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Abstract—This work addresses the classical problem of dis-
tributed computation of linearly separable functions, where a
master node with access to K datasets employs N servers
to compute L user-requested functions, each defined over the
datasets. Servers are assigned subfunctions of the datasets and
transmit computed outputs to the user, who reconstructs the
demanded outputs. The central challenge is to minimize both the
per-server computational load and the communication cost from
servers to the user, while ensuring recovery for any possible set of
L demands. For any given K, L, and M , we propose a distributed
computing scheme that achieves the optimal communication
cost when K < L + M . When M ≥ K/2, we present an
alternative scheme that yields a lower communication cost than
the former. The key innovation in both schemes is a nullspace-
based design principle that governs both dataset assignment
and server transmissions, ensuring exact decodability for all
demands.

I. INTRODUCTION

Recent advances in machine learning have made distributed
computing essential for large-scale workloads. Frameworks
such as MapReduce [1] and Spark [2] partition tasks across
multiple servers, overcoming the limitations of individual
nodes. These systems, however, face challenges from strag-
glers [3]–[7], data privacy, and adversarial behavior [8],
[9], while being fundamentally constrained by computational
capability and communication bandwidth. These intertwined
constraints give rise to the communication–computation trade-
off, which underpins the design of distributed computing
frameworks including MapReduce [10]–[15], gradient coding/
distributed function computing [3], [16], [17], and distributed
matrix multiplication [5], [6], [18].

This fundamental tradeoff lies at the core of our study,
where we examine the (K,L,M) distributed linearly sepa-
rable function computation problem over a field F. In this
setting, a user requests L function values from a master node,
each corresponding to the output of an independent function
Fℓ, ℓ ∈ [L], acting on a dataset library W of K independent
and identically distributed (i.i.d.) datasets. These functions are
linearly separable over K basis subfunctions fj , j ∈ [K],
which enables the master node to parallelize computation
across N distributed servers. Each server, with limited com-
puting power, is assigned a set of at most M subfunctions to
compute, each evaluated on an i.i.d. dataset stored locally.
After computation, servers transmit linear combinations of
their computed values to the user, who then recovers the L
requested outputs. The objective, for any (K,L,M) instance,
is to design a distributed computing scheme that jointly
allocates subfunctions to servers and specifies transmissions
so as to minimize the total communication cost while ensuring
exact recovery of all requested functions.

In the extremes, M = K corresponds to the centralized
setting where a single server transmits L messages, while
M = 1 requires N = K servers and incurs a communication
cost of K. The intermediate regime 1 < M < K presents the
main combinatorial challenge, where one must jointly allocate
subfunctions across servers and design transmissions so as to
minimize the total communication cost.

A. Related Works

Our work is most closely related to [19], [20], which study
a similar problem of linearly separable function computation
with N servers, a single user, multiple requested functions
over K datasets, and an objective of minimizing communica-
tion cost for a given M . The main distinction with our work is
that [19], [20] emphasize on straggler mitigation, and on the
specific case of the cyclic task assignment. Related work can
also be found in the more recent [21], [22], which consider a
multi-user distributed computing problem, where each server
is connected to multiple, but not all, users, each asking for
their own desired function. Both these works [21], [22] aim
to reduce the communication and computation costs, the first
[21] by exploiting the properties of covering codes, and the
second [22] by employing optimal tilings from tessellation
theory. The multi-user distributed computing scheme in [22]
– once translated onto our single-user setting – operates under
various restrictive assumptions of disjoint tasks across servers,
which do not appear in our work.

B. Contributions

In this work, we study the distributed linearly separable
function computation problem with the goal of minimizing,
for a given computation cost M , the total communication cost
R from servers to the user. Since each server can compute at
most M ≤ K subfunctions, the key challenge is to jointly
design (i) task assignments that respect the per-server budget
and (ii) transmissions that guarantee exact recovery of all
requested functions. Performance is measured by the worst-
case communication cost across all possible demands.

