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Abstract—This work establishes the fundamental limits of the
classical problem of multi-user distributed computing of linearly
separable functions. In particular, we consider a distributed
computing setting involving L users, each requesting a linearly
separable function over K basis subfunctions from a master
node, who is assisted by N distributed servers. At the core of
this problem lies a fundamental tradeoff between communication
and computation: each server can compute up to M subfunctions,
and each server can communicate linear combinations of their
locally computed subfunctions’ outputs to at most A users.
The objective is to design a distributed computing scheme that
reduces the communication cost (total amount of data from
servers to users), and towards this, for any given K, L, M,
and A, we propose a distributed computing scheme that jointly
designs the task assignment and transmissions, and shows that
the scheme achieves optimal performance in the real field under
various conditions using a novel converse. We also characterize
the performance of the scheme in the finite field using another
converse based on counting arguments.

I. INTRODUCTION

Distributed computing systems are imperative for handling
the computationally intensive data-driven tasks that arise in
many modern applications. This reality has brought to the fore
various distributed computing frameworks, such as MapRe-
duce [1] and Spark [2], that can successfully parallelize com-
putations across clusters of computing nodes. The efficiency
of distributed computing is naturally a function — among
other things — of the network topology, and of the nature
of the requested tasks. A very common setting — which is
what we focus on here — considers multiple servers, multiple
clients/users, and linearly-separable tasks/functions. In partic-
ular, we consider a setting with N servers and L users, where
each user ¢ € [L] wishes to compute a distinct function Fy(.)
that depends on a set of K files W = {W;,Ws,..., Wk}
stored at a master node. As one might expect, the functions
Fy;(W), ¢ € [L], can be written as the linear combination of
K distinct subfunctions f; (W), k € [K], and the coefficients
are captured by a demand matrix D of dimension L x K. We
here assume that the master node coordinates N servers, and
that each server can perform at most M < K subfunction
computations, subject to an additional constraint on the maxi-
mum number of users that each serve concurrently. We focus
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on the practical scenario where each server can communicate
messages that are linear functions of their locally computed
subfunction outputs, and can do so to a carefully chosen set
of up to A < L users. No communication among servers is
allowed. In this context, our objective is to design a distributed
computing scheme that achieves the minimum communication
cost (minimum rate, i.e., minimum amount of information
transmitted from servers to users) for a given set of demands
under the computational constraint M and the connectivity
constraint A. The computation—communication tradeoff has
been extensively investigated across various distributed com-
puting frameworks [3]-[19].
A. Related Works

Our considered setting is closest to the distributed comput-
ing model in [8], which employs tesselation-based tilings to
reduce the number of servers, as well as the work in [9], which
considered Fy(WW)’s over a finite field and which designed
schemes based on covering codes. Connections can also be
found with the work in [5], which addressed a single-user
variant of our setting, and which provided bounds derived from
matrix-entropic inequalities and covering designs. Naturally,
links can also be established with the works in [16], [17] which
again study the single-user linearly separable function compu-
tation problem in the presence of stragglers, as well as with
the work in [22] which considered the distributed computation
of a linearly separable Boolean function requested by a single
user.

B. Our Contributions

In this work, we study the multi-user distributed computing
problem of linearly separable functions under server—user
connectivity and computational constraints. Our contributions
are summarized as follows.

o We first propose an achievability scheme (Theorem 1)
for the multi-user setting based on a partitioning of
the demand matrix into suitable subblocks. For each
such subblock, we apply a left nullspace—based construc-
tion that jointly designs the dataset assignment and the
server transmissions to guarantee exact decodability. This
nullspace-based design builds on ideas introduced in our
recent work [5], which studied the single-user version
of the distributed linearly separable function computation
problem. In contrast to [5], which is restricted to a single-
user setting, the present work extends the framework



to the multi-user setting, while retaining validity over
general system parameters and arbitrary fields.

