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Abstract—Orthogonal Time Frequency Space (OTFS) modula-
tion has shown remarkable robustness in high-mobility scenarios
by effectively mitigating the detrimental effects of Doppler
shifts. However, accurate channel estimation for OTFS sys-
tems remains a challenging problem due to issues such as
energy dispersion caused by fractional Doppler shifts, limited
exploitation of inherent delay-Doppler domain sparsity, and
prohibitive computational complexity. In this work, we propose a
novel decoupled channel estimation framework that decomposes
the delay-Doppler (DD) domain channel into separate delay
and Doppler components. This decoupling facilitates a more
efficient and targeted utilization of channel structures in each
domain. Building upon this framework, we develop a novel
estimation algorithm based on decoupled Bayesian learning
(DC-BL), which leverages virtual grids and integration-based
sensing matrices to achieve super-resolution channel recovery.
Notably, the proposed method retains adaptability even under
low-resolution grid settings. To address such scenarios, we further
design a specialized Bayesian estimation algorithm optimized for
coarse-granularity grids. Both algorithms incorporate a sparsity-
aware mechanism to eliminate redundant channel taps, thereby
significantly reducing model dimensionality and computational
burden. Extensive simulation results demonstrate that the pro-
posed methods consistently outperform existing state-of-the-art
approaches in terms of estimation accuracy and efficiency.

Index Terms—Orthogonal time frequency space (OTFS), de-
coupled channel estimation, Bayesian learning, low computa-
tional complexity.

I. INTRODUCTION

IN future wireless systems, it is a critical requirement
to ensure reliable data transmission [1] in vehicular-to-

everything (V2X) applications such as autonomous driving,
collision avoidance, and navigation [2]–[5]. These V2X ap-
plication scenarios are characterized by rapidly time-varying
channels with substantial Doppler spreads, posing significant
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challenges for maintaining link reliability and system perfor-
mance. Orthogonal frequency division multiplexing (OFDM),
widely adopted in 4G and 5G systems, performs well in
quasi-static frequency-selective channels. However, its sus-
ceptibility to inter-carrier interference (ICI) severely degrades
performance in fast time-varying environments [6]–[8]. This
limitation has driven interest in alternative modulation schemes
that are more resilient to Doppler-induced impairments.

Recently, orthogonal time frequency space (OTFS) modula-
tion has emerged as a promising solution for high-mobility
wireless communication, offering intrinsic advantages over
OFDM [9], [10]. Unlike traditional one-dimensional (1D)
modulation techniques, OTFS employs a two-dimensional
(2D) signal representation by mapping information symbols
onto the delay-Doppler (DD) domain using pre-defined local-
ized pulses [9], [10]. The DD-domain representation is trans-
formed into the time-frequency domain via symplectic Fourier
transforms, enabling each symbol to be distributed across the
entire time-frequency grid within a transmission frame. This
structure allows OTFS to harness full time-frequency diversity
and to combat channel fading more effectively than OFDM
[11]. Moreover, the quasi-stationary nature of the DD-domain
channel not only provides statistical stability but also enables
a compact representation of the channel parameters and their
sparsity.

A. Related Work

Accurate channel estimation is vital for ensuring robust data
transmission in OTFS systems, especially in dynamic wireless
environments. Numerous methods have been proposed to
tackle the associated challenges. In [12], a pilot embedding
scheme was introduced that integrates pilot, guard, and data
symbols within a single OTFS frame. A threshold-based
estimation algorithm was further developed to extract chan-
nel information. The concept was extended to MIMO-OTFS
systems in [13], where orthogonality between pilot symbols
for different antennas was maintained via guard intervals. In
[14], a DNN-based OTFS channel estimation framework was
proposed. With a simple network architecture, it effectively
estimates channel parameters and achieves comparable per-
formance to threshold-based methods with much lower pilot
power. This work introduces a new perspective for addressing
the OTFS channel estimation problem. However, while these
guard-based designs help avoid pilot-data interference, they
inevitably compromise spectral efficiency. To address this
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issue, superimposed pilot-based estimation schemes have been
explored, offering improved spectral utilization by overlapping
pilot and data symbols [15], [16].

Traditional training-based channel estimation techniques
are often suboptimal in OTFS systems due to the inherent
sparsity of delay-Doppler (DD) domain channels—particularly
in multipath-rich scenarios [17]. As a result, compressed
sensing (CS) approaches have gained traction. For instance,
[18] introduced a 3D-structured orthogonal matching pursuit
(3D-SOMP) algorithm that exploits sparsity across delay-
Doppler-angle (DDA) domain for downlink channel estimation
in massive MIMO-OTFS systems. However, this method as-
sumes integer Doppler shifts and struggles with performance
degradation when fractional Doppler effects are present. To
address this, [19] proposed a modified sensing matrix that en-
hances estimation accuracy and reduces memory requirements
in fractional Doppler environments. Similarly, [20] employed
Newtonized orthogonal matching pursuit (NOMP) for channel
parameter recovery in MIMO-OTFS systems. Nevertheless,
these greedy algorithms generally fall short in terms of es-
timation accuracy and robustness.

An alternative and increasingly popular line of research
involves sparse Bayesian learning (SBL) [21]. In [22], an SBL-
based framework was integrated into OTFS system to estimate
the channel state information (CSI), demonstrating superior
performance over orthogonal matching pursuit (OMP). Further
advancements include the row-group Bayesian learning (RG-
BL) method developed in [23], which leverages structural
sparsity across antenna elements. Despite these advancements,
most prior works are constrained by the assumption of integer
Doppler shifts, which limits their practical deployment. To
address this, off-grid SBL techniques were introduced in
[24], where the DD domain was discretized into finer virtual
grids. Off-grid parameters were modeled as hyperparameters
in the SBL framework, enabling the estimation of fractional
delays and Doppler shifts. While 1D off-grid SBL improves
normalized mean square error (NMSE) over on-grid methods,
it suffers from high computational complexity. The 2D variant,
although more efficient, exhibits performance degradation and
lacks compatibility with practical OTFS waveforms. A hybrid
1&2D fractional model was later proposed in [25] to balance
accuracy and complexity. Based on this model, a 2D off-
grid decomposition and combination scheme is devised to
effectively balance the accuracy and computational workload.
However, there are some limitations on the 2D off-grid decom-
position and combination scheme. Firstly, the scheme designed
based on the ideal waveform cannot be applied to OTFS
systems with a rectangular waveform. Besides, the scheme
imposes strict requirements on the arrangement of the pilots.

B. Motivations & Contributions

Although substantial progress has been made in OTFS
channel estimation, existing approaches still encounter sev-
eral limitations, including sensitivity to fractional delays and
Doppler shifts, high computational complexity, insufficient
exploitation of domain-specific channel structures, and limited
waveform compatibility. These limitations underscore the need

for a more flexible and efficient channel estimation paradigm.
To address these issues, we propose an efficient decoupled
channel estimation framework that separates the DD-domain
channel into independent delay and Doppler components. Un-
like prior studies such as [24], [25], which primarily focus on
bi-orthogonal waveforms, our framework supports both ideal
and practical pulse shapes, including rectangular waveforms
commonly used in real-world systems. While high-resolution
virtual grids can significantly improve estimation accuracy,
they also introduce heavy computational burdens. To balance
this trade-off, we develop a flexible algorithmic strategy that
maintains high performance even under low-resolution grid
settings. A parametric dictionary learning model is employed
to enhance estimation robustness in such scenarios. The main
contributions are summarized as follows:

• Novel Decoupled Channel Estimation Framework: We
propose a novel framework that decomposes the DD-
domain channel into separate delay and Doppler domain
components through integration-based sensing matrices.
This structure enables domain-specific algorithm design
and is applicable to both bi-orthogonal and rectangular
pulse shaping filters.

• Decoupled Bayesian Learning (DC-BL) Algorithm:
Building on the framework, we design a decoupled
Bayesian learning (DC-BL) algorithm that independently
estimates the delay and Doppler domain components.
High-resolution virtual grids are introduced to achieve
super-resolution estimation performance.

• Low-Resolution Adaptation via Dictionary Learning:
For practical scenarios with coarse virtual grids, we
further develop an alternative DC-BL algorithm. By in-
corporating a parametric dictionary learning strategy, the
alternative algorithm effectively compensates for resolu-
tion limitations and enhances estimation accuracy.

• Model Dimensionality Reduction and Efficiency: The
proposed algorithms exploit the inherent sparsity of the
channel by discarding non-essential components, thereby
reducing the dimensionality of the estimation problem
and substantially lowering computational complexity.

Notations: In this manuscript, matrices and vectors are
represented by boldface capital and lower case letters, re-
spectively. The symbols (·)H and (·)T denote the Hermitian
transpose and transpose operation of a vector or matrix. The
symbol (·)∗ denotes the conjugate operation and (·)−1 denotes
the inverse of a square matrix. The symbol δ(·) and ∇ denote
the Dirac delta function and the gradient operator, respectively.
tr(·) represents the trace of a matrix.

