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ABSTRACT

Trustworthy Al is critical for effectively adopting Al systems in medical imaging and broader
healthcare contexts. While the Trustworthy Al framework defines seven core principles —ranging
from technical robustness to societal well-being— these are often addressed in isolation, lacking
a coherent integration strategy. In this perspective paper, we propose a unified, layered framework
that organizes these principles across three tiers of increasing trust: core operations, feedback, and
explainability. Each layer aligns with the fundamental components of an Al system—input data,
model, and outputs, integrating the different principles and offering a structured path toward increasing
levels of trust. Central to our framework is technical robustness, positioned as a cross-cutting enabler
that intertwines with the other trust principles across all layers. Through this lens, we review recent
advances in trustworthy Al techniques in medical imaging and highlight persistent challenges. and

future research directions for building trustworthy Al systems in medical imaging.

1. Introduction

Establishing trust is essential for the safe and effective
use of Al in medical imaging. Trust arises when a system
demonstrates reliability and predictability—even under un-
expected conditions. Trustworthy Al provides a structured
approach to ensuring that an Al system is worthy of being
trusted based on evidence of its stated requirements. It
ensures that user and stakeholder expectations are met in a
verifiable way [39].

Since the introduction of the term [23], research on
trustworthy Al for medical imaging applications has been
highly active, evolving rapidly from a conceptual frame-
work into a dynamic area of research and development.
Grounded in the seven core principles of trustworthiness
first outlined by the High-Level Expert Group on Al from
the European Commission [23], this active development
has led to significant technical advancements and focused
research on essential aspects of Al development [37] and
their application to medical imaging.

Within the seven principles, technical robustness refers
to consistent performance and system resilience to unex-
pected and challenging conditions, minimizing failures that
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may have a negative impact. Transparency refers to the
understandability and visibility of an Al system’s inner
workings, predictions, and limitations. It includes explain-
ability, interpretability, and traceability to ensure that de-
cisions can be audited. Human oversight supports human
autonomy. In medical imaging applications, this involves
clinical validation, model drift monitoring, and Al-human
interactions, through approaches such as human-in-the-
loop (HITL), human-on-the-loop (HOTL), and human-in-
command (HIC) to maintain the user’s control. Diversity
and fairness mitigate bias and ensure inclusive performance.
Privacy and data governance address robust data quality,
integrity, and legitimate access controls. Accountability and
responsibility assign liability throughout the Al lifecycle.
Societal well-being refers to Al’s positive societal impact.

These core principles of trustworthy Al are intercon-
nected rather than isolated [23]. For instance, reliability
is essential not just for technical robustness but also for
ensuring effective human oversight. In the same way, ro-
bustness directly influences data governance, as maintaining
high-quality data is fundamental to a system’s resilience.
Despite the close interplay among the core principles, most
research in the field tends to be conducted in isolation [37],
focusing exclusively on one principle at a time. There is
a lack of unifying frameworks toward the shared goal of
trustworthiness within an Al pipeline.

In this perspective paper, we propose a general unifying
framework that organizes these principles into a layered
architecture, where each tier represents an increasing level
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Figure 1: Overview of the seven core principles and characteristics of trustworthy Al [23] and the representation of involved
stakeholders (patients, developers, healthcare professionals, healthcare industry, lawyers, insurers, and governments).

of trust. Each layer addresses a distinct subset of trustworthi-
ness principles, illustrating how they collectively contribute
to a system’s trustworthiness. Central to our framework is
the notion of robustness, which we position as a foundational
property that permeates all layers. By embedding robustness
throughout the trust hierarchy, we underscore its crucial role
in meeting both technical and ethical requirements for Al
systems in medical imaging. In the following sections, we in-
troduce the components of the proposed unifying framework
and illustrate their implementation with concrete examples
from medical imaging applications.

2. A Unifying Perspective of Trustworthy Al
in Medical Imaging

We propose a unified, layered view of Trustworthy Al
that integrates its seven principles across the architecture
of Al pipelines. Each layer corresponds to increasing levels
of trust, grounded in the three core components of an Al
system: input data, the model, and the output (Figure 2).
Central to our framework is technical robustness, which
underpins every layer as a foundational requirement for trust.