« We then derive a converse bound on the communica-
tion cost that is applicable for computing over finite
fields via an equivalent matrix factorization formulation
of the problem (Theorem 2). In this formulation, the
demand matrix is represented as a product D = CA,
where the sparsity patterns of the factor matrices C
and A are dictated by the A-connectivity constraint and
the M-computing capability constraint of the servers,
respectively. The inner dimension of this factorization
corresponds to the communication cost, and the converse
is obtained by lower bounding the minimum achievable
inner dimension over all such factorizations. Using non-
trivial counting arguments, we establish a novel converse
on the communication cost. When specialized to the
single-user setting considered in [5], the proposed con-
verse is strictly stronger than the previously known bound
for every ¢ > 2. Moreover, under certain divisibility
conditions on K, L, M, and A, we show that the
achievable communication cost meets the converse as the
field size ¢ — oo. For finite ¢ > K, we show that our
scheme is within a factor of 3 from the optimal rate when
A divides L and (A + M — 1) divides K, and within a
factor of 8 otherwise (Theorem 3).

o For real fields, we derive an additional converse bound
using the same matrix factorization representation of
the problem (Theorem 4). In this setting, we count the
degrees of freedom involved in factorizing the demand
matrix as D = CA to lower bound the inner dimension,
and hence the communication cost. When A divides L
and (A+ M —1) divides K, we show that the achievable
rate in Theorem 1 matches this converse bound, and is
within a factor of 4 otherwise.

Notations. For m,n € Z*, we let [n] = {1,2,...,n} and
m|n denotes m divides n. The number of non-zero entries
in a vector x is denoted by ||x||p. A vector x is said to be
k—sparse if ||x||o < k. The cardinality of a set S is denoted by
|S|. For any z € R, [z] denotes the smallest integer greater
than or equal to x. The vertical concatenation of two matrices
A, xn and By, are denoted by [A;B](;, 4my)xn- The
i-th row and the j-th column of a matrix A,,«, are denoted
by A(i,:) and A(:, ), respectively.

II. SYSTEM MODEL

Consider a distributed computing system with L users, each
of whom wants to compute a function that depends on a
library W = {Wy,Wa,..., Wk} stored at a master node,
where W; € FB for some field F and B € ZT. The requested
functions Fy(W), ¢ € [L], admit linear separability over K
basis subfunctions f(W4), k € [K], as

K
F(W) =Y defe(Wi), Ve L] )
k=1

where dpy, € F and fi(Wj) can be a linear or a non-
linear function. Let D = [d, 1], ¢ € [L], k € [K], be the matrix
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Fig. 1: (K, L, M, A) multi-user distributed computing system.

formed by the coefficients d ) in (1). Then, the L users’
demands can be represented as F(WW) = Df, where F(W) =
[Fl(W>, RN 7f’jL(VV)]T and f = [fl(Wl)7 ey fK(WK)]T.
Since Fy(W) is linearly separable, the computation of L
functions is distributed to N servers with identical computing
capabilities. Each server can compute at most M < K
subfunctions, and can serve at most A < L users. Figure 1
illustrates the L-user distributed computing system described
above. The system consists of three phases: demand phase,
computing phase, and communication phase.

Demand phase: In this phase, each user ¢ € [L] communi-
cates its demand Fy(WV) to the master node.

Computing phase: Once the demands of all users are known,
the master node assigns each server a set of subfunctions to
be computed, subject to its computational capacity M (also
referred to as computational cost). Let M,, C [K] denote
the indices of the subfunctions computed by server n, where
|IM,| < M. Then, server n evaluates all those fi(WWy)’s
such that M,, > k. The set M = {M;, Ma,..., My}
represents the computational tasks assigned to all N servers
in the system.

Communication phase: In this phase, each server linearly
encodes its subfunction values and transmits r,, messages to a
subset of users. We consider linear encoding schemes that do
not subpacketize the subfunction outputs. The message sent
by server n is denoted by ,,,.,r € [ry], and is of the form:
Tpy = ZkeM” &k fe(Wk), anri € F. The message
Xn = [Tpi,---sTnr,), 7 € [N], is intended for at most
A < L users. Let x denote the set of transmissions from all
N servers, and let R = ZnE[N] r,. Then, x can be written as

a1,1,1 a1,1,2 a1,1,K

fi(Wh)

ON,;ry, 1 ON,ry,2 ON,rn K fx(Wk)

