 and A, =
Diag(Asg,03) € RS%C are the linear and nonlinear thermal
transition matrix, B(t) = [h(t) BT, 01y3]7 € R6*! is the
aggregated actuation matrix, v(t) = [vI ()BT, 0,43]7 €
ROX1 js the aggregated noise, and ¢ = [cT', 01x3]" € R6*!
is the aggregated bias.



Consequently, the optimal temperature control solution to
Problem 1 can be obtained by solving the HIB equation for
Problem 2, as stated in the following lemma.

Lemma 1 (The HJB Equation and Optimal Solution to
Problem 2). The optimal solution to Problem 2 is given by

u*(t) = — R(t)BT(t) \(T(1)),
oV (T(1)

where R(t) = (2R + 2M hQ(t))_l and N(T(t)) = oT(t)

The value function V(T(t)) satisfies the HIB equation for
Problem 2:

_OV(T@®) _ = Euq) [mm( T QT() +

ot (®)
(1) + E[(AT®), T®)|T0), ht), u(t)])].

Proof: See Appendix B. ]
Note that the unknown co-function )\(Tg)) in u*(t) of
(18) is the state-derivative of the solution V' (T(t)) to the HIB
equation (19). As a result, one may consider using traditional
RL algorithms, such as value iteration or (-learning, to solve
(19) and subsequently derive the optimal solution w*(t) in
(18) based on their relationship. However, this two-stage
approach is inefficient. To enable efficient learning, we derive a
structured optimality condition for A\(T(¢)) using Pontryagin’s
principle.

(18)

(R+ M h*(t))

19)

Theorem 1 (Optimality Condition w.r.t. the Co-Function for
CPTS Control). The optimality condition (19) for Problem 2
can be represented w.r.t. the co-function A\(T(t)), given by

ONT®) 1+ L 5 A
% (A1 T(t) — E[R(O)BHBT ()] A(T(#)) + As

< Tt +¢) + Q) + AT A(T®) + (44T © (T (1)
x Iix6) ) MT(t)) = Ogx1, VI(t) € RO (20)

Proof: See Appendix C. ]

C. Structured Optimal Solution for CPTS Control

Note that the unknown co-function A(T(t)) is defined on
a continuous state space T(f) € R6*!, making brute-force
solutions of (20) computationally infeasible. Hence, we exploit
the inherent structure of A\(T(t)) by modeling its structured
kernel. However, deriving an explicit form is challenging due
to the strong nonlinear coupling involving the cubic state
term T3(t) in (4A% © (T3(t)Lixe))A(T(t). To address
this difficulty, we observe the Riccati structures inherent in
linear optimality conditions and recognize CPTS dynamics
as linear systems with higher-order nonlinear perturbations.
By applying the homotopy perturbation method [27] to (20),
we derive the following theorem, characterizing a structured
decomposition of \(T(t)).

Theorem 2 (Structyred Decomposition of the Co-Function).
The co-function \(T(t)) admits the decomposition:

n=0

2L

where each component A\, (T( )) satisfies the PDE
Dn(T(t)7)\n(T(f)>> ( (t), A (T(t))) 1>1) = O6x1,
(22)

subject to the initial condition \, (06X1) = 0gx1. The domi-
nant term D,, is

Du(T(t), M (T(2))) o

« BT(£)] A (T(t))}
and the perturbation term P, is

P”(T(t)7>‘n—1(rf(t))) = [a)\”{;’%((’::)‘(t))

@ (T3(t) Lixe)) M1 (T(1))] Lpns1y + €1gmmy, (24)
1(+) = Ogx1.

Proof: See Appendix D. [ ]

By analyzing each component A, (T(t)) and its relationship

to the overall co-function A(T(t)) from Theorem 2, we derive

the following theorem characterizing the structure of )\(T(t))
and the corresponding optimal control u*(¢).

A, T(t) + (4 AT

where \_

Theorem 3 (Structure of Optimal Control Solution). The
optimal solution has a structured form as follows.

uw*(t) = —R(t)BT ()A(T(t)), (25)
where \(T(t)) is the structured co-function given by
AT (1)) = Co + C1T(t) + g(T(1)). (26)

Co € RS*1, C, € R*S, and g(T(t)) represents higher-order
nonlinear terms, given by

DD

m=3{a,...,f}ECm

[T(@)]§)"

(27
Furthermore, they satisfy the optimality conditions as follows.

—C,E[R(t)B(t)BT (£)]Co + C1é + ATCy = 041,

CiA, + ATC, — CE[R(t)B(t)BT ()]C1 + Q = 0.
(29)

Cun(a, s HIT®, -

(28)

and
a( 1)
(1)
(T(®)) + AT () + ¢) + AT g(T(1) + (4AF © (T°(t)

Tixs)) (Co + CiT(t) + g(T(t))) + C1(-E[R(t)B(t)B (t)]
g(T(t)) + AT (t)) = 0651, VI (t) € R, (30)

)(A1 (t) ~ E[R(MB®B” ()] (Co + C1T(1)+

Proof: See Appendix E of the supplementary material. B
Since the optimal CPTS control solution, given by u*(t) =
—R(t)BTA(T(t)), depends on the co-function A(T(t)), it
is desirable to approximate A(T(t)) in order to compute
u*(t). This leads to the estimation of {CO,Cl,g(’i‘(t))}.

While the linear kernel {Cy, C;}, satisfying the optimality
conditions (28) and (29), can be efficiently computed offline



using standard solvers such as the Schur method and the New-
ton—Kleinman iteration [28], obtaining the nonlinear residual
g(T(t)) efficiently in an offline manner remains challenging.
In the following section, we propose an online structured
learning algorithm to approximate the optimal CPTS control
solution u*(t) by learning the nonlinear component g(T(t))
in real time.

IV. STRUCTURED ONLINE RL FOR TEMPERATURE
CONTROL OF CPTS OVER WIRELESS NETWORKS

A. Black-box RL for CPTS Control

We learn the optimal CPTS solution u*(t) in (18) by ap-
proximating A(T(#)) using an unstructured NN f,(T(£); 65),
whose parameter 6, € R*>! (with [, € Z, neurons) is learned
online. Given that A(T(t)) satisfies the optimality condition
(20), the parameter optimization problem is formulated as:

Problem 3 (Black-box RL for CPTS Control).

