{{alertCCSTI’)}}: Large-Scale Detection of
Client-Side Template Injection

Lorenzo Pisu
University of Cagliari

Cagliari, Italy
lorenzo.pisu@unica.it

Davide Balzarotti
Eurecom
Sophia Antipolis, France
davide.balzarotti @eurecom.fr

Davide Maiorca
University of Cagliari
Cagliari, Italy
davide.maiorca@unica.it

Giorgio Giacinto
University of Cagliari
Cagliari, Italy
National Interuniversity Consortium for Informatics
Rome, Italy
giacinto@unica.it

Abstract—Template engines are software components that
enable the creation of reusable HTML elements containing
special keywords that can dynamically alter the page’s rendering
based on the presented data. This technology is widely used in
server-side applications and frameworks, and in recent years, it
has also gained adoption on the client side through JavaScript
frameworks and libraries. Client-Side Template Injection (CSTI)
is a vulnerability that occurs when user input is reflected inside
a template and rendered as part of it, allowing attackers to
inject malicious instructions. This can trick the template engine
into executing arbitrary JavaScript code, potentially leading to
Cross-Site Scripting (XSS). Despite the widespread adoption of
template engines in production websites, a comprehensive study
of their characteristics remains absent. In our study, we begin by
providing an overview of the main features of template engines,
highlighting attributes that play a crucial role in escalating CSTI
to XSS. We then use these extracted characteristics to develop a
systematic methodology for detecting CSTI vulnerabilities. Based
on this methodology, we create an automatic CSTI detection tool,
CSTI-Alert. By running CSTI-Alert on the Tranco top 1
million domains, we identify 532 CSTI-vulnerable domains, with
72% directly leading to XSS through GET parameters or CSRF.
Finally, we discuss potential approaches to defend against CSTI
based on the result of our semi-automatic exploitability analysis.

Index Terms—web security, client-side template injection,
large-scale detection

I. INTRODUCTION

Arbitrary code execution in client-side JavaScript applica-
tions is a critical security threat to modern websites, primarily
through attacks such as Cross-Site Scripting (XSS) [1]-[10].
However, the evolving landscape of client-side libraries and
frameworks has paved the way for new techniques to inject
JavaScript code into websites. A popular technology widely
used in server-side applications (and in recent years, also
integrated into client-side applications) is the template engine,
a piece of software designed to dynamically render data inside
a predefined set of templates.

Template engines can be utilized as standalone libraries or
integrated with JavaScript frameworks such as jQuery [11],
Angular [12], and Vue [13]. Originally designed for server-side
use, they serve the purpose of separating the logic and presen-
tation layers by allowing developers to define HTML templates
that dynamically present data [14]. With the increasing so-
phistication of client-side applications, which are composed of
complex, dynamic User Interface (UI) components, template
engines have become useful for defining reusable pieces of
code. An advanced example of client-side template engine
usage is the so-called Single-Page Application (SPA) [15], in
which template engines are employed to continuously fetch
data from the server-side using JavaScript to render it without
the need to reload or redirect the user’s page.

After Kettle showed the impact of Server-Side Template
Injection (SSTI) [16], the dangers associated with this tech-
nology became evident. Since templates are not merely passive
components but, when rendered, can manipulate objects and
functions, they can become a potential source of vulnerabil-
ities. Moreover, it was shown that SSTI can lead to Remote
Code Execution (RCE) [17], [18], a critical security issue that
can cause a complete takeover of the server by an attacker.
Despite the significant impact of template injection, popular
websites and frameworks are still found to be vulnerable to
SSTI [19]-[22], showing that this vulnerability needs to be
analyzed carefully.

Notably, Client-Side Template Injection (CSTI) was un-
covered by Heiderich even before SSTI, under the general
category of attacks against JavaScript Model-View-Controller
(MVC) [23]. However, it was only after the research conducted
by Heyes [24], [25] in 2016 and 2017 on injection attacks in
Angular, Vue, and Mavo frameworks that this vulnerability
became known as CSTI.

CSTI is an attack vector that occurs when the user input is
parsed by client-side engines as part of their templates, allow-
ing users to exploit its functionalities for malicious purposes.

An attacker can take advantage of this vulnerability and, by
injecting specific payloads into template expressions, they can
manipulate the client-side rendering process, often gaining the
possibility to execute malicious JavaScript code. CSTI can be
much more subtle than SSTI because many client-side tem-
plate engines work differently than the server-side counterpart,
making CSTI more difficult to prevent. Furthermore, CSTI
does not necessarily need the injection of HTML or HTML-
like tags: Even simple expressions such as {{alert (1) }},
which are not seen as malicious by general-purpose sanitizers,
can trigger arbitrary JavaScript code execution.

Although the web security community has been discussing
CSTI for many years now, the prevalence and large-scale
detection of this vulnerability remains a completely uncharted
topic in research. Notably, no measurements or large-scale
analysis of CSTI have been conducted, and only one tool
for CSTI detection has been developed (ACSTIS) [26], which
supports only a single template engine (Angular) and is no
longer functional due to a lack of updates. However, many bug
bounty reports [27], [28] and CVEs [29]-[33] related to CSTI
demonstrate a growing awareness among security practitioners
on the topic.

In this paper, our goal is to provide a systematic overview
of template engines and how their improper usage can lead
to CSTI. To this end, we first perform a survey of the most
popular client-side template engines. For each of them we
devised a special payload that could be injected to verify
whether a website using that engine can be vulnerable to CSTI.

Next, we present our methodology for detecting CSTI in
the wild. Given a website URL, we crawl it to the desired
depth, extracting a list of URLs for analysis. The analysis of
each URL begins with detecting the template engine in use,
which is determined by the presence of objects instantiated
by the template engine. For each detected template engine,
we inject a specific payload into the page, interacting with its
components and checking whether the payload is executed.
For each vulnerable website, we also conduct an automatic
exploitability study, simulating an attack scenario to assess
whether arbitrary JavaScript code can be executed on the target
website.

Finally, to estimate the adoption of template engines and
assess the presence of vulnerable websites, we deployed
our tool, CSTI-Alert [34], on the Tranco top 1 million
domains. To the best of our knowledge, this is the first
large-scale analysis of CSTI. We identified 532 vulnerable
domains, with 385 of them exploitable to achieve XSS. We
further analyzed the remaining 178 non-exploitable domains to
evaluate their defenses against CSTI, highlighting interesting
scenarios where the vulnerability could not be exploited.
Additionally, we discuss defenses against CSTI, showing that
existing sanitizers are inadequate for mitigating this threat.

Our contributions can be summarized as follows:

« We conduct the first comprehensive and systematic study
of Client-Side Template Injection (CSTI), covering vul-
nerability, injection techniques, detection, prevalence, im-
pact, and defenses.

o We conduct an in-depth study of the most popular
template engines. By analyzing their syntax, behavior,
and possible payloads to trigger XSS, we designed a
methodology to automatically detect CSTI vulnerabilities.

o We implemented our methodology in a tool, CSTI-
Alert. To the best of our knowledge, no other tool is
capable of performing this kind of detection on such a
large number of template engines.

o We instantiate CSTI-Alert [34] to assess the preva-
lence and impact of CSTI on the Tranco top 1 million,
finding that vulnerable domains either use Angular or
Vue as their frameworks. Finally, we discuss defenses
and mitigation strategies against CSTI, analyzing both
the current possibilities and future directions for the
prevention of this threat.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of the background
concepts, explaining how client-side template engines work
in II-A and how CSTI occurs in II-B.

A. Template Engines

Template engines are software components designed to
generate dynamic HTML views from templates, allowing
developers to present user data without rewriting HTML code
every time the data changes. Templates typically contain a mix
of static HTML and special symbols that the engine interprets
as delimiters between HTML and executable instructions. The
most common delimiter symbol, used by popular engines like
Jinja2, Handlebars, and Angular, is the double curly brackets
({{ }})- Within these delimiters, variables or expressions are
placed, which the engine replaces with user-provided data to
produce the final HTML content.

Template engines can operate on both the server-side and
client-side, with some JavaScript engines supporting usage
on both ends. Although template engines were originally
developed for server-side applications, their adoption in client-
side frameworks has grown significantly. Client-side template
engines function similarly to server-side ones but differ in the
way templates are rendered. Specifically, client-side rendering
can occur through three main approaches:

« Declarative: Similar to server-side rendering, templates
are defined first and then programmatically fetched and
compiled.

« HTML Tag Attributes: Specific HTML attributes can
trigger the template compilation process.

o Tag Mount: The engine is attached to a tag that contains
the template, automatically rendering the content.

We will provide a detailed analysis of these three client-side
rendering approaches in Section IV-B.

B. Client-Side Template Injection

When the user input reaches a template definition and is
parsed as part of the template itself, a template injection vul-
nerability occurs. In server-side template engines, this vulnera-
bility is called SSTI, which often leads to RCE. On the client-
side, this vulnerability is known as CSTI and can potentially

lead to XSS, compromising the security of legitimate users
visiting the website.

