
Layer-Reuse Aware Optimization for Efficient
Microservice Migration in UAV Edge Systems

Abd Elghani Meliani
Eurecom

Biot, France
meliani@eurecom.fr

Miloud Bagaa
UQTR University

Trois-Rivières, Canada
Miloud.Bagaa@uqtr.ca

Adlen Ksentini
Eurecom

Biot, France
ksentini@eurecom.fr

Abstract—The integration of Unmanned Aerial Vehicles
(UAVs) with edge computing enables latency-sensitive services
such as real-time video analytics and object detection. How-
ever, UAV mobility causes frequent network changes, requir-
ing efficient microservice migration to maintain Service Level
Agreements (SLAs). Existing strategies often overlook the lay-
ered structure of containers and the impact of layer reuse on
provisioning time. This paper introduces a layer-aware opti-
mization model for microservice migration in UAV-assisted edge
environments. Using an optimization solver, the model jointly
minimizes provisioning time, the number of migrations, and SLA
violations by considering Docker layer reuse, registry selection,
and end-to-end latency constraints. It provides optimal placement
decisions that serve as a reliable baseline for future heuristic and
learning-based approaches. Experimental results in UAV mobility
scenarios demonstrate that the proposed model significantly
reduces provisioning overhead through intelligent, layer-aware
placement.

Index Terms—Migration, Edge-Computing, Image Registries,
Microservices, containers

I. INTRODUCTION

Cloud computing has emerged as one of the most trans-
formative technologies of the past two decades, allowing
tenants to deploy applications on shared infrastructures while
preserving isolation through virtualization. This foundation has
evolved with the rise of container-based technologies, such as
Docker for runtime execution and Kubernetes for orchestra-
tion. In parallel, application design has shifted from monolithic
architectures to microservices, lightweight and modular com-
ponents that simplify scalability, maintenance, and migration
across heterogeneous environments. With the emergence of
latency-sensitive applications such as video surveillance, aug-
mented reality (AR), and virtual reality (VR), operators have
been required to deploy certain services geographically closer
to end users. This demand has led to the formalization of a new
paradigm, known as edge computing, which extends computa-
tional resources to the edge of the network. The emergence of
edge computing has introduced both opportunities and chal-
lenges. One major challenge lies in reusing cloud-based ser-
vice and resource orchestrators within edge environments. This
difficulty stems primarily from the high degree of dynamism
characterizing edge infrastructures and the wide geographical
distribution of edge services. Application migration remains
a significant problem in edge computing, despite extensive
research efforts. This is mainly due to two factors. First, most

existing approaches to container migration treat containers
similarly to virtual machines, disregarding their distinctive
layered architecture. Unlike monolithic VM images, containers
consist of multiple read-only layers, with a writable layer
created at runtime for modifications. The base image layers
remain shared, enabling containers on the same host to reuse
common layers. Consequently, effective container migration
strategies should prioritize targeting hosts that already store
part of the container’s layers, thereby reducing provisioning
time. Second, the growing adoption of microservice-based
applications adds further complexity to migration in edge
environments. Beyond the challenges of relocating individual
containers, microservices must continue to satisfy stringent
communication delay requirements defined in their SLAs after
migration. Maintaining these guarantees significantly compli-
cates the migration process. In this paper, we address the two
previously discussed challenges in the specific context of UAV-
based microservice applications. Such applications are increas-
ingly used today for tasks such as video surveillance and
object detection. The general concept involves UAVs equipped
with lightweight computing devices to capture environmental
data, which is then transmitted to microservices deployed at
the edge for analysis. However, as the UAV moves, latency
between its local microservices and those at the edge may
exceed tolerated limits. In such cases, migration is required
to relocate services closer to the UAV and preserve latency
constraints. we propose a layer-aware optimization model for
microservice migration in UAV-assisted edge environments.
The model jointly minimizes provisioning time, the number of
migrations, and SLA violations by considering Docker layer
reuse, registry selection, and end-to-end delay constraints.
It provides optimal placement decisions to serve as a solid
baseline for future heuristic or learning-based solutions, as no
prior work has addressed this problem holistically. We also
provide a reproducible benchmarking setup and demonstrate
the model’s effectiveness in UAV mobility scenarios, showing
reduced latency and provisioning overhead through intelligent,
layer-aware placement.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on microservice migration and
edge computing. Sections III and IV presents the proposed
optimization model, detailing the system assumptions and
formulation. Section V describes the experimental setup and

discusses the obtained results. Finally, Section VI concludes
the paper and outlines directions for future research.