II. SYSTEM MODEL

A. OTFS Modulation & Demodulation

As illustrated in Fig.1, we consider a single-input single-
output (SISO) OTFS system architecture. To facilitate the
subsequent derivations, we follow the notations in [10], where
the time-frequency (TF) domain is discretized into a lattice
GTF= {nTsym,m∆f} with sampling intervals of Tsym sec-
onds in time and ∆f Hz in frequency, where n = 0, . . . , N−1,
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Fig. 1. Illustration of OTFS modulation and demodulation.

m = 0, . . . ,M − 1, N,M ∈ Z+. Similarly, the delay-
Doppler (DD) domain is discretized into a lattice GDD =
{k/NTsym, l/M∆f}, where 1/M∆f and 1/NTsym represent
the resolutions along the delay and Doppler axes, respectively.
The index ranges are given by k = −N/2, . . . , N/2 and
l = 0, . . . ,M − 1.

The OTFS modulator maps DD-domain symbols XDD[k, l]
into the TF-domain symbols XTF[n,m] using the inverse sym-
plectic finite Fourier transform (ISFFT), which is expressed as:

XTF[n,m] =
1√
NM

N/2∑
k=−N/2

M−1∑
l=0

XDD[k, l]e−j2π(ml
M −nk

N ).

(1)
Subsequently, with a rectangular pulse-shaping filter gtx(t),

the TF-domain symbols XTF[n,m] are converted to the time-
domain signal s(t) through an OFDM modulator, which can
be expressed as follows:

s(t) =
M−1∑
m=0

N−1∑
n=0

XTF[n,m]ej2πm∆f(t−MCPT

M −nTsym)

× gtx(t− nTsym), (2)

where MCP represents the length of circular prefix (CP), T
denotes the time duration of an OFDM symbol excluding CP,
and the pulse gtx(t) is defined as gtx(x) = 1/

√
T , 0 ≤ t ≤

Tsym.
The signal s(t) is then transmitted over a time-variant

wireless channel. The received signal can be expressed as

r(t) =

∫∫
h(τ, υ)ej2πυ(t−τ)s(t− τ)dτdυ + z(t), (3)

where h(τ, υ) represents the DD-domain channel response
characterized by a delay τ and Doppler shift υ, z(t) is the
additive white Gaussian noise (AWGN) with variance σ2.
Due to the limited number of significant reflectors between
the transmitter and receiver, the time-variant channel h(τ, υ)
can be modeled as a sparse sum of discrete components [10],
which can be expressed as follows:

h(τ, υ) =
P−1∑
i=0

hiδ(τ − τi)δ(υ − υi), (4)

where P denotes the number of channel paths, hi ∈ C is the
complex channel tap coefficient of the i-th path, τi ∈ [0, τmax]
and υi ∈ [−υmax, υmax] represent the delay and Doppler
shift of the i-th path, respectively. The delay and Doppler
taps for the i-th path are defined as τi = lτi/M∆f and
υi = kυi

/NTsym, where lτi ∈ R and kυi
∈ R represent the

normalized delay and Doppler indices, respectively.

At the receiver side, after cyclic prefix removal, the received
signal is transformed into the TF domain using the Wigner
transform, followed by conversion to the DD domain via the
symplectic finite Fourier transform (SFFT).

The end-to-end input-output relationship of the OTFS sys-
tem in the DD domain is described by:

Y DD[k, l]

=
M−1∑
l′=0

N/2∑
k′=−N/2

HDD
k,l [k

′, l′]XDD[k′, l′] + zDD[k, l], (5)

where HDD
k,l [k

′, l′] denotes the effective DD-domain channel
response, expressed as:

HDD
k,l [k

′, l′]

=
P−1∑
i=0

h(lτi , kυi
)ΘN (k − k′ − kυi

)ΘM (−(l − l′ − lτi))

× exp

(
j2πkυi

(l − lτi +MCP)

N(M +MCP)

)
, (6)

with the functions ΘN (x) = 1/N
∑N−1

q=0 e−j2πxq/N and
ΘM (x) = 1/M

∑M−1
q=0 e−j2πxq/M capturing the effects of

Doppler and delay leakage. A detailed derivation is provided
in Appendix A. Notably, this input-output model accounts for
fractional Doppler and delay components, making it applicable
to practical scenarios.

B. OTFS Channel Estimation Model

For a typical doubly dispersive channel, it is assumed that
the maximum multipath delay and Doppler shift of the channel
can be represented by integer taps lτ,max and kυ,max, where
lτ,max < MCP and |kυ,max| ≪ N . Given that the positions
of the delay and Doppler shift of the channel are initially
unknown, a widely adopted strategy is to predefine a set
of grids over the delay and Doppler domains, upon which
the sensing matrix is subsequently constructed. However, the
resolution of the DD-domain channel is intrinsically deter-
mined by the system parameters M,∆f,N and Tsym. Due
to limitations imposed by the pulse duration and bandwidth
of OTFS, the inherent DD-domain grid GDD is insufficient
to provide a sparse representation of the channel. Thus,
we define virtual grids with higher resolution in both the
delay and Doppler domains. Under uniform sampling, the
virtual delay and Doppler grids are respectively denoted as
lvir = [lvir,0, . . . , lτ , . . . , lvir,Lτ−1]

T ∈ RLτ×1 and kvir =
[kvir,0, . . . , kυ, . . . , kvir,Lυ−1]

T ∈ RLυ×1, with resolutions
rτ = lτ,max/(Lτ − 1) and rυ = (2kυ,max)/(Lυ − 1).
Based on the predefined virtual grids, the sensing matrix
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Fig. 2. The arrangement of data, pilot and guard interval in an OTFS frame.

Φ(lvir,kvir) ∈ CMN×LτLυ is constructed. Consequently, the
channel estimation model can be represented in a vector form
as follows:

yDD = Φ(lvir,kvir)h+ zDD, (7)

where h ∈ CLτLυ×1 represents the channel gains. The (lN +
k, lτLυ + kυ)-th element in Φ(lvir,kvir) is given by

ϕ(lτ , kυ)l,k =
M−1∑
l′=0

N/2−1∑
k′=−N/2

XDD[k′, l′]e
j2π

(l−lτ+MCP)kυ
(M+MCP)N

×ΘN (k − k′ − kυ)ΘM (−(l − l′ − lτ )). (8)

To obtain the channel impulsive response, the known ref-
erence symbols must be inserted as pilots in the OTFS
frame. As shown in Fig. 2, pilots are placed at the center
of an OTFS frame. The positions of pilots are denoted as
k = kp0 , kp1 , · · · kpNp−1

and l = lp0 , lp1 , · · · lpMp−1
, where

MP and NP represent the lengths of the pilots along delay and
Doppler axes, respectively. In order to eliminate the interfer-
ence between data and pilots, the guard intervals are required
and placed between them. As stated in [12], the guard intervals
should be set to Mg ≥ lτ,max along the delay dimension
and Ng ≥ 2kυ,max along the Doppler dimension. Since the
channel in the DD domain is finite, only a specific portion of
the receiver is influenced by the pilot symbols. As a result, the
region affected by the pilot symbols will be extracted from the
received signal for channel estimation. The truncated region
is within the range kp0 − kυ,max ≤ k ≤ kpNp−1

+ kυ,max

and lp0
≤ l ≤ lpMp−1

+ lτ,max with MT = Mp + lτ,max and
NT = Np+2kυ,max. As a result, the extracted receiving signal
can be expressed as

yDD
T = ΦT(lvir,kvir)h+ zDD

T , (9)

where yDD
T ∈ CMTNT×1 is the extracted received signal,

zDD
T ∈ CMTNT×1 denotes the noise and ΦT(lvir,kvir) ∈

CMTNT×LτLυ represents the truncated sensing matrix. This
formulation provides a 1D channel estimation model for the
OTFS system.

C. Bayesian Learning Framework
Due to the sparsity of the channel in the DD domain,

OTFS channel estimation can be formulated as a sparse signal
recovery (SSR) problem. Given the superior performance of
Bayesian learning-based methods in sparse recovery, we adopt
a Bayesian learning approach to design the channel estimation
algorithm, and provide a brief overview here.

In SBL framework, it is assumed that all the elements in
yDD
T are mutually independent. The likelihood function is

therefore expressed as

p(yDD
T |h, α) = CN (yDD

T |ΦTh, α
−1I), (10)

where α = σ−2 denotes the noise precision. We assume that h
follows a zero-mean complex Gaussian distribution as follows

p(h|γ) = CN (h|0, diag(γ−1)), (11)

where γ denotes the precision vector [γ0, γ1, · · · , γLτLυ−1]
T

with γj , j = 0, 1, · · · , LτLυ − 1, as independent hyper-
parameters that control the strength of prior. In addition, a
Gamma prior is imposed on each value of γ and α as

p(γ) =

LτLυ−1∏
j=0

Gamma(γj ; a, b), (12)

p(α) = Gamma(α; c, d). (13)

Given the prior and likelihood function, the posterior dis-
tribution of can be expressed as

p(h|yDD
T ,γ, α) = CN (h|µ,Σ), (14)

where
µ = αΣ(ΦT)

HyDD
T , (15)

Σ = (α(ΦT)
HΦT + diag(γ))−1. (16)

To update the hyper-parameters iteratively, we maximize
their posterior distribution as follows

{γ̂, α̂} ∝ argmax ln p(yDD
T ,γ, α). (17)

In order to maximize the joint probability density, an expec-
tation maximization (EM) strategy is employed. The hyper-
parameters can be updated as follows.

