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Abstract—As the push toward fully autonomous 5G and future
6G networks accelerates, Deep Reinforcement Learning (DRL)
has emerged as a cornerstone of intelligent decision-making,
enabling real-time adaptability and self-optimization. However,
this promise is increasingly overshadowed by a critical and
underexamined risk: DRL Drift, which refers to sudden and
often opaque degradation in agent performance after deploy-
ment. This phenomenon jeopardizes the reliability and trust-
worthiness of DRL systems operating in dynamic, real-world
telecom environments. Despite growing adoption of DRL in both
research and industry, the issue of DRL Drift remains largely
overlooked in major telecommunications standards such as the
3rd Generation Partnership Project (3GPP) and the European
Telecommunications Standards Institute (ETSI). To address this
challenge, we propose a novel Zero-Touch Drift Management
framework, developed in alignment with the ETSI closed-loop
reference architecture. At its core lies the Composite Drift Index,
a unified, domain-agnostic metric that combines key performance
indicators, state-action transitions, and uncertainty estimation to
enable proactive detection of degradation. Extensive evaluations
in a representative network-slicing scenario demonstrate up
to 23.4% higher detection accuracy than baseline methods,
with strong generalization across diverse DRL approaches. This
work offers the first standards-aligned solution to enhance DRL
resilience against drift in next-generation networks.

I. INTRODUCTION

The leap from 5G to 6G networks introduces unprece-
dented levels of complexity, heterogeneity, and dynamism
into modern communication infrastructures. These rapidly
shifting environments demand intelligent, self-optimizing con-
trol mechanisms capable of operating with minimal human
intervention [1]. In this context, Deep Reinforcement Learning
(DRL) has rapidly gained traction as a key enabler in this
landscape, offering autonomous decision-making capabilities
across a wide spectrum of network management tasks [2].

Despite its potential, the adoption of DRL in production-
grade telecom environments is significantly hindered by trust-
worthiness concerns. One of the most critical and underex-
plored challenges is “DRL Drift”, defined as an unintended
shift in a DRL agent’s learned policy or value function,
leading to degraded performance after deployment [4]. Unlike
traditional Machine Learning (ML) systems, DRL operates
in dynamic environments and relies on continuous interac-
tions, making it especially susceptible to distributional shifts
and environmental changes [4]. The absence of robust drift
detection mechanisms in DRL deployments can precipitate

catastrophic consequences for telecommunications operators,
including Service Level Agreement (SLA) violations, Quality
of Service (QoS) degradation, and compromised Quality of
Experience (QoE) for end-users [5].

While substantial research efforts have been devoted to
drift detection and mitigation in supervised and unsupervised
learning paradigms [3], [6], [7], [18], the unique challenges
posed by DRL systems, including sequential decision-making,
delayed rewards, and non-stationary policies, have received
inadequate attention. This research gap is particularly pro-
nounced when considering the current leading standardization
landscape. Both the 3rd Generation Partnership Project (3GPP)
and the European Telecommunications Standards Institute
(ETSI) have extensively incorporated AI/ML methodologies,
with particular emphasis on DRL approaches, into their ar-
chitectural specifications [8], [9]. However, the critical aspect
of post-deployment DRL model reliability and drift manage-
ment remains largely underexplored in these standardization
efforts, creating a substantial disconnect between theoretical
frameworks and practical deployment requirements.

To bridge this gap, we propose a novel end-to-end Zero-
Touch Drift Management (ZDM) framework, fully aligned
with the ETSI Zero-touch network and Service Management
(ZSM) closed-loop specification [10] and purpose-built for
DRL-based systems in telecommunications networks. Central
to our approach is the development of a robust, uncertainty-
aware drift detection mechanism built around a Composite
Drift Index (CDI). This unified metric continuously assesses
DRL agent performance degradation by integrating diverse
and complementary signals, including environment-level Key
Performance Indicators (KPIs), state-action dynamics, and
epistemic uncertainty estimation, offering a comprehensive
and interpretable view of system behavior. A key innovation
of our methodology is the use of evidential learning to
enable periodic monitoring of epistemic uncertainty in DRL
environments [11]. Epistemic uncertainty reflects the agent’s
lack of knowledge and serves to quantify its confidence in
policy decisions, particularly when encountering unfamiliar or
ambiguous state-action pairs. By continuously assessing this
confidence, our framework can proactively detect drift before
explicit performance degradation manifests.

The primary contributions (“C”) and key findings (“F”) of
this paper are summarized as follows:



• C1. We introduce a novel end-to-end Zero-Touch Drift
Management architecture that aligns with the ETSI ZSM
closed-loop automation standards. This architecture is
specifically designed for managing drift in DRL-based
systems operating in 5G/6G networks.

• C2. We propose a novel drift detection method that seam-
lessly integrates into the proposed ZDM architecture. At
its core is the Composite Drift Index, a unified and adap-
tive metric that combines environment-level KPIs (e.g.,
throughput, delay), state-action transition distributions,
and periodic epistemic uncertainty estimates to enable
early, interpretable, and proactive detection of DRL drift.