II. RELATED WORK

When discussing service migration in general—and con-
tainer migration in particular—the literature is rich, with
approaches differing by vantage point and target use case.
Meliani et al. focus on proactive lifecycle management for
stateful microservices in multi-cluster environments, introduc-
ing a zero-touch management framework that integrates with
Kubernetes to enable seamless cross-cluster migrations; while
it explicitly considers microservice architectures, it does not
exploit the layered nature of container images [1]. MAPER
proposes a mobility-aware, energy-conscious strategy that co-
relocates registries and applications based on user mobility and
server power profiles to jointly optimize delay, provisioning
time, and energy [2]. In parallel, Ouyang et al. (“Follow Me
at the Edge”) cast mobility-aware placement as a Markov
decision process and apply Lyapunov optimization and game-
theoretic tools to minimize long-term delay and migration cost
while preserving QoS; however, services are modeled mono-
lithically and microservice-level concerns remain out of scope
in [2] and [3] . A complementary thread addresses provisioning
delay via registry control: Knob et al. place registries near
communities of edge sites to shorten pull paths [4]; Roges
and Ferreto elastically add or remove registries in response to
demand [5]; and Temp et al. migrate registries according to
user movements to improve responsiveness [6]. Despite these
advances, migrating applications—especially microservices
with state deltas and layered image reuse—can be preferable to
migrating registries, which requires synchronizing large image
repositories and thus incurs higher bandwidth and energy
costs. To the best of our knowledge, our work is the first to
optimize migration for containerized microservice applications
under highly dynamic edge scenarios such as UAV use cases,
jointly accounting for mobility, latency SLAs, and layer-aware
provisioning.

III. PROBLEM FORMULATION

We model UAV-based edge applications as a weighted graph
Gapp = (M, E ,W, λ), where M is the set of microservices, E
the communication links, Wu,v the tolerated latency between
microservices u and v, and λu,v the packet arrival rate from
u to v. Each microservice u ∈ M is defined by its container
layers Lu, a provisioning time bound Bu, and a boolean Ou
indicating migratability (non-migratable ones typically run on
UAVs). The infrastructure is represented as a weighted directed
graph Ginfra = (V,E,C), where V is the set of edge servers,
E the communication links, and Ci,j the link capacities. Since
edge servers are geographically distributed, multiple image
registries may exist (R ⊆ V) to reduce provisioning time.
Each server i ∈ V is characterized by its stored layers Hi and
a binary flag Si indicating if it hosts a registry. The deployment
cost of a microservice v on server i using registry r, denoted
ψvi,r, is zero if all layers of v already exist on i; otherwise, it
depends on the distance to r and the number of missing layers.

We define φi,v = 1 if at least one layer of v is missing on i,
and 0 otherwise. Figure 1 illustrates the model. Purple nodes
denote non-migratable services, and edge weights represent
tolerated latencies. Our objective is threefold: (i) minimize
latency SLA violations via optimized migrations, (ii) minimize
provisioning time violations by balancing registry proximity
and cached layers, and (iii) minimize the total number of
migrations. The figure compares two scenarios—one with four
migrations and multiple SLA violations, and another achieving
compliance with only two migrations.

IV. PROBLEM MODELIZATION

A. Delay SLA Violation

The objective of this work is to design and implement a
solution that optimizes container migration while satisfying
microservice delay and provisioning SLAs. The first step is
to model the effective application delay. We define the end-
to-end delay between any two microservices (u, v) ∈ E . Let
Pu,v be the path used to route traffic between them, composed
of multiple links (i, j) ∈ E. The aggregate arrival rate Λ is
expressed as:

Λi,j =
∑

∀(u,v)∈E∧(i,j)∈Pu,v

λu,v

Let L denote the packet size, si,j the propagation delay be-
tween nodes i and j, and vi,j the transmission speed depending
on the medium (e.g., optical fiber or wireless). The processing
delay per packet is denoted by Dprocessing. The effective delay
Deff considering transmission, propagation, processing, and
queuing delays can be modeled as follow:

∀(i, j) ∈ E : Di,j
eff = DTransmission +DPropagation

+DQueue +DProcessing

=
L

Ci,j − Λi,j × L
+
di,j
Si,j

+Dprocessing

(1)
Then, the end to end delay can be modelted as follows:

Du,v
e2e =

∑
(i,j)∈Pu,v

Di,j
eff

=
∑

(i,j)∈Pu,v

(
L

Ci,j − Λi,j × L
+
di,j
si,j

+Dprocessing

)
(2)

Our solution, besides placing and relocating the services,
defines the path Pu,v between any two microservices. We
define X u,v

i,j as a boolean variable indicating if link (i, j) ∈ E

is used in Pu,v: X u,v
i,j =

{
1 if link (i, j) is used in Pu,v,
0 otherwise.

Similarly, Yu,i indicates whether microservice u ∈ M is

hosted on edge i ∈ V : Yu,i =

{
1 if u is hosted on i,
0 otherwise.

Let R ⊆ V be the set of edges hosting registries. Each
edge i ∈ V uses a registry r ∈ R to fetch missing layers

Fig. 1. Overview of UAV microservice migration problem.

for launching a microservice v ∈ M . We define χvi,r as:

χvi,r =

{
1 if edge i uses registry r to fetch layers of v,
0 otherwise.

1) Path Definition between micro-services and Loop Avoid-
ance: Each microservice v ∈ M must be hosted on exactly
one edge, expressed as:

∀v ∈M :
∑
i∈V

Yv,i = 1 (3)

The traffic of a microservice u with destination v should
originate from the edge hosting u, i.e., if Yu,i = 1, then at
least one outgoing link (i, j) must be active. To linearize this
condition, we introduce the following constraints:

∀(u, v) ∈ E , ∀i ∈ V : Yu,i ≤ A
∑
j∈η(i)

X u,v
i,j ,

∑
j∈η(i)

X u,v
i,j ≤ 1

(4)
where η(i) denotes the neighbors of node i in Ginfra, and

A is a large constant (A ≫ 1).
We also ensure that the traffic of a microservice u destined

to v arrives at the edge hosting v. If Yv,j = 1, at least one
incoming link (i, j) must be active. To linearize this condition,
we define:

∀(u, v) ∈ E , ∀j ∈ V : Yv,j ≤ A
∑
i∈η(j)

X u,v
i,j ,

∑
i∈η(j)

X u,v
i,j ≤ 1

(5)
where η(j) denotes the neighbors of j in Ginfra, and A is

a large constant (A ≫ 1).
To ensure that paths between u and v are continuous and

loop-free, we define the following constraints. First, traffic
generated at the source edge i hosting microservice u must
not return to it, and traffic received at the destination edge
hosting v must not be sent back. These conditions prevent
loops at both ends:

∀(u, v) ∈ E , ∀i ∈ V :
∑
j∈η(i)

X u,v
j,i ≤ (1− Yu,i)A,∑

j∈η(i)

X u,v
i,j ≤ (1− Yv,i)A (6)

To guarantee path continuity, each intermediate edge (nei-
ther source nor destination) must forward all received traffic to
one of its neighbors. For each pair of microservices (u, v) ∈ E
and each edge i ∈ V , the original non-linear constraint is
equivalently replaced by the following linear form:

For each pair (u, v) ∈ E and each edge i ∈ V , enforce:

∑
j∈η(i)

X u,v
j,i −

∑
j∈η(i)

X u,v
i,j ≤ (Yu,i + Yv,i)A,∑

j∈η(i)

X u,v
i,j −

∑
j∈η(i)

X u,v
j,i ≤ (Yu,i + Yv,i)A.

(7)

Here, η(i) denotes the neighbors of node i in Ginfra, and
A is a large constant (A ≫ 1).