The core layer establishes the system’s foundation by
focusing on the quality and integrity of training data and ini-
tial model design. Here, trust is anchored in representative,
diverse, and well-annotated datasets, which are critical for
mitigating bias and enabling generalization across varying
populations, imaging devices, and protocols. Robustness at
this level is essential, as it ensures accuracy, reliability, and
consistency. A robust core design intertwines with principles
of privacy and data governance to ensure data integrity,
representativeness, and compliance. It also encompasses
fairness by enabling consistent performance across diverse
populations through a data and model design that effectively
addresses bias.

The feedback layer facilitates human oversight by pro-
viding information that allows user participation in the
Al system’s decision-making process through the HICL,
HOCL, or HIC mechanisms. This includes tools and mech-
anisms for inspecting and monitoring inputs, models, and
outputs, enabling users to provide feedback, correct errors,
and refine a system’s performance. The design of an Al
system that operates in a symbiotic relationship with its
users ensures safe operation, thereby enhancing its robust-
ness. This layer also supports accountability by delivering
information about the status, performance, or condition of
the core layer during system operation.

The explainable layer addresses transparency by making
the system’s logic interpretable to all stakeholders. It builds
on information from lower layers to provide clear expla-
nations of decisions, uncertainties, and limitations. This
interpretability broadens stakeholder engagement and feed-
back, enhances system validation, and fosters broader trust.
Overall, a system that covers all layers is highly trustworthy
and contributes to societal well-being.

In the following, we cover each tier, provide examples
of recent trustworthiness research in medical imaging, and
illustrate how the trustworthiness of an Al system’s inputs,
models, and outputs is addressed.

3. The Core Tier

The core tier establishes the foundation for a robust
system by focusing on the interplay between input data,
the Al model, and its outputs. Building trust through ro-
bustness begins with data quality. Hence, high-quality, di-
verse datasets that reflect relevant populations are essential
(Sec 3.1). For the AI model, this tier addresses design
and training to ensure it can effectively, fairly, and reliably
manage data variability (Sec 3.2). In supervised learning
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Figure 2: A unified view of the trustworthy Al framework and principles featuring three layers of trust: core operations, feedback,
and explainability. A trustworthy Al system that covers all layers inherently contributes to the principle of societal well-being.

settings, this requires high-quality labels (Sec. 3.3). In learn-
ing scenarios without labels, such as unsupervised or self-
supervised settings, the quality of the outputs is indirectly
ensured by the input data. Similarly, in reinforcement learn-
ing, although there is no concept of an output, ensuring that
the environment and agents are representative and of high
quality is analogous to managing the input training data in a
supervised learning framework.

3.1. Input Data: Ensuring Heterogeneity

An Al system’s generalization and reliable performance
rely on high-quality, diverse, and representative training
data [57]. While gathering high-quality, diverse datasets
seems straightforward, it is challenging and costly. Failing
to obtain high-quality, diverse data leads to biased models,
harming robustness and fairness. To circumvent this, there
are techniques to automatically verify image quality and to
boost training data heterogeneity.

Input image quality control (QC) verifies that the images
fulfill the semantic content requirements of the target prob-
lem. This includes aspects such as the absence of artifacts
or noise [49] or an adequate field of view [35], which are
crucial, particularly when leveraging multi-centric data [55].

Domain randomization (DR) enhances data diversity
by leveraging data augmentation and image synthesis tech-
niques. Rather than applying manual transformations or

optimizing generative models, DR expands the synthetic
data distribution by randomizing the "generator" parameters.
Initially proposed for robotics, DR has been applied to brain
image segmentation, demonstrating excellent accuracy and
robustness [4].

Advancements in generative modeling have significantly
improved synthetic image quality, enabling high-quality,
anatomically plausible datasets, including pathological vari-
ations [15]. However, these methods suffer from hallucina-
tions [29], risking model reliability. Therefore, synthetically
generated data, like real data, requires verification and cu-
ration before usage, for which image QC techniques can be
employed.