• C3. To the best of our knowledge, this is the first ap-
plication of evidential deep learning for monitoring DRL
agent uncertainty in the context of drift. Our approach
enables lightweight and interpretable drift detection by
representing uncertainty through probabilistic distribu-
tions: Dirichlet for discrete action spaces and Normal-
Inverse-Gamma (NIG) for continuous ones.

• C4. We empirically validate our drift detection framework
using a 5G/6G network slicing use case, demonstrating its
capability to detect performance drift while maintaining
service quality under realistic telecom workloads.

• F1. Experimental evaluations reveal that our approach
surpasses existing DRL drift detection methods, achiev-
ing up to 23.4% improvement in detection accuracy.

• F2. We show that the proposed method generalizes effec-
tively across a diverse set of DRL algorithms, including
value-based, policy-based, and actor-critic paradigms.

The remainder of this paper is organized as follows: Section
II provides a comprehensive review of related work. Section III
presents our ZDM closed-loop architecture. Section IV details
the system modeling approach and the theoretical foundations
of our CDI-based drift detection methodology. Section V
describes the use case employed to validate the proposed
solution. Section VI presents the experimental setup, results,
and performance analysis. Finally, Section VII wraps up the
paper.

II. RELATED WORK

This section provides a comprehensive analysis of existing
drift detection approaches, progressing from general ML con-
texts to specialized DRL scenarios, ultimately highlighting the
critical gaps that motivate our proposed solution.

A. Model Drift in Supervised and Unsupervised Learning

Foundational work in supervised learning has established
a robust theoretical basis for drift detection in data streams.
Gama et al. [12] introduced drift taxonomies (sudden, gradual,
incremental) with temporal monitoring frameworks, while
Bifet and Gavaldà [13] proposed adaptive windowing using
statistical bounds. More recent approaches, such as DSA-
AE [3], leverage deep learning by combining autoencoders
with dual self-attention for multi-type drift detection, while
uncertainty-based methods [18] use prediction confidence,

though limited to static classification. However, these super-
vised and unsupervised methods do not generalize to DRL
settings due to temporal dependencies, delayed rewards, and
evolving policies. Our work addresses these unique DRL
challenges with both discrete and continuous action spaces.

B. Deep Reinforcement Learning Drift Detection
The emergence of DRL for sequential decision-making has

spurred the development of drift detection techniques tailored
to dynamic RL environments. Fang et al. [14] introduce
GPAction, a two-stage Gaussian Process model that forecasts
agent actions and flags environmental changes via prediction
error monitoring. Alternative methods frame drift as an Out-
Of-Distribution (OOD) issue: Haider et al. [15] employ pre-
diction error spikes from learned dynamics models to signal
drift, while Greenberg et al. [17] track episodic return declines,
though this proves inadequate in non-episodic, real-world
contexts. Wang et al. [16] propose a detector-agent strategy
with uniform exploration to uncover drift, but its dependence
on exhaustive exploration and finite state assumptions hampers
real-world scalability. Current DRL drift detection frame-
works exhibit three core limitations: (1) reliance on static,
environment-specific thresholds results in elevated false posi-
tives in non-stationary contexts; (2) a focus on deterministic
environments restricts adaptability to stochastic settings and
diverse DRL algorithms; and (3) a notable lack of domain-
aligned solutions for 5G/6G networks persists. To overcome
these challenges, we propose a Composite Drift Index that
fuses diverse detection signals and incorporates epistemic
uncertainty via evidential learning, enabling proactive, reliable
detection. To the best of our knowledge, this marks the first
ETSI-compliant zero-touch architecture specifically designed
for DRL drift management in telecommunications systems.

III. ZERO-TOUCH DRL DRIFT MANAGEMENT
FRAMEWORK

The ETSI ZSM framework offers a standardized approach
for autonomous network management via the Observe-Orient-
Decide-Act (OODA) loop, enabling continuous monitoring,
analysis, decision-making, and action without human over-
sight [10]. Building on this paradigm, our ZDM architecture
adapts the OODA loop to DRL systems operating within
5G/6G infrastructures, where high environmental complexity
demands robust drift handling As illustrated in Fig. 1, the
architecture includes four primary modules mapped with the
OODA phases: the Monitoring System (Observe), Uncertainty
Analytics Engine (Orient), Drift Detection Analytics Engine
(Decide), and Decision Engine (Act). These components are
unified by a central DRL knowledge repository (Knowledge
Data), which stores logs and reference data essential for drift
assessment. The DRL agent interfaces with diverse network
elements such as core network functions, RAN components,
and edge/cloud resources in real time.

A. Monitoring System
The Monitoring System constitutes the ”Observe” phase

of the closed-loop architecture and serves as the primary data
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Fig. 1: The Proposed Zero-Touch DRL Drift Management
Closed-Loop Architecture Compliant with ETSI ZSM Refer-
ence Model.

collection layer for the DRL system deployed in 5G/6G in-
frastructure. This module continuously monitors critical KPIs
that are context-dependent based on the specific use case,
including but not limited to throughput, packet loss ratio,
end-to-end latency, etc. Beyond traditional network KPIs, the
monitoring system implements deep observability by tracking
DRL agent-level statistics, particularly the state-action pairs
(st, at) that provide insights into the current environment
state and agent behavior patterns. This dual-layer monitoring
approach enables a comprehensive understanding of both
network performance and agent decision-making processes.