γ̂j =
a+ 1

b+ µ2
j +Σjj

, (18)

α̂ =
MTNT + c

∥yDD
T −ΦTµ∥22 + tr(ΦTΣΦH

T) + d
, (19)

where Σjj represents the (j + 1)-th diagonal element in Σ
and µj is the (j + 1)-th element in µ.

Although SBL is a high-performance SSR algorithm, it has
certain limitations when applied to OTFS channel estimation.
Firstly, the delay and Doppler domains typically exhibit differ-
ent sparse patterns. Nevertheless, SBL, as a 1D on-grid SSR
algorithm, can not fully exploit these characteristics. Secondly,
while finer virtual grids can result in a sparser channel repre-
sentation, the dimensionality of the model is also be increased
significantly, thereby raising the computational complexity.
Finally, since the sensing matrix in SBL is constructed with
predefined sampling points, it struggles to mitigate the effects
of fractional delay and Doppler shifts.
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III. DECOUPLED CHANNEL ESTIMATION FRAMEWORK

In this section, to fully exploit the channel characteristics
in the delay and Doppler domains, we propose a decoupled
channel estimation framework which separates the originally
DD-domain channel into the delay and Doppler domain com-
ponents for more effective estimation. For clarity and brevity,
the main variables and notations used in Sections III and IV
are summarized in Table I.

To begin with, we consider only the case of integer delay
taps. With sufficiently large system bandwidth, the delay
resolution is adequate to map each path delay onto an integer
normalized delay tap, thereby eliminating the need to account
for fractional delays. Since there is no impact from fractional
delays, the virtual delay-domain resolution can be set to
rτ = 1. In the conventional 1D channel estimation model,
the channel is modeled as a 1D vector, where each delay tap
corresponds to Lυ Doppler shift sampling points. Unlike the
conventional model, a piecewise integration is conducted over
the Doppler domain. Then, we construct a delay-domain sens-
ing matrix Φτ (lvir,S(iτ )) ∈ CMTNT×LτLseg , which depends
solely on the normalized delay lτ . The (lNT+k, lτLseg+iτ )-th
element of Φτ (lvir,S(iτ )) can be expressed as

Φτ (lNT + k, lτLseg + iτ ) =

∫
S(iτ )

ϕ(lτ , ν)l,kdν

=

∫
S(iτ )

M−1∑
l′=0

N/2∑
k′=−N/2

XDD[k′, l′]ej
2π
N ητν

×ΘN (k − k′ − ν)ΘM (−(l − l′ − lτ ))dν, (20)

where ητ = (l − lτ + MCP)/(M + MCP) and ν repre-
sents a continuous random variable in the Doppler domain.
The Doppler-domain region [−kυ,max, kυ,max] is divided into
Lseg segments (Lseg ≥ 1), with each segment denoted as
S(iτ ), iτ = 1, . . . , Lseg. When multi-segment integration over
the Doppler domain is performed, the correlation between
atoms in the sensing matrix is reduced, leading to improved
system stability and enhanced delay estimation performance.
See the Appendix B for the detailed derivation of (20).

By employing the delay-domain sensing matrix, the original
DD-domain channel is decoupled into delay-domain channel.
Similar to the model in (9), delay estimation can be described
as a 1D on-grid SSR problem as follows

yDD
T = Φτ (lvir,S(iτ ))hτ + zDD

T , (21)

where hτ ∈ CLτLseg×1 represents the delay-domain channel
with total power ∥hτ∥22. It is important to emphasize that hτ

encapsulates solely the delay characteristics of the original
channel h in (9), rather than being directly derived from h.

The delay-domain channel can be estimated by any 1D SSR
or block SSR method. Based on the results, the delay taps can
be identified and selected for subsequent Doppler shifts and
channel gain estimation, subject to the following condition

Tsel = arg min
T ⊆lvir

|T | s.t.

∑
lτ∈T

∑Lseg

iτ=1 |hτ,lτ+iτ |2

∥hτ∥22
≥ ϵτ . (22)

where lτ ∈ lvir, ϵτ is the threshold for selecting delay taps, and
Tsel denotes the set of selected indices of lvir. The unselected

TABLE I
MAIN NOTATIONS IN SECTION III AND IV

Notation Description
Φτ Delay-domain sensing matrix
Φυ Doppler-domain sensing matrix
hτ Delay-domain CIR
hυ1 CIR of the first Doppler estimation
hυ1 CIR of the second Doppler estimation
S Doppler sub-band set
Lseg Number of Doppler segments during delay estimation
T Subset of lvir
Tsel Selected delay indices set
lτs Selected delay indices vector
lτs A generic element of lτs
R1,R2 Doppler sub-band sets for sensing matrix construction
R1

s,R2
s Selected Doppler sub-band sets

Lb1
, Lb2

Number of Doppler segments during Doppler estimation
I1, I2 Selected Doppler sub-band indices sets

elements are ignored, reducing the dimensionality of the subse-
quent estimation model and thereby decreasing computational
complexity. We denote the vector of the selected delay taps as
lτs = [lτs,0, lτs,1, . . . , lτs,Ls−1]

T ∈ ZLs×1, where Ls is the
length of lτs. Once the delay taps are determined, they are
substituted into (9) as follows

yDD
T = ΦT(lτs,kvir)hυ + zDD

T , (23)

where hυ ∈ CLsLυ×1 represents the Doppler-domain channel.
At this point, the original DD-domain channel has been suc-
cessfully decoupled into separate delay and Doppler domains
for individual estimation.

When dealing with a bandwidth-limited OTFS system,
the delay-domain resolution 1/M∆f significantly decreases,
requiring consideration of the impact of fractional delays.
To better characterize fractional delays, delay-domain virtual
grids with higher resolution are employed, i.e., rτ < 1.

To enhance the robustness of the algorithm, the two points
at both ends of the selected delay tap are extracted as well. The
unselected elements are ignored. The selected delay taps are
also denoted as lτs = [lτs,0, lτs,1, · · · , lτs,Ls−1]

T ∈ ZLs×1.
In delay estimation, both the threshold parameter ϵτ and

the number of Doppler-domain segments Lseg influence per-
formance. Their impact on the system will be discussed in the
simulation results.

IV. DECOUPLED BAYESIAN LEARNING CHANNEL
ESTIMATION

In this section, we develop a DC-BL algorithm for channel
estimation, designed to reconstruct the sparse channel in the
DD domain with the proposed decoupled channel estimation
framework. We also discuss the performance of the approach
and analyze its convergence.

A. Decoupled Bayesian Learning Channel Estimation

To efficiently reconstruct the DD-domain channel, we de-
velop a channel estimation algorithm based on DC-BL. The
algorithm exploits the distinct sparsity patterns in the delay
and Doppler domains and achieves super-resolution channel
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estimation while maintaining relatively low computational
complexity.

First, we consider the case of integer delays. The corre-
sponding rτ is set to 1. Based on the estimation model estab-
lished in (21), delay estimation is performed. When Lseg = 1,
SBL is applied for delay estimation. For Lseg > 1, block
sparse Bayesian learning (BSBL) is employed. Following
[26], the update rules in (16), (18) and (19) are accordingly
modified. Specifically, (16) is modified as

Σ = (α(ΦT)
HΦT +Σ−1

B )−1, (24)

where ΣB = diag(γ−1
0 B0, . . . , γ

−1
lτ,max

Blτ,max
). Bj , j =

0, 1, . . . , Lτ − 1, is a positive definite matrix that captures
intra-block correlation structure. The covariance matrix Bj is
updated as

Bj = γj(Σj + µj(µj)
H), (25)

where Σj = Σ(jLseg+1 : (j+1)Lseg, jLseg+1 : (j+1)Lseg)
and µj = µ(jLseg + 1 : (j + 1)Lseg).