3.2. Models: Handling Data Heterogeneity

Deployed Al systems may encounter data that has
drifted from the training distribution (domain shift) [50].
Deep learning models struggle with significant domain
shifts [29]. To mitigate the risk of failure, models must be
designed to handle these gaps.

State-of-the-art approaches involve learning domain-
invariant feature representations. Unlike image translation,
these techniques build an intermediate representation [25]
adaptable to downstream tasks [38] without domain transla-
tion. This approach is similar to foundation models (FMs),
some recently developed for medical imaging [46]. Within
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Figure 3: UQ in the feedback tier at different anatomical scales: example of Multiple Sclerosis lesion segmentation in magnetic
resonance imaging using an ensemble of models (core tier). Adapted from [42].

a collaborative learning setup [19], these techniques enable
robustness while preserving data privacy.

3.3. Outputs: High-Quality Labels

High-quality labels are paramount yet often overlooked
[18]. Annotating experts are susceptible to errors due to fa-
tigue or mistakes. They may also follow different annotation
guidelines, introducing biases. These inaccuracies impact
Al model reliability. Without high-quality labels, achieving
technical robustness is challenging for clinical applications.
If annotations are flawed, the model’s performance will
be compromised, leading to potentially incorrect diagnoses
or treatment recommendations. Beyond training, labels are
crucial for evaluation, serving as "ground truth." Inaccurate
labels lead to misleading results, hinder progress, and affect
the reproducibility and repeatability of findings.

Recent studies highlight the need for improved data
curation and quality control to ensure the reliability of Al
models. [52] demonstrates that annotation companies pro-
duce higher-quality labels than crowdsourcing. [54] ana-
lyzes public medical imaging datasets, revealing limitations
in data quality and data governance.

4. The Feedback Tier

The feedback layer introduces human oversight and in-
teraction, enabling bidirectional communication between Al
systems and users. This tier provides continuous monitor-
ing and evaluation mechanisms that enable feedback and
contribute to accountability. The involvement of users in
decision-making (human oversight) increases system ro-
bustness, as the final decision often rests with the expert

user. Specifically, it addresses input data quality (Sec 4.1),
model performance monitoring (Sec 4.2), and output quality
control (Sec 4.3).

4.1. Input Data: Ensuring Quality

At the feedback layer, input image QC ensures data used
by the Al system meets specifications for robust operation.
Image QC verifies that data meet an Al system’s operational
specifications, including semantic content and the absence of
missing data (e.g., in an imaging modality). It also assesses
distribution shifts relative to the training data, a key step
in maintaining reliability and safety. The latter is typically
framed as an out-of-distribution (OOD) detection problem,
benefiting from many statistical and machine-learning tech-
niques [17].

In principle, any non-compliant image could be dis-
carded or corrected. While discarding may be acceptable
during training (core tier), correction is likely required once
an Al system is deployed. Correction techniques include
missing-modality imputation [59], image-quality transfer to
bridge the gap between low-quality images at inference
and higher-quality training sets [13], and data harmoniza-
tion [40] and translation [24] to reduce data variability.

4.2. Models: Identifying Reliability with
Uncertainty Quantification

Uncertainty quantification (UQ) assesses the reliability
of model predictions and elucidates conditions under which
a model may be incorrect. This information contributes to
interpretability (by revealing the confidence level behind a
model’s predictions), supports model validation (by high-
lighting when and where a model’s predictions may be
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unreliable), and ultimately, improves technical robustness
by enabling the system to recognize uncertain inputs or
model decisions, thus facilitating model drift monitoring
and informed decision-making. y Uncertainty arises from
aleatoric uncertainty (data uncertainty), inherent in data due
to noise or ambiguous labeling, and epistemic uncertainty
(model uncertainty), from lack of knowledge when encoun-
tering unseen data or OOD data. Methods for UQ in deep
learning can be classified by the type of uncertainty they
address [31]. Some focus on aleatoric uncertainty through
softmax calibration or test-time augmentations. Others ad-
dress both uncertainties through Bayesian principles (e.g.,
Bayesian Neural Networks, Monte Carlo Dropout, or deep
ensembles). More recent approaches include evidential deep
learning and conformal prediction.

