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Abstract—As new applications evolve rapidly, wireless net-
works increasingly require low-delay communication to signif-
icantly enhance the quality of user experience. In response,
the evolution of the medium access control (MAC) layer has
gained more attention, particularly through the application of
reinforcement learning to optimize access strategies. In order to
meet the low-delay requirements, we propose a reinforcement
learning-based MAC protocol, named soft actor-critic multiple
access (SAC-MA). To mitigate frequent collisions caused by the
exploratory behavior, we propose a multiple waiting actions
mechanism that allows stations to wait for multiple time slots.
This mechanism enables the agent to develop a more flexible
and intelligent access strategy, thereby effectively reducing delay.
Additionally, we introduce an innovative formulation in which the
head-of-line packet is treated as the agent, enabling more timely
feedback and observations. We conduct extensive simulations to
demonstrate that SAC-MA: 1) reduces delay by approximately
27.9% and 56.5% compared to the conventional MAC protocol
with standard parameters under the collision and capture models,
respectively; 2) adapts to environmental changes in dynamic
scenarios; 3) coexists harmoniously with legacy stations and
reduces the network delay in heterogeneous scenarios. Finally,
we perform ablation studies to evaluate the effectiveness of the
proposed mechanisms.

Index Terms—Medium access control, Distributed channel
access, Wireless network, Reinforcement learning, Delay opti-
mization
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NOWADAYS, wireless technologies like cellular networks
and Wi-Fi have become ubiquitous in daily life. Their

rapid evolution has enabled a host of emerging applications,
such as virtual reality [1] and robotics [2]. These applications
impose more stringent requirements on wireless networks
to guarantee high communication quality. Among these re-
quirements, low latency is especially critical, as delays in
data transmission can severely degrade user experience and
compromise safety or system performance.

Across the layers of communication networks, the medium
access control (MAC) layer plays a crucial role in reducing
latency by efficiently regulating access to the shared medium
among multiple stations. As a fundamental design at the MAC
layer, distributed channel access enables stations to access
the channel independently and distributedly. This approach is
widely adopted in wireless networks such as Wi-Fi, Ultra-
Wideband, and ZigBee, owing to its advantages in simplic-
ity of deployment and scalability. Nevertheless, the lack of
coordination leads to the channel contention among stations.
Collisions occur when multiple stations attempt to access the
channel simultaneously, resulting in transmission failures. To
mitigate collisions, a random access mechanism is employed,
allowing stations to randomly determine their transmission
timing. One well-known MAC protocol that utilizes this
mechanism is carrier sense multiple access with collision
avoidance (CSMA/CA), widely used in Wi-Fi networks. In
the CSMA/CA protocol, each station selects a random backoff
interval from the contention window and waits before initiating
transmission.

The conventional random access mechanism suffers from
relatively low MAC efficiency [3]. To improve MAC layer
performance, reinforcement learning (RL) has emerged as a
promising approach to solve the distributed channel access
problem. In RL-based MAC protocols, the stations are mod-
eled as agents to maximize the expected cumulative rewards,
which reflect network performance metrics such as throughput
and delay. Compared with the random access protocols, RL-
based protocols learn the access strategy utilizing the data
obtained through interactions with the wireless environment.
This data-driven method empowers the potential of stations to
achieve higher performance without redundant backoff. While
several RL-based MAC protocols have achieved great perfor-
mance in terms of throughput and fairness, little attention has
been paid to delay optimization.

To fill this gap in the literature, our work focuses on
designing RL-based protocols aimed at delay optimization.
Specifically, we consider the tail delay metric, which has



gained increasing attention in the latest Wi-Fi standard, IEEE
802.11bn [4]. This standard emphasizes improving the 95th
percentile of the latency distribution. The tail delay refers to
the extremely high latency experienced by a small fraction
of requests, which can have a significant negative impact on
the quality of user experience [5]. The challenge for delay
optimization arises from two aspects. First, delay is sensi-
tive to collisions, which can lead to packet buffer backlogs
and increased latency. Nevertheless, the exploratory behavior
of agents often causes frequent collisions among stations.
Second, the delay experienced by a station changes slowly
over time, resulting in delayed feedback to the agents and
adversely affecting their training process. In order to tackle
these challenges, we propose a MAC protocol based on a RL
algorithm soft actor-critic (SAC) and name it soft actor-critic
multiple access (SAC-MA). Our contributions and simulation
results are presented below:

• To tackle the first challenge, we propose multiple waiting
actions mechanisms. This mechanism allows stations
to choose different waiting durations, helping distribute
transmission attempts over time and consequently reduc-
ing collision probability.

• To tackle the second challenge, we design the packet-
based agent mechanism to maximize the cumulative
reward during the lifetime of the packet, which can obtain
more timely feedback and observations.

• We conduct extensive experiments to evaluate the perfor-
mance of SAC-MA under both the collision model and
capture model. Simulation results demonstrate that SAC-
MA outperforms both the classic CSMA/CA and RL-
based baseline in static scenarios and dynamic scenar-
ios. Furthermore, SAC-MA coexists harmoniously with
the legacy CSMA/CA stations and reduces the network
delay. Ablation studies evaluate the effectiveness of the
proposed mechanisms.

The rest of this paper is organized in the following. Section
II presents the literature review on RL-based MAC protocols.
Section III introduces the system model. The proposed mech-
anisms are presented in Section IV. The RL formulation and
algorithms are detailed in Section V. Simulation results are
presented in Section VI, and conclusions along with future
work are discussed in Section VII.

II. RELATED WORK

Previous works on distributed channel access have focused
on employing reinforcement learning to improve random
access mechanisms. Typically, based on the framework of
the CSMA/CA protocol, an agent is trained to select the
contention window size to optimize network performance
[6]–[14]. Among these studies, [6]–[12] aimed to optimize
network throughput or fairness performance, while [13], [14]
concentrated on improving delay performance. In [13], authors
enhanced CSMA/CA by adjusting the contention window
and clear channel assessment threshold in downlink Wi-Fi
networks. In [14], the authors combined federated learning
with reinforcement learning and introduced a training pruning
strategy along with a weight aggregation algorithm. Although

these works improved network performance, the underlying
random access mechanism inherently limits them to relatively
low MAC efficiency [3].