B. DRL System Logs - Knowledge Data

As depicted in Figure 1, all collected data is systematically
stored in the central DRL System Logs, which serves as a
shared knowledge repository for the entire closed-loop system.
This repository maintains not only real-time operational data
but also reference datasets captured during the late (post-
convergence) training phase, which serve as baseline distribu-
tions for subsequent drift detection algorithms. The temporal
organization of this data enables historical trend analysis and
facilitates the computation of statistical distances between
current and reference distributions.

C. Uncertainty Analytics Engine

The Uncertainty Analytics Engine represents the ”Orient”
phase and quantifies the epistemic uncertainty of the DRL
agent’s neural network. Epistemic uncertainty captures the
agent’s confidence in its predictions and reflects the degree
of knowledge about the environment state, indicating regions
where the agent lacks sufficient training data or where the

environment has shifted from the training distribution [19]. We
employ evidential learning to compute epistemic uncertainty,
treating neural network outputs as parameters of a higher-order
distribution [20] (details in section IV). As the environment
evolves and deviates from the training distribution, epistemic
uncertainty increases, signaling potential performance degra-
dation.

D. Drift Detection Analytics Engine

The Drift Detection Analytics Engine implements the “De-
cide” phase and houses the proposed CDI algorithm (details
in section IV-D). This engine continuously analyzes data from
two sources: (1) monitored KPIs and state-action pairs from
the Knowledge Data repository, and (2) periodically computed
epistemic uncertainty values from the Uncertainty Analyt-
ics Engine. The CDI algorithm employs statistical distance
measures (Jensen-Shannon divergence [25] and Mahalanobis
distance [24]) to compare current distributions with reference
baselines. The algorithm operates on multiple timescales with
high-frequency monitoring of state-action distributions and
lower-frequency uncertainty analysis. When statistical dis-
tances exceed predefined thresholds or uncertainty levels show
sustained increases, the system flags drift events and generates
structured alerts forwarded to the Decision Engine.

E. Decision Engine

The Decision Engine constitutes the “Act” phase and
implements the autonomous response mechanism for detected
drift events. Upon receiving drift alerts, this component ini-
tiates a multi-stage mitigation strategy: (1) activation of a
safe rule-based fallback policy that temporarily overrides the
DRL agent’s decisions to maintain system stability, and (2)
triggering the retraining process using recent data from the
DRL System Logs. The retraining procedure incorporates both
historical reference data and newly collected samples that
capture the shifted environment characteristics. The engine
coordinates the training process while monitoring convergence
metrics to ensure acceptable performance levels. As shown in
Figure 1, the Decision Engine completes the closed-loop by
feeding the retrained agent back into the 5G/6G infrastructure
environment, ensuring continuous adaptation without human
intervention.

IV. SYSTEM MODEL

This section formally presents our proposed DRL drift
detection framework. To establish the foundation, we first
explore the foundational concept of epistemic uncertainty,
which serves as the theoretical basis for our approach. Next,
we define the drift detection problem within the context of
DRL. Finally, we describe the design and modeling of our
CDI, which integrates uncertainty estimation into proactive
drift monitoring.

A. Epistemic Uncertainty

Uncertainty quantification in deep learning represents a
fundamental challenge in distinguishing between aleatoric



uncertainty (inherent data noise) and epistemic uncertainty
(model knowledge limitations) [11]. In DRL, epistemic un-
certainty estimation becomes particularly critical as agents
must make sequential decisions under partial observability
while adapting to dynamic environments. The evolution of
uncertainty estimation has progressed through several paradig-
matic approaches [19]. Traditional methods such as Monte
Carlo Dropout (MCD) [21] approximate epistemic uncertainty
by treating dropout as a Bayesian approximation, sampling
multiple forward passes during inference. However, MCD
suffers from computational overhead and lacks theoretical
grounding for uncertainty calibration. Ensemble methods [22]
address some limitations by training multiple models with dif-
ferent initializations, yet they impose significant computational
and memory requirements, making them impractical for real-
time DRL applications. These limitations have catalyzed the
development of the evidential learning paradigm [11], which
provides a principled framework for uncertainty quantification
without requiring multiple forward passes or ensemble train-
ing. In the context of DRL, evidential learning enables agents
to explicitly model their confidence in value estimates and
policy decisions, facilitating more robust decision-making in
production environments.

B. Problem Formulation

Consider a Markov Decision Process (MDP) [5], [27]
defined by the tuple (S,A,P,R, γ), where S represents the
state space, A the action space, P the transition probability
function, R the reward function, and γ the discount factor (all
notations are summarized in Table I).

TABLE I: Notations Summary.