Furthermore, (19) is modified as

γ̂j =
Lseg

tr(B−1
j (Σj + µj(µj)H))

. (26)

Next, we focus on the Doppler-domain channel estimation.
While virtual grids with high resolution can improve the sparse
representation of the channel, increasing the number of virtual
grids indefinitely would impose a significant computational
burden on the system. To effectively manage the unavoid-
able fractional Doppler shifts, we devise a super-resolution
Bayesian learning method for Doppler-domain channel es-
timation with specifically designed sensing matrix. Based
on the virtual grids defined in kvir, the region within the
maximum Doppler shift |kυ,max| is divided into Lb1 parts.
In light of the previously estimated delay taps, the regions
for Doppler-domain channel estimation can be represented
as R1 = {R : R1(kb1 , lτs) ≤ R ≤ R1(kb1 , lτs) +
∆1, R1(kb1 , lτs) = (lτsLb1 + kb1)∆1, kb1 = 0, · · · , Lb1 − 1},
where ∆1 = 2kυ,max/Lb1 indicates the size of each segment.
By integrating these Lb1 regions, each column of the sensing
matrix is formed by aggregating the Doppler shifts within
the specified region. This approach ensures that the true
Doppler shifts are captured within the sensing matrix, thereby
mitigating the effects of energy leakage.

Thus, the sensing matrix Φυ(R1) ∈ CMTNT×LsLb1 for
Doppler-domain channel estimation can be constructed as

Φυ(R1) = [ϕυ(R1(0, lτs,0)),ϕυ(R1(1, lτs,0)), · · · ,
ϕυ(R1(kb1 , lτs,is)), · · · ,ϕυ(R1(Lb1 − 1, lτs,Ls−1))], (27)

where is = 0, 1, · · · , Ls − 1. The (lNT + k)-th element of
ϕυ(R1(kb1 , lτs,is)) can be denoted as [27]

ϕυ(R1(kb1 , lτs,is))lNT+k

=

∫ (kb1
+1)∆1

kb1
∆1

M−1∑
l′=0

N/2∑
k′=−N/2

XDD[k′, l′]ej
2π
N ητν

×ΘN (k − k′ − ν)ΘM (−(l − l′ − lτs,is))dν, (28)

where lτs,is denotes the is-th element in lτs.

The selected region in   -th iteration

The selected region in        -th iteration

The discarded region

i

1i+

i

1i +

Fig. 3. The iterative update process of sensing matrix construction for
Doppler-domain channel estimation.

Based on the sensing matrix in (27), Doppler-domain chan-
nel estimation can be formulated as a 1D SSR problem as

yDD
T = Φυ(R1)hυ1

+ zDD
T , (29)

where hυ1
∈ CLsLb1

×1 represents the Doppler-domain CIR,
which can also be estimated through SBL. Founded on the
estimation result hυ1

, the index of the region containing
the true Doppler-domain channel taps is determined by the
criterion

(lτsLb1 + kb1)sel = arg max
lτsLb1

+kb1

|hυ1
(lτsLb1 + kb1)|. (30)

For robustness, both the neighboring indices are included,
resulting in the selected indices being defined as I1 =
{(k′b1 , lτs) : k′b1 ∈ {kb1−1, kb1 , kb1+1}, lτsLb1 + kb1 =
(lτsLb1 + kb1)sel}. The selected region can then be described
as R1

s = {R : R1
s(kb1 , lτs) ≤ R ≤ R1

s(kb1 , lτs) +
∆1, R

1
s(kb1 , lτs) = (lτsLb1 + kb1)∆1, (kb1 , lτs) ∈ I1}. In

contrast, the unselected areas are discarded. As shown in Fig.3,
to further enhance the performance of channel estimation in
the Doppler domain, each selected region can be subdivided
into Lb2 smaller regions. Accordingly, the region for Doppler-
domain channel estimation is then denoted as R2 = {R :
R2(kb2 , lτs) ≤ R ≤ R2(kb2 , lτs) + ∆2, R2(kb2 , lτs) =
R1

s(kb1 , lτs) + kb2∆2, kb2 = 0, 1, · · · , Lb2 − 1}, where ∆2 =
3∆1/Lb2 . With the further divided regions in the Doppler
domain, a more refined sensing matrix is constructed as
follows

Φυ(R2) = [ϕυ(R2(0, lτs,0)),ϕυ(R2(1, lτs,0)), · · · ,
ϕυ(R2(kb2 , lτs,is)), · · · ,ϕυ(R2(Lb2 − 1, lτs,Ls−1))]. (31)

where the (lNT+k)-th element of ϕυ(R2(kb2 , lτs,is)) can be
represented similarly to (28), and will not be repeated here.

With the newly constructed sensing matrix in (31), the
channel estimation model in (27) can be transformed into

yDD
T = Φυ(R2)hυ2 + zDD

T , (32)

where hυ2 ∈ C3LsLb2
×1 denotes the Doppler-domain CIR cor-

responding to the newly constructed sensing matrix Φυ(R2).
Also, the selected indices and regions could be similarly
defined as I2 and R2

s, respectively, following the approach de-
scribed earlier. Since the sensing matrix Φυ(R2) incorporates
virtual grids with higher resolution in the Doppler domain,
the performance of channel estimation is further enhanced
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Algorithm 1 DC-BL Algorithm
Input: the truncated receiving signal yDD

T , the delay-domain
sensing matrix Φτ (lτ ,S(iτ )), the threshold ϵτ , ϵEND, the
maximum iteration kmax, the number of separations ISep.

Delay-domain channel estimation:
1: Initialization: Channel precision γk

τj = 1,∀j , the noise
precision αk

τ > 0 and the counter k = 1.
2: repeat
3: Calculate µk

τ and Σk
τ by (15) and (16)(Lseg =

1)/(24)(Lseg > 1)
4: Update γk+1

τ and αk+1
τ by (26) and (19)

5: until ∥µk+1
τ − µk

τ∥22 ≤ ϵEND or k = kmax

6: The selected delay taps are denoted as lτs
Doppler-domain channel estimation:

7: for i = 1 to ISep do
8: Set the number of bands, Lbi

9: Construct the sensing matrix Φυ(Ri)
10: Initialization: Channel precision γk

υj = 1,∀j , the
noise precision αk

υ > 0 and counter k = 1.
11: repeat
12: Calculate µk

υ and Σk
υ by (15) and (16)

13: Update γk+1
υ and αk+1

υ by (18) and (19)
14: until ∥µk+1

υ − µk
υ∥22 ≤ ϵEND or k = kmax

15: Select the region index Ii according to (30)
16: Update the selected region as Ri

s

17: end for
Output: Channel gains µk+1

υ , the selected normalized
delay taps lτs, the selected normalized Doppler shifts
Ri−1

s (kbi−1
, lτs) + kbi∆i + 1/2∆i, (kbi , lτs) ∈ Ii

by model in (32). The above iterative update process can be
repeated until a satisfactory channel resolution is achieved.

Consequently, the DD-domain channel has been estimated
in delay and Doppler domains respectively by the DC-BL
approach. In summary, the steps of the proposed DC-BL
algorithm are summarized in Algorithm 1.

B. Channel Estimation based on DC-BL for Low-resolution
Virtual Grids in the Doppler Domain

Although high-resolution virtual grids can provide a more
accurate representation of the channel, it also significantly in-
creases the computational complexity. This issue is particularly
pronounced in low SNR scenarios, where the threshold-based
tap selection method tends to introduce a large number of
redundant taps, imposing a substantial burden on receivers
with limited computational capabilities. Hence, computation-
ally constrained receivers must compromise on resolution to
manage complexity. The framework is adaptable, allowing for
suitable methods for Doppler-domain channel estimation when
dealing with low-resolution virtual grids. As grid resolution
decreases, on-grid models struggle to accurately represent the
Doppler-domain channel. Studies on fractional Doppler shifts
show that larger shifts lead to reduced received SNR [25]. In
light of the aforementioned circumstances, the virtual grids in
the dictionary Φυ could be treated as unknown parameters.
Since the normalized Doppler shifts may occur within the

Algorithm 2 DC-BL Algorithm for Low Virtual-Grid Reso-
lution in the Doppler domain
Input: the truncated received signal yDD

T , the delay-domain
sensing matrix Φτ (lτ ,S(iτ )), the threshold ϵτ , ϵEND, the
maximum iteration kmax, the number separations ISep.

Delay-domain channel estimation:
1: Follow the steps 1− 6 in Algorithm 1 to estimate the

delay-domain channel
Doppler-domain channel estimation:

2: Follow the steps 7−17 in Algorithm 1 (i = 1) to acquire
an approximate position of the Doppler shifts

3: Define virtual grids Klτs

vir with the desired resolution ∆d

and construct the sensing matrix by (33)
4: repeat
5: Calculate µk

υ and Σk
υ by (15) and (16)

6: Update the hyper-parameters γk+1
υ , αk+1

υ and
Klτs,k+1

vir by (18), (19) and (38)
7: until ∥µk+1

υ − µk
υ∥22 ≤ ϵEND or k = kmax

Output: Channel gains µk+1
υ , the selected normalized delay

taps lτs, the normalized Doppler shifts Klτs,k+1
vir

Calculate        and       by (15) and (16) 

Update         ,         and         by (18), (19) 

and (38) 

Reconstruct sensing matrix          by (8) 

, 1

vir
s k +l

K

                  or
maxk k=

End

Yes

No

1k k= +

k

Σ

1k



+
γ

1k


+

1k



+
Φ

k

μ

1 2

2 END

k k

 

+ − ‖ ‖μ μ

Fig. 4. Flowchart of parameter update in Algorithm 2

range −kυ,max to kυ,max, each virtual grid kvir ∈ kvir, when
treated as an unknown parameter, is a continuous random vari-
able. A parametric dictionary learning model is implemented
for the Doppler-domain channel estimation. Then, based on
this model, we propose a decoupled Bayesian channel estima-
tion algorithm specifically for low-resolution virtual grids.