To enhance MAC efficiency, researchers have increasingly
focused on designing MAC protocols entirely based on rein-
forcement learning [3], [15]–[23]. In these works, each station
employs an RL agent to decide whether to transmit in a given
idle slot. Compared to conventional backoff mechanisms, this
method learns more effective access strategies without redun-
dant backoff delays, thereby improving network performance.
The distributed channel access problem is typically modeled
as a multi-agent task, where agents at individual stations
collaborate to optimize various performance metrics. The
work in [3] proposed a novel MAC protocol, QMIX-advanced
Listen-Before-Talk (QLBT), which outperforms CSMA/CA
and its theoretical performance bound in terms of throughput,
delay, and jitter. Addressing the hidden terminal problem, [15]
proposed a new MAC protocol that outperforms CSMA/CA
across various performance metrics. In [16] and [17], RL-
based MAC protocols were designed for heterogeneous net-
works with single and multiple channels, respectively. In [18],
the authors designed a novel global state representation and
action mechanism to achieve near-optimal throughput and
fairness in massive access scenarios. In [19], [20], authors
introduced multi-task learning into multi-agent reinforcement
learning to enhance adaptability in dynamic wireless net-
works. In [21], federated learning was utilized in a RL-based
MAC protocol to achieve fairness among users. The works
in [22] and [23] focused on simultaneously achieving max-
min fairness and maximizing network throughput. In [24], the
authors proposed a heterogeneous multi-agent reinforcement
learning framework, enabling seamless collaboration between
stations using different RL algorithms. Similar to our work,
[25] proposed a fully decentralized multi-agent reinforcement
learning framework for random access network optimization.
By sharing local rewards across devices, the method eliminates
the need for centralized training and reduces communication
overhead. However, it only considered a single type of traffic
pattern and did not conduct a comprehensive delay analysis
under different traffic scenarios. In addition to reinforcement
learning, some studies [26]–[28] leveraged multi-armed bandit
algorithms to optimize the distributed channel access mecha-
nism.

As previously introduced, most existing studies have tar-
geted network throughput and fairness, using metrics such as
α-fairness [15], [16], the Jain fairness index [18]–[20], and
max-min fairness [22], [23]. Although [3] and [15] evaluated
delay performance in comparison to the CSMA/CA protocol,
their evaluations were confined to saturated-traffic scenarios.
To the best of our knowledge, no comprehensive study on RL-
based MAC protocol has been conducted to optimize the delay
performance in distributed channel access problems.

Unlike distributed channel access, the scheduling-based
framework employs a centralized controller to manage access
for all devices. Within this framework, several studies have
focused on MAC layer design for delay optimization in
cellular networks [29]–[33]. In [29], the authors focused on
a delay-oriented scheduling problem in the fifth-generation



network and proposed a recurrent proximal policy optimization
algorithm to compensate for the lack of channel and queue
information. The proposed algorithm outperformed existing
methods in terms of both tail delay and average delay. In
[30], the authors proposed the dynamic transmission and delay
optimization random access scheme to adjust the backoff indi-
cator in the massive machine-type communications scenarios.
In [31], authors proposed the Q+-learning algorithm to im-
prove the delay performance of throughput-optimal scheduling
algorithms. To minimize the packet delays and packet drop
rates, [32] proposed a scheduling framework that can select
different scheduling rules. Based on a knowledge-assisted RL
algorithm, the authors in [33] designed a scheduling policy
for delay-sensitive traffic. Although these works achieved
significant gains in terms of delay performance, they are
not applicable to distributed channel access scenarios due to
the absence of a centralized controller. Moreover, scheduling
methods require frequent exchange of control messages, which
can consume channel resources and potentially exacerbate
overall delay.

III. SYSTEM MODEL

In this work, we consider a wireless network where N
stations communicate with an access point (AP) via a shared
channel. Stations employ carrier sensing to detect whether the
channel is idle. We assume that all stations can sense each
other’s transmissions, meaning no hidden terminals exist in the
network. Adopting the IEEE 802.11 distributed coordination
function (DCF), each station is permitted to transmit after the
channel is sensed idle for the DCF interframe space (DIFS)
duration. Time is divided into discrete time slots, and each
station is permitted to initiate transmission at the beginning
of each time slot. It is assumed that stations access the
channel in a distributed manner, meaning that each station
independently determines its transmission timing. To conduct
a comprehensive evaluation, we consider two distinct models
to characterize the conditions for successful transmission:

• Collision model [34]: One packet can be successfully
received if other stations do not transmit during the packet
transmission.

• Capture model [35]: One packet can be successfully
transmitted as long as its received signal-to-interference-
plus-noise ratio (SINR) exceeds a certain capture thresh-
old µ. For station i, the received power Pr,i can be
written as Pr,i = Pt,i · |gi|2 · |hi|2, where Pt,i denotes
the transmission power of station i, and gi and hi
denote the large-scale and small-scale fading coefficients,
respectively. The wireless channel is assumed to undergo
block Rayleigh fading, i.e., |hi|2 ∼ exp(1) and |hi|2
varies from packet to packet. Assume that each station
performs power control to combat the large-scale fading,
meaning that Pt,i = P

|gi|2 . The mean received signal-to-
noise ratio (SNR) can be written as ρ = P/σ2, where
σ2 denotes noise power. As a result, the received SINR
value µi can be written as

µi =
|hi|2∑

j∈Ci
|hj |2 + 1

ρ

, (1)

Fig. 1: The implementation process of the multiple waiting
actions mechanism.

where Ci is the set of stations that transmit concurrently
with station i.

The collision model represents a worst-case scenario in which
the packet cannot be successfully received as long as it
overlaps with any other packet. In contrast, the capture model
assumes that each station’s packet is decoded independently,
treating signals from other stations as background noise. As a
result, multiple packets may be successfully decoded simulta-
neously. After successful transmission, the station receives an
acknowledgment (ACK) after short interframe space (SIFS)
from AP. In the case of a transmission failure, the station will
retransmit the packet until the number of attempts exceeds
the maximum retransmission limit, after which the packet is
dropped. For simplicity, only uplink data transmissions from
stations to the AP are considered here.

IV. MECHANISM DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
details of our proposed multiple waiting actions and packet-
based agent mechanisms.