2) Latency Constraint Across Microservices: For each link
(i, j) ∈ E, the aggregate arrival rate is defined as

Λi,j =
∑

(u,v)∈E

λu,v X u,v
i,j

For each pair of microservices (u, v) ∈ E , the end-to-end
delay is expressed as:

Du,v
e2e =

∑
(i,j)∈E

(
L

Ci,j − Λi,jL
+
di,j
vi,j

+Dprocessing

)
X u,v
i,j . (8)

Equation (8) involves two optimization variables, X u,v
i,j and

Λi,j , making it non-linear. It can be decomposed as follows:

∀(u, v) ∈ E : Du,v
e2e =

∑
(i,j)∈E

(
di,j
vi,j

+Dprocessing

)
X u,v
i,j︸ ︷︷ ︸

(9.a)

+
∑

(i,j)∈E

L
Ci,j−Λi,jL

X u,v
i,j︸ ︷︷ ︸

(9.b)

. (9)

While part (9.a) is linear, part (9.b) is not. For stability,
Λi,j must satisfy 0 ≤ Λi,j ≤ Ci,j . We linearize (9.b) using a
piecewise approximation of the inverse term.

For each (i, j) ∈ E, let ∆ = min(u,v)∈E λu,v be the
breakpoint interval, N∆

i,j = ⌊Ci,j/∆⌋ the number of intervals,
and ψki,j = ∆ k (k = 0, . . . ,N∆

i,j) the breakpoints. We
introduce a binary variable µki,j indicating which interval is
active. The following linear constraints relate the total arrival
rate to the selected interval:

∀(i, j) ∈ E :
∑

(u,v)∈E

λu,v X u,v
i,j ≤

N∆
i,j∑

k=0

ψki,j µ
k
i,j ,

N∆
i,j∑

k=0

µki,j = 1.

(10)
For each (u, v) ∈ E and (i, j) ∈ E, if a link (i, j) is used

to route traffic, one interval must be selected:

X u,v
i,j = 1 =⇒

N∆
i,j∑

k=1

µki,j = 1. (11)

The nonlinear component (9.b) is then replaced with the
following linear formulation:

∀(i, j) ∈ E : B =

N∆
i,j∑

k=1

L

Ci,j − Lψki,j
µki,j , (12)

where µki,j are binary variables.
Substituting (12) into (9), the linearized end-to-end delay is

obtained as:

∀(u, v) ∈ E : Du,v
e2e =

∑
(i,j)∈E

(
di,j
vi,j

+Dprocessing

)
X u,v
i,j︸ ︷︷ ︸

(13.a)

+
∑

(i,j)∈E

N∆
i,j∑

k=1

L
Ci,j−Lψk

i,j

µki,j︸ ︷︷ ︸
(13.b)

. (13)

For each pair (u, v) ∈ E , we define a boolean variable zu,v
such that zu,v = 1 if Du,v

e2e ≥ Wu,v , and zu,v = 0 otherwise.
This condition is enforced by the following linear constraints:

∀(u, v) ∈ E : Du,v
e2e ≤Wu,v + zu,vA,

Wu,v < Du,v
e2e + (1− zu,v)A, (14)

where A is a large constant (A ≫ 1).

B. Selecting Registries for Microservices and Provisioning
Time SLA Violation

In what follows, we define the cost function for microservice
relocation. Let ζv be a continuous variable representing the
total relocation and deployment cost of microservice v:

∀v ∈M : ζv =
∑
i∈V

∑
r∈R

ψvi,r χ
v
i,r. (15)

The variable χvi,r indicates whether the registry r is used by
edge i to retrieve missing layers of v. Its value is determined
by the following constraints.

First, χvi,r must be zero if v is not hosted on edge i:

∀i ∈ V, v ∈M, r ∈ R : χvi,r ≤ Yv,i. (16)

Second, χvi,r must also be zero if all layers of v already
exist on i:

∀i ∈ V, v ∈M, r ∈ R : χvi,r ≤ φi,v. (17)

If v is hosted at edge i and at least one layer is missing,
then at least one registry must be used:

∀i ∈ V, v ∈M :
∑
r∈R

χvi,r ≥ φi,v Yv,i. (18)

Finally, only one registry can be used to retrieve the missing
layers:

∀i ∈ V, v ∈M :
∑
r∈R

χvi,r ≤ 1. (19)

Let Tv be a boolean variable indicating whether the relo-
cation time ζv exceeds the tolerated delay Bu (Tv = 1 if
ζv ≥ Bu, 0 otherwise). This condition is enforced through:

∀v ∈M : ζv ≤ Bu + TvA,
Bu < ζv + (1− Tv)A, (20)

where A is a large constant (A ≫ 1).