A

where A is of dimension R x K and [|A(r,:)|l0 < M,
Vr € [R]. The communication links between servers and users
are assumed to be non-interfering and error-free. The users
linearly combine the received messages from different servers
to recover the requested functions. The decoding operation at
the users can be represented as F(W) = Cx, where Cpxr
is composed of the coefficients used to recover the requested



functions from the transmissions. Note that the columns of
C have a A—sparsity due to the communication constraint at
each server. Therefore,

Fi (W) c1,1  C1,2 C1,R
S B . DX
Fr(W) cL1  CL2 CL,R
results in the following decomposition
D=CA ()

where ||C(:,7)|lo < A, [|A(r,:)|lo < M, ¥r € [R]. Equation
(2) follows from F(WW) = Df and x = Af. Hence, the design
of a distributed computing scheme can be viewed as the joint
design of two matrices Cp,x p and A i x With the objective of
minimizing R under A—sparsity and M —sparsity constraints
on columns of C and rows of A, respectively.

One of the performance measures of a distributed computing
scheme is communication cost, which is defined as the total
amount of data transmitted by servers to users during the
communication phase, normalized by the size of a message
(assuming messages are of unit size). The communication cost
required for a given demand matrix D under the computational
cost M and per-node serving capacity A is denoted by
Rp(M,A). Then, Rp(M,A) is obtained as Rp(M,A) =
Zne[ N] Tn- Our interest is in the worst-case communication
cost, denoted by R(K, L, M, A), which is defined as

R(K,L,M,A) = m]%XRD(M, A)

over all possible D’s of dimension L x K. The worst-
case communication cost is referred to as the rate hereafter.
Therefore, the optimal rate, denoted by R*(K,L,M,A),
is defined as R*(K,L,M,A) := inf{R(K,L,M,A)
R(K,L,M,A) is achievable} where the infimum is taken
over all possible task assignments and linear transmission and
decoding policies satisfying the computational cost M and the
communication constraint A. We aim to identify the optimal
communication-computation costs for a given distributed com-
puting system and design a distributed computing scheme that
achieves the optimal rate for a given K, L, M, and A.

III. ACHIEVABILITY RESULTS
In this section, we present an achievable scheme for the

multi-user distributed linearly separable function computation
problem that applies to all values of K, L, M, and A.

Theorem 1. For the (K, L, M,A) distributed linearly sepa-
rable function computation problem, the rate

L

Rac‘h(KaLvaA) = A ’7—‘ ’7 (3)

K
Al |A+M-1

is achievable.

Proof. Consider D € FEZ*K, We partition D into submatrices

D; ; with i € H%H and j € Hﬁ as

D11 17[%}

D=

Drejs 0 Drey g

Each block D;; has dimension min{A, L — A(i — 1)} x
mn{A+M-1, K- (A+M-1)(j-1)}.

We now design the computing phase and the communication
phase for the given demand matrix. First, we consider a sub-
demand matrix D; ;. Corresponding to D; ;, we require A
servers'. We refer to them as the servers in group (4, j). The
set of column indices of D; ; is denoted by K; = {(j—1)(A+
M-1)+1,[-1)(A+M-1)+2,...,min(j(A+M-1),K)}.
Note that IC; is also the indices of the files handled by the
servers in group (i, 7). Without loss of generality?, we assume
that rank(D; ;) = A. Let ), ; = {ylw),yg’j), e ,yX’])} -
KC; be the indices of the columns that form a A x A full-rank
submatrix of D; ;. Then, we form the task assignment set of
the A servers corresponding to D; ; as

M =MD MED MG 4)
where, for every ¢ € [A]
M = {?A(s”)} U K\Yis) - Q)

That is, the d-th server in the group (i,j) is assigned to
compute the subfunctions f(Wy) for every k € Mgl’] ),
Each server in group (i,7) has access to all files indexed
by K; \ V; ;. Moreover, within group (¢, j), the file indexed
by ygz’j ) is uniquely assigned to the d-th server. From (5),
it is straightforward to see that \Mgm )| < M for every
possible 4, j, and 4. At this point, note that for a fixed 4,
3 corresponding to j € ﬁ } and § < A
are connected to the users indexed from (i — 1)A + 1 to
min(¢A, L). This is consistent with the constraint that each
server can communicate with at most A users.