A. Multiple Waiting Actions Mechanism

In existing RL-based MAC protocols, the action space is
typically defined as a binary decision between transmitting a
packet and waiting for one time slot. This restricted action
space often leads stations to transmit at inopportune moments
due to exploration behaviors (e.g., policy sampling or ϵ-greedy
selection), resulting in frequent collisions. From the agent’s
perspective, the scarcity of successful experiences significantly
hinders training convergence. From the station’s perspective,
frequent collisions lead to queue congestion and substantially
increase packet delay. To address these limitations, we propose
an expanded action space that allows agents to wait for
multiple time slots. We refer to this as the multiple waiting
actions mechanism. Formally, the action space for each station
is defined as a ∈ {0, 1, . . . , Nw}, where



• a = 0 indicates transmitting a packet,
• a > 0 denotes waiting for a slots.

The proposed action mechanism is elaborated below:
1. Each station makes a decision (i.e., go to Step 2) only

when its packet buffer is non-empty and the channel has
been sensed idle for at least DIFS duration. Otherwise, it
remains to sense the channel.

2. The station selects an action a by its equipped agent.
3. If a = 0, the station transmits a packet and then returns

to Step 1.
4. If a > 0, the station initializes a counter w = a. This

counter decrements by 1 during each idle slot. Once the
channel becomes busy, the counter is frozen until the
channel is sensed idle again for a DIFS period. When
w decrements to 0, the station returns to Step 2.

Fig. 1 presents the above implementation process and Fig. 2
shows an example of two stations using this mechanism.

The appropriate value of Nw depends on both the number of
stations N and the network traffic load λ̂. As N or λ̂ increases,
collisions become more frequent, necessitating a larger Nw. To
intelligently adapt to varying network traffic conditions, we al-
low Nw to be dynamically adjusted by the agent. Specifically,
each agent selects Nw from a predefined set SNw . We denote
the maximum value of Nw as Nmax

w = maxNw∈SNw
{Nw}.

In the following, we analyze the relationships and dis-
tinctions between our proposed action mechanism and other
approaches in existing MAC protocols.

• Comparison with backoff mechanism: The conven-
tional backoff mechanism requires stations to select a
backoff value BO from the contention window CW,
i.e., BO ∈ {0, 1, . . . ,CW − 1}. Then, the station ini-
tiates a packet transmission after BO idle slots. In our
mechanism, when the agent sequentially chooses to wait
(a = BO) followed by transmission (a = 0), it exactly
replicates the backoff behavior. However, unlike static
backoff mechanisms, our approach allows the agent to
adjust its action based on real-time observations of the
“backoff” period, deriving a more flexible and intelligent
access strategy. Moreover, when the wireless environment
changes, the backoff mechanism requires careful tuning
of CW to adapt to the new conditions. In contrast, our
proposed mechanism can adapt automatically through
interaction with the environment.

• Comparison with binary-decision mechanism: The
proposed mechanism generalizes the binary-decision
mechanism by expanding the waiting action space. When
Nw = 1, our proposed mechanism reduces to the binary-
decision case. When Nw > 1, our action mechanism en-
ables more sophisticated channel access control: stations
can select different waiting durations, which helps dis-
tribute transmission attempts over time and consequently
reduces collision probability.

In general, the multiple waiting actions mechanism includes
existing access mechanisms, such as the backoff mechanism
and binary-decision mechanism. It provides a more general
access paradigm, allowing a station to wait for multiple time
slots before making each transmission decision.

B. Packet-based Agent Mechanism

In most RL-based MAC protocols, each station is regarded
as an independent agent. To mitigate partial observability,
the agent’s state typically incorporates a history of its past
channel access actions and observations over several time
steps. However, this station-based agent formulation often
includes outdated information, which may no longer accurately
represent the current station state. As shown in Fig. 3, when
a station makes a decision at current time t, the station-
based agent’s history contains past packet transmissions. Un-
der unsaturated traffic conditions, stations frequently empty
their packet buffers, leading to large intervals between packet
arrivals. As a result, the history of the last packet transmissions
is outdated.

To overcome this limitation, we propose a packet-based
agent mechanism, where the head-of-line (HOL) packet is
treated as an agent. In this mechanism, an episode begins when
a packet becomes HOL and terminates when it is successfully
transmitted or dropped. As shown in Fig. 3, the agent’s history
is recorded from the episode’s start t3 to the current time t.
Below, we highlight the advantages of this approach over the
station-based method:

• Unlike the station-based method, the packet-based agent
excludes obsolete experiences from its history, maintain-
ing only relevant action-observations.

• As is well established, reinforcement learning aims to
maximize the expected cumulative reward. In the station-
based method, cumulative rewards reflect long-term per-
formance metrics of the station, which change slowly and
thus provide delayed feedback. In contrast, the packet-
based agent maximizes rewards within each episode,
directly optimizing the packet delay.

In the following, we analyze the packet-based agent mecha-
nism from the perspective of reinforcement learning. RL tasks
are generally categorized as either episodic or continuing,
depending on whether episodes terminate. The distributed
channel access problem is modeled as a continuing task, as
the objective is to optimize long-term network performance.
From a theoretical perspective, the innovation of the proposed
packet-based agent lies in reformulating a partially observable
continuing task (2) into a series of episodic tasks (3), which
effectively mitigates reward sparsity and accelerates policy
convergence.

Rstation = lim
Ts→∞

Ts∑
t=0

γtrt (2)

Rpacket =

Tp∑
t=0

γtrt, Tp ≪ Ts. (3)

Then, we analyze the relationship between the station-based
objective in (2) and the packet-based objective in (3). By
decomposing the continuing task into a sequence of packet-
based episodes, the station-based return can be expressed as

Rstation = lim
K→∞

K∑
k=1

γtkR
(k)
packet, (4)



Fig. 2: An example of the distributed channel access scenario with two stations using the multiple waiting actions mechanism.

Fig. 3: The history comparison between the station-based and packet-based agent. Packets arrives at t1, t2, and t3. Two of
them are successfully transmitted at t′1 and t′2. The current time is denoted as t.

where tk denotes the starting time of the k-th packet and
R

(k)
packet is its episodic return. This expression indicates that

the station-based discounted return equals a weighted sum of
packet-based returns, with weights γtk . When the discount
factor satisfies γ ≈ 1, the variation of γtk across packets
becomes negligible. Under this condition, maximizing the
expected packet-based return approximates maximizing the
station-based long-term objective, thereby providing theoreti-
cal justification for the packet-based agent formulation.