The possibility of injecting template syntax can stem from
improper handling or insufficient validation of user input on
the server, which then reflects the input back to the client.
This improper reflection allows an attacker to craft input that
is interpreted as part of the template, enabling the execution
of unintended commands.

The following example demonstrates how CSTI can arise
in Angular using a PHP backend:

1 | <html ng-app>

2 | <head>

3 | <script src= ></script>

4 | </head>

5 <body>

6 <p>

7 <?php

8 Susername = $_GET [1;
9 echo htmlspecialchars ($username) ;
10 ?>
11 </p>
12 </body>
13 | </html>

Listing 1: CSTI Vulnerability Example

The code in Listing 1 shows a page in which the angular
scope is the full HTML code (as the ng—app attribute is used
in the <html> tag). The PHP code retrieves a username
from the GET parameters and echoes it using the sanitization
function htmlspecialchars, which prevents malicious
HTML injection. However, this sanitization does not account
for curly brackets, which Angular interprets as part of its
template syntax, thereby exposing the application to XSS.

For instance, an attacker can inject the following payload
{{constructor.constructor (“alert(1)’) ()}}
to achieve arbitrary JavaScript execution and compromise
website users by stealing cookies or performing sensitive
actions on their behalf. CSTI can also arise from poor
coding practices in client-side JavaScript. If a template
rendering function is used similarly to a sink (such as eval
or innerHTML), a DOM-based CSTI can occur. We will
explore CSTI scenarios in detail in Section V-A, focusing on
both server-side reflections and DOM-based instances.

III. RESEARCH QUESTIONS

The paper aims to answer the following research questions:

(RQ1) What are the characteristics of the most popular
template engines? Countless template engines have been
developed, each with its own set of features and potential
exploits. Despite this, a comprehensive analysis of the char-
acteristics of template engines has never been carried out.

(RQ2) How can we detect reflected CSTI in a black-
box scenario? Given the numerous cases of CSTI and the
widespread adoption of template engines, the automatic detec-
tion of CSTI is essential. We present a systematic approach for
CSTI detection in a black-box environment, where the primary
cause of CSTI is the reflection of user inputs.

(RQ3) What is the prevalence of CSTI in the wild? How
can websites defend against it? Although CSTI has been

known for almost ten years, there is still no measurement of its
prevalence, impact, or code patterns in the wild. In this paper,
we aim to quantify the prevalence of CSTI, identify vulnerable
behaviors, and examine their impact to shed light on the
possible causes and factors behind this overlooked vulnera-
bility. Moreover, we discuss possible defenses against CSTI,
starting from scenarios where the vulnerability is present but
not exploitable.

IV. SURVEY OF TEMPLATE ENGINES

The first part of our work aims to answer RQ1, collecting
a set of popular template engines and performing a system-
atic evaluation of their properties. We selected the 26 most
popular template engines based on GitHub stars, searching
GitHub with the keyword “template engine” and filtering by
the JavaScript language. We excluded frameworks such as
React [35], Svelte [36], Marko [37], and Ember [38], as
performing CSTI on them is either not possible or extremely
rare. This is primarily because these frameworks precompile
their templates, preventing them from being compiled at
runtime with user-supplied strings. While this applies to all
four excluded frameworks, some have additional distinguish-
ing features. Specifically, React uses JavaScript XML (JSX),
which is not a template engine. Svelte and Marko have their
own templating languages, and Ember uses Handlebars to
handle templating features.

For each template engine, we created a local testing envi-
ronment and developed a simple app vulnerable to a reflected
CSTI. This helped us identify and extract the functions called
during the template rendering process, if any are visible
(i.e., if the functions are not anonymous) [39]. This set of
function calls will be useful later when we want to assess if a
target website is actually using the template engine or merely
importing the library without utilizing it. If the template engine
uses only anonymous functions, this process cannot be used
for detecting the engine’s usage. In such cases, we rely on
the presence of these functions in the JavaScript code of the
page or on the presence of template-related attributes inside
the tags. The selected engines, along with the result of our
analysis, are summarized in Table I.

A. Extracted Characteristics

The key information that we extracted for each template

engine is summarized in the following five features.

« Syntax. The syntax is often similar across various engines
(e.g., curly brackets {{ }}), although it can slightly vary.
It is crucial to understand which symbols are used by
each engine to recognize instructions. From a detection
perspective, this information can be leveraged to build
payloads that the engine parses when a CSTI vulnerability
is present. This information is easily found in the engine’s
documentation.

o Detection Payload. To detect CSTI, we need to inject a
payload that produces an easily identifiable result on the
page. Since CSTI occurs when the user input is executed
as part of a template, we can inject specific operations and

Popularity |

TE ‘ Ref. ‘ o] E = TE object Detection Payload XSS Payload
|k v w ws B G E

vue [13] 2082k 33.7k - 23M v Vv Vue {{12345%54321}} {{constructor.constructor("alert(1)")() } }

angular [12] 968k 258k 3.8M 14M v Vv angular {{12345%54321}} Version Dependant

alpine [40] 28.9k 1.2k 179 86.8k v Alpine 12345%54321 alert(1)

underscore [41] 27.3k 5.5k 4.5M 50M v _.template <%=12345%54321%> <%=alert(1)%>

pug [42] 217k 19k 676k 6M | ¥ pug #{12345%54321} #{alert(1)}

lit 43] 191k 951 145k 86M | ¥ litHtmI Versions ${12345%54321} ${alert(1)}

handlebars.js [44] 18.1k 2k 4M 60M | vV Handlebars {{this}} -

mustache.js [45] 16.5k 2.3k - 2IM v Mustache {{}} -

art-template [46] 9.8k 2.6k 168k 151.6k | ¥V template {{12345%54321}} {{constructor.constructor("alert(1)")() } }

nunjucks [47] 8.6k 641 2713k 39M | v nunjucks {{12345%54321}} {{({})-constructor.constructor("alert(1)")() } }

ejs [48] 7.8k 845 13M 759M | v ejs <%=12345%54321%> <%=alert(1)% >

swig [49] 58k 12k 18 1231k | v swig {{12345%54321}} {{alert(1)}}

hogan.js [50] 5.1k 427 87.8k 2.5M v Hogan 6705{{!csti} }92745 -

doT [51] 5k Ik 358k 19M | v doT {{=12345%54321}} {{=alert(1)}}

jquery-tmpl [52] 3.2k 1k - - v $.tmpl ${12345%54321} ${constructor.constructor("alert(1)")() }

dustjs [53] 29k 479 1 578k | v dust “n -

mavo [54] 2.8k 177 10 56 v Vv Mavo [12345%54321] [self.alert(1)]

jsrender [55] 2.6k 340 3.3k 653k | ¥ jsrender {{:12345%54321}} {{:"”.toString.constructor.call(,"alert(1)")() } }

twig.js [56] 18k 275 - M | v Twig {{12345%54321}} -

regular [57] 1k 150 4 238 v Regular {12345%54321} {constructor.constructor(’alert(1)")() }

transparency [58] 967 112 236 208 v Vv Transparency - -

pure [59] 922 92 119 1k v Vv $p = -

Juicer [60] 914 260 555 5.7k v Juicer ${12345%54321} ${alert(1)}

ICanHaz.js [61] 837 126 136 2.3k v ich 6705{{!csti}}92745 -

tempo [62] 708 72 - - v Vv Tempo {{this}} -

template7 [63] 658 164 29k 119% | v Template7 {{js 712345+543217}} {{js 7alert(1)” }}

squirrelly [64] 651 83 21k 984k | ¥ Sqrl {{12345%54321}} {{alert(1)}}

jquery-template [65] 603 200 49 - v Vv loadTemplate - -

Markup.js [66] 319 53 s 27k | v Mark “n -

Legend: W=GitHub Stars; }*=GitHub Forks; *&=GitHub UsedBy; =2 8=NPM Monthly Downloads; decl.=declarative; mount=tag
mount; attr.=tag attribute

TABLE I: Overview of the selected client-side template engines and their characteristics. Note that some of these engines (e.g., Handlebars)
can also be used on the server-side, but we focus on their usage on the client side.

verify whether they have been executed. Therefore, we
primarily use mathematical operations, as they generate
predictable, unique, and easily detectable results on the
target page. For instance, multiplying 12345x54321
yields 670592745. Testing for the presence of this number
on a set of Tranco top 10k websites revealed that none of
them contain this sequence, making this payload suitable
for detecting the execution of our detection payload. For
template engines incapable of performing mathematical
operations, we check if any default objects are present in
the template context and utilize them. In Handlebars, for
example, the this object is available, while others (like
Mustache) provide a dot (.) object. Using these objects
produces the string [obJject, Object], which rarely
appears on webpages. If neither of the above techniques
applies to the engine, we use template syntax that allows
for writing comments inside the templates (e.g., Hogan
templates can contain {{ ! comment }}). Since comments
are removed after the template is compiled, we can
insert the comment within our detection string. For ex-
ample, the string 6705{{! comment}}92745 becomes
670592745, enabling the detection of CSTI. If none
of these techniques apply, it indicates that the engine is
structured in such a way that CSTI is not feasible. For
example, PureJds [59] associates data with tags but only
allows data presentation without the capability to access
object attributes or perform mathematical operations.