To begin with, the delay estimation is performed following
the procedures outlined in Algorithm 1, and thus, will not be
reiterated here. For the Doppler-domain channel estimation,
virtual grids kvir ∈ RLυ×1 are initially defined with a coarse
resolution of rυ > ∆d, where ∆d is the desired resolution.
Subsequently, the sensing matrix is constructed as mentioned
in (27). Based on the model (29) and the SBL algorithm, an
approximate position of the Doppler domain channel can be
determined and denoted as R1

s.
Next, regions without Doppler-domain channel taps will be

excluded, and virtual grids with the desired resolution ∆d will
be defined in the remaining regions. The virtual grids related



8

to the selected delay tap lτs are formulated in vector form as
klτs

vir = [klτs

vir,0, k
lτs

vir,1, · · · , k
lτs

vir,id
, · · · , klτs

vir,Ld−1]
T ∈ RLd×1,

where Ld = 3∆1/∆d+1 represents the length of klτs

vir .1 With
the selected delay taps and defined virtual grids, the Doppler-
domain sensing matrix Φυ(lτs,k

lτs

vir ) ∈ CMTNT×LsLd can be
constructed as follows

Φυ(lτs,k
lτs

vir ) = [ϕυ(lτs,0, k
lτs,0

vir,0),ϕυ(lτs,0, k
lτs,0

vir,1), · · · ,

ϕυ(lτs,is , k
lτs,is

vir,id
), · · · ,ϕυ(lτs,Ls−1, k

lτs,Ls−1

vir,LT
)], (33)

where the (lNT + k, lτs,isLd + k
lτs,is

vir,id
)-th element in

Φυ(lτs,k
lτs

vir ) can be calculated as described in (8).2 The
Doppler virtual grid corresponding to delay lτs,is is denoted
by k

lτs,is

vir , whose id-th element is written as k
lτs,is

vir,id
. Then, the

channel estimation model can be expressed as

yDD
T = Φυ(lτs,k

lτs

vir )hυ + zDD
T , (34)

where hυ ∈ CLsLd×1 represents the Doppler-domain channel.
Similar to the approach in the previous section, the Doppler-
domain channel is estimated within a Bayesian framework. For
a convenient subsequent analysis of virtual-grid updating, we
define the vector Klτs

vir ∈ CLsLd×1 that collects all virtual grids
involved in the sensing matrix Φυ(lτs,k

lτs

vir ). It is represented
as

Klτs

vir = [(k
lτs,0

vir )T, (k
lτs,1

vir )T, · · · , (klτs,Ls

vir )T]T. (35)

For notation simplicity in the subsequent derivations,
Φυ(lτs,k

lτs

vir ) is rewritten as Φυ(K
lτs

vir ). The virtual grids
are also updated by maximizing the posterior distribution, as
shown below

{K̂lτs

vir} = argmax p(Klτs

vir |y
DD
T )

∝ argmax ln p(yDD
T , γ̂υ, α̂υ,K

lτs

vir )

∝ argmax f(Klτs

vir ), (36)

where f(Klτs

vir ) is given by

f(Klτs

vir ) =− ∥yDD
T −Φυ(K

lτs

vir )µυ∥22
− tr((Φυ(K

lτs

vir ))
HΦυ(K

lτs

vir )Συ). (37)

Additionally, it should be noted that when updating the pa-
rameter Klτs

vir , all other parameters are kept fixed. Since the
optimization problem in (36) is non-convex, it is challenging
to achieve the optimal solution directly. Therefore, we employ
a gradient descent framework with a fixed step size as [28]

K̂lτs

vir = Klτs

vir + αstepsign(∇f(Klτs

vir )), (38)

1Note that for each selected delay tap, three consecutive regions of length
∆1 were extracted.

2For notational consistency, we reuse the symbol Φυ to denote the Doppler-
domain sensing matrix, and the construction of its elements is different from
that in (28).

Algorithm 3 DC-BL Algorithm for Fractional Delays and
Doppler shifts
Input: the truncated received signal yDD

T , the delay-domain
sensing matrix Φτ (lvir,S(iτ )), the threshold ϵτ , ϵEND, the
maximum iteration kmax, the number of separations ISep.

Delay-domain channel estimation:
1: if rτ is small then
2: Follow the steps 1− 6 in Algorithm 1 to estimate the

delay-domain channel.
3: else
4: repeat
5: Calculate µk

τ and Σk
τ by (15) and (16)

6: Update the hyper-parameters γk+1
τ , αk+1

τ and
llτs,k+1
vir by (18), (19) and (40)

7: until ∥µk+1
τ − µk

τ∥22 ≤ ϵEND or k = kmax

8: end if
Doppler-domain channel estimation:

9: if rυ is small then
10: Follow the steps 7-17 in Algorithm 1
11: else
12: Follow the steps 2-7 in Algorithm 2
13: end if
Output: Channel gains, the normalized delay taps, the nor-
malized Doppler shifts

where αstep represents the step size for the update and sign
denotes the signum function. Each element in the gradient
∇f(Klτs

vir ) can be represented as

∂f(Klτs

vir )

∂Klτs

vir,i

=2Re
(
(yDD

T )H
∂Φυ(K

lτs

vir )

∂Klτs

vir,i

µυ

)
−2Re

(
µH

υΦ
H
υ (K

lτs

vir )
∂Φυ(K

lτs

vir )

∂Klτs

vir,i

µυ

)
−2Re

(∂ϕH
υ (K

lτs

vir,i)

∂Klτs

vir,i

LsLd−1∑
j=0

Συj,i
ϕυ(K

lτs

vir,j)
)
,

(39)

where Kvir,i (Kvir,j) denotes the i-th (j-th) element in Klτs

vir

and ϕυ(K
lτs

vir,i) (ϕυ(K
lτs

vir,j)) denotes the i-th (j-th) column in
Φυ(K

lτs

vir ).
In summary, the proposed DC-BL algorithm for DD-domain

channel estimation with low virtual grid resolution is outlined
in Algorithm 2. To provide a clear illustration of the sensing
matrix refinement process, a flowchart of parameter updating
is presented in Fig. 4.

C. Channel Estimation based on DC-BL for Fractional Delays
and Doppler Shifts

With limited system bandwidth, the effects of fractional
delays become non-negligible and must be considered. In
this case, the Doppler-domain channel estimation method is
consistent with those in Algorithms 1 and 2. For delay
estimation, we categorize the cases into two scenarios based on
the virtual-grid resolution rτ in the delay domain. When the rτ
is high, the Bayesian learning based algorithm can be directly
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TABLE II
COMPARISON OF CHANNEL ESTIMATION ALGORITHMS

Method Supported waveform Pilot structure
2D off-grid SBL [24] Ideal Kronecker-structured

2D off-grid
decomposition and

SBL combination [25]
Ideal

Single pilot
or single row pilot

or single column pilot
DC-BL Ideal & practical No restriction

applied for estimation. However, when rτ is relatively low, the
delay-domain virtual grids are treated as unknown parameters
and updated iteratively in the Bayesian learning framework.
Since the derivation process follows a similar approach as the
one in equations (36), (37), and (38) in the previous subsection,
we will not elaborate further here, but directly provide the
update formula for the delay-domain virtual grids as follows

l̂vir = lvir + αstepsign(∇f(lvir)). (40)

The steps of DC-BL for fractional delay taps is summarized
in Algorithm 3.

D. Convergence and Computational Complexity Analysis

This subsection presents an analysis of the convergence
and computational complexity of the DC-BL algorithms. For
delay estimation, Bayesian learning is employed. As Bayesian
learning-based method follows the EM framework, conver-
gence has been empirically validated.

In Doppler-domain channel estimation, as outlined in Al-
gorithm 1, the region containing the true Doppler shift taps
is iteratively refined. At each iteration, the Doppler-domain
channel estimation is modeled as an SSR problem and solved
by SBL. This implies that the Doppler-domain channel esti-
mation process is also convergent.

In Algorithm 2, the delay estimation process remains
identical to that in Algorithm 1. Although parameterized
dictionary learning is employed for Doppler-domain channel
estimation, the parameter updates are still carried out within
the EM algorithm framework. Besides, by retaining only the
updated grids that increase the likelihood function, the fixed
step-size grid update method is able to achieve convergence. In
summary, the proposed algorithms are guaranteed to converge.