V. RL FORMULATION AND ALGORITHM

In this section, we propose the SAC-MA algorithm that
leverages the mechanisms introduced in the previous section.
The remainder of the section is organized as follows: we
first present the RL formulation and the neural network
architectures of the actor and critic. Then, we elaborate on
the implementation details of the SAC-MA protocol.

A. RL Formulation

The system model can be modeled as a multi-agent task,
where the HOL packet in each station i ∈ N ≡ {1, 2, . . . , N}
is regarded as an agent. At each time step, each agent i chooses
an action ai ∈ A. After that, it receives a reward ri and a local
observation zi ∈ Z . To mitigate the partially observable issue,
agents estimate the state by adopting their individual action-
observation history τ i ∈ T ≡ (Z × A)Lh , which contains
the action-observation pairs over past Lh time steps. Agent i
learns a policy πθi(ai|τ i) with the parameters θi to maximize

the objective J(θi) = Eπθi

[∑T
t=0 γ

trit

]
, where T is the time

horizon and γ ∈ (0, 1] is a discount factor. In this paper, a step
is defined as the interval between two consecutive decisions.
Since each agent is considered to train in a distributed manner,
we omit the superscript i of the variables hereafter. We then
provide detailed descriptions of each agent’s local observation,
action-observation history, and reward.

1) Local Observation: The local observation z =
[o, D̄, D̄o] consists of three parts:

• o: We characterize the channel observation using a tripe o
that represents the proportion of the numbers of success-
ful transmissions, collisions, and idle slots at each step.
Formally, o is defined as:

o =

[
Ns
Nsum

,
Nf
Nsum

,
Ni
Nsum

]
, (5)

where Ns, Nf , and Ni represent the number of suc-
cessful transmissions, failed transmissions, and idle slots,
respectively, and Nsum = Ns + Nf + Ni. In particular,
when the station attempts to transmit the HOL packet,
its channel observation is either [1, 0, 0] (success) or
[0, 1, 0] (failure). In practice, each station updates Ns
and Nf based on ACK reception. When the channel’s
busy state ends, Ns ← Ns + 1 if an ACK is received;
otherwise, Nf ← Nf + 1. Take the station 2 in Fig.
2 for example. At step 1, the values of Ns, Nf , and
Ni are 1, 0, 7. Consequently, the channel observation is
[0.125, 0, 0.875].



• D̄: We define D as the sojourn time of the HOL packet,
i.e., the duration from its generation to the current time.
The normalized waiting time is computed as D̄ = D

Dmax
,

where Dmax represents the maximum end-to-end delay
among the most recent 103 successfully transmitted pack-
ets by the station itself.

• D̄o: Since each station cannot acquire the packet buffer
information of others, we adopt the delay to last trans-
mission (D2LT) [3] to represent the state of other stations.
The D2LT of other stations Do is defined as the duration
since the last successful transmission by any other station.
Its normalized form is given by D̄o =

Do

Dmax
.

2) Action-observation History: The action-observation c
can be denoted as

c ≜ [ã, z] = [ã, o, D̄, D̄o], (6)

where ã is normalized by the Nmax
w to the range [0, 1], i.e.,

ã = a
Nmax

w
. The action-observation at step j is denoted as cj by

introducing the subscript j. Leveraging the packet-based agent
mentioned in Section IV-B, the action-observation history at
current step ts can be expressed as

τts ≜ [c0, c1, . . . , c
i
ts−1], (7)

which includes the history of action-observation from the time
the packet becomes HOL (j = 0) to the current time step
(j = ts). If the length of the history exceeds Lh, it is truncated
to the most recent Lh action-observation pairs.

3) Reward Function for Action a: In this work, we focus
on optimizing the end-to-end (E2E) delay, which is composed
of access delay and waiting time:

• Access delay is defined as the time from when a packet
becomes head-of-line to its successful transmission.

• Waiting time is the time from a packet’s arrival to when
it becomes the head-of-line packet.

To optimize access delay and waiting time, we design separate
reward functions below.

The reward for access delay is defined as:

ra =


1, if success,

− Tcol

Tsucc
, if failure,

− aTs
Tsucc

, if waiting for a slots,

(8)

where Tcol and Tsucc are the duration of a failed transmission
and successful transmission, respectively. Below, we introduce
the reward design in detail. If the HOL packet is successfully
transmitted, a positive reward of +1 is assigned. In the case
of a transmission failure, the access delay of the HOL packet
increases by the duration of collision Tcol. To reflect this cost,
we normalize Tcol by Tsucc and assign a negative reward − Tcol

Tsucc

to penalize the agent. When the agent chooses to wait, it wastes
a slots, resulting in a negative reward of − aTs

Tsucc
.

The reward for waiting time is defined as follows:

rq =


−Tcol(Lb − 1)

TsuccL
, if failure,

−aTs(Lb − 1)

TsuccL
, if waiting for a slots,

0, otherwise,

(9)

where Lb represents the number of packets in the buffer,
and L is the maximum buffer size. When the HOL packet
is unsuccessfully transmitted, the waiting time for all packets
except the HOL packet increases by Tcol(Lb − 1). Similarly,
waiting for a slots increases the waiting time by at least
aTs(Lb − 1). We normalize the increasing waiting time by
TsuccL and assign negative rewards to penalize the agent.

To reduce the 95th percentile of the E2E delay distribution,
we define an additional reward as:

r95 = −min{1, D
D95
}, (10)

where D95 represents the 95th percentile of the E2E delay
distribution. The value of D95 is calculated based on the
most recent 103 successfully transmitted packets by the station
itself. When the sojourn time D of the HOL packet approaches
95th-percentile delay D95, the agent receives a larger penalty.
If D exceeds D95, the reward r95 is set to −1.

The final reward for action a is a weighted sum of the above
components:

r = ω(ra + rq) + (1− ω)r95, (11)

where ω ∈ [0, 1] is a weight that balances the contributions
of the different reward components. As previously introduced,
accumulating the above reward at each step reflects the delay
performance with a negative sign. By maximizing the cumu-
lative reward, the agent learns a policy that reduces delay.

4) Reward Function for Nw: Since Nw is selected by the
agent, we design a reward function to guide its learning:

r̃ =


+1, if success,
−1, if failure,
0, otherwise.