« Rendering Type. As mentioned in Section II-A, template

engines operate in three main ways: declaratively, through
tag attributes, or via tag mounts. We gathered this infor-
mation by setting up a testing scenario that utilizes the
engine. Understanding this helps us estimate the attack
surface of a website using a particular engine. If it follows
a declarative paradigm, the attack surface is limited to
reflections within the template string. However, if it uses
tag mounts or attributes, reflections can also occur within
tag content or attributes.

« Template Engine Object. Since most template engines

are implemented as client-side libraries, they typically
export an object containing all the functions and attributes
needed to compile and render templates. Identifying this
object is crucial to determine if a target page uses the
engine. Although its presence alone may not confirm the
use of the engine, its absence confirms that the website
does not import the engine library.

o XSS Payload. Escalating CSTI to arbitrary JavaScript

code execution is not always possible. We analyzed each
engine in a testing scenario to assess its capability in this
regard. If the engine allows it, we extract and document
an example of a payload that achieves XSS. Notably,
in Angular, the payload depends on the version. Online
resources authored by Heyes and Heiderich provide com-
prehensive lists of working payloads for each version of
the framework [67]. Vue also features slight differences
in its XSS payloads between V1, V2, and V3, but we
decided to show the most common payload, which works

in V2.

B. Template engine analysis

To extract the syntax and functionalities of a template
engine, we analyze its documentation. The documentation
typically includes details on the possibility of performing
mathematical operations, the presence of default objects, and
how the template engine operates. Additionally, we extract
example code snippets from the documentation that we can
reuse to set up a vulnerable scenario. We also organize the
way in which the target engine parses and renders templates
in three main categories: (i) tag attributes; (ii) tag mount and
(iii) declarative. More than one category can apply for the
same engine, i.e. Angular can operate both with tag attributes
and tag mount.

Declarative. The most common way for template engines
to work is by declaring a template, either inside a JavaScript
variable or as a tag inside the HTML code. The template
is then passed to the engine function or class that parses it
to identify specific keywords (such as {{}}) and executes
instructions inside or replaces the variables with their corre-
sponding values. Notably, with this mode of operation, the
frontend developer narrows the possibility of CSTI by using
very specific areas of the page to declare and use the template
engines, reducing the possibility of introducing user inputs
inside the templates. This type of template engine is the
most common among those under analysis, accounting for
30 out of 40 (66%). An example of a declarative engine
is Handlebars, in which the templates are often declared
inside script tags, following is a brief example.

1 | <script id= type=
>
2 <p>Hello {{user}}!</p>

3 | </script>

Listing 2: Script tag containing the declaration of a Handlebars
template

Using the HTML code in Listing 2, the browser will not
execute the script element, since the type attribute suggests
that it does not contain JavaScript code. However, the content
of the tag can be retrieved and compiled using Handlebars.
The following JavaScript code shows how.

1 |var template = document.getElementById (
) .innerText
2 |output = Handlebars.compile (template) ({user:

})

Listing 3: Compile process of a Handlebars template

The code in Listing 3 retrieves the text content of the tag
userTemplate, which contains the template to be compiled.
Using the document object Handlebars, we call the func-
tion compile by passing the template string as an argument.
The call to compile returns another function that receives an
object representing the available data in the template context.
The output variable will now contain the string <p >Hello,
test ! </p> and can be placed inside the page. Notably, we

could also have declared the template as a JavaScript string
directly inside the code.

Tag Attributes. Many libraries enrich HTML tags with ac-
tive attributes, i.e., attributes used by JavaScript to dynamically
change the page behavior. Template engines are no exception,
using specific tag attributes or even classes to perform template
rendering operations. This mode of operation widens the attack
surface because a user input that is reflected inside a tag as
a class or attribute can be manipulated to trigger a template
injection. Certain attributes are also valid for child elements
(e.g., an h1 tag inside a div with an active template engine
attribute), meaning that a user input that is reflected inside a
child element from the back-end will be parsed as a template
instruction. This method of rendering templates is supported
by 8 out of the 30 engines analyzed (26%). Angular is one of
the most popular engines that use this kind of mechanism. In
the following, we report an example that shows the main tag
attribute that can be used in Angular to invoke the template
engine.

1 | <html>

2 <head>

3 <script src= ></script>
4 </head>

5 <body>

6 <div ng-app>

7 <input type= ng-model= >
8 <hl>Hello, {{ name }}!</hl>

9 </div>

10 </body>

11 | </html>

Listing 4: How the Angular ng-app and ng-model attributes
work

In the HTML code of Listing 4, we start by declaring our
Angular app scope by adding the attribute ng—app to the div
tag. We then use the Angular attribute ng—-model to bind the
value of an input tag to the template variable name. Since we
are within the ng-app scope, the template syntax {{ name
}} will be automatically replaced with the value entered by
the user in the input tag.

Tag Mount. Embedding template keywords directly inside
the HTML code of the page can be convenient, making the
page both a template, when it is first loaded, and the rendered
results, when the engine has finished parsing it. Engines can be
mounted to watch a specific element and treat it as a template,
rendering the keywords and showing the result directly inside
the HTML code. This can be dangerous if the backend puts an
untrusted input inside these template tags. In practice, many
vulnerable websites mount the template engine inside very
broad tags such as html or body, making it very easy for
a user input to become part of the template. This strategy for
rendering templates is supported by 8 out of the 30 engines
analyzed (26%). Vue is an example of a template engine that is
often used in this way. In the following, we report an example
that shows a way to use Vue with this kind of technique.

1 |<div id= >

2 <p>{{ user }}</p>

3 | </div>

4

5 | <secript type= >
6 |import { createApp } from
7

8 |const app = createApp ({
9 data () {

10 return {

11 user:

12 }

13 }

14 |1

15

16 | app.mount ()

17 | </script>

Listing 5: How the Vue tag mount works

The code in Listing 5 contains both the HTML and the
JavaScript needed to perform a template rendering with Vue.
The template is contained inside the div tag and renders the
variable user. The JavaScript code creates an app object
which contains the data available to the templates, in this
case the user variable with value test. To attach and,
therefore, render the template inside the page we call the
mount function, we pass as argument a selector that identifies
the tag to which Vue will be attached.

These three modes of operation can impact how easy it
can be for CSTI to arise, making it a fundamental feature to
understand common pitfalls when using template engines.

C. Arbitrary Code Execution Prevention in Template Engines

While our focus in this work is on the exploitation of CSTI,
this subsection takes a step back to compare how different
template engines handle the risk of arbitrary code execution,
which directly impacts exploitability. Notably, not all client-
side template injections lead to XSS, and one of the main
reasons is that not all template engines allow the execution
of arbitrary JavaScript code within the templates. Below, we
discuss three template engines, starting with one that (to the
best of our knowledge) prevents arbitrary code execution,
followed by one that attempted but failed, and finally, one
that permits arbitrary code execution.

Handlebars is a template engine focused on speed, simplic-
ity, and security. However, there have been security vulnerabil-
ities in this engine due to the ease of performing a JavaScript
sandbox escape. Nevertheless, Handlebars succeeded in pre-
venting untrusted inputs from causing arbitrary code execution
within templates. It achieves this by, first, restricting the
possible operations that can be performed inside a template
and, second, by prohibiting access to prototype properties of
objects [68], [69]. Since JavaScript sandbox escapes often ex-
ploit prototype properties, this restriction effectively prevents
arbitrary code execution.

Angular is an example of a framework that attempted
to prevent XSS from CSTI but failed due to the known
challenges of sandboxing JavaScript code [70]. From version
1.0 up to version 1.6, Angular tried to limit the possibility
of executing arbitrary code using sandboxes of increasing

complexity. However, all of these sandboxes were eventually
breached, leading to the decision to abandon this approach.
Consequently, Angular announced that starting with version
1.6, sandboxes would no longer be present [71].

Vue is one of the most popular frameworks according
to GitHub stars; however, it does not provide any effective
security features related to JavaScript code execution. This
approach is shared with many other engines under analysis.
When using such frameworks, developers must be extremely
cautious to ensure that untrusted user input cannot reach
the templates within the page. Although this approach is
understandable given the difficulty of sandboxing JavaScript,
our results show that many vulnerable websites are exploitable
due to this issue.

V. DETECTION METHODOLOGY

In the second part of the paper, we address RQ2 by defining
the possible causes of CSTI (V-A), how to assess whether a
webpage is using a template engine (V-B), how to generate
a payload that can be used to detect CSTI (V-C) and how
to inject it inside the page (V-D). Finally, we put everything
together into our tool CSTI-Alert, describing its modules
and the flow it follows to detect CSTI (V-E). Figure 1 shows
a summary of how the methodology works.