We introduce a novel technique that provides a sufficient
condition for designing both task assignments and server
transmissions. The core idea (Lemma 1) leverages the ex-
istence of left nullspaces of carefully selected submatrices
of the demand matrix to guarantee exact decodability when
K ≤ L +M − 1. In this regime, a ‘nullspace-based matrix’
(cf. (4)) can test feasibility for any task assignment and, if
feasible, directly specify the transmissions. Moreover, for all
values of K,L,M satisfying K ≤ L + M − 1, we explic-
itly design feasible assignments and transmission schemes



achieving the globally optimal communication cost. While
prior works [19], [20] employed nullspace ideas solely for
transmission design, our approach extends this principle to
task assignment itself. The key distinction is that the nullspace
design dictates the task allocation, unlike [19], [20], where
cyclic assignment predetermined the nullspace structure. This
extension ensures exact decodability for all demands, going
beyond the probabilistic guarantees in [19], [20].1

A few additional design elements appear in the subsequent
Schemes 1 and 2, designed for the case of K > L+M − 1.

• Scheme 1 (Theorem 1) applies a column-wise partition
of the demand matrix into submatrices, on each of which
the nullspace-based design for task assignment and trans-
missions is applied independently. The scheme works for
any (K,L,M), and the corresponding communication
cost takes the form R = min(K,L⌈K/(L+M − 1)⌉).

• Scheme 2 (Theorem 2) is distinguished by admitting a
task assignment independent of the demand matrix. It
applies in the regime M ≥ K/2, where we augment the
demand matrix with carefully designed virtual demand,
enabling a more efficient fusion of the partitioning and
nullspace approaches.

C. Notations

For a positive integer n, we let [n] = {1, 2, . . . , n}. For m,
n ∈ Z+ such that m < n, [m : n] denotes the set {m,m +
1, . . . , n}, and m | n denotes m divides n. All vectors are
assumed to be column vectors. For a vector x, the number of
non-zero entries in x is denoted by ||x||0. For any set S, the
cardinality of S is denoted by |S|. The complement of set S
is denoted by Sc. The vertical concatenation of two matrices
Am1×n and Bm2×n are denoted by [A;B]. The i-th row and
the j-th column of a matrix Am×n are denoted by A(i, :)
and A(:, j), respectively. For a set S ⊆ [n] and a matrix A
with n columns, AS denotes the submatrix of A formed by
the columns indexed by S. For any x ∈ R+, ⌈x⌉ denotes
the smallest positive integer greater than or equal to x, and
⌊x⌋ denotes the largest positive integer less than or equal to
x. A vector of length n with all zeros is denoted by 0n×1.
An n−length unit vector with a one at the i-th position and
zeroes elsewhere is denoted by ei. The support of a vector
x ∈ Fn is defined as supp(x) := {i ∈ [n] : xi ̸= 0}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a distributed computing system with a mas-
ter node having a library of K i.i.d. datasets W =
{W1,W2, . . . ,WK}, where Wk ∈ FB , ∀k ∈ [K]. In this
setting, a single user wishes to compute L ≤ K independent
functions F1, F2, . . . , FL on W , where Fℓ : (FB)K →
FT , ∀ℓ ∈ [L], and T denotes the size of each function value
(a vector of T elements from the field). Furthermore, each
function Fℓ, ∀ℓ ∈ [L], is linearly decomposable as

Fℓ(W) = dℓ,1f1(W1) + dℓ,2f2(W2) + · · ·+ dℓ,KfK(WK),

where dℓ,j ∈ F, and the subfunction fj : FB → FT , j ∈ [K],
is assumed to be bounded and can be linear or non-linear

1Indeed, for small finite field sizes, those schemes may fail on a significant
fraction of demand matrices (see Table I in [20]).
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Fig. 1: System model

and can be computationally intensive. Consequently, the L
requested functions can be represented as

F1(W)
F2(W)

...
FL(W)

 =


d1,1 d1,2 . . . d1,K
d2,1 d2,2 . . . d2,K

...
...