(12)

This reward encourages the agent to select the value of Nw
that leads to more successful transmissions while penalizing
those that result in failures.

B. Actor-Critic Architecture

In this work, we adopt an actor-critic framework [36] to
learn an access strategy. Each agent is equipped with its own
actor and critic networks. The actor network of each agent
generates a policy π for action selection, while the critic
network guides the learning process of the corresponding actor.
The architectures of these networks are illustrated in Fig. 5.

1) Actor: The architecture of the actor network is illustrated
in Fig. 5a. For each agent, the action-observations in τ are
sequentially fed into a gated recurrent unit (GRU) network
to extract the temporal feature. The hidden state of the final
GRU layer is then passed through a fully connected (FC) layer
with a leaky rectified linear unit (Leaky ReLU) activation
function. The output of this FC layer is then forwarded to
two distinct FC layers, “FC |A|” layer and “FC |SNw

|”
layer, respectively. The FC |SNw | layer with softmax func-
tion outputs the distribution of π̃(Nw|τ), which is sampled
for selecting Nw. The FC |A| layer outputs a vector y of
length |A| = Nmax

w + 1, ensuring that the actor network can
accommodate the maximum possible value of Nw. Note that



Fig. 4: The training and execution processes of the SAC-MA protocol.

(a) Actor network (b) Critic network

Fig. 5: Network architecture of the actor-critic framework.
The number following “FC” or “GRU” denotes the number
of neurons in the corresponding layer.

the action a belongs to the set {0, 1, . . . , Nw}. To prevent the
selection of illegal actions (i.e., a exceeding the chosen Nw),
we apply a masking operation:

ŷk =

{
−109, if k ≥ (Nw + 1),

yk, otherwise,
(13)

where yk and ŷk are the k-th element in the vector y and ŷ,
respectively. After masking, a softmax function is applied to
generate the policy distribution π(a|τ), from which an action
a is sampled:

a ∼ π(a|τ) = softmax (ŷ) . (14)

Since ŷ = −109 is used for illegal actions, their corresponding
softmax probabilities are approximately zero.

2) Critic: As shown in Fig. 5b, we employ two distinct
critic networks to guide the selection of a and Nw, depicted
on the left and right sides of the figure, respectively. For
the critic associated with a, the network first encodes the
trajectory τ using GRU. The GRU output is subsequently
passed through two FC layers to compute the action-value
functions Q ≜ {Q(τ, a)|a ∈ A}, where Q(τ, a) represents
the estimated value of taking action a given the history τ . The

Algorithm 1 Multiple Waiting Actions Mechanism

1: procedure MULTIPLE WAITING ACTIONS(w, θ, τ )
2: if Packet buffer is not empty and Channel is sensed

idle for more than DIFS duration then
3: if w = 0 then
4: Select Nw ∼ π̃θ(·|τ)
5: Select an action a ∼ πθ(·|τ)
6: if a > 0 then
7: w ← a
8: else
9: w ← w − 1

10: if a = 0 then
11: Transmit a packet
12: else
13: Perform carrier sensing for a time slot
14: return a,Nw

first FC layer applies the leaky ReLU activation function, while
the second FC layer uses a linear activation. The architecture
of the critic network for Nw is similar to that for a, with
the difference being that the output layer contains |SNw |
neurons. This critic network outputs the action-value functions
Q̃ ≜ {Q̃(τ,Nw)|Nw ∈ SNw

} for different Nw.

C. SAC-MA Algorithm

In this section, we introduce the process of our proposed
SAC-MA protocol. We adopt a fully decentralized multi-agent
reinforcement learning framework, where both the training and
execution processes are decentralized. These processes are pre-
sented in Fig. 4. The pseudo-code of multiple waiting actions
mechanism and the SAC-MA algorithm are summarized in
Algorithm 1 and Algorithm 2, respectively. Employing the
experience replay mechanism [37], each agent is equipped
with a replay memory to store the experiences from past steps.
At each step, an experience tuple (τ, a,Nw, r, r̃, τ

′, d) is stored
in the replay memory, where τ ′ is the transited history after
executing a. The variable d denotes whether the episode has
terminated: d = 1 if the episode ends, and d = 0 otherwise.

In the following, we detail the training process. First, each
agent samples a batch of B experiences as E to update the
actor-critic networks. In each station, the network parameters
of the actor are denoted by θ. The network parameters of



Algorithm 2 SAC-MA Algorithm

1: Initialize parameters: t ← 0, τ ← τ0, z0 ← 0, ψ̄1 ←
ψ1, ψ̄2 ← ψ2, w ← 0.

2: Initialize the replay memory D.
3: while time t < Tsim do
4: // Execution process
5: a,Nw = MULTIPLE WAITING ACTIONS(w, θ, τ )
6: Channel provides feedback to the station
7: // Training process
8: if The station selects an action using πθ(·|τ) then
9: Get local observation z

10: Compute τ ′ from τ, a, z
11: Compute r and r̃ from Eq. (11) and Eq. (12)
12: d← whether the episode has terminated
13: Store (τ, a,Nw, r, r̃, τ

′, d) to D
14: Randomly sample B experiences from D as E
15: // Update network parameters
16: ψ1 ← ψ1 − βψ∇̂ψ1

JQ(ψ1)
17: ψ2 ← ψ2 − βψ∇̂ψ2

JQ̃(ψ2)

18: θ ← θ − βθ∇̂θJπ(θ)
19: α1 ← α1 − βα∇̂α1Jα1(α1)
20: α2 ← α2 − βα∇̂α2Jα2(α2)
21: ψ̄1 ← ηψ1 + (1− η)ψ̄1

22: ψ̄2 ← ηψ2 + (1− η)ψ̄2

23: // Packet-based agent mechanism
24: if d = 1 then
25: τ ← τ0
26: else
27: τ ← τ ′

28: Update time t

the critic for a and Nw are denoted by ψ1 and ψ2. The
critic networks are equipped with their corresponding target
network [37], whose parameters are represented by ψ̄1 and ψ̄2.
We employ the discrete-action version of the soft actor-critic
method [38] to update the network parameters. SAC algorithm
aims to simultaneously maximize both expected cumulative
reward (i.e., return) and policy entropy:

J(θ) = Eπθ

[
T∑
t=0

(
γtrt + αH(·|τ)