UQ operates at different levels (Figure 3), ranging from
voxel- to organ, lesion, and subject-level (human oversight).
While voxel-level UQ is common in segmentation, the re-
sulting uncertainty maps can be overwhelming. Recent re-
search focuses on higher-level estimates, aggregating voxel-
level uncertainty or developing structural metrics, which bet-
ter align with healthcare professionals’ focus [42]. Subject-
level UQ is valuable for patient analysis, as it incorporates
input QC and helps identify poor predictions (Sec. 4.3).

Assessing the quality of UQ is crucial for clinical ef-
fectiveness. To that end, model calibration verifies the rela-
tionship between predicted probabilities and error rates [51],
whereas error retention curves evaluate how uncertainty
measures correlate with model performance [31].

4.3. Outputs: Quality Control

Ensuring robustness at the output stage involves mech-
anisms to evaluate prediction accuracy and identify errors.
The task, denoted quality control (QC), has been done
manually through visual inspection, followed by sample
correction or removal. Frequently, identified poor-quality
output samples may indicate model drift.

Because output QC is tedious, it has evolved into an
automated process in which another system inspects outputs
to assess their correctness, enabling the processing of large
volumes of data. A straightforward approach to QC is UQ
(Sec 4.2) [61], where UQ estimates are mapped to the output.
This is commonly used in image classification [9], recon-
struction, and synthesis [62]. In segmentation, QC is formu-
lated as a classification or regression task. In classification,
a model flags segmentations as good or bad. In regression,
the QC model predicts a performance score, often the Dice
score [3]. However, recent approaches have introduced QC-
specific metrics based on performance variance [28, 48].
These assess variability among predictions, associating low
variance with high quality, while circumventing the need for
annotated data and correlating with the Dice score [28].

5. The Explainable Tier

The explainable tier enhances transparency, human
oversight, and accountability by providing insights into
an Al system’s inner workings, enabling stakeholders to

understand model decisions [6]. Explainability methods are
typically classified according to the type of explanation
(e.g., visual, example-based, textual, concept-based) [8]
or to when they are applied (pre-modelling, in-modelling,
post-modelling) [56]. Here, we analyze them through the
elements of an Al system. Input-level methods assess feature
influence (Sec 5.1); model-level methods examine layer
influence (Sec 5.2); and output-level methods interpret
decisions by analyzing predictions (Sec 5.3).

5.1. Input-Level Explanations

We consider input-level methods as those focusing
on understanding how image characteristics influence the
model output. Mainly, these include gradient-, perturbation-,
and concept-based explanations.

Gradient-based methods, such as Saliency Maps or
Class Activation Maps (CAMs), and their variants, such
as Grad-CAMs, use the model’s gradients to assess indi-
vidual feature contributions to the output. Pixels with high
positive/negative gradients drive/detract from the model’s
decisions. A strength of gradient-based methods is that
they provide local explanations and may reveal unintended
cues [ 14] by identifying pixels impacting the output, they are
efficient, and can be applied to pre-trained models. Although
these models show voxels affecting the output, they do not
provide explanations and are sensitive to input changes [6].

Perturbation-based methods examine how the changes
in the input impact the output. For example, occlusion-
sensitivity methods occlude parts of the input to reveal
their importance for the output, or modify parts to iden-
tify features that create biases [8]. Hence, like gradient-
based, perturbation-based methods also verify the location
of the abnormality, revealing unintended cues [2]. However,
they are sensitive to the choice of masking, and their high
computational cost hampers scalability [2]. Similarly, multi-
instance learning-based explanations use bags of samples
(e.g., image patches), gaining insights into the role played
by the patches.

Finally, concept-based explanations quantify the influ-
ence of high-level (semantic) concepts, thereby connecting
human and model reasoning. However, a model’s concept
may not fully align with a human concept or concept def-
inition [45]. While concept definition is prone to inducing
biases, automatic concept-based explanations mitigate it by
semantically segmenting and grouping similar images [6].

5.2. Model-Level Explanations

We define model-level explainability methods as tech-
niques that analyze how a model processes inputs across
various network layers. The most common approaches are
discussed below.