. . .
...

dL,1 dL,2 . . . dL,K


︸ ︷︷ ︸

D


f1(W1)
f2(W2)

...
fK(WK)

 (1)

where – under the worst-case assumption – we consider the
case of rank(D) = L. Since the L functions are linearly
separable, the computation of the Fℓ(W)’s can be performed
in a distributed manner across the N servers. We consider
the case where the computational capability of the servers
is limited, in that each server can compute a maximum of
M ≤ K subfunctions. This model is illustrated in Figure 1.

The system operates in three phases: demand phase, com-
puting phase, and communication phase.

Demand phase: In the demand phase, the user informs the
master node of its L desired functions, which are naturally
described by the matrix D ∈ FL×K .

Computing phase: Subject to the constraint that each server
computes at most M subfunctions, the master uses the de-
mand matrix D to assign to server n a subset Mn ⊂ [K] of
subfunctions and the associated datasets. At the end of this
phase, server n evaluates fj(Wj) ∈ FT for all j ∈ Mn. We
often refer to the collection M = {Mn : n ∈ [N ]} as the
task assignment.

Communication phase: After computing, server n sends rn
linearly encoded messages based on its local outputs fj(Wj),
where each message is of the form2

xn,r =
∑

j∈Mn

αn,r,jfj(Wj) (2)

for r ∈ [rn], with coefficients αn,r,j ∈ F. This means that

2We adopt the standard no-subpacketization assumption, where servers do
not divide subfunction outputs into smaller parts.



each server n transmits xn = [xn,1, xn,2, . . . , xn,rn ]
⊺, where

xn,1

xn,2

...
xn,rn

 =


αn,1,1 αn,1,2 . . . αn,1,K

αn,2,1 αn,2,2 . . . αn,2,K

...
...

. . .
...

αn,rn,1 αn,rn,2 . . . αn,rn,K


︸ ︷︷ ︸

An∈Frn×K


f1(W1)
f2(W2)

...
fK(WK)

 .

Since xn,r is a linear combination of at most M subfunc-
tions, then ||An(r, :)||0 ≤ M, ∀r ∈ [rn] and n ∈ [N ]. For
x = [x1;x2; . . . ;xN ] denoting the entire set of transmissions
across all the servers, for R =

∑
n∈[N ] rn, and for A =

[A1;A2; . . . ;AN ] ∈ FR×K denoting the encoding matrix,
the entire set of transmissions can be represented as

x = A[f1(W1), f2(W2), . . . , fK(WK)]⊺

where each row of A has a non-empty support of cardinality
at most M .

The communication link between each of the N servers and
the user is assumed to be error-free and non-interfering. The
user is allowed to perform linear operations on the received
messages, in order to decode the L function values.

The communication cost here represents the total number of
transmissions, from the servers to the user, required for recov-
ery of the L desired function outputs at the user. In particular,
for a given D ∈ FL×K , the communication cost is defined
as RD(M) =

∑
n∈[N ] rn, where we assume unit-length file

messages, i.e., we assume |xn,r| = 1, ∀n ∈ [N ], r ∈ [rn].3

The rate of interest in our work will represent the worst-case
communication cost

R(K,L,M) = max
D∈FL×K

RD(M)

over all full-rank matrices D, and thus our interest is in
identifying the optimal rate

R∗(K,L,M) = inf{R(K,L,M): R(K,L,M) is achievable}

where the infimum is over all task assignments and linear
transmission policies. Our objective is to design the assign-
ment and transmission scheme that approaches this optimum.

III. MAIN RESULTS

In this section, we present two achievable schemes for
the distributed linearly separable function computation prob-
lem. The first scheme (Theorem 1) applies to all values of
(K,L,M), while the second scheme (Theorem 2) is designed
to improve the performance of the first scheme in the region of
M ≥ K/2. Additionally, the second scheme enjoys a demand-
agnostic task assignment.