)]
, (15)

where H(·|τ) is the entropy of the policy and α is the
temperature parameter that balances entropy maximization
and returns. Distinct temperature parameters, α1 and α2, are
employed for training the action a and the variable Nw,
respectively. This encourages exploration by promoting more
diverse action choices. The loss function of the critic for a is
defined in the form of mean square error:

JQ(ψ1) =
1

B

∑
e∈E

[
Qψ1(τ, a)−

(
r + γ(1− d)Vψ̄1

(τ ′)
)]2

,

(16)
where

Vψ̄1
(τ ′) =

∑
ã∈A

πθ(ã|τ ′)
[
Qψ̄1

(τ ′, ã)− α1 log(πθ(ã|τ ′))
]
(17)

TABLE I: System parameters

Parameters Value
PHY header 36µs
MAC header 26 bytes

ACK (14 bytes)/RB + PHY header
Time slot length 9µs

SIFS 16µs
DIFS 34µs

Packet payload length 2304 bytes
Basic rate RB 6 Mbps

Transmission rate RT 16 Mbps
Packet buffer size L 50
Capture threshold µ 0.1

Mean received SNR ρ 20 dB
Maximum retransmission limit 10

is the soft state value function. Similarly, the loss function of
the critic for Nw is defined as:

JQ̃(ψ2) =
1

B

∑
e∈E

[
Q̃ψ2

(τ,Nw)−
(
r̃ + γ(1− d)Ṽψ̄2

(τ ′)
)]2

,

(18)
where

Ṽψ̄2
(τ ′) =∑

Ñw∈SNw

π̃θ(Ñw|τ ′)
[
Q̃ψ̄2

(τ ′, Ñw)− α2 log(π̃θ(Ñw|τ ′))
]
.

(19)
The parameters of the actor can be learned by minimizing

Jπ(θ) =

1

B

∑
e∈E

[
∑
ã∈A

πθ(ã|τ)[α1 log(πθ(ã|τ))−Qψ1
(τ, ã)]+∑

Ñw∈SNw

π̃θ(Ñw|τ)[α2 log(π̃θ(Ñw|τ))− Q̃ψ2
(τ, Ñw)]].

(20)

The automating entropy adjustment mechanism is used to
adjust learnable temperature parameters α1 and α2 by min-
imizing

Jα1
(α1) =

1

B

∑
e∈E

∑
ã∈A

πθ(ã|τ)[−α1(log(πθ(ã|τ)) + H̄1)],

(21)
and
Jα2

(α2) =

1

B

∑
e∈E

∑
Ñw∈SNw

π̃θ(Ñw|τ)[−α2(log(π̃θ(Ñw|τ)) + H̄2)],

(22)
respectively. H̄1 and H̄2 are predefined target values for policy
entropy. The soft update method is applied to update the
parameters of target networks, i.e., ψ̄1 ← ηψ1+(1−η)ψ̄1 and
ψ̄2 ← ηψ2 + (1 − η)ψ̄2, where η represents the soft-update
factor.

VI. SIMULATION RESULTS

In this section, we first introduce the simulation setup and
performance metrics. We then provide detailed performance
evaluations under static and dynamic scenarios. After that, we
evaluate the performance in heterogeneous network settings
and perform the ablation experiments.
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Fig. 6: The performance comparison under static scenarios for the collision model with different network traffic loads. The
number of stations is fixed at 5.
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Fig. 7: The performance comparison under static scenarios for the capture model with different network traffic loads. The
number of stations is fixed at 5.

A. Simulation Setup

We adopt the system parameters specified in the IEEE
802.11be standard [39], which is presented in Table I. Each
station transmits a packet composed of the physical (PHY)
header, MAC header, and payload. The duration of packet
transmission, Tp, is calculated as:

Tp = PHY header +
MAC header + Payload

RT
, (23)

where the MAC header and payload are transmitted with
the transmission rate RT . According to the standard, the
PHY header lasts for 36µs and the MAC Header consists
of 26 bytes. The payload is set to 2304 bytes, which is the
maximum size for a MAC service data unit. The ACK frame is
transmitted with the basic rate RB . The packet arrival of each
station follows a Bernoulli distribution with the same arrival
rate λ. At each interval of Tp, each station generates a new
packet with probability λ. The aggregate input rate is λ̂ = Nλ.
Each station is equipped with a packet buffer with a maximum
capacity of 50 packets. The maximum retransmission limit is
set to 10. The capture threshold and the mean received SNR
are set to 0.1 and 20dB, respectively. The simulation time is
set to Tsim = 50 seconds by default.

To provide a comprehensive comparison, we compare
our proposed SAC-MA algorithm with baselines including
scheduling, CSMA/CA, and QLBT method. The parameter
settings of these methods are described in detail below.

TABLE II: Hyper-parameters of SAC-MA

Parameters Value
The set of Nw {1, 4, 8}

Maximum length of the history Lh 40
The capacity of the replay memory D 1000

Learning rate βθ, βψ 5× 10−4

Learning rate βα 1× 10−2

The initial value of α 0.5
Target entropy H̄1 −0.4 ln(1/(Nw + 1))
Target entropy H̄2 −0.4 ln(1/(|SNw |))

Batch size B 16
Discount factor γ 0.99

Soft update factor η 0.01
Weight in the reward function ω 0.8

1) SAC-MA: We first introduce the parameters of neural
networks. As shown in Fig. 5a, both the GRU and the first
FC layer in actor and critic networks contain 32 neurons. The
numbers of their final layers are set to |A| = 9 or |SNw | = 3,
where SNw is set to {1, 4, 8}. The maximum length of action-
observation history is set to 40. The replay memory D stores
the recent 1000 experiences. Then, the training parameters in
the SAC method are given as follows. The parameters in actor-
critic networks and learnable temperature parameter α are
updated using the respective Adam optimizers with learning
rates βθ = βψ = 5× 10−4 and βα = 1× 10−2. α is initially
set to 0.5, and H̄1 and H̄2 are set to −0.4 ln(1/|A|) and
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Fig. 8: The performance comparison under static scenarios for the collision model with different numbers of stations. The
packet arrival rate of each station is fixed at λ = 0.1.
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Fig. 9: The performance comparison under static scenarios for the capture model with different numbers of stations. The packet
arrival rate of each station is fixed at λ = 0.1.

