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Abstract. The ability to precisely locate sensor nodes has enabled spe-
cialized in-network data processing methods within IoT-enabled wireless
sensor networks, known as spatial query processing. These queries col-
lect data from nodes situated within user-defined “regions of interest.”
Conventional spatial query processing approaches frequently encounter
challenges including excessive energy consumption, diminished accuracy,
and prolonged processing times. This research focuses on window queries,
one of the most prevalent spatial queries used to extract data from nodes
within specific two-dimensional regions. We present a strategy for pro-
cessing window queries in IoT networks that optimizes energy efficiency,
response time, and accuracy simultaneously. Our approach introduces
intelligent agents that incorporate machine learning, knowledge repre-
sentation, and autonomous decision-making capabilities specifically tai-
lored for spatial query processing across geographical zones. Experimen-
tal evaluations demonstrate significant improvements: 35% reduction in
energy consumption, 99.1% query accuracy (compared to 96.8% for base-
line methods), and up to 71% decrease in latency under various network
densities and query area sizes.
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1 Introduction

Modern computing has permeated diverse domains, particularly IoT-enabled
wireless sensor networks. The proliferation of IoT networks [1] has increased the
frequency of spatial queries that extract information from sensor nodes within
monitored geographical regions [2]. Our research focuses specifically on Window
queries, which are critical for retrieving physical data from within defined two-
dimensional areas [3].
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Despite numerous proposed strategies for processing IoT spatial queries, sig-
nificant challenges persist in balancing energy consumption with processing ef-
ficiency. Since data processing typically consumes less energy than data trans-
mission, multi-agent systems offer a promising approach for executing complex
tasks in ToT networks [1] [4]. Our work fundamentally advances this paradigm by
introducing intelligent agents with enhanced cognitive and learning capabilities.

Current spatial query processing methods in IoT networks face several limi-
tations: Static Routing Strategies such as Itinerary-based Window Query Execu-
tion (IWQE) [5], Limited Decision-Making, Inefficient Data Collection, Limited
Parallelism.

Our work addresses these limitations through several key innovations:

1. We develop a reinforcement learning approach that optimizes agent path
selection based on energy efficiency, data quality, and latency considerations.

2. We implement semantic filtering mechanisms that reduce redundant data
transmission while maintaining high query accuracy.

3. We design a multi-agent coordination protocol that enables collaborative
query processing across geographical regions.

4. We evaluate our approach against IWQE method.

The remainder of this article is organized as follows: Section 2 provides back-
ground on spatial queries in IoT networks and reviews related work. Section
3 details our IAPSQP architecture and algorithms. Section 4 presents exper-
imental results and comparative analysis. Finally, Section 5 concludes with a
summary of the contributions.

2 Background and Related Work

2.1 Spatial Query Processing in IoT Networks

IoT-enabled wireless sensor networks employ various data delivery models, but
spatial query processing predominantly utilizes the query-driven approach. Un-
like event-driven models or time-driven models, the query-driven model operates
with IoT devices that transmit measurements only when queried by the base sta-
tion [6].

Silva [7] proposed a systematic decomposition of the spatial query process-
ing procedure into distinct phases, each representing a subproblem within the
processing mechanism:

1. Pre-processing: The user formulates the query at the base station, which
is then transmitted to the IoT network.

2. Forwarding: The query is routed toward the specified area of interest, and
each node is aware of its geographical position.

3. Dissemination: Upon reaching the target area, the query must be dis-

tributed to all nodes within that region.

Sensing: The nodes within the specified area collect the requested data.

Aggregation: The collected data are consolidated at an “aggregator node,

which computes the query result.

6. Return: The computed result is sent back to the user.

O
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2.2 Comparative Analysis of Existing Approaches

Our work builds upon and extends previous research in this domain. Table 1
provides a comparative analysis of existing approaches and highlights the inno-
vations in our proposed IAPSQP method.