Feature visualization allows users to interpret neuron
activations and reconstruct inputs, helping them understand
what the model has learned. While they may also verify the
location of the abnormality [10], they do not explain the
reasons for a decision [8].

In layer-wise relevance propagation (LRP), backpropa-
gation is used to compute relevance scores that show how
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neurons and layers contribute to a prediction, allowing to
generate fine-grained saliency maps that are well suited for
small lesions [20]. However, while robust to small changes
in a model’s input, it is harder to interpret than heatmaps [8].
Moreover, LRPs may be unstable or inconsistent in their
explanations [5]. In contrast, attention mechanisms highlight
key areas of an input image through assigned attention
weights. While the weights displayed in attention maps have
been suggested to reveal the most relevant inputs at each
layer, several studies showed that attention does not provide
meaningful explanations [8]. These weights are displayed in
attention maps, revealing the most important inputs at each
layer [8].

5.3. Explainability at the Output Level

We define output-level explainability methods as tech-
niques that interpret model decisions based on their predic-
tions. Key methods include example-based approaches and
textual explanations.

Example-based methods provide explanations by draw-
ing on the most similar prior cases or counterfactual ex-
amples [16]. Similar example-based approaches identify the
most similar prototypes to the given test case using image
similarity (prototype-based methods) or distances in the
semantically meaningful latent space (distance-based meth-
ods). The prototypes may be real patient images, image parts,
or synthetic examples. These methods are intuitive but raise
privacy and ethical concerns because they rely on learned
prototypes. To preserve privacy, different approaches may
be implemented, including the use of generative models to
generate synthetic examples or latent information or scores,
but not the specific example images [21, 43]. In addition,
similar example-based methods are susceptible to spurious
correlations and depend on the embedding quality [8].

In contrast to example-based methods, counterfactual
explanation methods synthesize images that are highly sim-
ilar to the test image yet yield a different prediction. Orig-
inally conceived for classification tasks, they have been
extended to regression tasks [22]. Unlike example-based
methods that use learned prototypes, counterfactual exam-
ples achieve explainability by modifying the test image
and therefore do not affect patient privacy. By showing
image locations that change the prediction, they enable the
verification of the location of the abnormality [8]. How-
ever, the images they create may be unrealistic [63]. Lastly,
textual explanations rely on natural language, in addition
to using images. Specifically, image captioning methods in
which specific words describe the image’s visual content can
provide insight into the rationale for model decisions [36].
However, the captions may not reflect features the model
uses, and these methods lack localization of the explanation
and are limited in explaining subtle findings [1].

6. Discussion and Perspectives

This work introduces a unified, three-layer perspective
on Trustworthy Al to structure the seven core principles, as
first proposed in [23], that warrant trust of an Al system.

Importantly, the framework does not attempt to achieve trust
itself. Trust is an inherently subjective feature that varies
across stakeholders and contexts [53]. Instead, each layer
translates high-level trustworthy-Al principles into concrete,
actionable requirements: privacy, data governance, and bias-
mitigation measures at the core; human oversight and mon-
itoring in the feedback tier; and interpretable, transparent
outputs in the explainable tier, all grounded in technical
robustness. By organizing these elements into a coherent lay-
ered architecture, the framework provides a practical way to
operationalize trustworthiness in medical imaging systems,
while recognizing that the ultimate decision to grant trust
remains beyond the scope of this work.

To illustrate the implementation of the seven core prin-
ciples of Al within the proposed unifying layered frame-
work, our work also presents concrete examples from med-
ical imaging applications that showcase how the field has
advanced in recent years. As such, our approach comple-
ments broader reviews [37, 39] and is compatible with
other guidelines [32]. Indeed, by grounding our work on the
seminal work on Trustworthy Al [23], we consider that our
framework is sufficiently general to encompass the differing
definitions of the core principles observed in the literature.

Finally, while the field has made remarkable strides in
recent years, multiple challenges remain. Below, we identify
and discuss three of these challenges, which point towards
future research directions.