. - 1 (7
Héin Ly(6p) = min lim sup T /0 E[eb (t; 95)] dt, (31

b T—o0

where the expectation is taken over the CSI h(t) and the
AWGN v (t). The term ey(t;0p) € R is defined as

es(t;06) = 3 [|en(t, 00|

=%|IW(A T(1) - R()B(H) B

+ AT ) + &) + QT(t) + AT fu (T
+ (4A2T ( () Lixe) ) £(T(0):00)]|"

By using temporal difference (TD) learning [29], [30],
we can iteratively update the NN parameter 6, =
[0 4 - 02 )7 € RI¥1 at each sampling instant & based on
the real-time CSI h(k7) and the measured temperature state
T(k7) from the thermal plant, as follows 2

()fb(Tu b)
;05)

(32)

Op k41 = O — Ve,  ep(kT; 0 1)

(33)
= 0 — apmy,
where 7 > 0 is the samphng period. The step
size o, > 0 satisfies Y o o = oo and
Yheoai < oco. The increment is defined as
mg = [m{kéb(kT;9b7k),...,m£7kéb(l€7;ab,k)}T S Rle1,
with each m; j, € R6*! given by:
2 T . . R _
mi = LI O0k) | (A () — R(ker) B(kr) BT (k)
oT(t) 90}, i=rr
- ~ . - Afo(T(t); 0k
PR 000) + A Tk +.0)— ey PR O)|
- 19} 0
B(kr) BT (kr )71%( (£); On.k) + (AT 4+ 4AT o (T3@)
89; k t=kT
Ofs(T(2); 05.1)
Lixe)) 90} . T 9

The learned co-function f;(T(t); 6% ) is then applied at the
remote temperature controller to generate the CPTS control

2The implementation of Algorithms 1 and 2 requires the real-time CSI
h(kT), which can be obtained in practice via standard pilot-based channel
estimation at the thermal plant, followed by channel feedback to the remote
temperature controller [31].

700 = [1(©;r(0)]

T(0) = [T(©); r(®)]

sl h(t)

(a) Summary of Aj.

(b) Summary of As.

Fig. 4: Summdry of online CPTS control using A1 and A3. A2 uses a DNN
fs(T(t);05) to approximate only the high-order term g(T'(t)), resulting in
faster convergence and lower computational complexity compared to A;.

solution w(t). Algorithm 1 and Fig. 4(a) summarize online
CPTS control scheme using the black-box RL.

It is worth noting that an unstructured NN may result in slow
convergence and high computational complexity. To overcome
these limitations, we propose a structured learning strategy in
the following subsection.

B. Structured RL for CPTS Control

1) Network Architecture: Note that the co-function \(T\(t))
admits a structured form, A\(T(t)) = Co+ C1T(t) +g(T(t)),
as shown in Theorem 3. Since the linear kernel {Cy, C;} can
be computed offline analytically, online learning of A(T T(t))
reduces to learning the nonlinear component g(T'(t)). Specif-
ically, we approximate the co-function using a structured NN

fo(T(t);0,):
Fo(T(t);0,) =

where the NN f,(T(t); 0,) € R*! approximates g(T(t)) in
A(T(t)) and is parameterized by 0, € R'**1, with [, € Z,
denoting the number of neurons.

2) Design of Reward Function: Since the co-function

A(T(t)) satisfies (30), we reformulate it into the per-stage
reward function e (t; 6,) for 6, as:

Co+ CiT(t) + fs(T(t);65), (35

es(t;0s) *lles(t 0:)I1”

Afs(T(t);65) (x 4 5AR AT
=5 HT() (AlT(t) — R@)B(®)B” (¢)

(Co + C1T(t) + fs(T(t); 95)) + AT (t) + c) +AT

Fo(T(1);6,) + 4AT © T2 (1)L x4 (Co y o) + F (), es))

— R(O)CL(BOBT (6 F.(T(t): 0,) + Ao (t))H2. (36)

The optimization problem for 6, can be formulated as follows:

Problem 4 (Optimization for Structured NN).

Eles(t;05)]dt,  (37)

1 (T
min L,(0s) = minlimsup—/
05 ( ) 0 T—o00 T t=0
where the expectation in (37) is w.rt. the CSI h(t) and the
AWGN v (t).

3) Training Process: To learn the CPTS control solution,
TD learning is employed to optimize 6, in Problem 4. Specif-
ically, the NN parameter 6 = [0}, ... L0l )T € REx1 s



Algorithm 1 Online CPTS Control via Black-Box Approach
Initialization:
o Initializing f,(T(t);
o Initializing u(t) <
using f(T () 06,0)-
For £k =1,2,3,...:
o Step 1 (Update of the Unstructured NN):
Op,x+1 < according to (33) using T(k7),
o Step 2 (Update of the CPTS Solution):
u(t) « —R(kr)BT (kT) fuo(T(k7); 0p.1), kT < t < (k+1)7.

Op0) usmg Oy 0= (04,0, s 05) "

—R(0)BT(0) fy(T(0); 04,0),0 < t < 7,

(k‘T), and Qb,k.

End

updated at each sampled timeslot k using real-time CSI h(k7)
and temperature feedback T(k7), as follows.

es,k:-i-l = es,k - Ves’kes(kﬂ'; 93,19)

38
= 9571C — . ( )
where nj, = [n? kés(kT Os.kc)s-- nl 18s(kT; 05 1)) e Rbsxt
with each n; ;, € R6*! given by:
_PREW:0.0), (4 o n
n; g = Wh kT (A T(k7) — R(kT)B(kT)B" (k7)
(co+c T(kr) + fo(T(kr); 6, ))+A2T4 (kr) +c)
Ofs(T(Di0sk) | mo o Ofs (T(t); 0.5)
o7 (1) le=kr R(kT)B(k7)BT (k7)== =t 96, 1 |i=tr
p ATORCLWS ) 1 (41AT © (3% (k)
s,k
OL(TW: )| R(kr)CyB(kr)BT (kr)
o0 .
OL(TW:0ui)) <<, (39)
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The learned structured co-function f(T(t);6s) can be
deployed at the remote temperature controller to determine the
CPTS control solution «(t). The structured learning algorithm
for CPTS control is outlined in Algorithm 2 and Fig. 4(b).