We now design the message transmitted by the J-th server
in the group (i, j). Note that this message is intended for users
indexed from (i — 1)A + 1 to min(¢A, L). In order to design
the transmission, consider the submatrix of D; ;, denoted with
Df,j, formed by removing the columns indexed by M((;” ),
Observe that the size of the matrix D? ; is A x (A —1) and
rank(D‘f’ ;) =A—1. This is a consequence of the fact that
Df) ; consists of A —1 linearly independent columns from the
originally chosen A linearly independent columns of D; ;.
Now, we find a non-trivial vector I/gj e FXA in the left
nullspace of D?’ ;- Then the transmission from the 4-th server
in the group (4, 7) is

all servers

5§ _ .8 T
w55 =V i DiilfG-1yarM—1) 415+ fminG(a+m—1),5)]T-
(6)
1 cod _ L K
The total number of servers required is N = A [Z—‘ [m—‘
21f rank(D; ;) < A—which may occur either due to linearly dependent

rows in D; ; or because D; ; has fewer than A rows when i = [k-‘—the

rank can be made equal to A by replacing dependent rows or augmenting the
matrix with additional linearly independent rows. Furthermore, the removed
rows can be recovered as linear combinations of the remaining rows. If the
number of columns itself is less than A, for 7 = j, the case is
trivial and will be dealt with later in this proof.

30bserve that there is a one-to-one correspondence between servers and
task assignments Mgw ).

K
AF¥M-1



0. Con-
precisely

Note that v?; is designed such that V ;DY =

sequently, the support of the vector 1/ D is

the set ./\/l(; & ), which enables the J§-th server to construct
the transmission message in (6). Corresponding to each sub-
demand matrix there are A computing servers, each making
a single transmission of subfunction output size*. Therefore,
the rate achieved by the scheme is

L K
Roen(K, L, M, A) = A {A—‘ {A—i—M—l—‘ .

Decodability follows from the linear independence of {l/?’ it
d € [A]} for all i, j. The detailed proof is given in [23]. This
completes the proof of Theorem 1. ]

We now present an example of the proposed scheme and
demonstrate the achieved rate.

Example 1. Consider the (K = 10,L = 6, M = 3,A = 3)
distributed computing system. Let the demand matrix be

111111 1 1 1 1
123456 2 8 9 10
1149533 5 8 4 1 6510
D=1, 3 4941 2 6 3 10|€Fu
15639 2 4 4 5 1
16 719 5 10 1 10 10

Upon knowing the user demands, the master node partitions
D into Dy, D1, Dg1, and Dy where each D; ; is a
matrix of dimension 3 x 5. Corresponding to each sub-demand
matrix D, ;, the master node assigns 3 computing servers.
As a result, the system requires N = 12 servers. Servers in
groups (1,1) and (1, 2) are connected to users 1, 2, and 3, and
servers in groups (2,1) and (2,2) are connected to users 3, 4,
and 5. Due to space constraints, we describe only the dataset
assignment and the transmissions corresponding to the servers
in group (1,1). Note that K1 = {1,2,3,4,5} represents the
set of column indices, or equivalently subfunctions, associated
with the servers in this group. Further, the first three columns
of D11 are linearly independent, and thus we have )Y, =
{1,2,3}. From (5), we have the dataset assignment in the
servers in group (1,1) as follows:

MY = (1,45}, M8 = (2,45}, MY = (3,4, 5).

Note that the first server does not have access to Wo and Wi.
Now, we find a vector that resides in the left nullspace of the
submatrix D1 |, which comprises the columns {2,3} of D1 1.
Choose a vector, for example, vi ; = [6, —5, 1], from the left
nullspace of Dil. Then, the transmission made by the first
server is

x%,l = [67 _55 I]Dl,l[fl(Wl)a f?(W2)7 DRI} f5(W5)}T
=2f1(W1) = 9fs(W4) — 16 f5(W5). (M
AIf Di’[A+ﬁ_1 has fewer than A columns, the number of computing

servers can be chosen to equal the number of columns. Each server computes

the subfunction associated with a distinct column index of Di W
| AFM—T

and transmits the corresponding output to the connected users, yielding a
communication cost equal to the number of columns, which is upper bounded

by A.