A. Scheme 1: A General Achievability Scheme

Theorem 1. For the (K,L,M) distributed linearly separable
function computation problem, the rate

R1(K,L,M) = min

{
K,L

⌈
K

L+M − 1

⌉}
(3)

is achievable.

3A subfunction output/coded transmission vector of length T is treated as
one unit.

Proof. The proof of the achievability of the rate expression
in (3) is divided into two cases. Case 1 for K ≤ L+M − 1,
and Case 2 for K > L + M − 1. The crux of the proof of
Case 1 lies in Lemma 1 presented next, while for Case 2,
we combine the idea presented in Lemma 1 with a demand
matrix partitioning technique.

1) Case 1 (K ≤ L+M − 1):
We first consider the case K ≤ L + M − 1. It is sufficient
to focus on the scenario K = L + M − 1, because if K <
L + M − 1, each server uses only M ′ = K − L + 1 < M
of its computing capability, reducing the problem to the case
K = L + M ′ − 1. Consider a demand matrix D ∈ FL×K ,
where D = [d1,d2, . . . ,dK ]. Recall that Mn ⊂ [K] is the set
of indices of the datasets known to server n, where |Mn| =
M = K−L+1, ∀n ∈ [N ]. For every n ∈ [N ], we now define
a submatrix DMn = [dj : j ∈ Mn]. Consider the following
matrix

ND,M = [N (D⊺
Mc

1
),N (D⊺

Mc
2
), . . . ,N (D⊺

Mc
N
)]⊺ (4)

where N (.) is the nullspace operator, which outputs a set
of basis vectors of the nullspace of the matrix on which the
operator acts. For any Mn with |Mn| = M = K−L+1, the
submatrix DMc

n
is of size L× (L− 1), and therefore DMc

n

has a non-trivial left nullspace. Consequently, the rank of the
left nullspace of DMc

n
is at least one, and N (D⊺

Mc
n
) contains

at least one vector for every n ∈ [N ]. Thus, the number of
rows in the matrix ND,M is at least N . We now have the
following lemma.

Lemma 1. For a given D ∈ FL×K with rank(D) = L, and
M = {M1,M2, . . . ,MN}, the rate L is achievable if

rank(ND,M) = L. (5)

Furthermore, for any given K,L, and M with K = L+M−1,
and for any D ∈ FL×K , the optimal rate

R∗(K,L,M) = L

is achievable with N = L servers.

Proof of Lemma 1. Consider a demand matrix D ∈ FL×K ,
where rank(D) = L. Furthermore, assume that the task
assignment M = {M1,M2, . . . ,MN} is such that the con-
dition rank(ND,M) = L holds. Therefore, the matrix ND,M
has at least a set of L independent rows. Let ÑD,M be an
L×L matrix constructed by choosing a set of L independent
rows from ND,M. In the communication phase, there is a
transmission corresponding to each row in ÑD,M. Let the ℓ-
th row of ÑD,M, denoted by ÑD,M(ℓ, :), correspond to the
task assignment Mn ∈ M for some n ∈ [N ]. Then, server n
makes the following transmission

ÑD,M(ℓ, :)D[f1(W1), f2(W2), . . . , fK(WK)]⊺. (6)

First, we show that server n can construct the transmission
in (6) from the available datasets in Mn. In other words, we
show that

supp(ÑD,M(ℓ, :)D) ⊆ Mn. (7)

However, notice that ÑD,M(ℓ, :) ∈ N (D⊺
Mc

n
) and, therefore,

we have ÑD,M(ℓ, :)DMc
n
= 01×K−M which implies that (7)

is true.



From (6), the L transmitted messages can be written in
matrix form as

xL×1 = ÑD,M D[f1(W1), f2(W2), . . . , fK(WK)]⊺. (8)

Since rank(ÑD,M) = L, the matrix ÑD,M is invertible, and
thus the user can decode the requested functions from x as

D[f1(W1), f2(W2), . . . , fK(WK)]⊺ = (ÑD,M)−1xL×1.