Algorithm 2 Online CPTS Control via Structured Approach
Initialization:

o Initializing fs(T(t);0s0) + C1T(t) + fs(T(t); 050
using 05,0 = [9S 0y e fjo}

o Initializing u(t) < —R(0)BT(0)fs(T(0);0:0),0 < t < T
using fs(T(t);Hs,o)

For £k =1,2,3, ...
o Step 1 (Update of the StructuredANN):
0s,k+1 + according to (38) using T'(k7), h(k7), and 6 k.
o Step 2 (Update of the Control Solution):
u(t) < —R(kT)BT (k1) fo(T(k7);0.1), kT < t < (k+ 1)T.
End

By incorporating the structure of the co-function \(T(t))
into the design of the structured NN f,(T(t); 6,), Algorithm 2
ensures fast convergence and reduced computational complex-
ity, as analyzed in the following subsection.

Remark 4 (RL Category of Our Method and its Advantages
Compared to Conventional RL Approaches). The proposed
scheme belongs to the class of continuous-state value-based

reinforcement learning methods. Instead of directly parameter-
izing the control policy u(t) in an end-to-end manner, we ex-
ploit the structural properties of the thermal tracking problem
and learn the co-function N(T(t)), which is the state derivative
of the value function V(’i‘(t)) By leveraging the fixed-point
optimality condition of the HJB equation, we construct a
structured parameterization of A(+) that incorporates problem-
specific forms and approximate only the residual unknown
terms using a NN. This design yields faster convergence, lower
computational complexity, and better data efficiency compared
with conventional methods such as Deep Deterministic Policy
Gradient (DDPG), Proximal Policy Optimization (PPO), and
Soft Actor-Critic (SAC), which rely on generic black-box
policy and value function approximators without exploiting
problem structure.

C. Convergence Analysis

Denote Algorithm 1 and Algorithm 2 as A, and A,
respectively. The convergence of A; depends on that of the
learned co-functions f;(T(t);0;), where i € {b, s}. Thus, we
analyze the convergence of A; by examining f;(T(t);6;) via
Lyapunov analysis [32], as stated in the following theorem.

Theorem 4 (Convergence of A, and Ay). Let i € {b,s}. If
the following conditions hold:
o fi(T(t);6;) is Lipschitz continuous w.rt. 0;, i.e., there
exists L > 0 such that for all 0;1,6; 2 € REx1

(T (8); 6:.0) = Fi(T(1); 0:2)|* < Lll6sx — 65 2]
o The gradient satisfies:

E[||Ve, f;(T(t);

Then, A; converges to the optimal point or a saddle point
of the loss function L;(0;) w.p.1, provided that L;(0;) is
convex or non-convex w.rt. 0;, respectively. Furthermore, if A;
converges to the optimal point 0F of L;(0;) with L;(65) =0,
then the control solution u(t) obtained via A; converges to
the optimal control solution w*(t) in (18) w.p.1, ie.,

limsup Pr(u(kr) = uv* (k7)) =1

k—o0
Proof: See Appendix F. [ ]

Theorem 4 reveals that reliable convergence of online
RL algorithms (A, As) for CPTS over wireless networks
critically depends on the smoothness and bounded gradient
of NNs f;(T();6;). Such conditions naturally arise in neural
approximators such as fully-connected networks with bounded
activation functions (e.g., sigmoid, tanh) or ReLU networks
with weight clipping [33], ensuring robust RL-based temper-
ature control despite nonlinear dynamics and wireless signal
distortions.

We compare the convergence speeds of A, and A, when
they converge, quantifying the performance gain of the struc-
tured approach over the black-box approach for CPTS control.
To ensure fairness, we impose the same NN approximation
performance for the co-function A(T(t)) in both methods,
where the unstructured NN fb('i‘(t); 0p) in Ap and the struc-
tured NN f,(T(t);6,) in A, approximate \(T(t)) with equal
accuracy.

0:)|1] < ¢ < .



By leveraging the universal approximation theorem [34],
we establish the following lemma, which characterizes the
relationship between the structures of the NNs f;(T(t);6;),i €
{b, s}, and their respective approximation error bounds for
A(T(t)) under the structured and black-box approaches.

Lemma 2 (Universal Approximation for the Co-Function).
The co-function A(T(t)) can be approximated by the NN
f:(T(t):0:),i € {b, s} with arbitrary accuracy over a compact
set ©. Specifically, for any € > 0, there exists a structured
NN f(T(t);0s) = Co + C1T(t) + fs(T(t);05), where
fs(T(t);0) is a DNN component with width W € [W*, 00)
and depth L = 2[log,6] + 2, or an unstructured NN
Fo(T(t); 0) with width Wy, € [[WxXIH27 o0y and depth L,
such that SuP4,) e [ £i(T(£);:0;) — MT@®)|2 < €, where
Wi € Zy is the minimum achievable width.

Proof: See Appendix G. ]
In both the CPTS control problem solved by the black-
box RL method (Problem 3) and that solved by the proposed
structure-aware method (Problem 4), the optimality condition
satisfies Vg, L;(0}) = 0, where 6 denotes the optimal param-
eter of the corresponding problem. Thus, the squared gradient
norm K[|V, , L;(6;,1)||?] serves as a standard measure of the
optimization error, indicating how far the current iterate is
from the optimum. Consequently, we employ an upper bound
on the gradient norm (also referred to as a gradient-error
bound in stochastic optimization) to quantify and compare the
convergence speeds of A, and A, as summarized below.

Corollary 1 (Convergence Rate of Learning Algorithms). Let
i € {b,s} and let f;(T(t);0;) denote a NN of width W; and
depth L with approximation error € (Lemma 2). Let 0; and
0% be the optimal solutions to Problems 3 and 4, respectively.
If both Ay and As converge, then the convergence rate of
algorithm A; is given by:

inf E[|Vo,,Li(0;1)]%] <

0<k<K
LilOio) = Li(65) | Yoy R E[IVoesthribi)l]
K K !
€2 k=1 €2 k=1

Furthermore, the difference in convergence rates between
Ay and Ay satisfies

k 2
E Vo, Lo(06.1)1I”] = E [[[Vo, , Le(0:0)lI°] ~ O <Zt—oat> '

Zf:o at

(41)

Proof: See Appendix F. ]

The result in Corollary 1 indicates that the structured

approach Ay achieves a lower gradient norm at each iteration

compared to the black-box approach A;. Since gradient norm

reduction is directly linked to convergence speed of the
algorithms, this implies that A, converges faster than Aj.