Similarly, the vectors [3,—4,1] and [2,—3,1] are in the left
nullspaces of Dil and D‘rf)l, respectively. Therefore, the
transmissions from server 2 and server 3 in group (1,1) are

21y = B, =4 1D [fi(W1), fo(Wa), ..., f5(W5)]T

= —fo(Wa) — 8f4(Wy) — 14f5(W5) and (8)
ai = [2,=3, D11 [fL(W1), f2(Wa), ..., fs(W5)]T

= 2f3(W3) — 5fs(Wa) — 10f5(W5) )

respectively. Note that users 1,2, and 3 have access to x%’l,
x%’l, and x‘rf’l. Therefore, from (7), (8), and (9), the users can
decode the following

)W), .
MAW), . fs(W)]T = = (21, —

AW, .., f5(W3)]T =

Similarly, user u, for u = 1,2,3, can compute D1 2(u,
Wfe(Ws), ..., fio(Wio)]T from the transmissions sent by the
servers in group (1,2). Finally, user u, for v = 1,2,3, can
compute its requested function as

F,(W) = D1 1(u,:)[fi(W1),..., fs(W5)]T+
D1 a(u,)[fs(Ws), - - -, fro(Wio)]T

Similarly, users 4, 5, and 6 can decode their requested
functions from the transmissions from the servers in groups
(2,1) and (2,2). Hence, the resulting rate is Ry, = 12.

For the same parameters K = 10, L = 6, and A = 3, the
scheme presented in [8] for lossless recovery of user demands
achieves the same rate R = 12, but requires a computation
cost of M = 5, whereas our scheme requires only M = 3. This
improvement is enabled by breaking away from the disjoint
support assumption adopted in [8]. It is worth noting, however,
that our dataset assignment depends on the user demands,
while the scheme in [8] allows for a demand-agnostic dataset
assignment.

T = S (et

1

Dy (1, - 21’%,1 + x?l)

Dl 1( 4$11+3I’1 1)

Dy 1(3, ($11 8x11+9x1 1)-

N =N

Remark 1. The achievability proof builds on the nullspace-
based sparsification of the demand matrix proposed in [5],
which considers a single-user multiple-function request model
and applies the method to sub-blocks of size Lx (L+M—1). In
the present multi-user setting, the server-to-user connectivity
constraint forces the same approach to be applied to smaller
sub-blocks of size A x (A+ M —1).

This construction improves upon the tessellation-based solu-
tion in [8], where sub-blocks of size A x M are chosen without
an additional nullspace-based intra-block sparsification. The
improvement, however, requires knowledge of the demand
matrix, whereas the scheme in [8] follows a demand-agnostic
task assignment strategy.

IV. CONVERSE

In this section, we derive a lower bound on the achievable
rate of a (K, L, M,A) distributed computing system. First,
we consider the finite field setting where the converse is



developed using some counting arguments in the equivalent
matrix factorization formulation. Using the derived lower
bound, we demonstrate that our scheme approaches optimal
performance as ¢ — oco. When ¢ is finite, we show that our
scheme is order-optimal. Later, we show that our scheme is
optimal over R under certain specific conditions by deriving
a matching lower bound using the idea of degrees of freedom
in the matrix factorization formulation.

Theorem 2. For any (K,L,M,A) linearly separable dis-
tributed computing problem defined over the finite field T,
the optimal rate R*(K, L, M, A) follows
R*(K,L, M,A) > max (L,
LK
A+ M +log, (X) +log, (1) —log, (g — 1)

). (10)

Proof. Considering the worst-case scenario, we can assume
that users’ requests are linearly independent in fi(WWy)’s.
Therefore, we have

R*(K,L,M,A) > L. (11)