To show the achievability of R1(K,L,M) = L for any
given D ∈ FL×K with K = L+M − 1, we give an explicit
construction of M = {M1,M2, . . . ,ML} satisfying the
condition rank(ND,M) = L. Without loss of generality, we
assume that rank(D) = L. From the full-row-rank matrix D,
we find an invertible submatrix DL of size L × L, where
L = {i1, i2, . . . , iL}. Then, we form the task assignment set

M⋆ = {M⋆
1,M⋆

2, . . . ,M⋆
L} (9)

where, for every ℓ ∈ [L]

M⋆
ℓ = {iℓ}

⋃
([K] \L) . (10)

Note that, |M⋆
ℓ | = 1 + K − L = M for every ℓ ∈ [L]. To

complete the proof of achievability of the rate R1(K,L,M) =
L, it remains to verify that rank(ND,M⋆) = L. Suppose
rank(ND,M⋆) < L, then there exists a row ND,M⋆(ℓ′, :) of
ND,M⋆ which can be represented as

ND,M⋆(ℓ′, :) =

L∑
ℓ=1,ℓ̸=ℓ′

αℓND,M⋆(ℓ, :) (11)

where αℓ ̸= 0 for some ℓ. On one hand, ND,M⋆(ℓ′, :) is a
vector in the left nullspace of DMc

ℓ′
= DL\{iℓ′}, and thus

ND,M⋆(ℓ′, :)DL = βℓ′e
⊺
ℓ′ (12)

where βℓ′ ∈ F\{0} and eℓ′ ∈ FL×1 is an L-length vector
with a 1 in the ℓ′-th position and 0-s elsewhere. On the other
hand, from (11), we have

ND,M⋆(ℓ′, :)DL =

 L∑
ℓ=1,ℓ̸=ℓ′

αℓND,M⋆(ℓ, :)

DL

=

L∑
ℓ=1,ℓ̸=ℓ′

αℓ

(
ND,M⋆(ℓ, :)DL

)
=

L∑
ℓ=1,ℓ̸=ℓ′

αℓ (βℓe
⊺
ℓ )

(13)

where βℓ ∈ F\{0}, for every ℓ ∈ [L]\{ℓ′}. Clearly, (12)
and (13) contradict. Therefore, ND,M⋆ cannot have rank less
than L. In other words, rank(ND,M⋆) = L, and therefore,
for any given K,L, and M with K = L + M − 1, and for
any D ∈ FL×K , the rate R1(K,L,M) = L is achievable.
The optimality follows from the fact that to satisfy L linearly
independent demands R∗(K,L,M) ≥ L. This completes the
proof of Lemma 1.

We provide an example of Scheme 1 (Case 1) and demon-
strate its achievable rate before proceeding to Case 2.

Example 1 (Scheme 1, Case 1). Consider the (K = 4, L =
3,M = 2) distributed linearly separable function computa-
tion problem, where the demand matrix is

D =

1 1 1 1
1 2 3 2
1 4 1 2

 . (14)

We now design the task assignment and the server transmis-
sions based on Lemma 1. The number of servers required
to employ the task assignment in Lemma 1 (cf. (5)) is
N = L = 3. Note that the first three columns of D are linearly
independent. Thus, following the nullspace-based approach
outlined in (5), we get M1 = {1, 4},M2 = {2, 4}, and
M3 = {3, 4}. Note that the first server does not have access
to W2 and W3. Now, we find a vector that resides in the
left nullspace of the submatrix DMc

1
= D{2,3}. For instance,

[10,−3,−1] is a vector in the left nullspace of D{2,3}. Then,
the transmission made by the first server is

x1 = [10,−3,−1][F1(W), F2(W), F3(W)]⊺

= 6f1(W1) + 2f4(W4). (15)

Similarly, the vectors [−1, 0, 1] and [−2, 3,−1] are in the
left nullspaces of DMc

2
= D{1,3} and DMc

3
= D{1,2},

respectively. In the interest of space, x2 and x3 are omitted.
Since the matrix constructed using (4)

ND,M =

10 −3 −1
−1 0 1
−2 3 −1


is invertible, the user can decode Fℓ(W) for ℓ = 1, 2, 3, from
x1,x2, and x3. Thus, the rate achieved is R1(K = 4, L =
3,M = 2) = 3. Since rankq(D) = 3, even a centralized
server with M = 4, having access to all the datasets, would
require 3 transmissions to meet the user’s requests. Therefore,
the optimal rate of the (K = 4, L = 3,M = 2) distributed
linearly separable function computation is R∗(4, 3, 2) =
R1(4, 3, 2) = 3.