Next, we analyze the computational complexity of the
proposed DC-BL algorithm. Since the delay estimation proce-
dures are identical in Algorithms 1 and Algorithm 2, they
share the same computational cost. The overall computa-
tional complexity for delay estimation is O(LτLseg(M

2
TN

2
T+

L2
τL

2
seg +MTNTLτLseg)). For the high-resolution case pre-

sented in Algorithm 3, the computational complexity of delay
estimation is O(LτLseg(M

2
TN

2
T+L2

τL
2
seg+MTNTLτLseg)).

For the case with low delay-domain resolution in Algorithm
3, reconstructing the sensing matrix and its derivative with
respect to delay incurs a complexity of O(MTMLτ (M +
NTN

2Lseg)). The gradient ∇f(lvir) has a complexity of
O(MTNTL

2
τL

2
seg). The total computational complexity of

delay estimation per iteration is O(MTNTLτLseg(MN2 +
Lτ ) +MTM

2Lτ + L3
τL

3
seg).

TABLE III
SIMULATION PARAMETERS

Parameter Value
Carrier frequency (GHz) 4.9
Subcarrier spacing (kHz) 15

Size of an OTFS symbol, (M,N) (256, 16)
Size of pilot in an OTFS symbol, (Mp, Np) (16, 16)

Size of guard symbols in an OTFS symbol, (Mg , N) (10, 16)
Maximum normalized delay, lτ,max 10

Maximum normalized Doppler shift, kυ,max 4
Length of CP, MCP 16
Modulation scheme 4-QAM

Since the SBL algorithm is adopted for Doppler-domain
channel estimation with high virtual resolution, the computa-
tional complexity per iteration of Algorithm 1 and Algorithm
3 is O(LsLbi(M

2
TN

2
T + L2

sL
2
bi
+MTNTLsLbi)).

For the case with low Doppler-domain virtual resolution, the
complexity of reconstructing the sensing matrix and its deriva-
tive with respect to the Doppler shift is O(MTNTMN2LsLd)
for Algorithm 2 and O(MTMLs(M + LdNTN

2) for Al-
gorithm 3. The computational complexity of the gradient
∇f(Klτs

vir ) is O(MTNTL
2
sL

2
d). Thus, the per-iteration com-

putational complexity of Algorithm 2 and Algorithm 3 is
given by O(LsLd(MTNT(MN2 + LsLd) + L2

sL
2
d)) and

O(MTM
2Ls+LsLd(MTNTMN2+MTNTLsLd+L2

sL
2
d)),

respectively. The total computational complexity per iteration
is summarized in Table V and Table VI.

E. Performance Evaluation

In this subsection, we provide a brief analysis of the perfor-
mance advantages and underlying sources of improvement of
the proposed framework and algorithms. First, leveraging inte-
gration, the proposed decoupled channel estimation framework
transforms the OTFS channel estimation into separate delay
estimation and Doppler-domain channel estimation, providing
substantial flexibility in algorithm design to better exploit
the distinct characteristics of each domain. Moreover, unlike
[24], [25], the inherent generality of the integration operation
ensures that the framework is not restricted by waveform
constraints and can be applied to arbitrary pulse-shaping filters.
Table II summarizes the comparison between the algorithms
in [24], [25] and the proposed DC-BL method with respect
to waveform compatibility and pilot structure requirements.
Second, benefitting from the tap selection mechanism, the
proposed DC-BL algorithm effectively reduces the dimension-
ality of the channel estimation model, achieving a favorable
balance between performance and computational complexity.
More importantly, the exclusion of certain regions forces the
corresponding channel taps to zero, further enhancing the
alignment of the DC-BL based estimation result with the
intrinsic sparsity in the DD-domain channel and leading to
notable improvements in estimation performance.

V. SIMULATION RESULTS

A. Experiment Setup

In this section, the performance of the proposed algorithms
is demonstrated through numerical simulation results. Unless
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stated otherwise, the simulation parameters are as follows.
In the simulation, the Extended Vehicular A (EVA) channel
model [29] is adopted, and each delay tap corresponds to a
single Doppler shift generated by Jakes’ formula. At a maxi-
mum user equipment (UE) speed of 777 km/h, the maximum
multi-path delay and the maximum Doppler shift of the EVA
channel model, rounded up, are approximately kυ,max = 4
and lτ,max = 10, respectively. The data symbols adopt a
normalized constellation, while the pilot symbols are complex
numbers with randomly distributed phases. Each pilot symbol
maintains the same power as the average power of the data
symbols. The guard symbols are placed on both sides of the
pilot region along the delay axis, with a size of Mg × N on
each side. Detailed parameters are listed in Table III.

The effective DD-domain channel HDD
eff is reconstructed

for performance evaluation based on the DD-domain input-
output relationship defined in (5) (see (46) in Appendix A).
The NMSE of CE is then defined as

NMSE =
∥HDD

eff − ĤDD
eff ∥2F

∥HDD
eff ∥2F

, (41)

where ĤDD
eff represents the effective DD-domain channel of

the estimated channel.
The hyper-parameters for the proposed algorithms are set

to a = b = c = d = 1 × 10−4. The termination criterion
is defined as ϵEND = 1 × 10−4, and Isep is set to 2. For
the case of high Doppler-domain resolution, ∆1 is set to 0.5
and ∆2 is assigned to ∆2 = rυ = 0.1. In the case of low
Doppler-domain resolution, ∆1 is set to 0.8, with ∆2 given
by ∆2 = rυ = 0.4.

For comparison, the NMSE performance of the proposed
algorithms is compared with several state-of-the-art OTFS
channel estimation algorithms, including “Orthogonal match-
ing pursuit (OMP)” [30], “Newtonized orthogonal matching
pursuit (NOMP)” [31], “SBL” [21], “2D on-grid SBL” [24]
and “2D off-grid SBL” [24]. “Threshold-based channel esti-
mation (Threshold)” [12] employs a sensing matrix without
virtual grids as a benchmark algorithm to represent the basic
performance. Furthermore, a baseline, called “Oracle”, is de-
veloped to characterize the performance limit of the proposed
algorithms, which is based on SBL with exact delay and
Doppler taps [24]. Given that the delay and Doppler shift taps
are known, the algorithm only needs to iteratively update the
channel gain and the hyper-parameters with (15), (16), (18)
and (19).

B. Parameter Analysis

In this subsection, we analyze the impact of parameters ϵτ
and Lseg on the performance of the proposed algorithms. For
clarity in the subsequent analysis, we define two metrics:

• Selection rate Nsel/P : The proportion of the number of
true delay taps within the selected range Nsel relative to
the total number of true delay taps P .

• Over-selection rate Nos/Ls: The proportion of over-
selected delay taps Nos relative to the total number of
selected delay taps Ls.

TABLE IV
THRESHOLD SETTINGS FOR DIFFERENT SNR LEVELS

SNR (dB) Threshold ϵτ Virtual resolution
[−10, 0] 0.998
(0, 15] 0.999 rτ = 0.1/0.4, rυ = 0.1/0.4
> 15 0.9995

[−10, 0] 0.998
(0, 15] 0.999 rτ = 1, rυ = 0.1/0.4
> 15 > 0.9995

For generality, the simulation is conducted under the chan-
nel with fractional delays and Doppler shifts, where rτ = rυ =
0.1.

1) The Impact of Threshold: Firstly, the impact of the
threshold ϵτ on the performance of the proposed algorithm
is analyzed. Fig.5 illustrates the relationship between the
selection rate and the threshold ϵτ , with SNR set to -10, 0,
10, 20 and 30 dB. It can be observed that as the threshold
increases, the selection rate gradually increases and approaches
1, indicating that a higher threshold is more likely to include
the true channel taps. Under the same threshold setting, the
selection rate decreases with decreasing SNR, except at -10
dB SNR. The intense noise at -10 dB SNR severely distorts
the received signal, resulting in poor estimation performance.
Additionally, the power distribution of the estimated delay
taps becomes more dispersed, leading to the inclusion of a
substantial number of redundant taps when the cumulative
power ratio reaches the threshold. As a result, the probability
of selecting the true taps increases significantly, leading to
the markedly higher selection rate observed at -10 dB SNR
compared to other SNR levels.

Fig.6 shows the relationship between the over-selection rate
and the threshold ϵτ . At -10 dB SNR, high noise power
introduces spurious impulsive responses at locations unrelated
to the true channel, resulting in the erroneous selection of
false tap positions and an increased over-selection rate. As
the threshold rises, the over-selection rate increases across all
SNR levels. At –10 dB SNR, although the over-selection rate is
already high when the threshold is set to 0.998, approximately
15% of ineffective delay taps are eliminated, thereby reducing
the computational burden of subsequent channel estimation to
some extent. Under high SNR conditions, the over-selection
rate shows an increasing trend as the threshold rises, yet the
extent of the increase remains relatively limited. At an SNR of
30 dB, even when the threshold reaches 0.9995, nearly 65% of
the taps are eliminated, as the energy is primarily concentrated
around the positions corresponding to the true taps.