Symbol Description
S,A,P,R, γ MDP: state, action, transition, reward, discount
πθ(a|s) Policy function parameterized by θ
Vϕ(s) Value function parameterized by ϕ
ei Evidence logits for action i

α = [α1, . . . , αK ] Dirichlet evidence parameters for all discrete action K
αi = exp(ei) + 1 Evidence strength for action i
S =

∑
j αj Total evidence strength

pi = αi/S Predictive probability for action i
Uepi(s) Epistemic uncertainty: K/S

(µ, ν, α, β) NIG parameters (mean, scaling, shape, scale)
Uval(s) Value uncertainty: β/(α− 1)

Dt Composite Drift Index
DKPI(t) KPI-based drift score
DSA(t) State-action drift score
DU(t) Uncertainty drift score
φt, ψt, ξt CDI component weights
Itrigger(t) Trigger flag (1 if drift conditions met)

τKPI, τSA, τCDI Drift detection thresholds
kt KPI vector at time t

µref ,Σref Reference mean and covariance
Draw

KPI(t) Raw Mahalanobis distance
Pt, Pref Current and reference state-action distributions
JS(P,Q) Jensen-Shannon divergence
KL(P∥Q) Kullback-Leibler divergence

Wt States visited in current window
Uagg(t) Aggregated epistemic uncertainty
Uref Reference uncertainty level

µ(·), σ(·) Mean and std. over sliding window
kKPI, kSA Sensitivity parameters for drift

In evidential DRL, we model the agent’s policy πθ(a|s) and
value function Vϕ(s) using evidential neural networks. Unlike
traditional networks that provide point estimates, evidential
networks output the parameters of probability distributions,
allowing them to represent both predictions and the associated
epistemic uncertainty. Specifically, for discrete actions, the
neural network outputs the parameters of a Dirichlet distri-
bution [11], while for continuous value estimation, it outputs
the parameters of a NIG distribution [23].

1) Policy Modeling with Dirichlet Distributions: For a
given state-action pair (s, a), the evidential network produces a
set of non-negative evidence logits e = [e1, e2, . . . , eK ], where
K is the number of possible actions. These logits are trans-
formed into concentration parameters α = [α1, α2, . . . , αK ] of
the Dirichlet distribution using the following transformation:

αi = exp(ei) + 1 (1)

This transformation ensures that each αi > 1, representing a
positive amount of “evidence” supporting action ai. A higher
αi implies the agent is more confident about the suitability of
action ai in the current state.

The predictive probability for choosing action ai is derived
from the mean of the Dirichlet distribution [11]:

pi =
αi∑K
j=1 αj

=
αi
S

(2)

where S =
∑K
j=1 αj represents the total evidence accumulated

across all actions. This formulation allows the agent to express
not just a distribution over actions, but also how strongly it
believes in that distribution. To quantify how uncertain the
agent is about its action selection, we compute the epistemic
uncertainty as:

Uepi(st) =
K∑K
j=1 αj

=
K

S
(3)

This quantity is inversely related to the total evidence S. When
S is small (i.e., low confidence), the uncertainty is high; when
S is large (i.e., the network has gathered strong evidence from
data), the uncertainty is low. Thus, this metric serves as a
proxy for how much the agent ”knows” about its current policy
decision in state st.

2) Value Function Modeling with Normal-Inverse-
Gamma Distributions: For the value function V (s), the
network models its uncertainty using a NIG distribution pa-
rameterized by (µ, ν, α, β). The neural network outputs these
four parameters, which describe a belief distribution over
possible value estimates [23]:

V̂ (s) = µ, σ2 =
β(ν + 1)

αν
(4)

Here, µ represents the predicted mean value for state s, and
σ2 gives the predictive variance, capturing both epistemic and
aleatoric uncertainty. To isolate the epistemic component (the
part of uncertainty stemming from lack of knowledge or data),
we compute:

Uval(st) =
β

α− 1
for α > 1 (5)



This expression is the expected value of the variance under
the Inverse-Gamma distribution and is only valid for α > 1.
A lower α implies that the model has seen fewer examples
like the current input, and hence is less certain about its value
prediction. Conversely, a higher α suggests strong confidence,
leading to low epistemic uncertainty.

C. Composite Drift Index (CDI) Modeling

1) Multi-Modal Drift Detection: Our proposed system in-
tegrates multiple drift indicators through a novel CDI that
monitors both system performance and agent behavior. The
CDI at time t is defined as:

Dt = φt ·DKPI(t)︸ ︷︷ ︸
KPI-based drift

+ψt ·DSA(t)︸ ︷︷ ︸
State-action drift

+ ξt · Itrigger(t) ·DU(t)︸ ︷︷ ︸
Uncertainty-based drift

(6)

where the trigger indicator Itrigger(t) is defined as:

Itrigger(t) =


1, if DKPI(t) > τKPI

∨ DSA(t) > τSA

∨ t mod T = 0

0, otherwise

where τKPI and τSA denote the thresholds for the KPI
and state-action metrics, respectively, (see section IV-C5). In
our implementation, the weights (φt, ψt, ξt) are fixed to 1

3
to ensure equal sensitivity across all three drift modalities.
However, in settings where certain indicators (e.g., epis-
temic uncertainty) are more critical for decision-making, these
weights may be treated as tunable or even learnable param-
eters. Additionally, the periodicity parameter T is selected
based on application-specific monitoring needs and available
computational resources.