We now proceed to Case 2. The nullspace-based condition
in Lemma 1 guarantees L linearly independent vectors, each
with support size at most M , in the rowspace of D. When
K > L+M − 1, however, for any Mn ⊆ [K] with |Mn| ≤
M , the submatrix DMc

n
has at least K −M columns, where

K −M > L− 1. Hence, DMc
n

need not admit a non-trivial
left nullspace. To combat this, we develop two techniques.
First, we partition the demand matrix column-wise into sub-
demand matrices and apply the method of Lemma 1 within
each sub-demand matrix. Second, in Theorem 2, we introduce
an approach that builds nullspaces by carefully augmenting
the rows of the demand matrix.

2) Case 2 (K > L+M − 1):
Let K ′ = L+M − 1. We partition the demand matrix D ∈
FL×K by column-wise into ⌈K/K ′⌉ sub-demand matrices as
D = [D1,D2, . . . ,D⌈K/K′⌉], where Dν ∈ FL×K′

for all
ν ∈ [⌈K/K ′⌉ − 1], and D⌈K/K′⌉ ∈ FL×(K−K′(⌈K/K′⌉−1)).

Since the sub-demand matrix Dν , ν ∈ [⌈K/K ′⌉ − 1] has
K ′ (the number of columns in D⌈K/K′⌉ is less than or equal
to K ′), the coding scheme described in Lemma 1 applies, and
is employed for Dν . This coding strategy is applied separately



for every ν ∈ [⌈K/K ′⌉] using distinct sets of L servers. Thus,
the user can retrieve the demanded functions at a rate

R1(K,L,M) = L
⌈ K

L+M − 1

⌉
(16)

using N = L
⌈

K
L+M−1

⌉
servers. □

We show the order optimality of Scheme 1 in the extended
version [23]. In Scheme 1, after establishing the task as-
signment, our delivery scheme follows [19] in designing the
nullspaces that govern transmission. Although the nullspaces
differ from [19], the approach is similar, and in our setting
it guarantees decodability for all demand matrices. Scheme 2
adds a careful augmentation of the demand matrix to optimize
the sizes of the associated nullspaces. We now proceed with
Scheme 2.

B. Scheme 2: Alternative Scheme Better Suited for Larger M

In this section, we propose another technique for building
a target nullspace and satisfying the nullspace condition in
Lemma 1 by augmenting the given demand matrix. The
proposed technique is applicable for large values of M ,
specifically when M ≥ K/2. Since we already have an
optimal scheme for the case L > K −M (Case 1 in Scheme
1), we focus on the scenario where L ≤ K−M , and we have
the following theorem.

Theorem 2. For the (K,L,M) distributed linearly separable
function computation problem with L < ⌊K/(K −M)⌋, the
rate

R2(K,L,M) = L+ 1 (17)

is achievable with N = L+ 1 servers. Furthermore, for any
L ≤ K −M , the rate

R2(K,L,M) = L+

⌈
L⌊
M

K−M

⌋⌉ (18)

is achievable with N = ⌊K/(K −M)⌋, if M ≥ K/2.