A. Potential Causes of CSTI

There are many potential ways in which CSTI can arise,
depending both on the characteristics of the template engine
and on the vulnerable coding practices that developers can
use. We identify two main categories (server-side reflection
and DOM-based), and for each of them, we list subcategories.

Server-Side reflection. In this category, we include cases
where CSTI arises from a server-side reflection of user input.
This reflection can occur in different parts of the page and with
varying scopes (e.g., inside a tag attribute, within a template,
or inside a tag). In the following, we analyze the different
contexts in which this reflection can occur.

o Inside a tag without HTML injection. As shown in
Section II-B, CSTI can occur when the server-side reflects
user input inside a client-side template. This is the most
common cause of CSTI found in the wild, highlighting
both the lack of validation for user inputs against CSTI
and the ease with which developers can make mistakes
when using a template engine or client-side framework.
Notably, this scenario can occur even if the server uses
an HTML sanitizer.

« Inside a tag with HTML injection. In cases where the
injection can also include HTML tags, it may be possible
— depending on the template engine — to use these
tags to create malicious templates that are automatically
parsed by the engine. For example, in Angular, we can
inject a tag with the ng—app attribute and place a tem-
plate inside this tag to trigger XSS without using unsafe
tags like <script> or attributes like onload (which
we assume are filtered by sanitizers such as DOMPurify).

Fig. 1: CSTI Detection Methodology

Data collection Vulnerability Detection

1

1 1. Crawling 2. Engine ! URLs ; 3.Payload

i Extraction ! ! Injection
Domain | ! Engines |

URLs :—-I

: 1 1

: Playwright : Payloads:

H L}
H 1

« Inside the tag attributes. Some template engines, as
discussed in Section II-A, have special attributes that
can be used to declare templates, perform operations,
or initialize template data. If a user can inject arbitrary
attributes (e.g., by escaping the current attribute with
quotes), they might be able to exploit CSTI using these
engine-specific attributes. In some cases, the reflection
may already occur inside a template attribute. Even if
it is not possible to escape this context to inject other
attributes, CSTI may still be possible if the attacker is
in a context where the attribute can execute template
operations. Some template engines, such as Angular, also
allow template directives inside the class attribute of
a tag, meaning that a reflection within such attribute
can be escalated to CSTI (e.g., using the keyword ng—
init:<payload>).

DOM-Based. In this category, we examine cases where
CSTI can arise from poor coding practices in the client-side
JavaScript code that handles the template rendering process.

o User-controlled templates. If JavaScript code that ren-
ders a template dynamically inserts user input into the
template, CSTI can occur. This scenario can involve
common sources of DOM-based vulnerabilities, such as
URL parameters or fragments, but in this case, the sink
is the string that is subsequently passed to the template
render function.

o Common sinks (innerHTML). Common XSS sinks,
such as innerHTML, can also be sources of CSTI. Even if
an HTML sanitizer is used to filter malicious input, char-
acters like {{ }} are typically not sanitized. Additionally,
if sanitizers such as DOMPurify are used, it is possible
to inject specific tags that are not considered harmful and
add dangerous attributes to them. These attributes might
be interpreted by the engine as directives, thus triggering
CSTL

« Uncommon sinks (innerText). With CSTI, attributes and
functions that were not previously considered dangerous
can become potential sinks. For example, the inner—
Text attribute is typically not considered a sink because
it does not evaluate HTML tags but treats the content
as a plain string. However, in the case of CSTI, this
can be problematic if the tag whose innerText is being
manipulated is later parsed as a template by the library.
Due to the asynchronous nature of JavaScript, templates

Exploitability
4. Detect ' \uinerable 5 CSRIF 6. XS.S
Execution T uyple O Simulation Detection

i
1
URLs I
1
1

Exploitable URLs
—

1
1
1
1 1
1 . 1
I Injection =
' Technique 1 Xss H
: ! ﬂ 1
| XSS Payloads : | 1
1 1
1
] 1

are not always parsed immediately when the page loads.
If the content of the templates is modified using user
input before the engine parses it, the user input might
be interpreted as part of the template and subsequently
rendered.

B. Detecting a Client-Side Template Engine

The advantage of client-side templating vs server-side is
that if a template is used, the library containing its code needs
to be imported. This import can target a local copy of the
library or Content Delivery Networks (CDNs) [72]. Detecting
the presence of such imports can be one way to assess the
presence of a client-side template. However, it can be prone
to errors, especially if the JS file has been renamed or the
source repository is unknown. The consequence of a template
engine being imported is the presence of global objects that
can be used to compile, create or simply obtain information
about templates. For example, Angular provides a global
object called angular: the presence of this object itself is a
certainty that the library has been imported. By analyzing our
set of selected template engines, we find that this kind of object
exists for all engines, meaning that we can assess whether a
website imports a specific template engine by checking the
presence of this object. However, merely detecting a global
template engine object does not guarantee that the engine is
being used. Common scenarios where the object is present but
not utilized include: (i) Libraries providing multiple utilities,
like Underscore, where the template engine is just one of
many features, but it may not be used. (ii) Websites that
import the library on all pages but only rendering templates
on specific ones. To perform a more accurate estimation of the
effective usage of a template engine, we consider the following
additional heuristics:

« Function calls. Template engines provide functions for
compiling and rendering templates. We identify and ex-
tract the functions involved in the rendering process for
each engine. If a page contains calls to these functions,
it strongly suggests active template engine usage.

« Page scripts analysis. Some template engines use anony-
mous functions, which do not display names when ex-
tracted. In these cases, we inspect the page scripts for
interactions with the global template engine object or its
attributes. This includes looking for function calls related
to template compilation and rendering.

« Tag attribute detection. This method applies to template
engines that use custom attributes for template render-
ing (e.g., Alpine uses x— attributes). By detecting the
presence of these attributes, we confirm the usage of the
engine. Additionally, script tags defining templates can
be detected by checking if the type attribute follows
the pattern template/<engine name>.

C. Payload generation and reflection

To detect CSTI, our methodology is based on generating
a payload, injecting it into the page, and then checking if it
was reflected and executed. To generate a payload that can
be used to detect CSTI, we need first to obtain some context
information about the engine for which we are creating it.

« Engine syntax. Each template engine can use different

symbols to mark expressions, for example, Angular and
Vue use double curly brackets, which is one of the most
common syntaxes.

« Mathematical expressions. Despite being a seemingly
granted ability, not all engines allow for the execution of
mathematical operations. Angular allows the execution
of a simple {{7+7}} rendering a 49, while other engines
(such as Handlebars) do not allow this kind of operation
to be executed. In the case of Handlebars, we can use
the payload {{this}} which will result in the string
[object Object].

For each engine, we need this information to correctly
generate a payload that we can inject inside the page. Firstly,
we need to adhere to its syntax, then we exploit mathematical
operations to create a payload of which the result is easily
identifiable on the page (e.g., a long number or a particular
string). We consider a page vulnerable to CSTI if injecting a
payload P we obtain a reflected string S which is the result
of the execution of P.

D. Payload injection and submission

An important aspect of CSTI detection depends on the
following question: How many ways to inject a payload can
a page have? The answer is not trivial, since form tags are
not the only way to submit user data. We find 4 different
techniques for submitting our detection payload inside a target
page.

o Form submission. Form tags are the standard way to
trigger the parsing of user input. To test for CSTI, all
forms on a page should be identified and the detection
payload should be inserted into their input fields. It is
important to consider specific formatting requirements,
such as ensuring that email fields receive a valid input
format (e.g., {{12345+54321}}@test.com.

« Buttons. Buttons can trigger JavaScript functions that
collect user inputs from the page and send them to an
endpoint. This is common in search bars that use a button
to initiate server-side requests for search results without
utilizing a traditional form tag.

o Links. Although rare, a tags can sometimes trigger
JavaScript code execution, leading to the submission of

input. These edge cases were observed in a few instances
during our analysis

« JavaScript events. Events such as onclick and on-
KeyPressed can be used to trigger input submission.
For example, a search bar might trigger a server-side
request when the user presses the enter key. To account
for this, it is necessary to select each input field, enter
the detection payload, and simulate such events.

We also emphasize that the above injection and submission
techniques are not harmful to the website or its users, as they
do not execute dangerous operations or generate a high volume
of requests to the server.

E. CSTI Detection Tool

To check the presence of CSTI in a target website, we
created a tool that performs black box detection. The tool
is composed of five main modules that we describe in the
following.

o Crawler. The crawling module collects links from the
website under analysis. It can be configured to either
limit crawling to the main domain or include subdomains.
The depth of crawling is adjustable, with depth 2 used in
our analysis, although users can choose to go deeper if
needed.

« Engine Detection. Before checking for CSTI vulnerabili-
ties, the tool identifies the template engine present on each
page. This is done by detecting global objects specific to
template engines (e.g., Angular). Since different pages on
the same website might use different engines, this check
is repeated for every new page analyzed.

« Payload Injection. To detect CSTI vulnerabilities, the
tool checks if the input is embedded in the template
rendering process. Each template engine has its own syn-
tax, so engine-specific payloads are used. These payloads
include template syntax and instructions to perform op-
erations, allowing the tool to (i) verify if the operation is
executed and (ii) generate an uncommon output, making
the detection more reliable.