Now, let us look at the (K, L, M, A) distributed computing
problem through the lens of matrix factorization. Given the
demand matrix D € FéXK of rank L, we need to design two
matrices C € IFgXR and A € IF?XK, where R > L, such
that D = CA subject to ||C(:,7)||o < A and ||A(r,:)]]o <
M, ¥r € [R]. Given L and K, the total possibilities for D
over a finite field F, is ¢/¥. Since D = CA, the number
of choices for the product CA is also ¢“¥. However, the
maximum possible choices for the product CA is given by
(R)a™) (3"
(¢—1F '
The numerator in (12) represents the product of the number
of distinct C and A matrices. The matrix C is of dimension
L x R with entries from [F, and its columns are A—sparse.
Therefore, C has ((i) qA)R possibilities. Similarly, the total
possibilities for A is ((1)g™)® as A € FF*K and its rows
are M —sparse. For a chosen C and A, their scaled versions
of the form C' = CA and A’ = A~'A, where Aisa Rx R
diagonal matrix defined as A := diag(\1, A2, ..., ARr), also
result in the same product. Note that the columns of C’ and
rows of A’ are A—sparse and M —sparse, respectively, as
Ar # 0 for all r € [R]. Notice that the same product matrix is
obtained if any other dense transformation matrix is used in
place of A. However, the resulting C" and A’ do not satisfy the
required sparsity constraints. Therefore, the number of distinct
product matrices C and A jointly generate is given by (12).
Thus, we get the following relation

5 < (RODMGa™"

12)

13)
(-7
Taking the logarithm of (13) and rearranging gives
LK
(14)

2 L K :
A+ Iqu (A) + M + 1qu (M) - Iqu(q - 1)

Since R*(K, L, M, A) is given by the infimum of achievable
rates, we obtain (10) from (11) and (14). [ |

Corollary 1. When the field size ¢ — oo, the lower bound on

the optimal rate becomes R*(K,L, M,A) > %.

Proof. The proof follows directly from (10). As ¢ — oo, the
terms log, (%) — 0, log, (1) — 0, and log,(¢—1) — 1. W

Remark 2. Corollary 1 implies that as the field size ¢ —
oo, the lower bound in (14) matches the achievable rate in
Theorem 1 when A|L and (A + M —1)|K.

Theorem 3 (Optimality gap). When A|L, (A + M — 1)|K
and q > K, the achievable rate in Theorem 1 satisfies
1< Rach(K7L7Ma A) < 3.
- R*(K,L,M,A) —

Proof. The proof follows by bounding the ratio of Ry
and R* in (3) and (10), respectively, using (Z) < n* and
approximating the logarithmic terms under the assumption
q > K. The details are available in [23]. |

Note that when conditions A|L and (A+ M —1)|K do not
hold, the rate is within a factor of 8 from the lower bound.
When the underlying field is R, we derive a lower bound on
the rate similar to Theorem 2 using the degrees of freedom of
D and the degrees of freedom of C and A.

Theorem 4. For a (K, L, M, A) linearly separable distributed
computing problem defined over R, the optimal rate satisfies

LK
* > _ .
R(K,L,M,A)_max(L,A+M_1) (15)

Proof. A demand matrix D € REXK of rank L has LK de-
grees of freedom (DoF).> Since D = CA, we have DoF(D) =
DoF(CA) < DoF(C) + DoF(A). The matrix C € REXFE
has A—sparse columns, therefore, DoF(C) = AR. Similarly,
DoF(A) = MR as the matrix A € RF*K has M —sparse
rows. Thus, we get LK < AR+ M R, which can be tightened
by considering the redundant DoF as done in the finite field
case (Theorem 2). i.e., the scaled versions of C and A having
the following form CA and A~'A, where A € REXE is a
diagonal matrix of rank R, also result in the same product.
Therefore, we get DoF(D) < DoF(C) + DoF(A) — DoF(A).
Notice that the DoF(A) = R as A € RF*% is a diagonal
matrix of rank R. Thus, we have LK < AR+ MR — R
which results in R > Llfil. This completes the proof of

A+ N
Theorem 4. ]

Remark 3. For the real field, the achievable rate in Theorem
1 is optimal when A|L and (A + M — 1)|K; otherwise, it is
within a factor of 4 from the optimal rate.

5The degrees of freedom of a matrix is defined in [24], [25]. The degrees of
freedom of a matrix can be viewed as the number of independent parameters
that can be varied in the matrix.
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