Proof. Let D ∈ FL×K be the demand matrix. First, we
consider the case L < τ , where τ = ⌊K/(K − M)⌋ =
1 + ⌊M/(K −M)⌋ is a positive integer. We set the number
of servers N = L + 1 ≤ τ . To design the task assignment
M = {M1,M2, . . . ,MN}, we first partition the set [K] as
P = {P1,P2, . . . ,Pτ}, where for every t ∈ [τ−1], we define

Pt = {(t−1)(K−M)+1, (t−1)(K−M)+2, . . . , t(K−M)}
(19)

and

Pτ = {(τ−1)(K−M)+1, (τ−1)(K−M)+2, . . . ,K} (20)

Note that, |Pt| = K −M , for every t ∈ [τ − 1], and |Pτ | =
K − (τ − 1)(K −M) ≥ K −M . which means that the task
assignment set M takes the form

M = {Pc
1 ,Pc

2 , . . . ,Pc
N}. (21)

Note that |Mn| ≤ M , for every n ∈ [N ]. Now, our objective
is to design the server transmissions using the nullspace
approach presented in Lemma 1. However, the left nullspace
of DMc

n
, for any n ∈ [N ], does not need to have a non-trivial

vector, since L ≤ K −M . Considering that, we augment the

demand matrix by an additional row such that the augmented
demand matrix, denoted by D̃, satisfies the required condition

in (5). Then, we have D̃ =

[
D

d̃

]
∈ F(L+1)×K where the

construction of d̃ ∈ F1×K is explained in the sequel. First,
we define a matrix

T =

[
I(N−1)×(N−1) 1(N−1)×1

01×(N−1) 1

]
∈ FN×N (22)

which we refer to as the ‘target nullspace matrix’. Note that
rank(T) = N irrespective of the underlying field F. We now
construct the vector d̃ as a concatenation of several vectors,
where d̃ = [d̃1, d̃2, . . . , d̃N ] if τ = K

K−M (when (K − M)

divides K) and L = τ − 1. In that case, d̃n ∈ F1×(K−M),
for every n ∈ [N ]. If either τ < K

K−M or L < τ − 1, we
have d̃ = [d̃1, d̃2, . . . , d̃N , d̃N+1], where d̃n ∈ F1×(K−M),
for every n ∈ [N ], and d̃N+1 ∈ F1×K−N(K−M). For every
n ∈ [N − 1], we now define

d̃n = −DPn
(n, :) and d̃N = 01×(K−M). (23)

Furthermore, d̃N+1 can be set to any row vector of length
K − N(K − M). Now, using Lemma 1 on the augmented
demand matrix D̃ and the task assignment M in (21), we
show the achievability of the rate R2 = N = L+ 1. That is,
we show that rank(ND̃,M) = L+ 1, where

ND̃,M = [N (D̃⊺
Mc

1
),N (D̃⊺

Mc
2
), . . . ,N (D̃⊺

Mc
N
)]⊺.

Recall that, for every n ∈ [N ], we have Mc
n = Pn, and thus

D̃Mc
n
= D̃Pn . However, in the submatrix D̃Pn

, we have

D̃Pn(n, :) + D̃Pn(N, :) = D̃Pn(n, :) + d̃n = 01×(K−M)

(24)
for every n ∈ [N − 1], where (24) follows from the construc-
tion of d̃n in (23). Therefore, for every n ∈ [N ], the vector
en + eN ∈ span(N (D̃⊺

Mc
n
)) (Note, en and eN ∈ FN×1 ).

Notice that, we also have en + eN = T(n, :), ∀n ∈ [N − 1].
Therefore, the vector T(n, :), n ∈ [N − 1], is a row in
ND̃,M. Furthermore, in the submatrix D̃Mc

N
= D̃PN

, we
have D̃PN

(N, :) = d̃N = 0. Thus, the vector eN ∈
span(N (D̃⊺

Mc
N
)), and note that eN = T(N, :). Consequently,

the vector T(N, :) is a row in ND̃,M. Therefore, we have
rank(ND̃,M) ≥ rank(T) = N = L+1. However, the number
of columns in ND̃,M is N . Thus, the rank cannot exceed N .
Therefore,

rank(ND̃,M) = L+ 1. (25)