D. Computational Complexity Analysis

We further compare the computational complexities of A
and A, under the condition that their NNs attain the same
approximation accuracy. The result is summarized in the
following corollary.

Corollary 2 (Computational Complexity Difference between
Ay and A,). Let d = dim(T(t)), and let the NN structures for
fi(’i‘;ﬁi) be the same as in Corollary 1. The computational
complexity ratio between Ay and As is O((Ws(2|log, d] +
2))7=2), where v > 4.

Proof: See Appendix H. [ ]
Corollary 2 highlights the computational advantage of the
proposed structured method over the black-box approach.
Since «y > 4, the complexity reduction is at least O(W2L?),
demonstrating substantial efficiency gains. For large Wi,
the benefit becomes even more pronounced, indicating that
the proposed structured scheme scales more favorably and
achieves significantly lower computational cost as the network
width increases.

V. NUMERICAL RESULTS

In this section, we investigate a representative CPTS control
scenario, namely the temperature regulation of a furnace
system for slab reheating over wireless networks. Specifically,
the furnace system consists of a furnace plant (corresponding
to the thermal plant in Fig. 1) and a remote temperature
controller, which may be implemented on a programmable
logic controller (PLC), a distributed control system (DCS),
or an edge computing device. The furnace plant is composed
of a heater (the heat source in Fig. 1) and a reheating slab
(the target object in Fig. 1) equipped with thermal sensors
that measure the top-surface temperature [T(¢)];, the center-
point temperature [T (¢)]2, and the bottom-surface temperature
[T(t)]5 of the slab. The slab temperature state is represented
as T(t) = [[T(t), [T(t)]2, [T(t)]s]", which is fed back to
the remote controller for generating the fuel control command
u(t). This command is transmitted to the heater through an
unreliable wireless network, and the received noisy command
u(t) is subsequently used by the heater to regulate the fuel
output and provide heat for reheating the slab. The control
objective is to regulate the slab temperature T(t) toward the
desired temperature profile r(¢) over time by adjusting the
heater fuel supply @(t) according to the control signals wu(t)
generated by the remote controller.

Under this typical industrial control practice, we validate the
performance advantages of the proposed structured control al-
gorithm by benchmarking it against several baseline methods,
which are summarized below.

o Baseline 1 (PID-based Control [10]): u(t) = K,e(k) +
K; Y jei — 1) + Ka(e(k) — e(k — 1)), with error
e(k) = T(kr) — r(k7), and T(—7) = 03x1. PID gains
are tuned offline under static fading h(t) = 1.

o Baseline 2 (LQOT Control over Static Channels [11]):
u(t) = DT(t), with static gain D € R'*6 computed
offline via LQT, assuming h(t) = 1.

o Baseline 3 (LQOT Control over Fading Channels [7]):
u(t) = D(h(k7), k)T (k7), where D € R is com-
puted online based on real-time fading h(k7) via LQT.

o Baseline 4 (NN-based Control via DRL): u(t) is given
by the online black-box DRL algorithm in Algorithm 1.

e Baseline 5 (MPC [12]): At each k-th timeslot, the
thermal dynamics are linearized around T(k7). Based



on the local linear model, the control input sequence
{u(kr),...,u((k + H — 1))} is obtained by solving
a finite-horizon quadratic programming (QP) of length
H = 20, with per-stage cost in Problem 2. Only the first
input u(k7) is applied, and the optimization is repeated
at the next timeslot with updated states.

o Baseline 6 (Model-Assisted DDPG [35]): In the offline
pre-training phase, synthetic state—action—reward samples
generated from the thermal model (Nomine = 100 tra-
jectories of length L = 200) are used to pre-train the
actor—critic networks. In the online fine-tuning phase, real
interaction data from the CPTS are stored in a replay
buffer of size M = 1000, from which mini-batches of
128 samples are drawn to update the networks. Training
continues until the reward averaged over the latest 20
timeslots stabilizes (change < 1%) or until 10* steps
are reached. After training, the actor directly outputs the
control input u(¢) from the current temperature T'(t).

Unless otherwise specified, the default parameters of the
furnace system are configured as follows. The furnace plant
has an effective thermal cavity of dimensions 1 mx1 mx1 m,
which is a typical scale used in existing furnace studies such
as [36]. The reheating slab measures 0.5 m x 0.1 m x 0.5 m,
consistent with slab sizes commonly reported in the literature
(e.g., see [37], where the height, length, and width are all
below 1 m). The slab is characterized by a mass density p =
7800 kg/m?>, a specific heat capacity ¢ = 460 J/(kg - K),
and a thermal conductivity A\; = 48.5 W/(m - K), which fall
within the typical property range of steel slabs [38]. The heat
transfer coefficient between the slab and the heater is set to
10 W/(m?-K), consistent with values reported in [39], and
the emissivity is g = 0.4, a representative value for furnace
temperature control [40]. The Stefan—Boltzmann constant is
o = 6.7 x 1078 W/(m?.K*), and the boundary heat fluxes
are go = q; = 1 W/m?. The sampling period of the training
iterations is 7 = 1 ms. The initial and target temperatures
are Ty = [100,100,100]7 °C and ry = [500, 500, 500]7 °C,
respectively. We set G =03, Q =I3,and R= M = 1.

Simulations were conducted on an Intel i7-9700K CPU. By
default, f,(T(t);0,) in our scheme consists of four layers:
an input layer (fully connected, n; = 32), two hidden layers
(ReLU, ny = 32; fully connected, ng = 16), and an output
layer (fully connected, ny = 6). For comparison, f,(T(t);6;)
in Baseline 4 has five layers: an input layer (fully connected,
ny = 32), two hidden layers (ReLU, ny = 128; fully
connected, n3 = 16), and an output layer (fully connected,
ny = 6). In Baseline 6, both the actor and critic networks
consist of three fully connected layers of widths (64,64, 1).
Note that the above NNs are differentiable almost everywhere.
At points where the pre-activation of a ReLLU unit equals zero
and differentiability may fail, standard subgradient methods
can be employed by selecting the zero subgradient [41],
thereby preserving the validity of the learning algorithms.