C. Number of Microservice Relocation

Let Y ′
i,u be a parameter that defines if the microservice

v ∈M was hosted in the edge i ∈ V in the previous period.

Y ′
v,i =

{
1 if v was on edge i
0 otherwise

(21)

We aim to optimize the number of relocations, whereby we
try to move the microservices only when it is needed. Let
ϕv , for v ∈ M , a decision boolean variable that shows if the
microservice has changed its edge. We define the following
two constraints:

∀u ∈M,∀i ∈ V : Yv,i − Y ′
v,i ≤ ϕv (22)

∀u ∈M, ∀i ∈ V : ϕv ≤ 2− Yv,i − Y ′
v,i (23)

D. Final Optimization

We adapt the weighted sum method to resolve the multi-
objectives optimization problem. Let α, β and γ the weights
of the optimization problem, such that α+ β + γ = 1.

Let α

min
1

|M |
×(α×

∑
v∈M

Tv + β ×
∑
v∈M

ϕv) +
γ

|E|
∑

(u,v)∈E

zu,v

subject to
(3), (4), (5), (6), (7), (10), (13), (14), (15)
(16), (17), (18), (19),(20), (22), and (23).

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

To evaluate the proposed optimization model, we conducted
an extensive set of experiments using the Gurobi solver [7] to
efficiently solve the mixed-integer programming formulation
of the migration problem. The results presented correspond
to the average values over 1000 independent repetitions for
each configuration, ensuring statistical robustness. In all ex-
periments, the application graphs were generated from the 100
most downloaded Docker Hub images, where the number of
microservices in each experiment corresponds to the number
of selected images (e.g., an application of size 10 is composed
of the 10 most downloaded images, size 20 of the top 20,
and so forth). Each microservice is characterized by its image
layers, its allowed provisioning time, and traffic arrival rate
ranging from 10 to 1000 packets per second, while tolerated
latencies between services vary from 10 ms to 500 ms. Both
the application and infrastructure graphs were designed to have
at least one and at most three links per node, guaranteeing
connectivity without over-saturation. The infrastructure graph
emulates a realistic edge environment with link distances
of up to 20 km, link speeds between 12.5 MB/s and 125
MB/s, and link capacities within the same range. In every
application graph, one microservice was designated as non-
migratable, representing the component running on a UAV,
and was randomly selected among all microservices.

1) Test-1: Impact of Application and Infrastructure Scale
on Migration and SLA Violations: The first experiment aims
to study the effect of varying the application size, the num-
ber of registries, and the size of the infrastructure on the
number of migrations and the number of provisioning-time
SLA violations. For this purpose, we varied the number of
microservices from 10 to 90 (step 10), the number of servers
among 20, 50, 70, and the number of registries among 5, 10,
20. In this test, no cached layers were pre-loaded on servers to
ensure independence between runs, and the initial allocation
of microservices to edge servers was randomized.

2) Test-2: Effect of Cached Layers on Provisioning-Time
SLA Violations: The second experiment investigates the im-
pact of cached layers on provisioning-time SLA violations by
fixing the infrastructure (30 servers and 5 registries) and the
application (90 microservices) while varying the number of

pre-loaded containers per server from 0 to 90 in increments
of 5. In this case, a random subset of images was cached
on each server for every repetition to simulate heterogeneous
caching conditions.

Across both experiments, all models were solved using
Gurobi with a time limit of 60 seconds, and results were
averaged over successful runs to quantify the influence of
system parameters—such as caching, registry distribution, and
infrastructure size—on migration frequency and provisioning
SLA performance.