2) KPI-Based Drift Detection: The KPI drift component
DKPI(t) employs the Mahalanobis distance to detect shifts
in system performance metrics. For a KPI vector kt =
[k1, k2, . . . , kn] at time t, the Mahalanobis distance from the
reference distribution is [24]:

Draw
KPI(t) =

√
(kt− µref)TΣ−1

ref (kt− µref) (7)

where µref and Σref represent the mean vector and covari-
ance matrix of the reference KPI distribution, respectively. The
distance is normalized to [0, 1] using [32]:

DKPI(t) =
Draw

KPI(t)−Dmin

Dmax −Dmin
(8)

3) State-Action Drift Detection: The state-action drift com-
ponent DSA(t) utilizes the Jensen-Shannon divergence to
measure distributional shifts in the agent’s state-action space.
For probability distributions P and Q representing current
and reference state-action distributions, the Jensen-Shannon
divergence is [25]:

JS(P,Q) =
1

2
KL(P |M) +

1

2
KL(Q|M) (9)

where M = 1
2 (P + Q) and KL(·|·) denotes the Kullback-

Leibler divergence [25]:

KL(P |Q) =
∑
i

P (i) log
P (i)

Q(i)
(10)

The state-action drift is then computed as:

DSA(t) =
√

JS(Pt, Pref) (11)

where Pt represents the current state-action distribution and
Pref the reference distribution.

4) Epistemic Uncertainty Drift Detection: The uncertainty
drift component DU(t) captures shifts in the agent’s epistemic
uncertainty patterns. We aggregate the epistemic uncertainty
across all visited states in a monitoring window:

Uagg(t) =
1

|Wt|
∑
s∈Wt

Uepi(s) (12)

where Wt represents the set of states visited in the monitoring
window ending at time t. The uncertainty drift is computed
using the absolute difference from the reference uncertainty
level [32]:

DU(t) =
|Uagg(t)− Uref|
Umax− Umin

(13)

5) Adaptive Threshold Mechanism: The system employs
dynamic thresholds to adapt to evolving network conditions.
The thresholds are computed as [31]:

τKPI = µ(DKPI) + kKPI · σ(DKPI) (14)
τSA = µ(DSA) + kSA · σ(DSA) (15)

where µ(·) and σ(·) denote the mean and standard deviation
computed over a sliding window, and kKPI, kSA are sensitivity
parameters that control the detection sensitivity.

6) Drift Decision Mechanism: The final drift decision is
made by comparing the CDI against a composite threshold
τCDI:

Drift Detected =

{
True, Dt > τCDI

False, otherwise
(16)

D. DRL Drift Detection framework

The proposed DRL Drift Detection framework, summa-
rized in Algorithm 1, enables early detection of performance
degradation by leveraging the complementary nature of KPI
monitoring, agent behavioral analysis, and epistemic uncer-
tainty quantification, providing a robust solution for maintain-
ing DRL system reliability in dynamic 5G/6G environments.
The algorithm operates through a three-pronged approach
where system-level KPIs are continuously monitored using
Mahalanobis distance DKPI(t) to detect statistical deviations
from reference distributions PKPI

ref . Concurrently, state-action
behavioral drift is quantified through Jensen-Shannon diver-
gence DSA(t), capturing distributional shifts in the agent’s
policy behavior. The third component employs evidential
DRL to estimate epistemic uncertainty Uepi(st) using either
Dirichlet distributions for discrete actions or NIG distributions



for continuous control, with uncertainty aggregation (eq. 12)
computed over a sliding window of size W . The CDI inte-
grates these three modalities through adaptive weighting Dt,
where Itrigger(t) activates uncertainty monitoring periodically
with period T , and adaptive thresholds τKPI and τSA provide
sensitivity control through hyperparameters kKPI and kSA.
When Dt > τCDI, the algorithm triggers drift detection and
initiates retraining mechanisms, while maintaining computa-
tional efficiency through selective uncertainty evaluation and
online reference distribution updates during stable periods.

Algorithm 1: DRL Drift Detection Algorithm
Input : DRL agent πθ , window size W , period T ,

sensitivity parameters kKPI, kSA
Output: Drift detection signal Dt

Initialize PKPI
ref , P SA

ref ,Uref ;
Initialize WKPI,WSA,WU;
Set weights: φt = ψt = ξt = 1/3;
for each time step t do

Collect system KPIs: kt = [k1, . . . , kn];
Observe (st, at);
Compute Uepi(st) using Eq. (3);
KPI Drift Detection: Compute Draw

KPI(t) using Eq. (7);
Normalize: DKPI(t) =

Draw
KPI(t)−Dmin

Dmax−Dmin
;

State-Action Drift Detection: Update Pt with (st, at);
Compute DSA(t) =

√
JS(Pt, Pref) using Eq. (11);

Uncertainty Drift Detection: Update window:
Wt ←Wt ∪ {st};
Uagg(t) = 1

|Wt|
∑

s∈Wt
Uepi(s);