Table 1: Comparison of Spatial Query Processing Approaches

Method Query Processing Path Selection Energy |Parallelism
Strategy Efficiency

IWQE [5] Geo-based routing Fixed itinerary Moderate |None

GeoGrid (8] Grid-based routing Geographic hash tables|Moderate |Limited

DQELAR [9] Data-centric forwarding|Energy-aware routing |High None

SPQR [10] Structured overlay Query optimization Moderate |Query-level

IAPSQP (Ours) |Intelligent multi-agent |Reinforcement learning |Very high |Adaptive

Our TAPSQP approach differs fundamentally from previous methods in its
incorporation of learning-based decision making and adaptive behavior. IWQE
[5] employed a static itinerary-based approach that cannot adapt to changing
network conditions or query requirements.

More recent approaches like GeoGrid [8] and DQELAR [9] have introduced
improvements in energy efficiency and geographic routing but still lack the cog-
nitive capabilities and adaptive decision-making that characterize our intelligent
agent approach. SPQR [10] implements query optimization techniques but does
not leverage reinforcement learning for path selection and data filtering.

3 IoT Spatial Query Routing Algorithm via Intelligent
Agent Integration (IAPSQP)

To enhance window-type IoT spatial query processing efficiency, we present IAP-
SQP (Intelligent Agents based Parallel Spatial Query Processing), which intro-
duces advanced learning and reasoning capabilities.

3.1 Intelligent Agent Architecture

Our intelligent agent architecture in Fig. 1 consists of four key components:
Knowledge Base: Maintains comprehensive contextual information about
the network topology, node capabilities, energy levels, and query history.
Learning Module: Implements Q-learning, a reinforcement learning algo-
rithm that allows agents to adapt their routing decisions based on network dy-
namics. Each agent maintains a Q-table that maps state-action pairs to expected
rewards, which are calculated using a weighted function of energy consumption,
data relevance, and path length. The reward function R(s, a) calculates the im-
mediate reward that an agent receives when it takes action ’a’ while in state

9q?
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R(s,a) =a-E(s,a)+ - D(s,a) +v-L(s,a) (1)
Where:

E(s,a) represents energy efficiency

— D(s,a) represents data relevance

L(s,a) represents path length optimization
— a, (3, and « are weighting parameters

The Q-values are updated according to:
Q(s,a) < Q(s,a) + n[R+ 0 -maxQ(s',a') — Q(s,a)] (2)

Where 7 is the learning rate and § is the discount factor.

Decision Engine: Provides reasoning capabilities for agents to make au-
tonomous decisions regarding: Route selection, Data aggregation, Coordination
with other agents to avoid redundant processing.

Coordination Protocol: Enables collaborative behavior among multiple
agents.
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Fig. 1: IAPSQP Architecture

3.2 Algorithm Implementation

Our TAPSQP protocol implements a migration algorithm, incorporating learning-
based decision making. Algorithm 1 presents the main migration algorithm,
which divides the query area into quadrants and dispatches intelligent agents
to process queries in parallel.
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Algorithm 1 TAPSQP Migration Algorithm

Require: Query Area (QA), Query (Q)
Ensure: Query Result (QR)

1
2
3
4:
5:
6.
7
8
9

Divide QA into four quadrants

: Deploy four intelligent agents (IA1, IAo, TA3, TA4)
: for each agent IA; do

Select optimal starting itinerary node S; in quadrant i using learned routes
Dispatch IA; to S; using adaptive Greedy algorithm
IA;.QueryProcessing(S;)

: end for
: Merge results from all agents using semantic aggregation
: return consolidated query result

Algorithm 2 QueryProcessing(I)

Require: Itinerary node (I)
Ensure: Local query result

1

2:

9:
10:
11:
12:
13:
14:
15:
16:

Initialize empty result set R
Add data from I to R if it matches query criteria {Query neighboring nodes with
knowledge-based filtering}
for each neighboring node N of I do
if N is within query area AND N has not been visited AND learning model
predicts valuable data then
Collect data from N
Apply semantic filtering to eliminate redundant information
Add filtered data to R
end if
end for{Determine next node using reinforcement learning}
NextNode < SelectOptimalNextNode(I, learned_model)
if NextNode exists then
Update agent’s knowledge base with current observations
return QueryProcessing(NextNode)
else
return R
end if

Algorithm 3 SelectOptimalNextNode(currentNode, model)

Require: Current node, Learning model
Ensure: Next node to visit or null

1: candidates < GetUnvisitedNeighborsInQueryArea(currentNode)
2: if candidates is empty then

3:

4: end if

return null

{Epsilon-greedy exploration strategy}
if random() < ¢ then
return RandomChoice(candidates) {Exploration}
else
return argmaxy,ecandidates @(currentNode, n) {Exploitation}
end if
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Algorithm 2 details the query processing procedure executed by each agent.
The SelectOptimalNextNode function utilizes the Q-learning model to iden-
tify the optimal next node. This learning-based approach allows agents to adapt
to network dynamics and improve performance over time, addressing the limi-
tations of fixed-path approaches like IWQE [5].

3.3 Semantic Data Filtering and Aggregation

A key innovation in our approach is semantic data filtering, which reduces redun-
dant data transmission while maintaining query accuracy. The filtering mecha-
nism considers: Spatial redundancy and Query-specific relevance ensuring that
only relevant data is transmitted.

4 Performance Evaluations

4.1 Spatial Query Energy Consumption

Our intelligent agent approach demonstrates superior energy efficiency compared
to IWQE. Fig. 2 shows the relationship between the number of nodes in the query
area and energy consumption.
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Fig. 2: Spatial query energy consumption

When varying the number of nodes in the query area, IAPSQP shows a 35%
reduction in energy consumption compared to IWQE. The relationship between
query area size and energy consumption shows that IAPSQP maintains its ef-
ficiency advantage even as the query area expands. The reinforcement learning
mechanism allows agents to adapt their routing strategies based on the specific
characteristics of each query area, resulting in near-optimal path selection.

4.2 Spatial Query Accuracy

Intelligent agents demonstrate significant improvements in query accuracy over
the IWQE approach. Fig. 3 illustrates the accuracy of the query as a function
of node density.
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Fig. 3: Spatial query accuracy

When varying node density, TAPSQP consistently maintains higher accu-
racy, particularly in dense networks where traditional approaches suffer from
missing nodes and redundant data collection. In tests with varying query area
sizes, IAPSQP achieves approximately 99.1% accuracy in query handling results,
compared to 96.8% for IWQE.

4.3 Spatial Query Latency
Our intelligent agent approach significantly reduces query latency compared to

the IWQE implementation. Fig. 4 shows latency as a function of node count.
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Fig. 4: Spatial query latency

When varying the number of nodes, IAPSQP demonstrates a latency reduc-
tion of up to 63% compared to IWQE. As the query area expands, the latency
typically increases for all methods. However, ITAPSQP’s intelligent path planning
and parallel execution minimize this effect. The approach achieves a latency re-
duction of up to 71% compared to IWQE in larger query zones.
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5 Conclusion

This research addressed fundamental challenges in spatial query processing for
IoT networks by introducing intelligent agents. Our IAPSQP approach incorpo-
rates reinforcement learning, knowledge representation, and autonomous decision
making to optimize spatial query processing across multiple dimensions: energy
efficiency, query accuracy, and latency.

A comprehensive evaluation comparing TAPSQP with IWQE demonstrates
significant performance improvements: 35-40% reduction in energy consumption,
99.1% query accuracy, up to 71% decrease in latency for large query areas.

These improvements highlight the advantages of incorporating cognitive ca-
pabilities into spatial query processing agents, allowing them to adapt to network
dynamics, optimize paths based on learned patterns, and make intelligent deci-
sions about data collection and aggregation.
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