B. Results And Discussions

Figure 2 shows the results of the first experiment, which
analyzes the impact of application size, number of image
registries, and infrastructure scale on the number of migrations
and provisioning-time SLA violations. Each row corresponds
to a different infrastructure size (20, 50, and 70 servers), and
each column pair displays the average number of migrations
(MIG) and SLA violations (SLA) for registry configurations of
5, 10, and 20. The x-axis indicates the application size (10–90
microservices), while the y-axis reports the corresponding
averaged values over 100 repetitions. The left panels show
the total number of migrations, and the right panels present
the provisioning-time SLA violations after optimization. The
results in Figure 2 show that increasing the number of
image registries significantly reduces provisioning-time SLA
violations, reaching zero when each server hosts a registry
(20s/20r). As the application size grows, the number of vio-
lations increases due to more inter-service dependencies and
provisioning requests. The number of migrations, however, is
not influenced by the number of registries but rises with the in-
frastructure size, as larger infrastructures offer more placement
options for optimization. Overall, registry distribution mainly
affects provisioning efficiency, while infrastructure scale drives
migration activity.

Figure 3 illustrates the results of the second experiment,
showing the average number of provisioning-time SLA vio-
lations as a function of the number of preloaded containers
per server. As observed, the number of violations decreases
steadily as more container images are cached in advance,
since the likelihood of finding required layers locally increases.
When servers already host all container layers (case of 90
preloaded containers), no SLA violations occur because pro-
visioning no longer depends on remote transfers. This trend
highlights an important property of the system: as drones move
across regions, the number of violations may initially be high,
but it gradually decreases after several iterations as servers
accumulate cached layers from previous deployments, thus
improving overall provisioning performance.

VI. CONCLUSION

This paper presented a layer-aware optimization model for
microservice migration in UAV-assisted edge environments.
The model jointly minimizes the number of migrations, delay-
based and provisioning-time SLA violations by accounting for
Docker layer reuse, registry selection, and end-to-end latency

Fig. 2. Average number of migrations and provisioning-time SLA violations for varying application sizes, registry counts, and infrastructure scales.

Fig. 3. Average number of provisioning-time SLA violations versus the
number of preloaded containers per server

constraints. To the best of our knowledge, this is the first work
to explicitly integrate the layered structure of containers into a
migration optimization framework, providing a strong baseline
for future works in the field. Our experiments focused on two
main metrics—the number of migrations and provisioning-
time SLA violations—as they best demonstrate the efficiency
of the proposed model. In future work, we plan to extend the
evaluation to include additional performance metrics, such as
execution time and extend the model to include other objec-
tives such as minimizing energy consumption, and to compare
our results against heuristic and learning-based strategies that
we are developing.

ACKNOWLEDGMENT

This work is partially supported by the European Union’s
Horizon Program under the 6G-Intense projects (Grant No.
101139266).

REFERENCES

[1] A. E. Meliani, M. Mekki, and A. Ksentini, “Resiliency
focused proactive lifecycle management for stateful microservices
in multi-cluster containerized environments,” Computer Commu-
nications, vol. 236, p. 108111, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366425000684

[2] D. C. Temp, A. A. F. da Costa, A. N. C. Vieira, E. S. Oribes, I. M. L.
Jr., P. S. S. de Souza, M. C. Luizelli, A. F. Lorenzon, and F. D. Rossi,
“Maper: Mobility-aware energy-efficient container registry migrations for
edge computing infrastructures,” The Journal of Supercomputing, vol. 81,
no. 1, p. 15, 2025, published 17 October 2024; article number 15.

[3] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[4] L. A. Dias Knob, F. Faticanti, T. Ferreto, and D. Siracusa, “Community-
based placement of registries to speed up application deployment on
edge computing,” in 2021 IEEE International Conference on Cloud
Engineering (IC2E), 2021, pp. 147–153.

[5] L. Roges and T. Ferreto, “Dynamic provisioning of container registries
in edge computing infrastructures,” in Proceedings of the Symposium on
High Performance Computing Systems (WSCAD). Symposium on High
Performance Computing Systems (WSCAD), 2023, pp. 85–96. [Online].
Available: https://sol.sbc.org.br/index.php/sscad/article/view/26511

[6] D. C. Temp, P. S. S. de Souza, A. F. Lorenzon, M. C. Luizelli,
and F. D. Rossi, “Mobility-aware registry migration for containerized
applications on edge computing infrastructures,” Journal of Network and
Computer Applications, vol. 217, p. 103676, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804523000954

[7] L. Gurobi Optimization, Gurobi Optimizer Reference Manual, 2024.
[Online]. Available: https://www.gurobi.com