DU(t) =
|Uagg(t)−Uref |
Umax−Umin

;
Adaptive Threshold Computation:
τKPI = µ(DKPI) + kKPI · σ(DKPI);
τSA = µ(DSA) + kSA · σ(DSA);
Trigger Evaluation: if DKPI(t) > τKPI or
DSA(t) > τSA or t mod T = 0 then
Itrigger(t) = 1;

else
Itrigger(t) = 0;

Composite Drift Index:
Dt = φt ·DKPI(t)+ψt ·DSA(t)+ξt ·Itrigger(t) ·DU(t);

Drift Decision: if Dt > τCDI then
Dt = True;
Trigger retraining or adaptation mechanism;

else
Dt = False;

Update References: if Dt = False then
Update PKPI

ref , P SA
ref ,Uref with current data;

V. USE CASE: DRL FOR DYNAMIC 5G/6G NETWORK
SLICING

To rigorously evaluate the ZDM framework, we adopt net-
work slicing as a representative and 3GPP-compliant use case
of high industrial relevance [5], [26]. We focus on assessing
the efficacy of the proposed drift detection mechanism via the
CDI. Network slicing allows for multiple logically isolated,
service-specific networks to coexist over a shared physical
infrastructure, with each slice designed to meet distinct QoS

and SLA requirements [27]. Our evaluation centers on a dy-
namic slicing scenario, where a DRL agent optimally allocates
physical resources across three standard slice types: Ultra-
Reliable Low Latency Communication (URLLC), massive
Machine-Type Communication (mMTC), and enhanced Mo-
bile Broadband (eMBB). The DRL agent dynamically assigns
Resource Blocks (RBs) to each slice based on real-time traffic
demands, ensuring SLA compliance while optimizing overall
network efficiency. The environment is modeled as a discrete-
time MDP, wherein the agent allocates Rtotal RBs among
the slices at each decision epoch to meet their respective
QoS targets. The system model components are detailed in
Table II. This MDP-based formulation allows the DRL agent
to learn adaptive resource allocation policies under dynamic
traffic conditions, offering a suitable platform to evaluate the
proposed drift detection approach.

VI. PERFORMANCE EVALUATION

This section presents a comprehensive evaluation of our
novel drift detection approach. We first describe the ex-
perimental setup and highlight key implementation details,
followed by an in-depth analysis of the results. Finally, we
conclude with a discussion that distills critical insights and
summarizes the principal findings of the study.

A. Experimental Setup

To evaluate our approach, we implemented three representa-
tive DRL baselines: Deep Q-Network (DQN) [28] as a value-
based method, Proximal Policy Optimization (PPO) [29] as
a policy-gradient method, and Advantage Actor-Critic (A2C)
[30] as an actor-critic method. These algorithms represent a
broad spectrum of DRL techniques applied to dynamic radio
resource management in network slicing. The DRL models
were implemented using the Stable-Baselines31 and Gymna-
sium2 (a successor to OpenAI Gym) to create the custom
environments for 5G/6G network slicing. Hyperparameters
were tuned based on empirical evaluation. The learning rate
was set to 1 × 10−4, with a discount factor γ of 0.99.
DQN used a replay buffer size of 105 and target network
updates every 1000 steps. PPO and A2C were configured with
generalized advantage estimation using λ = 0.95. For PPO,
a clipping parameter of 0.2 was used, while A2C employed
shared networks for the actor and critic. All components of
the proposed architecture are implemented in Python 3.12.8.
The experiments were conducted on a workstation equipped
with an AMD 8-Core 3.2 GHz CPU, 16 GB RAM, and an
NVIDIA GeForce RTX 3050 Ti GPU.

B. Implementation Details

We modified the neural network architectures of the baseline
DQN, PPO, and A2C algorithms to incorporate evidential
output layers for uncertainty-aware resource allocation in
network slicing. Based on the system modeling presented in
Table II, our formulation defines a continuous action space

1https://stable-baselines3.readthedocs.io/en/master/
2https://gymnasium.farama.org/



TABLE II: DRL System Model Components for 5G/6G Network Slicing.

State Space Action Space Reward Function

Traffic Load: L(t) RB Allocation: a(t) R(t) = α ·RQoS(t) + β ·Refficiency(t)− γ ·Rpenalty(t)

Current RB Allocation: R(t) Constraint:
∑

i ai(t) ≤ Rtotal QoS Reward: RQoS(t) =
∑

i wi · 1SLAi
(t)

Buffer States: B(t) Min. Guarantees: ai(t) ≥ R
(i)
min Efficiency: Refficiency(t) =

∑
i Ti(t)∑
i ai(t)

Latency Metrics: τ (t) Action Bounds: ai(t) ∈ [0, R
(i)
max] Penalty: Rpenalty(t) =

∑
i λi ·max(0, τi(t)− L

(i)
max)

Throughput: T(t)
a(t) = [aURLLC, amMTC, aeMBB]

Weights: α = 0.6, β = 0.3, γ = 0.1

SLA Violations: V(t) Priorities: wURLLC = 0.5, wmMTC = 0.2, weMBB = 0.3

a(t) ∈ R3 representing resource block allocations across
URLLC, mMTC, and eMBB service types, subject to capacity
constraints