A. Temperature Tracking Control Performance Analysis

We evaluate the temperature control performance of the
proposed method and the baselines using the top-surface
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Fig. 5: Time evolution of the reheating slab temperature, averaged over 100
simulation runs. The received SNR at the heater is 0 dB.
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Fig. 6: Convergence behavior of the control solutions via proposed and
baseline schemes. The received SNR at the heater is O dB.

temperature trajectory of the slab, as shown in Fig. 5. Baselines
1, 2, 3, and 5 diverge because they either ignore the nonlin-
ear furnace dynamics or overlook wireless impairments. In
contrast, Baselines 4 and 6 and the proposed scheme account
for these factors and therefore converge to the target profile.
The proposed scheme reaches the target in about 50 minutes,
which is nearly twice as fast as Baselines 4 and 6. This
improvement results from exploiting the structural properties
of the optimal solution in the structured reinforcement learning
design, whereas Baselines 4 and 6 rely on generic algorithms
that do not use the problem structure.

B. Convergence Performance Analysis

Fig. 6 illustrates the convergence behavior of the control
solutions via proposed and baseline schemes by plotting the
normalized mean square error (NMSE) between the applied
control solution u(¢) and the optimal solution u*(¢) as a
function of the training iteration number. The expectation is
approximated by averaging over 100 independent simulation
runs with random initial seeds. Baselines 1-3 and 5 pro-
gressively deviate from optimality due to their inability to
capture the nonlinear thermal dynamics and wireless signal
distortions. In contrast, Baselines 4, 6, and the proposed
scheme asymptotically converge to u*(t). Nevertheless, the
proposed approach achieves substantially faster convergence
by exploiting the structural properties of the optimal solution
to design a structured learning algorithm, whereas Baselines 4
and 6 rely on generic black-box methods without leveraging
the problem structure.

Fig. 7 illustrates the convergence behavior of the aver-
aged reward —E[||T(¢) — r(t)||* + u?(t)], which corresponds
to the negative of the averaged per-stage cost function
E[r®(T(t), h(t),u(t))] in Problem 2, as a function of the
training iteration number. The expectation is approximated by
averaging over 100 independent training runs with different
random seeds. We examine three configurations of the hidden-
layer size of the DNN f,(T(t);6s), where the number of
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Fig. 7: Convergence behavior of the averaged reward under different NN
architecture. The received SNR is 10 dB. As = 58.5 W/(m-K).
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Fig. 8: Convergence behavior of the averaged reward under different learning-
rate rules. The received SNR is 10 dB. As = 58.5 W/(m-K).

neurons is set to n = 16, 32, and 64. As observed, the proposed
scheme consistently converges across different DNN sizes.
A larger hidden-layer size accelerates convergence but also
induces larger fluctuations during training.

Fig. 8 illustrates the convergence behavior of the averaged
reward as a function of the training iteration number under
various learning-rate rules for the proposed Algorithm 2. As
shown from the figure, the constant learning rate oy, = 0.001
yields the fastest initial convergence but suffers from large
oscillations and does not converge exactly to the optimum
due to persistent noise. The classical diminishing learning rate
ap = %ﬂ guarantees smooth and stable convergence with the
smallest variance but exhibits the slowest convergence speed.

The intermediate rule oy, = \/ﬁ achieves a balance between

the two, converging faster than = while maintaining smaller
fluctuations than the constant learning rate.

C. Robustness Performance of the Proposed Scheme

Fig. 9 illustrates the robustness of the proposed scheme
under varying thermal and channel conditions by depicting the
time evolution of the reheating slab temperature, averaged over
100 simulation runs across four scenarios. Scenario 1 assumes
a wired connection (h(t) = 1, v(t) = 0) with a conductivity of
48.5 W/(m - K). Scenario 2 introduces a wireless connection
with an SNR of 20 dB while maintaining the same conduc-
tivity. Scenario 3 retains the 20 dB SNR but increases the
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Fig. 9: Robustness performance of the proposed scheme across thermal and
channel parameters.

conductivity to 58.5 W /(m - K). Scenario 4 further reduces
the SNR to 10 dB while keeping the higher conductivity.
Scenarios 5 and 6 follow the same setup as Scenario 4 but
additionally include sensing noise (additive Gaussian with unit
variance) with a 30 ms communication delay, and imperfect
CSI (NMSE = —10 dB), respectively. The results demonstrate
that the proposed scheme consistently converges to the target
temperature profile in all cases, highlighting its robustness
against thermal variations and wireless channel distortions.

Fig. 10 illustrates the robustness of the proposed scheme
under varying furnace sizes by plotting the mean square error
(MSE) of temperature tracking against the effective height
of the furnace thermal cavity, I3, and comparing it with the
baseline schemes. The expectation is approximated by averag-
ing over 100 independent sample runs and 10* timeslots. As
shown in the figure, increasing l3 enlarges the thermal inertia
of the reheating slab, making temperature regulation more
challenging. Nevertheless, the proposed scheme maintains an
MSE on the order of 1072, representing an improvement of
roughly 20dB over all baselines and demonstrating strong
robustness across different furnace sizes. Specifically, Base-
lines 1-2 neglect wireless fading and thus diverge, while
Baselines 3-6 incorporate fading but either linearize the ther-
mal model or ignore structural properties, leading to slow or
inaccurate tracking. In contrast, the proposed scheme jointly
handles wireless fading and nonlinear thermal dynamics and
leverages structural insights in the network design, achieving
fast, accurate, and robust tracking across furnace sizes.

Fig. 11 shows the robustness of the proposed scheme under
different slab materials by plotting the MSE of temperature
tracking versus the thermal conductivity As; and comparing
it with the baselines. The expectation is estimated over 100
independent runs and 10* timeslots. As )\, increases, the
MSE decreases because higher conductivity enables faster
heat transfer and a more uniform temperature distribution.
Across all conductivity levels, the proposed scheme consis-
tently achieves much lower MSE than the baselines, for the
same reasons discussed in Fig. 10, demonstrating robustness
to variations in slab material properties.

Fig. 12 shows the robustness of the proposed scheme
under different network conditions by plotting the MSE of
temperature tracking versus the received SNR at the heater and
comparing it with the baselines. The expectation is estimated
over 100 independent runs and 10* timeslots. As the received
SNR increases, the MSE decreases because higher SNR
reduces communication errors and improves the reliability
of control-signal transmission. Across all SNR levels, the
proposed scheme consistently achieves much lower MSE than
the baselines, for the same reasons discussed in Fig. 10,
demonstrating strong robustness to network variations.