Fig. 7 illustrates the impact of the threshold ϵτ on the NMSE
performance. As shown in the figure, at SNR values of 20
dB and 30 dB, the impact of noise is negligible, resulting in
the channel energy remaining largely concentrated on the true
channel taps. Consequently, increasing the threshold further
suppresses the residual noise, leading to improved NMSE
performance. However, at an SNR of 10 dB, the NMSE starts
to rise when the threshold exceeds 0.998. Due to the influence
of noise, a few of false taps exhibit higher energy than the true
ones. As a result, when the threshold is set excessively high,
some true taps are mistakenly discarded while certain false
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ones are retained, leading to degraded NMSE performance. At
SNR of 0 dB and -10 dB, the NMSE curves remain relatively
stable and show little sensitivity to the threshold selection. In
summary, the thresholds for different SNR levels are listed in
Table IV.

2) The Impact of Number of Doppler-domain Segments:
Next, we analyze the impact of the number of Doppler-domain
segments on the performance of the proposed algorithm. To
evaluate the column correlation of the sensing matrix, the
average mutual coherence among its atoms is defined as
follows [32]

µave =
1

2Lc(Lc − 1)

Lc∑
1≤i<j≤Lc

|ϕH
i ϕj |

∥ϕi∥2∥ϕj∥2
, (42)

where ϕi and ϕj represent any two distinct columns of the
sensing matrix, and Lc denotes the number of columns in the
sensing matrix.

Fig.8 depicts the relationship between the average mutual
coherence of the sensing matrix and the Doppler-domain
integration segments. As Lseg increases, the average mutual
coherence of the sensing matrix gradually decreases. In gen-
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Fig. 7. NMSE v.s. the threshold ϵτ with rτ = 0.1, rυ = 0.1.
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Fig. 8. Average mutual coherence v.s. integration segments Lseg.

eral, lower mutual coherence indicates that the sensing matrix
can capture richer and more informative features, thereby
facilitating the recovery of sparse signals. Consequently, in-
creasing Lseg can effectively enhance the performance of
channel estimation. When Lseg is set to 1, µave of the sensing
matrix approaches 0.22. Such a high level of mutual coherence
is detrimental to the recovery of sparse signals. Compared
to the sensing matrix with a single integration, µave of the
sensing matrix with 4 integration segments is reduced by
approximately 47%. When Lseg is set to 8, µave decreases
by about 58.7% compared to the case of a single segment,
further enhancing the performance of the sensing matrix.

In the subsequent analysis, Lseg is set to 1 for the case
of rτ = rυ = 0.4 to simplify the delay-grid update and to
assess channel estimation performance with Doppler-domain
integration over a single segment. Lseg is set to 8 for all
other cases. The threshold for delay estimation is configured
as shown in Table IV.

C. Performance Analysis

1) NMSE Performance under High-Resolution Virtual Grid:
Fig.9 presents the NMSE performance of the proposed DC-
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Fig. 10. NMSE v.s. SNR with rτ = 1, rυ = 0.4.

-10 -5 0 5 10 15

SNR(dB)

10-4

10-3

10-2

10-1

100

B
E

R

DC-BL

OMP

NOMP

SBL

Threshold

Perfect CSI
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TABLE V
COMPUTATIONAL COMPLEXITY (INTEGER DELAY AND FRACTIONAL

DOPPLER SHIFTS)

Method Computational complexity

OMP [30] O(MTNTLτLυ +MTNTK
2 +K3)

(K: the chosen sparsity)

NOMP [31]
O(MTNTLτLυ +MTNTM

2N2KRc+
MTNTK

2 +K3) (K: the chosen sparsity,
Rc: number of cycle refinement)

SBL [21] O(LτLυ(M2
TN

2
T + L2

τL
2
υ +MTNTLτLυ))

DC-BL (Algorithm 1)
O(M2

TN
2
T(LτLseg + LsLbi ) + L3

τL
3
seg+

MTNT(L
2
τL

2
seg + L2

sL
2
bi
) + L3

sL
3
bi
)

DC-BL (Algorithm 2)
O(M2

TN
2
TLτLseg + L3

τL
3
seg + L3

sL
3
d+

MTNT(L
2
τL

2
seg +MN2LsLd + L2

sL
2
d))

BL algorithm (Algorithm 1) compared with state-of-the-art
OTFS channel estimation methods across various SNR levels.
The virtual grid resolutions are configured as rτ = 1 and
rυ = 0.1. It is evident that the DC-BL algorithm consis-
tently outperforms competing techniques at all SNR levels.
Notably, at 10 dB SNR, the NMSE of the proposed DC-
BL algorithm is already lower than 1 × 10−2, whereas the
NMSE of other algorithms has not yet reached this level. At
20 dB SNR, DC-BL attains an NMSE of 7.5 × 10−4, while
the second-best performing on-grid SBL algorithm requires
approximately 4.36 dB additional SNR to achieve similar
accuracy. As the SNR exceeds 20 dB, the performance gain
narrows, primarily because high SNR reduces the impact of
noise and concentrates energy on true channel tap positions,
reducing the influence of discarded regions. By pruning low-
contribution channel regions, the DC-BL algorithm achieves
significant model dimensionality reduction, thereby lowering
computational complexity, as detailed in Table V.

2) Performance with Coarse Doppler Resolution: Fig.10
shows the NMSE performance against SNR with a rela-
tively low virtual-grid resolution, rυ = 0.4. As a result,
the DC-BL switches to Algorithm 2. It is observed that the
proposed DC-BL algorithm consistently achieves the lowest
NMSE across the entire SNR range, indicating its superior
performance compared to other schemes. Moreover, by re-
ducing the channel length through the selection process, the
proposed algorithm also achieves relative low computational
complexity. It is noteworthy that within the proposed DC-BL
algorithm, the Doppler-domain channel estimation is carried

out alongside a parametric dictionary learning based Bayesian
learning algorithm. This highlights the high flexibility offered
by the proposed framework, allowing the channel estimation
algorithm to be tailored to the specific characteristics of the
channel, thereby optimizing estimation performance. Although
updating the virtual grid and reconstructing the sensing matrix
introduce some computational burden and slow down con-
vergence, the virtual grid update leads to a larger likelihood
function and improved estimation performance.

3) BER Performance under Imperfect CSI: Fig.11 illus-
trates the bit error rate (BER) performance against SNR based
on the estimated channel. A similar trend is observed between
BER and NMSE, where algorithms achieving lower NMSE
tend to provide better BER performance. Within the SNR
range of -10 dB to 15 dB, the proposed algorithm achieves
a BER performance that closely approaches that of perfect
CSI.

4) NMSE Robustness to OTFS Parameters: Fig. 12 demon-
strates the NMSE performance versus SNR under an alter-
native set of OTFS system parameters, specifically M =
128, N = 32,Mp = 8,Mg = 5 and Np = 32. The virtual
grid resolution is set to rτ = 1 and rυ = 0.1. As shown in the
figure, DC-BL achieves the best performance compared with
other baseline algorithms, clearly demonstrating its robustness
with respect to OTFS system parameters.

5) NMSE Performance under Aged Channel: Fig. 13 illus-
trates the NMSE performance of the DC-BL algorithm under
different levels of channel aging. To characterize the channel
aging effect, following [33]–[35], the aged channel hAge is
defined as a function of initial channel h0 and an innovation
component, as given below.

hAge = ρh0 +
√

1− ρ2zh, (43)

where zh ∼ CN (0,Rh0
) and Rh0

denotes the covariance of
h0. The parameter ρ ≤ 1 represents correlation coefficient
between h0 and hAge. For clarity, only the SBL algorithm,
which achieved the second best NMSE performance in the
earlier simulations, is included as the comparison benchmark.
As illustrated in the figure, DC-BL consistently achieves better
NMSE performance than SBL under identical correlation co-
efficients. The NMSE performance decreases as the coefficient
ρ decreases, particularly in the high-SNR region, whereas in
the low-SNR regime, the NMSE is much less sensitive to
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the coefficient ρ. When the SNR exceeds 20 dB, the NMSE
reduction slows down, and the curve gradually flattens.

6) Runtime under Fixed BER: Fig. 14 shows the runtime
of DC-BL and other baselines at a fixed BER of 1×10−2. By
interpolation, the corresponding SNR values are determined to
be 10.46 dB for DC-BL, 10.77 dB for SBL, 11.45 dB for OMP
and 11.44 dB for NOMP. The simulations were conducted
on a high-performance computing platform equipped with
an Intel i7-14700KF CPU, 32 GB of RAM, and a base
clock frequency of 3.4 GHz. To eliminate hardware-related
effects and highlight the relative computational cost within
configuration, the runtime is normalized by the maximum
execution time in each group. It can be observed that under the
conditions rτ = 1, rυ = 0.1 and rτ = 0.1, rυ = 0.1, the DC-
BL algorithm exhibits significantly lower runtime than both
NOMP and SBL, demonstrating its ability to effectively reduce
computational complexity in scenarios with large model di-
mensions and high virtual-grid resolution. When rτ = 1, rυ =
0.4 and rτ = 0.4, rυ = 0.4, the runtime of the DC-BL
algorithm becomes higher than that of SBL. This is mainly
attributed to the relatively small model dimension under these
settings, combined with the additional computational burden
introduced by the grid-refinement process in DC-BL, which
collectively give SBL a lower overall computational cost. In
addition, although OMP shows a clear advantage in terms of
computational efficiency, its estimation performance remains
significantly limited.