∑
i ai(t) ≤ Rtotal and minimum guarantee require-

ments ai(t) ≥ R
(i)
min. Given the continuous nature of the action

space, we employ NIG distributions to model the evidential
output layers, where each network produces four parameters
(γ, ν, α, β) per action dimension to characterize both the
predictive mean and the associated epistemic uncertainty. For
DQN, we replace the standard Q-value output with evidential
Q-value distributions; for PPO and A2C, we modify both the
policy and value function networks to output NIG parameters,
allowing the agents to quantify uncertainty in both action
selection and value estimation during the resource allocation
process. It is worth emphasizing that the central aim of this
evaluation is to validate the effectiveness of the drift detection
mechanism, which serves as the pivotal and most technically
demanding element of our ZDM closed-loop architecture. In
the current design, drift adaptation involves retraining the DRL
agent upon detection and using a rule-based fallback policy to
ensure operational continuity. More advanced, context-aware
drift-handling methods will be explored in future work.

C. Experiment Results & Findings
In this section, we present the empirical results evaluat-

ing overall drift detection performance, generalizability, and
robustness. We also include an ablation study on the CDI
method, followed by a comparative analysis with existing
DRL-based drift detectors.

1) Overall Effectiveness and Generalizability: To study the
effectiveness of the proposed DRL drift detection mechanism,
we evaluate the CDI under simulated non-stationary conditions
characterized by a sudden and persistent OOD drift. The pri-
mary goal is to assess the sensitivity and reliability of CDI in
identifying environment-induced distributional changes, while
also investigating its robustness and generalizability across
diverse DRL architectures. Fig. 2 illustrates the temporal
evolution of CDI values for three representative DRL algo-
rithms: DQN, PPO, and A2C. Before the induced drift (red
vertical line), CDI values remain low and stable across all
methods, indicating stationary system dynamics. Upon drift
introduction, CDI values sharply increase and remain elevated,
reflecting sustained drift awareness. The shaded area marks
the true drift period, while the orange dashed line shows the
95th percentile threshold used to signify drift detection. CDI
trajectories exceed this threshold shortly after drift onset across

all methods, confirming timely and consistent detection. The
rate and magnitude of CDI increase differ among algorithms:
A2C shows the steepest rise, followed by PPO and then
DQN, indicating varying sensitivity to drift. These differences
highlight CDI’s robustness and generalizability across diverse
algorithmic architectures and learning behaviors.

2) Epistemic Uncertainty for DRL Drift Detection Val-
idation: In this experiment, we analyze the behavior of
epistemic uncertainty as a drift-aware signal to evaluate its
sensitivity and effectiveness in detecting environmental non-
stationarities. Epistemic uncertainty, which quantifies model
ignorance stemming from insufficient or unfamiliar data, is
particularly informative when an agent is exposed to OOD
scenarios. Fig. 3 presents uncertainty monitoring plots for
DQN, PPO, and A2C agents under both stationary and drift
conditions, with each subplot capturing temporal fluctuations
in epistemic uncertainty values across timesteps. Across all
three subplots, a sharp increase in epistemic uncertainty occurs
immediately after the drift initiation point (red dashed line),
aligning with the shaded drift period. Before this, uncertainty
levels remained low and stable, indicating the agents’ con-
fidence in familiar environments. Post-drift, uncertainty rises
abruptly and remains elevated, reflecting reduced confidence
under OOD conditions. The moving average curves emphasize
this trend, stabilizing at higher values. The drift threshold
is consistently surpassed shortly after drift onset for all al-
gorithms, supporting the use of epistemic uncertainty as an
early-warning signal for performance degradation. Differences
in response magnitude and smoothness are observed across
algorithms, with A2C and PPO exhibiting more gradual and
consistent increases, while DQN shows higher variability.

These results reinforce the premise that epistemic uncer-
tainty is an effective drift indicator, capable of capturing early
signs of knowledge mismatch and model miscalibration.

3) CDI Ablation Study: To further investigate the be-
havior and reliability of the proposed CDI, we conducted a
fine-grained analysis of its constituent components, namely
KPI Drift, State-Action Drift, and Epistemic Uncertainty. As
illustrated in Fig. 4, each subplot presents the normalized
temporal evolution of these individual signals alongside the
unified CDI metric, offering insight into how each dimension
of drift manifests over time. Notably, the KPI Drift (top-left)
exhibits marked deviations during drift intervals, particularly
in response to environmental perturbations, while the State-
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Fig. 2: Tracking drift using the proposed CDI across three DRL algorithms: DQN, PPO, and A2C.
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Fig. 3: Epistemic uncertainty monitoring across DQN, PPO, and A2C under normal and distributional drift.