« Payload Submission. After injecting the payload, the
tool triggers processing, which can occur on either the
client or server-side. For example, there might be a
client-side script that parses the payload and reflects it
within the page, or a server-side endpoint that receives
the payload and subsequently reflects it inside the page.
As detailed in Section V-D, this can happen in various
ways, including form submissions, button clicks, link
activations, or JavaScript event triggers. We handle the
first three cases by executing the JavaScript functions that
trigger them, namely the submit function for forms and
the c1ick function for button and a tags. The last case
is handled using the Playwright [73] function press to
generate the desired event.

o Reflection Check.The final step involves checking if the
payload was reflected and executed on the page. Once the
page is fully loaded, the tool searches for the result of the

payload’s execution. If the expected result is found, the
website is flagged as vulnerable to CSTIL.

VI. CSTI IN THE WILD

In this third part of the paper, we address RQ3 by quanti-
fying the prevalence and impact of CSTI on the top 1 million
websites using the Tranco list [74] from October 13, 2024 (ID:
YXZ5G). We performed a crawl with a maximum of 5 URLs
per website in the top 1M and then examined 3 sub-ranges
(top 100k, middle 50k, and bottom 50k) by crawling them
at a depth of 1. Additionally, we ran the tool Amass [75]
for 7 days on the top 100k, crawling the resulting domains
and subdomains at a depth of 1. We also analyzed the top 5k
and middle 5k by crawling them at a depth of 2. Our goal is
to provide insights into the distribution of vulnerable domains
within the list and to examine how crawling at different depths
affects the number of vulnerable websites we discover.

In the first part of this section, we present a study on the
usage of template engines in the top 100k websites VI-A.
Next, we discuss the prevalence of CSTI within our pool of
websites VI-B. We then present the results of our exploitability
study on the vulnerable websites VI-C. Following this, we
examine the distribution of Angular versions in the wild VI-D.
Finally, we discuss defenses against CSTI VI-E.

A. Template engine usage

Before detecting CSTI, we narrowed our scope to web-
sites that actively use a template engine. As discussed in
Section II-A, client-side template engines can be initially
identified by checking for exported global objects when the
library is loaded. Notably, in Table II the count of URLs
and domains using a template engine is derived from this
heuristic. However, to provide a more accurate estimation
of template engine usage, we conducted an additional study
on the top 100k URLSs, using the methodology discussed in
Section V-B to estimate the actual number of websites using
a template engine. Table III shows the results of this analysis.
It is interesting to observe that 51.7% of the domains that
were collected using only the object detection actually use a
template engine.

B. CSTI Prevalence

In Table II, we present the number of domains found to
be vulnerable to CSTI within each Tranco range that we
selected, along with a breakdown of the specific template
engines used on these vulnerable websites. Additionally, we
compare the number of vulnerable domains detected against
the total number of domains analyzed.

Our findings indicate that the depth of the crawling process
significantly impacts the number of detected vulnerabilities.
Specifically, performing a full depth-1 crawl revealed 41
additional vulnerable domains compared to analyzing only the
first 5 URLSs of the top 1 million websites. Similarly, enabling
subdomain analysis led to the discovery of an additional 23
vulnerable domains.

However, it is important to note that increasing the crawling
depth drastically expands the number of URLs to analyze. For
example, in the top 5k (depth 2), we observed an average of
264 URLs per domain, whereas in the top 100k (depth 1), this
ratio dropped to 89 URLs per domain. This demonstrates that
deeper crawling, while more thorough, can quickly become
infeasible due to the exponential increase in URLSs to process.

To enhance our crawling strategy, we used Amass to iden-
tify additional subdomains, enabling a more comprehensive
examination of each domain’s attack surface. This approach
not only uncovered subdomains using template engines, but
also revealed previously unnoticed endpoints vulnerable to
CSTI. Notably, extracting subdomains and then performing
a depth-1 crawl efficiently expands the attack surface while
maintaining a relatively low number of URLs per domain,
balancing thoroughness and scalability.

Regarding the distribution of vulnerable template engines,
our analysis shows that 70% of the vulnerable domains utilized
Angular as the template engine, and the remaining 30%
were found to use Vue. No vulnerabilities were detected
for the other template engines under analysis. This result is
particularly noteworthy, as it suggests that Angular and Vue,
despite being among the most popular template engines, are
also the most prone to CSTI vulnerabilities. One reason for
this could be their design choice of parsing templates directly
from the page tags, which makes it easier for developers
to unintentionally reflect user inputs into templates without
proper sanitization.

It is important to note, however, that identifying a vulnerable
domain does not necessarily imply that it is exploitable.
In the next section, we detail our approach to testing for
exploitability and present our findings on the actual impact
of these vulnerabilities.

C. Exploitability

To assess the exploitability of a target webpage for CSTI,
we need to confirm two conditions: the ability to execute
arbitrary JavaScript code and the feasibility of performing
a Cross-Site Request Forgery (CSRF) attack that forces a
victim to execute the malicious payload involuntarily. To
achieve this, we designed a semi-automatic procedure that,
given a vulnerable URL and the location of the vulnerable
form or button, determines whether the page is exploitable.
We emphasize that merely injecting the payload (as we did to
verify the presence of SSTI) is not sufficient to determine the
exploitability of the website. Servers may filter cross-origin
requests using headers or tokens, or they might apply runtime
filters that prevent payload execution.

Our approach involves a module that automates this verifica-
tion process. Negative results are manually reviewed to check
for false negatives, ensuring accuracy. Positive results are not
manually verified, as the successful execution of JavaScript
confirms the website’s exploitability. Notably, this procedure
is harmless as it has no side effects on the server and does not
involve real users.

The procedure is as follows:

Tranco Range Crawl Depth TomlURLS avg. TE URLs | #domains M Vuln. %
0-1M 1 (max 5 urls) | 2,405,504 5.4 406,671 444,949 72,850 16.37 439 299 140
0-100k 1 4,385,138 89.66 818,648 48,908 21,060 43.06 84 69 15
0-100k amass 1 181,224 5.34 520,620 33,876 13,835 40.84 77 56 21
0-5k 2 534,365 264.27 70,259 2022 1041 51.48 2 2 0
475K-525K 1 1,763,751 66.9 314,470 26,361 7659 29.05 47 35 12
497.5K-502.5K 2 482,340 234.94 43,643 2053 562 27.37 7 5 2
950K-1M 1 968,652 514 160,898 18,845 5408 28.69 7 5 2
Total 8,672,394 17.53 1,929,846 494,670 96,973 19.6 532 374 158

TABLE II: Vulnerability Detection Results. The URLs column lists the total number of URLs crawled along with the average number of
URLs crawled per domain (shown in the avg. column). The TE domains column represents the total number of domains using a TE, along
with the percentage relative to the total number of domains retrieved. In the Total row, the vuln column indicates the total number of unique

domains that were found to be vulnerable.

Engine URLSs URL: eff. \ Domains Domains eff.
underscore 350,203 110,745 9223 6205
lit 127,640 1377 4425 123
angular 69,500 16,987 3150 1545
vue 60,449 15,427 1714 1071
handlebars 49,663 10,959 1320 756
alpine 34,320 24,627 666 608
mustache 30,502 6734 625 390
art-template 13,048 5333 380 256
tmpl 12,971 4163 293 193
ejs 7733 1753 111 109
dot 3372 1110 100 73
template7 32,347 718 83 54
pure 3201 1666 70 98
hogan 2899 12 57 7
dust 859 107 32 16
juicer 687 583 29 24
twig 485 306 25 24
nunjucks 318 128 20 0
loadTemplate 263 219 16 6
regular 230 24 10 2
tempo 223 200 5 3
swig 74 24 4 4
transparency 71 40 3 3
squirrelly 17 1 2 1
jsrender 14 8 2 2
icanhaz 10 7 2 3
pug 2 0 1 0
Total [801,101 203,258 | 22,366 11,576

TABLE III: Template engines usage in the Tranco top 100k. The
URLs and Domains columns rely solely on the object detection
heuristic, while the URLSs eff. and Domains eff. columns additionally
incorporate function calls, page scripts, and tag attributes. This
measurement was taken separately from the CSTI detection.

« Creating a Malicious Form: We generate a local HTML
page containing the target form’s code and embed the
payload. The form is automatically extracted from the
vulnerable page using data provided by our detection tool,
CSTI-Alert. The form’s action is modified to point to
the URL of the vulnerable website instead of a relative
path. Furthermore, the form values are altered to include
the CSTI payload that triggers an XSS in the specific
template engine used by the vulnerable website. Finally,
malicious JavaScript code is embedded in the page to
automatically submit the form upon opening.

« CSRF Simulation: Using the Playwright framework,
we simulate the victim’s browser visiting the CSRF form.

A malicious JavaScript code automatically submits the
form, redirecting the victim to the vulnerable website.