Fig. 13 shows the robustness of the proposed scheme under
four channel models, plotting the slab temperature averaged
over 100 runs. Scenario 1 uses i.i.d. Gaussian fading h(t) ~
N(0,1). Scenario 2 adopts Gauss—Markov fading h(t + 1) =
ph(t) + /1 — p2w(t) with p = 0.5, w(t) ~ N(0,1). Sce-
nario 3 adds log-normal shadowing h(t) = hg(t)-10%/20 with
X ~N(0,0%), o = 6 dB. Scenario 4 models burst errors via
a Gilbert-Elliott channel switching between good (h(t) = 1)
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Fig. 10: Robustness performance of the proposed scheme across furnace sizes.
As = 48 W/(m-K). The received SNR at the heater is 0 dB.
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Fig. 11: Robustness performance of the proposed scheme across furnace
thermal conductivity. The effective height of the furnace thermal cavity for
the reheating slab is [3 = 1m. The received SNR at the heater is O dB.

and bad (h(t) = 0) states with transition probabilities 0.4
and 0.6. Across all cases, the proposed scheme preserves
stable tracking, demonstrating robustness beyond i.i.d. fading
by adapting to instantaneous h(t) rather than its distribution,
and generalizing effectively under correlation, shadowing, and
burst errors.

D. Computational Complexity Analysis of Proposed Scheme

We consider a uniform network width by setting n; = ng =
n3 = n for fo(T(t);0,). At each timeslot, the computational
cost of the proposed CPTS control algorithm is dominated
by the forward inference and backward propagation of the
NN fs(’i‘(t); 65) for control policy update and execution. Both

re Tracking versus Receiving SNR at Heater

Baseline |

e

10
Receiving SNR at Heater (dB)

Fig. 12: Robustness performance of the proposed scheme across network
conditions. The effective height of the furnace thermal cavity for the reheating
slab is I3 = 1m. A5 = 48 W/(m-K).
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Fig. 13: Robustness performance of the proposed scheme across channel
models. The configurations are the same as those in Scenario 4 of Fig. 9,
except for the channel models.

Number of Neurons n S]E%Brgisf)or Interference of
16 0.277
32 0.431
64 0.724

TABLE I: CPU Computational Time for NN Inference in the Proposed
Algorithm

operations are dominated by fully connected transformations
and scale as O(n?). Therefore, the per-time-slot computational
complexity of the proposed algorithm is O(n?). This analysis
is supported by the CPU timing results in Table I for n = 16,
32, and 64, where the execution time increases with n yet
remains below 1 ms in all cases, aligning with the shortest
transmission time interval (TTI) in 5G systems. This confirms
the real-time feasibility of the proposed scheme.

VI. CONCLUSIONS

In this work, we proposed a model-assisted online struc-
tured DRL algorithm for temperature control in CPTS with
nonlinear dynamics over wireless fading channels. The control
problem was formulated by incorporating nonlinear heat trans-
fer in the thermal plant together with signal distortions in the
wireless link between the remote controller and the plant. By
leveraging the homotopy perturbation method, we exploited
structural properties of the optimal solution and developed an
efficient structured RL algorithm to approximate it. Analysis of
the structured NN parameter updates shows that the proposed
scheme achieves fast convergence with low computational
complexity. Simulations further demonstrate superior tracking
accuracy, computational efficiency, and robustness to wireless
impairments compared with existing baselines. Beyond CPTS,
the proposed framework applies broadly to CPS settings that
require real-time decision-making under stochastic communi-
cation constraints, highlighting its potential for robust real-
time signal processing in general industrial CPS.

APPENDIX

A. Derivations of (10) and Proof of A(A1) <0, A(A3) =0
1) Derivations of (10): We define the Sobolev space S :=
K'(—2£,%£) and the bilinear form b(s1, s2) = [ °

T 202 _d2
S xS — R. Lett € Ry. For any trial functionzs(y) S
and scalars s, s € R, the heat transient equation (5) can be

equivalently formulated as:

s182dy :

_ OT"(5.1), 4 O5(y) OT"(.1)

0= peb(s(y), =) + A b5 = =75 =)
j oT” (y,t s/ J
T )
[T

— j2 8T§(y7t) — s j2
(57 —s(=2y, WY - 2y @
R U e PRI L

The temperature field of the target object is approximated as

T3 (y,t) = Zle x;(t)h;(y), where the Galerkin coefficients
2

are defined as h1(y) = 1, ha(y) = % and hs(y) = (%’) -

%, capturing the mean temperature, asymmetry, and transient



inhomogeneity effects, respectively. Substituting 7°%(y, t) into Taking the expectation over the h(t) at both sides of (47),

(42), t > 0, we obtain an equivalent formulation of (5): it gives that
. . R T R .
x(t) = Aix(t) + qus(—%, t) + qus(%, £, (43 V(T(t) = E[rrgg)l (T" (k)QT (k) + (R + Mh*(k))
u k=t
whete x(0) = [n(). om0 ¢ B Ay - w? () dk + B[V (T(T)[T(t), h(t), u(b)]) 48)
— s Dia~g(0,1,5)1 € R¥S, BY = —4—[1,3,15/2]7 ¢ Note that .,
R**!, and By = ———[1,-3,15/2]" € R**". lim (T" (k)QT (k) + (R + Mh*(k))u®(k))dk

T—t—=0 Jp_y

This further leads to: . .
= lim (T"(®)QT(t) + (R+ ML (t)u?(t))(T —t).  (49)

: n = s, J2 T os/J2 T—-t—0
T(t) =A.T(t)+B —=.1 B T (44)
®) 1T v 27 ) By 2’ ) Similarly, we have
L S o Jlim E[V(T(T)[T(t), h(t), u(t)] = lim V(T(t)+
where A; = | 22 =805 302 | ¢ ROX2, 2
pej pej pej OV (T(t)) - - ~
SR} 2 A - -

S 4 IE[< 0 () T(t)> (T t)‘T(t),h(t),u(t)}. (50)