−0.4 ln(1/|SNw |), respectively. The batch size B, discount
factor γ, and soft update factor η are set to 16, 0.99, 0.01,
respectively. The weight ω in the reward function is set to
0.8. The hyper-parameters used in SAC-MA are summarized
in Table II.

2) Scheduling: We assume an ideal access strategy for
the scheduling method, with full knowledge of all stations’
packet buffer states and channel fading coefficients, and no
scheduling overhead. In the collision model, the scheduler
randomly selects a station with a non-empty packet buffer
to transmit. In the capture model, the scheduler evaluates all
possible access actions and selects the one that maximizes the
number of successful transmissions.

3) CSMA/CA: We consider the basic access mode of
CSMA/CA. According to the standard, the initial backoff
window size W and the maximum backoff phase K are set
to 16 and 6, respectively.

4) QLBT: As a RL-based MAC protocol, the QLBT algo-
rithm is introduced as a baseline. Its hyper-parameters setting
is consistent with those in the literature [3].

5) Consensus MARL: We adopt the algorithm from [25],
referred to as Consensus MARL, as an additional baseline.
The hyperparameter settings are consistent with those reported
in [25], except that the normalization factor w0 is set to =
1/600 instead of 1/60 since the packet length in our work is
larger than that in Consensus MARL.

B. Performance Metrics

Below, we present the performance metrics used to evaluate
our algorithm and other baselines.

1) 95th Percentile Delay: The E2E delay is defined as
the time interval between the generation of a packet and the
reception of its corresponding ACK. The 95th percentile delay
is computed as the value below which 95% of the E2E delays
of successfully delivered packets fall.

2) Sum Throughput: The sum throughput is defined as
the ratio of the total transmission time of all successfully
transmitted packets to the simulation time Tsim, which is
calculated as:

Thsum =
Nsucc × Tp

Tsim
, (24)

where Nsucc represents the number of packets successfully
transmitted.

3) Packet Drop Rate: A packet is dropped under either of
the following conditions: (a) it arrives when the packet buffer
is full, or (b) its number of transmission failures exceeds the
maximum retransmission limit. Let Ndrop denote the number
of dropped packets over the entire simulation. The packet drop
rate (PDR) is calculated as:

PDR =
Ndrop

Ndrop +Nsucc
. (25)
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Fig. 10: The performance comparison under dynamic traffic scenarios. The number of stations is fixed at 5.
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Fig. 11: The performance comparison under dynamic network sizes. The packet arrival rate of each station is fixed at λ = 0.1.

C. Static Scenario

In the static scenario, system parameters such as the network
size N and network traffic load λ̂ are fixed throughout each
simulation. We evaluate the SAC-MA algorithm and other
baseline methods under static scenarios with different system
parameters for the same simulation time, i.e., Tsim seconds.

First, we present simulation results under different traffic
loads with a fixed network size of N = 5, as shown in Fig. 6
and Fig. 7 for the collision and capture models, respectively.
A logarithmic scale is used for the Y axis in the delay
performance to better visualize the wide range of values. For
the 95th percentile delay, SAC-MA outperforms the QLBT
and Consensus MARL algorithm. Compared with CSMA/CA,
SAC-MA reduces delay by 27.9% and 56.5% in the collision
and capture models, respectively. Furthermore, compared to
CSMA/CA, SAC-MA reduces the delay performance gap with
the scheduling method by approximately 47.6% and 76.5%
under the collision and capture models, respectively. In terms
of throughput, all methods achieve the target sum throughput
Thsum = λ̂ under unsaturated conditions. As the traffic
load increases, the network becomes saturated and the sum
throughput does not increase anymore. The simulation results
indicate that SAC-MA achieves higher saturation throughput
than all baselines in the collision model. Moreover, SAC-MA
exhibits a lower packet drop rate under saturated conditions.

Then, we consider static scenarios with different numbers
of stations N while fixing the packet arrival rate per station
at λ = 0.1. The number of stations is varied from 2 to 10.
The simulation results for the collision and capture model

are shown in Fig. 8 and Fig. 9, respectively. Compared to
the CSMA/CA, QLBT and Consensus MARL method, the
proposed SAC-MA algorithm achieves lower 95th percentile
delay and packet drop rate, as well as higher sum throughput,
when the number of stations is large.

D. Dynamic Scenario

To evaluate the adaptation ability of SAC-MA, we consider
dynamic wireless networks where system parameters change
in real time. In these scenarios, agents using the SAC-MA
algorithm are continuously trained throughout the entire sim-
ulation. Given that the QLBT and Consensus MARL method
perform poorly in static scenarios, our evaluation focuses on
SAC-MA, CSMA/CA, and the scheduling method. We first
examine performance under dynamic traffic load conditions.
The scenario is configured as follows: the number of stations
is set to 5, and the simulation is divided into four intervals,
each of which lasts 50 seconds. The network traffic load λ̂ in
each interval is set to 1, 0.2, 0.4, and 0.8, respectively. The
simulation results under the collision model and capture model
are presented in Fig. 10a and Fig. 10b, respectively, where
each data point represents the 95th percentile delay computed
from successfully transmitted packets over the past 5 seconds.
The results demonstrate that SAC-MA adapts effectively to
changing traffic conditions and outperforms CSMA/CA during
most of the simulation time. Fig. 10c shows the sum through-
put for each interval. Under unsaturated traffic conditions,
the sum throughput of all methods matches the offered load,
i.e., Thsum = λ̂. However, in saturated conditions, such as



when λ̂ = 1.0 in the collision model, the SAC-MA algorithm
achieves higher throughput than CSMA/CA. Next, we evaluate
performance under dynamic network size with fixed λ = 0.1.
The simulation is also divided into four intervals, each of
which lasts 50 seconds. The number of stations in each interval
is 10, 4, 2, and 8, respectively. As illustrated in Fig. 11,
SAC-MA successfully adapts to changes in network size with
respect to delay performance. Moreover, under the collision
model, it achieves higher sum throughput than CSMA/CA,
particularly when the number of stations is large (e.g., N = 8
or N = 10).