« Payload Execution Check: Leveraging Playwright’s
event handlers to detect whether a specific function is
executed, we can test if the payload (a simple alert ()
call) runs. If it does, we mark the website as exploitable,
otherwise, we perform a manual analysis to determine
why the payload was not executed (e.g., it was sanitized
or the attack attempt was blocked).

e« GET Request Handling: In cases where
the vulnerable form uses a GET request
and reflects the payload in the URL (e.g.,

vulnerable.com?search={{alert (1) }}),
we visit this URL directly without hosting a CSRF form.
If the alert is triggered, the site is flagged as exploitable.

This method effectively mimics a real-world CSRF scenario,
where a victim could be lured into visiting a malicious website
that submits the payload on their behalf. By automating the
process while manually validating the negative cases, we
ensure a thorough and accurate assessment of exploitability.
Notably, we can also detect sanitization or firewall mech-
anisms by checking whether the response still contains the
full payload or if parts of it have been escaped, encoded, or
removed.

Table IV presents the results of our exploitability analysis,
revealing that 385 out of 532 (72%) vulnerable domains were
exploitable. Among them, 62% used Angular as the template
engine, while the remaining 38% employed Vue. Notably, both
the employed engine and the implemented security mech-
anisms can impact the exploitability of a website. Vue is
generally easier to exploit as its payloads are simpler, whereas
Angular requires different payloads depending on the version
used. Therefore, if the security mechanism implemented by the
website sanitizes or blocks payloads containing characters nec-
essary to achieve XSS, the website becomes non-exploitable.

The table also highlights the presence of security mecha-
nisms:

e 13.9% of vulnerable websites implemented input saniti-
zation techniques, categorized as follows:
- 79% performed HTML encoding on quotes and
double quotes (e.g., converting ” to ").
— 14% escaped quotes with a backslash (e.g., \").

— 3% stripped out certain characters, such as com-
mas and quotes. While quotes or double quotes
are not mandatory for exploiting CSTI with certain
engines, they are often required when a sandbox
escape must be performed and an argument needs
to be passed to a function. The following payload
is one of the most common examples: construc—
tor.constructor ("alert (1)’) ().

— The remaining 4% used Unicode escaping (e.g.,
\u0027).

« Additionally, 8.4% of websites had some form of firewall
protection. Of these:

— 93% returned a 403 status code when the payload
was submitted, effectively blocking the request.

— The remaining 7% displayed a firewall-specific page,
indicating the request was flagged as malicious.

e 3.7% of the websites returned a non-200 status code,
suggesting either a firewall rejection or a server-side error
triggered by the payload. Among these:

— 400 and 500 status codes were the most common (12
and 7 occurrences, respectively).
— Only one website responded with a 404 status code.

o Other cases included:

— 5 websites where the payload failed due to syntax
errors in the Angular parser.

— 3 websites where the payload executed only when
it produced search results (the detection payload
worked, but the XSS payload did not).

Finally, during the manual validation phase, we discovered
40 websites that were initially flagged as non-exploitable but
were actually vulnerable after making minor adjustments to
the payload. Specifically:

o 16 websites were filtering for the presence of cer-
tain keywords such as alert or prototype in
the payload. By substituting alert with other func-
tions (such as console.log) and using hex notation
to access attributes as strings (e.g., '’ .construc-—
tor[’\x70rototype’]), we successfully triggered
the XSS.

« 13 websites restricted the use of single quotes but allowed
double quotes, enabling the payload to execute.

o 11 website blocked the use of dots. We bypassed this
restriction by modifying the part of the payload contain-
ing the dot from: constructor.constructor to:
constructor [’ constructor’].

D. Angular versions in the wild

Table V presents the distribution of Angular versions across
the Tranco top 100k websites. Our analysis reveals the follow-
ing insights:

o 1.5.X Versions: These are the most commonly used,
accounting for 27% of the websites. Notably, 2% of
these are vulnerable despite the fact that 1.5.X is a
sandboxed version series known for having the most

Exploitability Results #Domains Engine
Angular Vue
Exploitable 385 242 143
Sanitization 74 72 2
WAF 45 39 6
400/404/500 Status Code 20 16 4
Other 8 5 3
Total | 532 | 374 158

TABLE IV: Exploitability analysis results

restrictive sandboxes and the longest payloads required
to bypass them (e.g., 326 characters for versions 1.5.9 to
1.5.11 [67]). This makes exploitation more challenging
but not impossible.

o 1.8.X Versions: The second most popular, used by 24%
of the websites. Unlike 1.5.X, version 1.8.X is not sand-
boxed, making it more susceptible to CSTI exploitation.
Consequently, 7% of the websites using 1.8.X were found
to be vulnerable.

Overall, the data highlights that while newer versions (like
1.8.X) offer more functionality, they also present a larger
attack surface due to the absence of a sandbox, increasing
the risk of CSTI exploitation.

Angqlar #Domains Vulnerable
Version
1.0.X 12 2
1.1.X 7 0
1.2.X 158 8
Sandboxed 13x 141 1101 14 45
14X 216 5
1.5.X 567 16
1.6.X 226 10
1.7.X 115 7
Not sandboxed 18X 514 967 37 55
1.9.X 112 1
Total \ 2068 \ 100

TABLE V: Most used versions of angular in the Tranco top 100k

E. Defending against CSTI

Popular libraries that sanitize user input against XSS, both
server-side and client-side, are generally ineffective against
CSTI. This is mainly because the most common template
engine syntax (specifically, curly brackets) is not recognized
as malicious by these sanitizers. To mitigate certain cases of
CSTI using a sanitization approach, developers would need
to include the specific syntax of their template engine in the
application’s input filters.

For example, if Angular is used on the website, the backend
should filter curly brackets from user inputs. The only sanitizer
capable of handling specific template engine syntaxes ({{ }}
and <% %>)is DOMPurify [6], which offers a SAFE_FOR_—
TEMPLATE option that strips template expressions. Notably,
this option is disabled by default, and the sanitization of
template expressions is not a priority for DOMPurify [76].
This gap highlights the need for CSTI-specific tools that can

perform sanitization based on a wide range of template engine
syntaxes. However, a sanitization approach does not guarantee
complete protection against CSTI. The most effective way
to prevent CSTI is to ensure that user-controlled input never
reaches the templates.

Since curly brackets are commonly used in template syntax,
filtering this character from inputs where it is unnecessary can
be beneficial. However, the internet message format RFC [77]
specifies that curly brackets can appear in the local part of
an email address, making such filtering more complex in this
kind of input. Additionally, there are other scenarios, such as
text areas, where curly brackets might be legitimately allowed
in the input.

Nevertheless, our results show that most CSTI cases are
linked to improper use of Angular and Vue, which are often
mounted on the html or body tags. This practice significantly
broadens the scope where user input can be interpreted as part
of a template. To prevent such mistakes, templates should be
properly separated from the main body of the page and should
not include tags where a user-input is reflected.

E Case study

By analyzing the vulnerable instances we found in our
experiments, we identified interesting cases in which CSTI
arose in more subtle ways. One notable example, observed
on two websites, involved CSTI triggered by the reflection
of an input stored within the user session. When a user
performed a search, the website saved the search query by
associating it with the user’s session ID. Later, when the user
visited another page containing the search bar, the last search
query was reflected inside the bar, triggering CSTI. Our tool
correctly identified this vulnerability because it performs mul-
tiple interactions with the website. However, the exploitability
tool did not detect an immediate reflection, leading to the
website being mistakenly marked as not exploitable. Upon
manual validation, we discovered that if a victim visited a
malicious website containing a CSRF form that injected a
CSTI payload, the vulnerability would be triggered when the
victim navigated to another page on the affected website. This
resulted in a persistent XSS that activated whenever the victim
visited a page containing the compromised search bar. This
case illustrates a more subtle form of input reflection, which
could easily be overlooked by developers or automated tools
that only check for immediate reflections on the result page.

VII. ETHICAL CONSIDERATIONS.

Our experiments on live sites did not target any real
users. We sought to avoid tests that required data persistence
(e.g., storing a payload). Tests on public functionalities were
conducted as much as possible without persistently injecting
any payload. The vulnerabilities and security risks identified
in this paper affect 532 domains. We began the process of
notifying the affected parties in February 2025, following
best disclosure practices [78], [79]. Initial notifications were
sent via email or through bug bounty program platforms,
including vulnerability details or a proof-of-concept exploit.

Additional reminders were sent every three weeks to maximize
the remediation rate. At the time of preparing the camera-
ready version, we attempted to notify all affected parties at
least once. Of these, two have fixed the issue, one of which
awarded us a bounty of 800 dollars, and one acknowledged
the vulnerability but subsequently stopped providing updates.
A total of 194 notification emails bounced with errors, while
the remaining 335 recipients did not respond.

VIII. SUMMARY AND DISCUSSION

CSTI is present and impactful. We found 532 domains
that are vulnerable to CSTI in our analysis, with 72% of them
leading to an exploitable XSS, exposing their user’s data to
theft and manipulation.