Using the energy balance equation (9), along with the heat

convection (1) and radiation equations (3), we derive: Thus, we obtain

V(T(1) = V(TE®) + lim E[mm( TOQT(t) + (R + Mh(1))

s/ J2 Q) (2012 + 21213 4 21113) (g0 + q1)
N 2173 : oV (i)
ho s €00 (s Xu(t))(T—t)+< S T >
+ 5T (—5 £+ (T (—5 t)* 9T(t)
ho s €00 s 4 WV(T() - \|a
- T2 - (R I J‘tﬂT@%Mﬂwuﬂ. 51)
S(_jg 1= Q)  (2lil2 + 2215 + 20115) (g0 + q1) Dividing both sides of (51) by T — ¢ and rearranging terms,
9 Y = 5954 25173 we derive:
+ ’“’Té( )+ 6°"(Té( 0)* o:E[m&?( T(OQT(t) + (R + ME*(t))u*(t) (52)
ho s €00 s, J2 4 oV (T(t)) : AV (T(t))\ |+
DO s J2 4y 0T s I2 )4 (46)
5 (-2 5o 1) = 5 (T°(=51)) +< = ,T(t)> + ) T(t),h(t),u(t)],
Substituting (45) and (46) into (44) yields (10). which corresponds to the HIB equation in (19).
2) Proof of AM(A1) < 0 and A(Az) = 0: We first  Furthermore, the optimal control solution is given
examine the conduction term A;, which can be written as by the minimizer of the RH.S. in (52): u*(t) =
—54 95 —42 _ ~ ~ ~ T
A, = pC; , where L = 30—3h072/xg “60  30+3n0ia/xs|.  —REBT()A(T(t)), where A\(T(t)) = a‘ggg)) is the co-
—96 42

Let o = 3hgja/As > 0. The charactenstlc polynomial of L is function. This completes the proof of Lemma 1.

p(s) = det(s[—L) = s>+7252+(750+191)s+(360+96). C. Proof of Theorem I
Matching the Routh-Hurwitz form P(s) = azs®+ass®+a;s+

. ) _ T A
ag, we identify ag = 1,a2 = 72,a; = 750 4+ 191a, a9 = Lgt l(T(t),Zu (1)) N ’*I‘ (H)QT(t) + (R +
360 + 96 > 0, and compute asa; — azag = 72(750 + Mh=(t))(u (t)) ;oand f(T(),u(t),t) = AIT({) +

A2T4( ) + B(t)u*(t) + ¢. The HIB equation in (19) can be

191a) — (360 + 96«) = 53640 + 13656cr > 0. Hence all
roots of p(s) have strictly negative real parts and A(L) < 0. SV (i ov
Since Ay/(pcj3) > 0, we obtain A(A;) < 0. Next, note that 0 = Ej, {% F AT, w () + fTE), (b, ¢ )ﬁ )

0 0 0
A5 can written as Ay = |-5 o /a} where g = ?;f:—oj‘; > 0. (53)
0 0 0

rewritten as:

o o o][o o o Taking the total derivative and applying Pontryagin’s mini-
we compute A3 = [5 0 a} { B o g] = 0, showing that mum principle, we obtain:
0 0 0 0 0 0

A is nilpotent of degree two. Thus, A(Az) = 0.

w' (1) +< <t>)Taz<T<t>,u*<t>>

o T() du*(t)
B. Proof of Lemma 1 . (af%(t),u*(t),t) L 0w (0) of" (1), u*<t>,t)>
The Bellman optimality principle states that the optimal OT(t IT(t) du(t)
solution satisfies the Bellman equation: T 21/ (7% )
X VW) | 0 VﬂT“”f(T(t»u*(t),t)]
. o aT(1) 2T (1)
V(T(t),h(t)) = mln/ (T (k)QT (k) + (R+ . .
u(k) Jp=¢ A . —F a/\(T(t)) + al( (t)ru*(t))
MR (k))u? (k) dk +E[V(T(T)|T(t), h(t),u(t)], @)~ O 5 T (t)

where V(T(t),h(t)) € R is an extended value function n afT(

ere V(T(t), h A e ®), Y = 0. (54)
satisfying E[V (T(t), h(¢))|T(t)] = V(T(t)). OT(¢ OT(t)




By substituting the explicit forms of /() and f(-) into (54),
we derive the structured optimality condition w.r.t. A(T(¢)) as
given in (20), which completes the proof of Theorem 1.

D. Proof of Theorem 2
The optimality condition (20) can be rewritten as:
FINT(®))) = Engy, o0 AT 0))] + QT(t) + ATA(T (1))
+4A7 O T* ()16 M(T(t))

CONEW) (4 e AT

= ot (AlT(t) E[R®)B()B" (£)]A(T(#))
+AsTH0) + &) + QT() + ATAT()

+ (A7 o (T (55)

)+
¥ ()L1x6))A(T(1)) = Og 1.
)

We decompose F'(A(T(¢))) into its linear and nonlin-
ear components: F(A(T(¢))) = LIA(T(1))) + N(A(T(#))),
where:

oy ONEW) 4 s e
LR = Z55 B (AT - BROBWB (1)
X MT(1)) + QT(1) + ATA(T(1),  (56)
by = ATW) 4
NA(T())) = o) AT (t)
+ (4A7 © (T’ (OLixe)MT(t) +&.  (57)

_ 1) Homotopy Construction:
A(T(t),p) satisfying:

(1 = p)L(A(T(¢), p)) + pF(A(T(t),p)) =0,

with boundary condition 5\(06“7 p) = Ogx1. K
Expanding A(T(t),p) as a Maclaurin series: A(T(t),p) =
Yoo P An(T (), where A, (T(t) = FZATWE
' =0
Rearranging terms in the homotopy equation by powerzs) of

p and equating coefﬁ01ents we obtain:
2) Zeroth-Order (p°):

(58)

ON(T(0) (& i ooimo AT
) (ArT() — EIR(OBOB” (01o(t))
+ QT (t) + AT X (T(t)) = O6x1, (59)
with initial condition \g (06><1) = 0gx1.
3) First-Order (p*):
OM(TW)) (& i oim B AT -
) (AvT () — EIROBOB" (O)x (T(1))
L QR + ATA(T(0) + ”;(TT(S” A1)
+ (A7 © (T?()ixe)) Mo (T () + & = Ogx1, (60
with initial condition \q (Oﬁxl) = Ogx1.
4) Higher-Order Terms (p", n > 1):
(T (& i imrdai AT
0 (AvT(®) - EIROBOB" 0]\ (1))
+ Q) + ATA (1) + %AQT (1)
+ (A7 O (T’ ()ixe))An—1(T () = O6x1.  (61)

When p = 1, (59)-(61) recover (20), leading to (21) in
Theorem 2 and completing the proof.

