
COSE: Continuous Shapes Extraction from
Dynamic Knowledge Graphs

Baya Dhouib
EURECOM
Biot, France

baya.dhouib@eurecom.fr

Raja Appuswamy
EURECOM
Biot, France

raja.appuswamy@eurecom.fr

Abstract—Given the rise in the popularity of Knowledge
Graphs (KGs) in various domains, there has been a growing
demand for tools that can validate KGs and ensure data quality.
Shapes constraint languages, such as SHACL and ShEx, have
emerged to provide this functionality, and techniques have
been developed to automatically extract validating shapes from
KGs. However, to our knowledge, all existing shapes extraction
techniques primarily target static KGs and are incapable of
dealing with a more dynamic scenario where KGs evolve due
to continuous updates. In such a context, it is necessary not
just to use generated constraints to validate new updates (data
repair) but also to continuously generate constraints themselves
(constraint repair).

In this work, we introduce the COntinuous Shapes Extraction
(COSE) framework, which facilitates the continuous validation of
KGs by dynamically generating and updating shape constraints
in response to changes. COSE identifies updates between KGs
versions, generates a delta graph based on these updates, extracts
delta shapes from the graph, and integrates them with existing
shapes to maintain data integrity. Using several versions of
three real-world KGs, we perform a comparative evaluation to
demonstrate that COSE can provide up to 10×–28× reduction
in shapes extraction time compared to other state-of-the-art
solutions while maintaining high accuracy. Finally, we identify
several open problems that merit further attention related to the
task of continuous KGs validation.

Index Terms—Knowledge Graphs, SHACL, Shapes Extraction,
Incremental Validation, Evolving Graphs

I. INTRODUCTION

Over the past few years, Knowledge Graphs (KGs) have
witnessed widespread adoption in various domains, including
enterprise data management, web services, and artificial intel-
ligence. As KGs evolve, they undergo frequent modifications,
additions, deletions, and updates of triples, which can lead to
inconsistencies, redundancies, and errors that compromise the
integrity of the data stored in these graphs. Consequently, there
is a growing demand for tools and techniques that can perform
quality assessment and validation in a dynamic, ever-changing
environment.

Shapes constraint languages such as SHACL [1] and
ShEx [2] have emerged as formal frameworks for specifying
and enforcing data integrity rules over RDF graphs, much
like relational integrity constraints for databases. For instance,
SHACL allows users to express validation rules in a sepa-
rate “shapes graph” and then generate a detailed validation
report of every violation. These shapes enable a variety of

validations, including enforcing that certain properties must be
present (cardinality constraints), that property values conform
to specific datatypes or classes (datatype and class constraints),
and that relational structures (paths) adhere to domain-specific
rules (path constraints). Traditionally, these shapes have been
handcrafted by domain experts—a process that becomes un-
tenable as KGs grow in size and complexity.

In response, several systems such as SheXer [3] and QSE [4]
automatically infer validating shapes from a single static
snapshot of a KG. All existing shape-extraction tools focus
exclusively on static graphs [5], [6]. However, many large
KGs such as Wikidata, DBpedia, and numerous domain-
specific knowledge repositories undergo real-time or near-real-
time updates. In these settings, new triples may be inserted
or modified hourly or daily rather than in infrequent, large
“batch” releases. For example, during the COVID-19 pan-
demic, Wikidata served as a central repository for global, real-
time updates on case counts, vaccine statistics, and government
policies. Dashboards driven by Wikidata frequently suffered
from conflicting case numbers or missing vaccine approval
dates, demonstrating that a one-off shapes extraction cannot
maintain data consistency as new information arrives [7], [8].
Similarly, OpenStreetMap (OSM) updates continuously during
disaster response—for instance, reporting new road closures
or shelter locations. In one documented incident, erroneous
OSM edits delayed flood-relief because no incremental vali-
dation was in place to catch a missing “roadClosed” tag [9].
These examples underline that continuous updates demand an
incremental validation strategy.

Unfortunately, current shapes extraction tools are not de-
signed to deal with incremental updates. Therefore, the only
solution today is to execute shapes extraction on a full graph
each time an update is released. Such an approach has two
problems. First, since the runtime of shapes extractors is
proportional to the graph size, this approach of full-validation-
at-each-release does not scale well as the graph increases in
size across generations. Second, even if only a tiny fraction
of triples change between two versions of a graph, shapes
extraction requires reprocessing the entire graph, resulting in
wasted computational resources.