The achievability of R2(K,L,M) = L+1 follows from (25).
In order to show the achievability of the expression in (18)

for L ≥ ⌊K/(K − M)⌋, with N = ⌊K/(K − M)⌋, we
partition the demand matrix row-wise, and apply the technique
presented in the first part of this proof on each of the sub-
demand matrices. We have

D = [D1;D2; . . . ;D⌈L/L′⌉]
⊺

where L′ = ⌊K/(K − M)⌋ − 1 = ⌊M/(K − M)⌋. Since
L′ < ⌊K/(K −M)⌋, the task assignment and transmissions
based on a target nullspace matrix, presented in the first
part of this proof, are applicable in each sub-demand matrix
Dλ, λ ∈ [⌈L/L′⌉]. Note that the task assignment set M is



independent of Dλ, and we have M = {Pc
1 ,Pc

2 , . . . ,Pc
N},

N = L′ + 1 = ⌊K/(K −M)⌋, where the sets Pn, n ∈ [N ],
are defined in (19) and (20). For each Dλ, the transmission of
the servers can be designed using the target nullspace matrix.
The functions corresponding to each Dλ, λ ∈ [⌈L/L′⌉] can
thus be decoded by the user. Corresponding to every Dλ,
λ ∈ [⌈L/L′⌉− 1], each server makes a transmission, and cor-
responding to D⌈L/L′⌉, the first L−(⌈L/L′⌉−1)L′+1 servers
make one transmission each and the remaining L′⌈L/L′⌉−L
servers do not make any transmission. Therefore, we get

R2(K,L,M) = N

(⌈
L

L′

⌉
− 1

)
+ L− (⌈L/L′⌉ − 1)L′ + 1

= L+

⌈
L

L′

⌉
= L+

 L⌊
M

K−M

⌋
 .

This completes the proof of Theorem 2.

Example 2 (Scheme 2). Consider the (K = 6, L = 2,M =
4) distributed linearly separable function computation prob-
lem with a demand matrix

D =

[
1 1 1 1 1 1
0 1 2 3 4 5

]
.

Note that L < K/(K −M) = 3. From the scheme described
in the proof of Theorem 2, we have N = L+1 = 3. The task
assignment on the three servers is M1 = {3, 4, 5, 6},M2 =
{1, 2, 5, 6}, and M3 = {1, 2, 3, 4}. Then the augmented
demand matrix D̃ is constructed in such a way that the vector
T(1, :) = [1, 0, 1] falls in the left nullspace of the submatrix
D̃{1,2}. Similarly, the vectors [0, 1, 1] and [0, 0, 1] should be in
the left nullspaces of D̃{3,4} and D̃{5,6}, respectively. There-

fore, we get D̃ =

[
D

d̃

]
, where d̃ = [−1,−1,−2,−3, 0, 0].

Using D̃ and T, each of the three servers makes a transmis-
sion, and the user can decode the demanded functions from
x1,x2, and x3. Due to space constraints, the transmissions
are not listed here. Thus, the rate achieved is R2(6, 2, 4) = 3.

Remark 1. In Example 2, instead of the specific row added,
any random third row would suffice to achieve the rate
R1(6, 2, 4) = 3 using Scheme 1. This is because for L = 3
and M = 4, we have K = L + M − 1 = 6, and Lemma 1
guarantees achievability of R1(6, 2, 4) = 3. However, this
equivalence does not hold in general. For example, when
K = 9, M = 6, and L = 2, Scheme 2 achieves a
communication cost of R2 = 3, whereas Scheme 1 requires
two additional random rows to satisfy K = L+M−1, leading
to a higher cost of R1 = 4.

IV. CONCLUSION

In this work, we proposed distributed computing schemes
for linearly separable functions. Our schemes are based on
a nullspace-based design principle that jointly determines the
task assignment and transmission policies while guaranteeing
exact decodability of the requested functions. Furthermore, we
showed that the optimal communication cost L is achievable
when K < L+M . Identifying the fundamental limits of this
distributed computing problem and extending the performance
guarantees of the proposed schemes remain part of our
ongoing work.
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