We define a homotopy \

E. Proof of Theorem 3

We analyze the structure of A, (T(¢)) and derive the struc-
tured form of A(T(t)) and u*(t). We begin with \o(T(t)),
which satisfies the optimality condition (60). Using Taylor’s
theorem, \o(T'(t)) can be expressed as:

t)) = Co0 + f: >

m=1{a,b,c,d,e,f}ECm,
[T, (D)5, -, [TO)]",

where Coo € RO and C,,, = {a,b,c,d,e, f | a+b+c+
d+ e+ f = m}. Substituting (62) into (59), we obtain:

Mo(T(1)) =
Similarly, A (T(¢)) follows the form:

IO

m=1 {a,b,c,d,e,f}ECp,
x [T, [TO), .., [T,

where C; g € R6*1, Substituting (63) into (60) and simplify-
ing, we obtain:

Clo—|—CllT +Z Z

m=4{a,...,f}€Cpm,

)\0(T CO,m(a7b7 ¢, d,€7f)

(62)
Co.1T(1),

Co,1 € RO*6, (63)

)\1(T t Cl,m(a7b7 C, daevf)

(64)

Cl,m(')T(t)'

(65)

(T(t) =

By induction, considering the order of high-order terms and
their decay as (’)(%), we obtain:

An(T(t)) = Cpo + Coa T(t +Z Y Com()T0),

m=3{a,...,f}€Cm,
(66)

where C,, o # 0 only for n = 1, and C,, ; # 0 for all n. The
limit property ensures lim,, o, Cyp, m(-) = 0.
Thus, summing over all n:

= Z )‘n(’i‘(t)) =

Substituting (67) into (20), we obtain:

Co + C,T(t) + g(T(t)). (67)

+¢)+ QT(t) + A (Co + C1T(t)
T3(t)I1x6))(Co + C1T(t) + g(T(t)))
(68)

This establishes (28)-(30) and completes the proof.

F. Proof of Theorem 4 and Corollary 1

We first analyze the convergence of A;,i € {b, s}, then
characterize their differences in convergence speed.



1) Convergence of Algorithms: Note that L;(0; ;) is Lips-
chitz continuous w.r.t. 6; ;, under Condition 1 of Theorem 4.
Applying the NN update rule in (33), we obtain:

Li(0i,k+1) = Li(0x — arx Ve, ei(kT;05,1))

= Li(0ix) — xE[(Vo, 5 (k75 0i 1)) Vo, Ly (0: x)] + aZE[(
Vo, ei(kT; Hi,k))Tvﬁk Ly(0:,1)(Vo, . e:(kT;05x))]

< Li(0k) — axE[Ve, , (ei(kT; 0:1)) Vo, Lo (0:.1)]+

Elai LV, , (ei(kT;0: k)]

< Li(6ik) — axcB[[| Vo, Li(6s,1)]°]+

Q2 LE[V, , (ei(kT; 0.))], (69)

where L; > 0 and ¢ > 0 are positive constants.

Note that ay, is the Lipschitz step size, E[||V5 L;(6;1)]]] <
oo, and L;(6; %) is an L;-smooth function w.r.t. 6; . Thus,
by Lemma 2.1 of [42] and Theorem 1 of [43], we have
limsupy,_, o E[|Vo, . Li(0;,x)]|?] = 0, ensuring that the al-
gorithm converges to a stationary point of the loss function
L2(91) W.p.l.

Furthermore, when L;(6;) is strongly convex w.r.t. 6y,
the condition limsup,_, . E[||Vy, ,Li(6;x)||’)] = 0 en-
sures that the algorithm converges to the optimal point
0* = argming L;(6;). If L;(6f) = 0, the con-
trol solution obtained via A; satisfies: limg oo u(kT) =
limy,_y 00 —R(kT)BT (k1) f(T(kT); 0; ) = w*(k7), implying
that the control solution converges to the optimal control

solution w.p.1.
2) Convergence Speed Comparisons: Note that (69) indi-
cates that

ianE[HVek Li(0:.x)]%]

0<k<
L;(67) N S E[ai LV, , (ei(kT;01))]

< L;i(0:0) —
- 025:1 Qk 025:1 Ak

As a result, the convergence speeds of A; is characterized by

o Elof Vo, , (les(tT; 6.0) 1)
Ef:o at

When the NNs f;(T(t);6;),i € {b,s} are constructed with

W; x L, the the structure of the black-box NN is complicated

at least by the NN approximation for Co + C,T(t) compared
to fs(T(t);0s), and can be denoted by

Fo(2(8);05) = Co + C1T (1) + Fo(T(2); 0,) + Ap(T(2); 0),

(72)

Co e R*1 C; e RO%6, 9, e R-*1 f e Rle“} €

0y is the NN parameter. A,(-) is an arbitrary biased structure.
This gives (42), and completes the proof.

(70)

E[[| Vo, . Li(0:.x)]|*] ~ O( ). (71)

where

G. Proof of Lemma 2

_AAccording to Theorem 9.5.3 of [44], there is a NN
Js(T(t);05) with a width of Wy € [W,00] and depth of
L = 2(|log, 6]+2) layers such that SUPT(t)e(—)JUs(T(t)? 0s)—
AT(t))]|3 < e Similarly, there is a NN f,(T(¢);6;) with a
width Wy € [W3,00) and and a depth of L layers such that
supp(syce Ifo(T(0):6) — XT3 < c.

Note that W7 is the minimum width for the structured
NN that guarantees above e-dependent inequalities. Given the

structure of the co-function A(T(¢)) in corollary 1, it follows
that when W} and Wy are applied, then following the similar
analysis, the structure of f;, can be denoted as (72). This gives
that [, +42 > I, and W = [W} This completes the
proof for Lemma 2.

H. Proof of Corollary 2

From Lemma 2 and [45], the computational complexity
of Ay is given by O(W,L 4 ¢)7), and the complexity
of Ay is O(WZ2L?). Here, v > 4 is a constant reflecting
optimization difficulty, and ¢ > 0 is a constant. Thus, the
ratio of computational complexities, according to [46], can be

expressed as %. Substituting L = 2|log, d] + 2,

the ratio simplifies to O((Wy(2|logyd] + 2))7~2), which
completes the proof of the corollary.
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