Action Drift (top-right) captures shifts in policy behavior,
such as those induced by changes in the state-action distribu-
tion. The Epistemic Uncertainty signal (bottom-left), reflecting
model confidence, reacts prominently in regions indicative of
unfamiliar or OOD states. Importantly, these diverse responses
are not synchronous, underscoring that each signal is sensitive
to distinct facets of the underlying distributional shifts. This
complementary behavior is crucial, as it endows the CDI
(bottom-right) with robustness and adaptability, allowing it
to effectively aggregate heterogeneous sources of drift into
a cohesive and reliable signal. Because CDI is composed of
multiple signals rather than relying on a single indicator, it
is also more robust against false positives, reducing the likeli-
hood of misidentifying normal variability as drift. Collectively,
the results validate the utility of the CDI as a generalizable and
discriminative indicator for monitoring dynamic instabilities in
DRL environments.

4) CDI Correlation study: To further characterize the
internal structure and dynamics of the CDI (see Eq. 6),
we study the correlation among its constituent components.
Fig. 5 presents the correlation matrix, which quantifies the
degree of linear association between the CDI components:
KPI Drift, State-Action Drift, and Epistemic Uncertainty. CDI
exhibits a strong correlation with all components, confirming
their meaningful contribution. State-Action Drift shows the
highest correlation (0.81), highlighting its dominant role and
supporting the observation that most DRL drift arises from
state-action interactions. KPI Drift follows with a correlation
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Fig. 4: Monitoring the individual components of the CDI: KPI
Drift, State-Action Drift, and Epistemic Uncertainty.

of 0.72, reflecting sensitivity to environment-level changes.
Epistemic Uncertainty presents a slightly lower correlation
(0.69), which is expected since it is computed periodically
rather than continuously. Overall, these results demonstrate
the complementary nature of the components and validate the
robustness of the composite CDI, which captures diverse drift
signals while mitigating sensitivity to noise from any single
source.

5) Comparative Study: In this experiment, we conduct a
comparative analysis of the proposed CDI against state-of-the-
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Fig. 5: Correlation heatmap between the components of the
CDI.

art drift detection methods in DRL, which have been adapted
from other domains to our telecom context. These include
environment monitoring [14], reward-based monitoring [17],
and OOD detection [15]. Fig. 6 summarizes the comparative
performance across four key metrics: accuracy, precision,
recall, and F1-score. The results clearly indicate that the CDI
outperforms all baselines across every performance dimension.
Specifically, the CDI achieves the highest accuracy (0.91), pre-
cision (0.89), recall (0.93), and F1-score (0.91), demonstrating
not only its superior detection capability but also its effective-
ness in minimizing false positives. This performance can be
attributed to the CDI’s robust integration of heterogeneous drift
signals, including KPI drift, state-action drift, and epistemic
uncertainty. The synergy among these components enables
the CDI to maintain a holistic understanding of the agent’s
behavior and its operational context. Notably, the uncertainty
signal plays a critical role in enhancing sensitivity to latent
or subtle drifts by capturing the agent’s epistemic confidence.
This allows the CDI to identify periods where the agent is
uncertain about its predictions, which is a strong indicator
of distributional shifts. Consequently, the CDI benefits from
both early drift detection and reduced susceptibility to noise,
positioning it as a comprehensive and reliable solution for
DRL drift monitoring.

D. Discussion & Learned Lessons

The analysis of our DRL drift detection system reveals
critical insights. A central conclusion is the pivotal role of
epistemic uncertainty, which emerges as a reliable and sensi-
tive indicator of distributional shifts. Notably, sharp increases
in this uncertainty consistently coincide with the onset of envi-
ronmental drift, establishing its value for timely and sustained
detection. Among various uncertainty estimation techniques,
evidential learning proves particularly effective for DRL appli-
cations. It offers an advantageous trade-off between computa-
tional efficiency and estimation quality, making it well-suited
for real-time or resource-limited settings when compared to
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Fig. 6: Comparison of drift detection performance across
different methods for drift detection in DRL.

ensemble or sampling-based methods. Furthermore, detection
robustness is significantly enhanced by integrating multiple
complementary indicators, including epistemic uncertainty,
KPI changes, and state-action distribution shifts. This mul-
timodal approach not only reduces false positives but also
improves overall system stability by avoiding reliance on
a single detection modality. Finally, the CDI demonstrates
strong adaptability across diverse DRL algorithms, such as
DQN, PPO, and A2C. Although detection sensitivity may
vary slightly due to algorithm-specific learning dynamics, CDI
consistently delivers reliable performance, confirming its gen-
eralizability and effectiveness in heterogeneous deployment
scenarios.

VII. CONCLUSION

In this paper, we introduced a Zero-Touch Drift Manage-
ment closed-loop architecture specifically tailored for DRL
systems in 5G/6G networks. The proposed architecture is
aligned with the ETSI ZSM closed-loop reference model
and incorporates a novel drift detection mechanism centered
around the CDI. The CDI integrates diverse and comple-
mentary drift signals, including environment KPI monitoring,
state-action dynamics, and epistemic uncertainty estimation,
providing a holistic view of system behavior. To the best
of our knowledge, this is the first work to apply evidential
learning for uncertainty estimation within the context of DRL
drift detection. Extensive experiments demonstrate that our
CDI method outperforms baselines across multiple metrics and
generalizes well across different DRL algorithms. As part of
our future work, we aim to extend this framework beyond
detection to include intelligent and autonomous drift handling
strategies.
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