Defenses are absent or inadequate. Despite the high
number of vulnerable websites, only 17.7% have firewalls,
and only 13.9% employ sanitization techniques, although these
are not specifically designed to prevent CSTI. The absence
of CSTI-specific sanitizers and the limitations of existing
sanitization measures leave websites highly susceptible to the
exploitation of this vulnerability. Moreover, we identified 10
instances of CSTI where it was possible to bypass firewalls or
sanitizers to achieve XSS.

False positives. We manually validate at least one vulner-
able URL per domain. We found only two false positives on
vulnerable websites that did not use Angular or Vue. Upon
inspection, we discovered that these were actual vulnerabilities
but due to SSTI rather than CSTI. This situation can occur
when a website uses two different template engines: one on the
client-side and another on the server-side that share the same
syntax. For example, the client-side engine 11t uses the same
syntax as the server-side Java engine Spring Expression
Language.

Most common occurrences. Upon manual inspection, we
discovered that the most common instance of CSTI was
triggered by a search bar that reflected user input inside
a tag interpreted as part of a template. In most of these
cases Angular (using the ng—app attribute) or Vue were
mounted on either the main HTML tag or the body tag. This
practice caused user input to be treated as part of the template
and executed, making it the most common mistake leading
to CSTI. Furthermore, because search bars are often reused
across multiple pages, the vulnerability was present on most
pages of the affected websites, significantly increasing the
potential for exploitation.

Limitations. Our large-scale detection study has three main
limitations. First, since in our experiment we limit site crawl-
ing to a depth of 1 or 2, we may exclude pages that are
potentially vulnerable from our analysis. Second, we do not
perform authentication. Vulnerabilities may exist on pages
or within functionalities that require authentication, which
limits the number of vulnerable websites we can identify.
Finally, while our approach rarely produces false positives,
our measurement focuses on the detection of reflected CSTI
instances, and thus it can miss vulnerabilities that occur in
different contexts.

IX. RELATED WORK

CSTI can be associated inside the broader category of
scriptless injection attacks [80], many research endeavors were
made on this category of attacks, among them we find pop-
ular vulnerabilities such as DOM Clobbering [81], Dangling
Markup [82], and certain classes of Cross-Site Leaks (XS-
Leaks) [83]-[85] such as CSS injection.

Some papers related to scriptless attacks that also con-
tain CSTI-related exploits can be found in the past under
the category of script gadget attacks, a class of vulnera-
bilites that exploited frameworks and libraries to achieve
arbitrary JavaScript code execution. Lekies et. al. [86] have
explored this issue, and among their findings, there are some
framework-related gadgets that can be exploited through what
we now refer to as CSTL. It was also shown by Roth et. al. [87]
that this class of attacks can bypass CSP protections [88] and
HTML sanitizers.

The name CSTI only comes from recent work by
Heyes [24], [25], which mainly explores CSTI in Angular,
Vue and Mavo. However, the presence of works in literature
that explore CSTI in a more specific and in-depth way is
conspicuously absent. Despite this absence of research work,
this vulnerability has attained renewed attention in the bug
bounty and security practicioners community [27]-[33].

On the CSTI detection side, a tool called ACSTIS (Angular
CSTI Scanner) [26] was released in 2017. The last commit
in the official repository of the tool dates back to 2019. We
tested this tool and identified a set of issues that make its
usage challenging. We also observed key differences between
the features of our tool and ACSTIS.

The first obstacle in running ACSTIS is that it requires a
Python 3.8 environment, as one of its dependencies, namely
nyawc [89], does not function properly with newer Python
versions. Moreover, it uses Puppeteer [90] with the Phan-
tomJS [91] browser, which is now deprecated [92] and no
longer usable. To overcome these issues, we patched the
tool to use a Chromium driver instead and created a Docker
environment with Python 3.8. While these problems are not
overly difficult to resolve, they may discourage users, who
must debug and solve these issues before the tool can function
properly.

Next, we tested the tool against simple test code suggested
in the repository [93] and confirmed that it correctly detects
CSTI. Notably, ACSTIS supports CSTI detection exclusively
for Angular, while our tool extends coverage to 30 different
template engines. Additionally, ACSTIS focuses primarily
on exploiting CSTI by directly attempting payloads designed
to trigger the alert function. In contrast, our tool adopts a
staged approach, first detecting CSTI with simpler payloads
such as {{7+7}}. As discussed in Section VI-C, because
XSS payloads are often sanitized or blocked by websites, our
approach helps ensure CSTI vulnerabilities are not overlooked
even when WAFs or sanitizers are in place.

Overall, our paper consolidates the existing pieces of infor-
mation and fills the gaps that are present in CSTI research,

providing a systematic and comprehensive overview of this
vulnerability.

X. CONCLUSION

In this paper, we conducted what is, to the best of our knowl-
edge, the first comprehensive study of Client-Side Template
Injection (CSTI), exploring how template engines operate,
how CSTI emerges, its prevalence, and potential defenses.
We began by surveying existing template engines, highlighting
their characteristics and identifying features that can contribute
to XSS escalation due to CSTL

Next, we introduced our detection methodology and pre-
sented CSTI-Alert, the first CSTI detection tool supporting
a wide range of template engines. We applied CSTI-Alert
to the Tranco top 1 million sites, revealing the widespread
presence of CSTI vulnerabilities. To support future research
efforts, we publicly release CSTI-Alert [34].

Our findings indicate that existing countermeasures are
inadequate for mitigating a substantial portion of these vulner-
abilities. Consequently, there is a need for tailored sanitizers
and higher awareness of the dangers related to CSTI. We hope
that our work will help future efforts to build stronger security
measures against this vulnerability.

ACKNOWLEDGMENT

This work was partially supported by project SERICS
(PE00000014) under the NRRP MUR program funded by the
EU - NGEU.

REFERENCES

[1] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-scale

detection of dom-based xss,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, 2013, pp. 1193—

1204.

Y. Nadji, P. Saxena, and D. Song, “Document structure integrity: A

robust basis for cross-site scripting defense.” in NDSS, vol. 20, 2009.

[3] J. Grossman, XSS attacks: cross site scripting exploits and defense.
Syngress, 2007.

[4] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the locals:
Investigating the prevalence of persistent client-side cross-site scripting
in the wild.” 2019.

[5] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang,
“mxss attacks: Attacking well-secured web-applications by using inner-
html mutations,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, 2013, pp. 777-788.

[6] M. Heiderich, C. Spith, and J. Schwenk, “Dompurify: Client-side
protection against xss and markup injection,” in Computer Security—
ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part Il
22. Springer, 2017, pp. 116-134.

[7] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-sanitization
in web templating languages using type qualifiers,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 587-600.

[8] P. Saxena, D. Molnar, and B. Livshits, “Scriptgard: automatic context-

sensitive sanitization for large-scale legacy web applications,” in Pro-

ceedings of the 18th ACM conference on Computer and communications

security, 2011, pp. 601-614.

D. Bates, A. Barth, and C. Jackson, “Regular expressions considered

harmful in client-side xss filters,” in Proceedings of the 19th interna-

tional conference on World wide web, 2010, pp. 91-100.

[10] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “Swap:

Mitigating xss attacks using a reverse proxy,” in 2009 ICSE Workshop
on Software Engineering for Secure Systems. 1EEE, 2009, pp. 33-39.
[11] JQuery. Jquery. [Online]. Available: https://github.com/jquery/jquery

2

9

[12]
[13]
[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]
[39]

[40]
[41]

[42]
[43]
[44]
[45]
[46]

[47]

angular. angular. [Online]. Available: https://github.com/angular/angular/
vuejs. vue. [Online]. Available: https://github.com/vuejs/vue/

T. J. Parr, “Enforcing strict model-view separation in template engines,”
in Proceedings of the 13th international conference on World Wide Web,
2004, pp. 224-233.

M. A. Jadhav, B. R. Sawant, and A. Deshmukh, “Single page applica-
tion using angularjs,” International Journal of Computer Science and
Information Technologies, vol. 6, no. 3, pp. 2876-2879, 2015.

J. Kettle, “Server-side template injection: Rce for the modern webapp,”
Black Hat USA, 2015.

Y. Zhao, Y. Zhang, and M. Yang, “Remote code execution from {SSTI}
in the sandbox: Automatically detecting and exploiting template escape
bugs,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 3691-3708.

L. Pisu, D. Maiorca, and G. Giacinto, “A survey of the overlooked
dangers of template engines,” arXiv preprint arXiv:2405.01118, 2024.
battle_angel, “Server side template injection on name parameter during
sign up process (glovo),” https://hackerone.com/reports/1104349.
zombiehelp54, “Server side template injection in return magic email
templates? (shopify),” https://hackerone.com/reports/423541.

O. Tsai, “uber.com may rce by flask jinja2 template injection,” https:
//hackerone.com/reports/125980.

yaworsk, “Server side template injection via smarty template allows for
rce (unikrn),” https://hackerone.com/reports/164224.