7) Channel Estimation with Fractional Delay and Doppler:
Fig.15 shows the NMSE performance over different SNR
levels, with both fractional delay and fractional Doppler
shift taken into account. The virtual grid resolutions are set
to rτ = 0.1 and rυ = 0.1, respectively. The inclusion
of fractional delay taps significantly increases the 1D DD-
domain channel length and the SBL algorithm’s complexity.
Therefore, it is excluded from the comparison. It can be
seen that the proposed DC-BL algorithm achieves the optimal
NMSE performance across the entire SNR range. By excluding
regions that lack channel taps, the DC-BL algorithm effec-
tively suppresses unnecessary estimation errors, leading to
improved performance. Furthermore, the proposed algorithm
reduces the computational complexity by effectively lowering
the dimensionality of the channel estimation model through

TABLE VI
COMPUTATIONAL COMPLEXITY (FRACTIONAL DELAYS AND DOPPLER

SHIFTS)

Method Computational complexity

OMP [30] O(MTNTLτLυ +MTNTK
2 +K3)

(K: the chosen sparsity)

NOMP [31]
O(MTNTLτLυ +MTNTM

2N2KRc+
MTNTK

2 +K3) (K: the chosen sparsity,
Rc: number of cycle refinement)

DC-BL (Algorithm 3)
rτ = rυ = 0.1

O(M2
TN

2
T(LτLseg + LsLbi ) + L3

τL
3
seg+

MTNT(L
2
τL

2
seg + L2

sL
2
bi
) + L3

sL
3
bi
)

DC-BL (Algorithm 3)
rτ = rυ = 0.4

O(MTNT(MN2(LτLseg + LsLd)+
L2
τLseg + L2

sL
2
d) + L3

τL
3
seg + L3

sL
3
d

MTM
2(Lτ + Ls))

the elimination of components that do not contain true channel
taps. The computational complexity is shown in Table VI.

8) Robustness under Coarse Delay and Doppler Resolu-
tion: Fig.16 compares the NMSE performance versus SNR
with rτ = rυ = 0.4. As shown in the figure, the proposed
algorithm continues to achieve the best performance across
the entire SNR range. The result suggests that the proposed
method maintains reliable channel estimation performance
even when integration is carried out over only a single segment
of the Doppler domain. Moreover, due to the relatively low
virtual-grid resolutions in both the delay and Doppler domains,
the parametric dictionary learning based estimation method is
applied to both domains, which demonstrates the flexibility
of the proposed algorithm. While updating the virtual grids
in both the delay and Doppler domains increases computa-
tional complexity to some extent, it leads to improved NMSE
performance. Moreover, the reduced model dimensionality
effectively offsets much of the additional complexity.

9) Comparison with 2D On-Grid SBL and 2D Off-Grid SBL
under Ideal Waveform Conditions: Fig.17 presents the NMSE
performance of the proposed DC-BL algorithm alongside that
of the 2D on-gird SBL and 2D off-grid SBL algorithms (col-
lectively referred to as 2D SBL hereafter). An OTFS system
employing the ideal waveform with the bi-orthogonal property
is considered in this scenario. The virtual grid resolutions are
set to rτ = 0.1 and rυ = 0.1, respectively. It can be seen that
both 2D SBL algorithms exhibit nearly identical performance,
indicating that the high-resolution virtual grid can capture the
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Fig. 15. NMSE v.s. SNR with rτ = 0.1, rυ =
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TABLE VII
COMPUTATIONAL COMPLEXITY (IDEAL WAVEFORM)

Method Computational complexity
2D on-grid SBL [24] O(NTL

2
υ + L3

υ +MTNTLτ + L2
τ )Lτ

2D off-grid SBL [24] O(NTL
2
υ + L3

υ +MTNTLτ + L2
τ )Lτ

DC-BL (Algorithm 3)
rτ = rυ = 0.1

O(M2
TN

2
T(LτLseg + LsLbi ) + L3

τL
3
seg+

MTNT(L
2
τL

2
seg + L2

sL
2
bi
) + L3

sL
3
bi
)

channel structure effectively, and that accounting for off-grid
estimation provides negligible improvement. At SNR below 5
dB, both 2D SBL methods achieve better NMSE performance
than DC-BL. However, when the SNR exceeds 5 dB, the DC-
BL outperforms both 2D SBL schemes. Moreover, the DC-
BL achieves an NMSE below 1× 10−2 at an SNR of 15 dB,
whereas the 2D SBL algorithms reach a similar level at 30 dB
SNR.

The computational complexity is represented in Table VII.
In 2D on-grid SBL and 2D off-grid SBL algorithms, Doppler
shifts are estimated based on the delay-domain channel estima-
tion results. Consequently, the channel length is shorter than
that in DC-BL, leading to lower computational complexity
for the 2D SBL algorithms. However, since the delay-domain
channel estimation inevitably introduces estimation errors, the
performance of both 2D SBL algorithms is inferior to that
of the DC-BL algorithm especially in high SNR conditions.
Moreover, neither of the 2D SBL algorithms can be applied
to practical systems, which constrained the applicability in
practice significantly.

VI. CONCLUSION

In this paper, we proposed a decoupled channel estimation
framework for OTFS systems, in which the DD-domain chan-
nel is partitioned into delay estimation and the joint estimation
of Doppler shift and channel gain. The approach effectively
exploits the channel characteristics in delay and Doppler
domains, leading to enhanced estimation performance. Based
on the framework, we developed a DC-BL channel estimation
algorithm. By leveraging virtual grids and integration-based
sensing matrices, the proposed algorithm achieves superior
performance compared to state-of-the-art schemes. In addition,
the proposed algorithm exhibits significant flexibility when
applied to virtual grids with relatively low resolution. For such

scenarios, an alternative DC-BL channel estimation method is
specifically designed to accommodate low-resolution condi-
tions while still delivering satisfactory estimation performance.
Furthermore, the proposed algorithms maintain relatively low
computational complexity without compromising estimation
performance.

APPENDIX A
DERIVATION OF (5)

By substituting (2) into (3), the sampled received signal can
be expressed as

r(n, l) =
1√
M

P−1∑
i=0

M−1∑
m=0

h(lτi , kυi
)XTF[n,m]

× e
j2πm(l−lτi

)

M e
j2πnkυi

N e
j2πkυi

(l−lτi
+MCP)

N(M+MCP) . (44)

Substituting (1) into (44) and applying the Fourier trans-
form, the DD-domain signal can be expressed as

Y DD[k, l] =

M−1∑
l′=0

N/2∑
k′=−N/2

HDD
k,l [k

′, l′]XDD[k′, l′] + zDD[k, l],

(45)

where the effective DD-domain channel HDD
k,l [k

′, l′] can be
represented as

HDD
k,l [k

′, l′]

=
P−1∑
i=0

M−1∑
m=0

N−1∑
n=0

h(lτi , kυi)e
−j2πml′

M e
j2πnk′

N e
j2πm(l−lτi

)

M

× e
−j2πn(k−kυi

)

N e
j2πkυi

(l−lτi
+MCP)

N(M+MCP)

=

P−1∑
i=0

h(lτi , kυi)ΘN (k − k′ − kυi)ΘM (−(l − l′ − lτi))

× e
j2πkυi

(l−lτi
+MCP)

N(M+MCP) , (46)

where ΘN (x) = 1/N
∑N−1

q=0 e−j2πxq/N and ΘM (x) =

1/M
∑M−1

q=0 e−j2πxq/M .
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APPENDIX B
DERIVATION OF (20)

The (lNT + k, lτ )-th element in Φτ can be rewritten as

Φτ (lNT + k, lτ ) =
M−1∑
l′=0

⌈N/2⌉∑
k′=⌈−N/2⌉

XDD[k′, l′]

×ΘM (−(l − l′ − lτ ))Γτ , (47)

where Γτ is denoted as

Γτ =

∫ kυ2

kυ1

1

N

N−1∑
n=0

e
−j2πn(k−k′)

N e
j2πν(n+ητ )

N dν

=
1

N

N−1∑
n=0

e
−j2πn(k−k′)

N e
j2πkυ2(n+ητ )

N
N

j2π(n+ ητ )

− 1

N

N−1∑
n=0

e
−j2πn(k−k′)

N e
−j2πkυ1(n+ητ )

N
N

j2π(n+ ητ )
, (48)

where we denote (l − lτ +MCP)/(M +MCP) as ητ .
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