E. Heterogeneous Network

In this subsection, we consider heterogeneous networks
where SAC-MA stations coexist with stations using the
CSMA/CA protocol. To evaluate fairness between these two
protocols, we adopt the 3GPP fairness metric, which requires
that the introduction of a new protocol should not degrade the
performance (e.g., throughput and delay) of an existing Wi-Fi
network more than the addition of another Wi-Fi network on
the same channel. We assume that all legacy Wi-Fi stations use
the CSMA/CA protocol with the same parameters specified
in Section VI-A3. Since the CSMA/CA protocol employs a
binary exponential backoff mechanism, the contention window
increases upon collisions, leading to a longer average backoff
time for CSMA/CA stations compared to SAC-MA stations.
To protect these incumbent CSMA/CA stations, we impose a
regulation on SAC-MA stations: each of them must wait for
Nh = 8 slots following the DIFS duration whenever a packet
becomes head-of-line. This operating mode is referred to as
heterogeneous mode. In practice, an access point can broadcast
a beacon frame to instruct SAC-MA stations to switch to this
mode. In our simulations, we evaluate the throughput and
delay in networks consisting of N SAC-MA stations and M
CSMA/CA stations. To assess 3GPP fairness, we compare this
setup with an alternative configuration in which the SAC-MA
stations are replaced by an equivalent number of CSMA/CA
stations, denoted as CSMA/CA-2. Simulations are conducted
with various combinations of N and M under the collision
model and capture model, with results presented in Fig. 12a,
12b, 13a, and 13b. The figures show the 95th percentile delay
and throughput performance for both the CSMA/CA subset
and the entire network. The results indicate that CSMA/CA
stations coexisting with SAC-MA stations achieve throughput
and delay performance that are no worse than when coexisting
with CSMA/CA-2 stations, thereby satisfying the 3GPP fair-
ness criterion. Furthermore, the inclusion of SAC-MA stations
slightly reduces the overall network delay.

To analyze the impact of Nh on delay performance, we
conduct simulations for a scenario with N = 5 and M = 10,
varying the value of Nh. The simulation results are shown
in Fig. 12c and Fig. 13c for the collision model and capture
model, respectively. The results reveal that increasing Nh re-
duces the 95th percentile delay of CSMA/CA stations, as SAC-
MA stations defer for more time slots before transmission,
thereby providing CSMA/CA stations with more transmission
opportunities. The 3GPP fairness for delay is satisfied when

the delay of CSMA/CA stations falls below the dashed line,
which represents their delay when coexisting with CSMA/CA-
2 stations. The results indicate that setting Nh = 8 is an
appropriate choice, ensuring 3GPP fairness while reducing
overall network delay.

F. Discussions on Proposed Mechanisms

To discuss the impact of the proposed mechanisms in SAC-
MA, we conduct ablation experiments by removing each
mechanism individually. We first focus on the multiple waiting
actions mechanism. A variant of SAC-MA referred to as
“SAC-MA (Nw = 1)”, is evaluated, where the number of
waiting actions is fixed to 1. This variant corresponds to the
algorithm using the binary-decision mechanism. Simulations
are conducted under the collision model with a fixed arrival
rate λ = 0.1 and varying network sizes: 2, 4, 6, and 8.
The delay performance comparison between SAC-MA and
its variant is illustrated in the upper plot of Fig. 14. The
results show that restricting Nw to 1 leads to a significant
increase in delay. This degradation is primarily attributed to
the reduced waiting action space, which results in a higher
collision probability, as depicted in the lower plot of Fig. 14.

Next, we evaluate the effectiveness of the packet-based
agent mechanism. In contrast to the packet-based agent, the
station-based agent maintains a history of multiple past packets
rather than only the head-of-line packet. Additionally, episodes
for the station-based agent are not terminated until the end of
the entire simulation, meaning that the termination indicator
d remains 0. The simulation setup is identical to that used
in the previous mechanism analysis. As shown in Fig. 15,
the packet-based method achieves better performance in terms
of the 95th percentile delay. To further compare the history
freshness between the two approaches, we introduce a metric
called age of history, defined as the sum of the ages of all
action-observation pairs, where the age of each pair is the
time elapsed since its generation. We compute the mean age
of history used in decision-making over the entire simulation.
The lower subplot of Fig. 15 shows that the packet-based agent
maintains a significantly lower mean age of history compared
to the station-based agent, indicating that it relies on fresher
information.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a RL-based MAC protocol,
named SAC-MA, to optimize the delay performance in the
distributed channel access scenario. To reduce the collision
among stations, we introduce the multiple waiting actions
mechanism, which expands the action space by allowing
agents to wait for multiple time slots. Moreover, we design
a packet-based agent mechanism that treats the head-of-line
packet as an independent agent, enabling the use of fresher
historical information. We conduct extensive simulations to
evaluate the performance of the proposed algorithm against
baseline methods across various network scenarios. The re-
sults demonstrate that SAC-MA outperforms both the QLBT
algorithm and CSMA/CA protocol in terms of 95th percentile
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Fig. 12: The performance comparison under the collision model in heterogeneous networks with fixed λ̂ = 0.5.
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Fig. 13: The performance comparison under the capture model in heterogeneous networks with fixed λ̂ = 0.5.

2 4 6 8

101

102

103

95
th

 p
er

ce
nt

ile
 d

el
ay

 (m
s)

SAC-MA
SAC-MA (Nw = 1)

2 4 6 8
N

0.00

0.05

0.10

0.15

0.20

Co
llis

io
n 

pr
ob

ab
ilit

y

SAC-MA
SAC-MA (Nw = 1)

Fig. 14: The performance comparison between SAC-MA al-
gorithm and its variant “SAC-MA (Nw = 1)”.
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Fig. 15: The performance comparison between packet-based
and station-based agent mechanisms.

delay, saturation throughput, and packet drop rate. On av-
erage across different traffic loads, SAC-MA reduces delay
by approximately 27.9% and 56.5% compared to CSMA/CA
in the collision and capture model, respectively. In dynamic
environments, SAC-MA adapts rapidly to changing conditions
including network sizes and traffic loads. Furthermore, simu-
lation results confirm that SAC-MA can coexist harmoniously
with legacy CSMA/CA stations, satisfying the 3GPP fairness
criterion. Finally, ablation studies validate the effectiveness of
the proposed mechanisms.

For future work, we plan to extend our algorithm to support
multi-link operation, enabling devices to transmit over mul-
tiple frequency bands simultaneously. Additionally, we aim
to explore traffic differentiation to support diverse quality
of service requirements and learn effective traffic allocation
across different links.
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