Mario Heiderich. A wiki dedicated to javascript mvc security pitfalls.
[Online]. Available: https://github.com/cure53/mustache-security
Gareth Heyes. Xss without html: Client-side template injection
with angularjs. [Online]. Available: https://portswigger.net/research/
xss-without-html-client-side-template-injection- with-angularjs
Abusing javascript ~ frameworks to bypass xss
mitigations. [Online]. Available: https://portswigger.net/research/
abusing-javascript-frameworks-to-bypass-xss-mitigations

Tijme Gommers. Abusing javascript frameworks to bypass
xss mitigations. [Online]. Available: https://github.com/tijme/
angularjs-csti-scanner

europa, “Csti in rockstar games,” https://hackerone.com/reports/271960.
themarkibOx0, “Stored csti in mars.com,” https://hackerone.com/reports/
2234564.

“CVE-2024-46366." Available from MITRE, CVE-ID CVE-2024-
46366., 2024. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.
cginame=CVE-2014-0160

“CVE-2024-37846.” Available from MITRE, CVE-ID CVE-2024-
37846., 2024. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.
cgi’name=CVE-2024-37846

“CVE-2023-26060.” Available from MITRE, CVE-ID CVE-2023-
26060., 2023. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.
cginame=CVE-2023-26060

“CVE-2022-27665.” Available from MITRE, CVE-ID CVE-2022-
27665., 2022. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.
cgi’name=CVE-2022-27665

“CVE-2022-22112 Available from MITRE, CVE-ID CVE-2022-
22112., 2022. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.
cgi’name=CVE-2022-22112

Lorenzo Pisu, Davide Balzarotti, Davide Maiorca, Giorgio Giacinto.
Csti-alert. [Online]. Available: https://github.com/lpisu98/CSTI- Alert
React. React. [Online]. Available: https://reactjs.org/

Svelte. Svelte docs. [Online]. Available: https://svelte.dev/docs

Marko. Markojs. [Online]. Available: https://github.com/marko-js/marko
Ember]S. Ember. [Online]. Available: https://emberjs.com/

Mozilla. Javascript functions. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

alpinejs. alpine. [Online]. Available: https://github.com/alpinejs/alpine/
jashkenas. underscore. [Online]. Available: https://github.com/jashkenas/
underscore/

pugjs. pug. [Online]. Available: https://github.com/pugjs/pug/

lit. lit. [Online]. Available: https://github.com/lit/lit/

handlebars-lang. handlebars.js. [Online]. Available: https://github.com/
handlebars-lang/handlebars.js/

janl. mustache.js. [Online]. Available: https://github.com/janl/mustache.
js/

goofychris. art-template.
goofychris/art-template/
mozilla. nunjucks. [Online].
nunjucks/

[Online]. Available: https://github.com/

Available: https://github.com/mozilla/

[48
[49]
[50
[51]
[52]

[53
[54]

[55]

[56
[57]

[58]

[59
[60]
[61]

[62
[63]

[64]

[65

[66]

[67]

[68]

[69]

[70]

[71]
[72]
[73]

[74]

[75]
[76]

[77]

[78

[79]

[80]

[81]

mde. ejs. [Online]. Available: https://github.com/mde/ejs/

swig. swig. [Online]. Available: https://github.com/swig/swig/

twitter. hogan.js. [Online]. Available: https://github.com/twitter/hogan.js/
olado. dot. [Online]. Available: https://github.com/olado/doT/
BorisMoore. jquery-tmpl. [Online]. Available: https://github.com/
BorisMoore/jquery-tmpl/

linkedin. dustjs. [Online]. Available: https://github.com/linkedin/dustjs/

mavoweb. mavo. [Online]. Available: https://github.com/mavoweb/
mavo/

BorisMoore. jsrender. [Online]. Available: https://github.com/
BorisMoore/jsrender/

twigjs. twig.js. [Online]. Available: https://github.com/twigjs/twig.js/
regularjs. regular. [Online]. Available: https://github.com/regularjs/
regular/

leonidas. transparency. [Online]. Available: https:/github.com/leonidas/
transparency/

pure. pure. [Online]. Available: https://github.com/pure/pure/

PaulGuo. Juicer. [Online]. Available: https://github.com/PaulGuo/Juicer/
HenrikJoreteg. Icanhaz.js. [Online]. Available: https://github.com/
HenrikJoreteg/ICanHaz.js/

twigkit. tempo. [Online]. Available: https://github.com/twigkit/tempo/

nolimits4web. template7. [Online]. Available: https://github.com/
nolimits4web/template7/
squirrellyjs. squirrelly. [Online]. Available: https://github.com/

squirrellyjs/squirrelly/
codepb. jquery-template. [Online]. Available: https://github.com/codepb/
jquery-template/

adammark. Markup.js. [Online]. Available: https://github.com/
adammark/Markup.js/

Gareth Heyes, Mario Heiderich. Angularjs sandbox escapes
reflected. [Online]. Available: https://portswigger.net/web-security/

cross-site-scripting/cheat-sheet#angularjs-sandbox-escapes-reflected
Mahmoud Gamal. Prototype pollution in handlebars. [Online]. Available:
https://www.npmjs.com/advisories/755

Handlebars template injection and rce in a shopify
app. [Online]. Available: https://mahmoudsec.blogspot.com/2019/04/
handlebars-template-injection-and-rce.html

A. Alhamdan and C.-A. Staicu, “{SandDriller}: A {Fully-Automated}
approach for testing {Language-Based}{JavaScript} sandboxes,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
3457-3474.

Angular. Developer guide - sandbox removal. [Online]. Available:
https://docs.angularjs.org/guide/security

R. Buyya, M. Pathan, and A. Vakali, Content delivery networks.
Springer Science & Business Media, 2008, vol. 9.

Microsoft. Playwright. [Online]. Available: https://github.com/microsoft/
playwright

V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” arXiv preprint arXiv:1806.01156, 2018.
OWASP. Amass. [Online]. Available: https://owasp.org/
WWW-project-amass/

cure53. Xss via template expressions is not a key goal for dompurify.
[Online]. Available: https://github.com/cure53/DOMPurify/issues/698
B. Leiba, “Update to Internet Message Format to Allow Group Syntax
in the "From:” and ”Sender:” Header Fields,” RFC 6854, Mar. 2013.
[Online]. Available: https://www.rfc-editor.org/info/rfc6854

B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey, you
have a problem: On the feasibility of {Large-Scale} web vulnerability
notification,” in 25th USENIX Security Symposium (USENIX Security
16), 2016, pp. 1015-1032.

F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy,
S. Savage, and V. Paxson, “You’ve got vulnerability: Exploring effec-
tive vulnerability notifications,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1033-1050.

M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk,
“Scriptless attacks: stealing the pie without touching the sill,” in Pro-
ceedings of the 2012 ACM conference on Computer and communications
security, 2012, pp. 760-771.

S. Khodayari and G. Pellegrino, “It’s (dom) clobbering time: Attack
techniques, prevalence, and defenses,” in 2023 IEEE Symposium on
Security and Privacy (SP). 1EEE, 2023, pp. 1041-1058.

[82]

[83]

[84]

[85]

[86

[87]

[88]

[89

[90]
[91]
[92]

[93

F. Hantke and B. Stock, “Html violations and where to find them: a
longitudinal analysis of specification violations in html,” in Proceedings
of the 22nd ACM Internet Measurement Conference, 2022, pp. 358-373.
A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-origin state
inference (cosi) attacks: Leaking web site states through xs-leaks,” arXiv
preprint arXiv:1908.02204, 2019.

T. Van Goethem, G. Franken, I. Sanchez-Rola, D. Dworken, and
W. Joosen, “Sok: Exploring current and future research directions on
xs-leaks through an extended formal model,” in Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security,
2022, pp. 784-798.

L. Knittel, C. Mainka, M. Niemietz, D. T. NoB, and J. Schwenk,
“Xsinator. com: From a formal model to the automatic evaluation of
cross-site leaks in web browsers,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021,
pp. 1771-1788.

S. Lekies, K. Kotowicz, S. GroB, E. A. Vela Nava, and M. Johns, “Code-
reuse attacks for the web: Breaking cross-site scripting mitigations via
script gadgets,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1709-1723.

S. Roth, M. Backes, and B. Stock, “Assessing the impact of script gad-
gets on csp at scale,” in Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security, 2020, pp. 420-431.

M. West, “Initial Assignment for the Content Security Policy
Directives Registry,” RFC 7762, Jan. 2016. [Online]. Available:
https://www.rfc-editor.org/info/rfc7762

Tijme Gommers. Nyawc. [Online]. Available: https://pypi.org/project/

nyawc/

Puppeteer. Puppeteer. [Online]. Available: https://github.com/puppeteer/
puppeteer

ariya. Phantomjs. [Online]. Available: https://github.com/ariya/
phantomjs

. Phantomjs deprecation issue. [Online]. Available: https://github.
com/ariya/phantomjs/issues/15344

dabula-s. On what vulnerable website can i test your scanner? [Online].
Available: https://github.com/tijme/angularjs-csti-scanner/issues/14