Ensuring Technical Robustness in Foundation Models.
FMs offer a paradigm shift characterized by their mas-
sive scale, training on diverse datasets, and ability to be
adapted to a wide range of downstream tasks. However, their
"black box" nature, trained on often unknown datasets, lacks
transparency regarding the data distribution. This hinders
robustness, as understanding data characteristics is crucial
for identifying biases.

While FMs may improve core performance [46], their
opacity makes extracting feedback information or providing
explainable explanations difficult. This limits evaluation
and trust in healthcare applications. As FMs and large
biomedical Al systems [47] become central, research should
focus on developing novel feedback methods for monitoring
black-box models with limited knowledge of input data
statistics, an area that has received little attention so far [58].

Trustworthy for All. Explainable for Whom? While trust-
worthiness principles are objective, their perception varies.
Developers prioritize performance and feedback informa-
tion. Clinicians prefer feedback resembling real-world prac-
tice. Patients focus on understanding AI’s contribution to
diagnosis and privacy. Regulators prioritize transparency
and fairness [7]. Explainable techniques have improved
communication, but they remain too technical [30].
Language offers the flexibility to tailor explanations to
diverse stakeholders. Large language models (LLMs) repre-
sent a promising new paradigm for achieving transparency
in medical imaging applications. Preliminary work shows
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LLMs can generate textual image descriptions [11], suggest-
ing their capacity to bridge the gap between complex data
and human understanding. A simpler yet related approach
has been explored in medical imaging through concept bot-
tlenecks, which provide textual feedback to sonographers
during ultrasound image acquisition [34]. The challenge here
lies in transforming feedback information into meaningful,
audience-specific explanations.

Evaluation Frameworks. Evaluation is crucial in achieving
the trustworthiness of any Al system. Evaluations should be
repeatable and standardized. While medical imaging chal-
lenges promote standardized performance evaluation [12],
similar standardization is needed for trustworthiness met-
rics, particularly at the feedback and explainable levels.

Trustworthy Al is a young field. As a result, the de-
velopment of metrics, standardized benchmarks, and proto-
cols for assessing its underlying principles is still ongoing,
with some preliminary efforts reported in the literature. The
MICCAI Quantification of Uncertainties in Biomedical Im-
age Quantification Challenge [33] established a benchmark
for algorithms that generate uncertainty estimates based
on six medical image segmentation tasks. The Fairness
Benchmark for Medical Imaging FMs [26] proposed a stan-
dardized evaluation process to assess the fairness of FMs
across nine segmentation and eleven classification tasks.
The open benchmarking framework for failure detection in
medical image segmentation [61] evaluated failure-detection
methodologies across five image segmentation tasks. Fi-
nally, the benchmark of trustworthiness in medical vision
language models (VLMs) [60] assessed trustworthiness of
VLMs across five dimensions: trustfulness, fairness, safety,
privacy, and robustness, making it the most comprehensive
trustworthiness benchmark to date.

Nonetheless, several principles remain to be covered. In
particular, those that are somewhat intangible and therefore
difficult to quantify, especially within the explainable tier.
Explainability is a highly subjective concept. The "good-
ness" of an explanation may vary across different stakehold-
ers. What constitutes a clear and understandable explanation
for a clinician may differ substantially for a patient or a regu-
lator. Although some works have begun to formalize criteria
for assessing explainable Al techniques [27], these efforts
are still in the preliminary stages. The lack of standardized
evaluation frameworks may explain why the deployment
of Al systems that implement the explainable tier remains
limited, whereas core- and feedback-compliant Al systems
are now being clinically validated [41] and commercial-
ized [44].

Finally, perhaps the major challenge for standardized
evaluation may arise from the need to integrate the differ-
ent principles within a single Al system. In line with the
evolution of research and development on trustworthy Al,
principles are evaluated in isolation. However, it is well
known that the orchestration of the principles entails trade-
offs (e.g., improved fairness degrades performance) that
cannot be quantified when they are assessed in isolation.
Hence, it is crucial to advance in the definition of evaluation

frameworks and protocols that account for these interactions
and their implications, enabling stakeholders to identify such
trade-offs and make decisions based on their priorities.
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