A more practical approach to dealing with incremental
updates is to perform continuous shapes extraction. In such
a scenario, we have a validated set of shapes Sn for version

Vn. When the graph evolves to Vn+1, the fundamental question
becomes: can we generate just the “delta shapes” from the
new or modified triples

(
Vn+1 \Vn

)
and then merge them with

Sn, rather than re-extracting from scratch? To our knowledge,
there has been no work in the literature that has investigated
the applicability of state-of-the-art shapes extraction tools
in this continuous shapes extraction context, or evaluated
the effectiveness of continuous shapes extraction in handling
updates to public KGs.

In this paper, we make the following contributions:
• We present COSE, an end-to-end framework for continu-

ous shapes extraction over evolving knowledge graphs.
Unlike existing tools such as QSE [4], which are de-
signed for static graphs, COSE operates incrementally,
processing only the updates between graph versions.
Given an initial version Vn with precomputed shapes,
COSE extracts shapes for the next version Vn+1 in three
steps: (1) it detects structural changes to construct a delta
graph, (2) it expands this delta graph via type-specific
sampling to recover contextual information necessary
for shape inference, and (3) it applies QSE to extract
delta shapes from the enriched delta graph. These delta
shapes are then merged with previously extracted shapes,
using a conflict resolution strategy that merges compatible
shapes automatically and flags unresolved conflicts for
user inspection. By working over deltas and incorpo-
rating sampling, COSE achieves substantial speedups
while maintaining high accuracy, making it well-suited
for continuous or high-frequency KG updates where full
recomputation is infeasible.

• Using several versions of three real-world KGs (DBpedia,
YAGO, Wikidata), we perform a comparative evaluation
to understand the performance–accuracy trade-offs in
continuous shapes extraction with COSE. Our analysis
demonstrates that COSE can scale well to large graph
sizes and provide up to 10×–28× reduction in execution
time compared to static shapes extraction while maintain-
ing high accuracy.

II. DESIGN

In this section, we present the COSE pipeline for incremen-
tal shapes extraction that consists of six phases as shown in
Figure 1. Algorithm 2 summarizes the end-to-end incremental
procedure, and table I lists the notation used throughout this
section.

A. Baseline Setup

COSE’s pipeline begins with a full snapshot Vn of the KG.
COSE invokes QSE [4] on Vn to generate SHACL shapes. We
provide an overview of QSE’s algorithm and data structures
that are relevant to our discussion here and refer the reader to
prior publication about QSE [4] for further information. QSE
scans each triple (s, p,o) ∈ Vn once, inferring c = classOf(s)
to increment Ψn

cec[c], computing objType = typeOf(o) to add
objType to Ψn

cpot[c][p], and, if s has not yet been counted for
the triplet (c, p,objType), incrementing Ψn

sts[(c, p,objType)].

TABLE I: Notation

Symbol Description

Vn Set of RDF triples in version n.
Vn+1 Set of RDF triples in version n+1.
Nn |Vn|, number of triples in Vn.
Nn+1 |Vn+1|, number of triples in Vn+1.
changes Set of inserted/updated triples.
M |changes|, number of changed triples.
F |filtered|, number of triples passing valida-

tion.
Vδ Enriched delta graph (filtered + sampled con-

text).
D |Vδ|, number of triples in the delta graph.
Sn SHACL shapes extracted on version n.
Sδ Set of “delta shapes” extracted from Vδ.
|Ψ| Total number of entries across auxiliary maps

Ψcec, Ψcpot , and Ψsts.

Here, Ψn
cec records, for each class c, how many entities appear

with type c; Ψn
cpot tracks, for each (c, p) pair, all object types

seen; and Ψn
sts counts support for each (c, p,objType) pattern.

Once built, QSE extracts one SHACL NodeShape per key
(c, p,objType), computing support = Ψn

sts[(c, p,objType)] and
confidence = support/Ψn

cec[c].
Finally, we modified QSE so that it serializes Ψn

cec, Ψn
cpot,

and Ψn
sts to disk via Kryo [10], which provides compact binary

serialization and fast read–write performance, allowing the Ψ

maps to be persisted efficiently across versions. Step 1 of
continuous shapes extraction shown in Figure 1 assumes these
precomputed maps Ψn

cec, Ψn
cpot, and Ψn

sts built by QSE on Vn
are available.

B. Change Detection

COSE treats each new release Vn+1 as a delta over the prior
version Vn. Some KGs publish only the incremental updates;
others publish full dumps. If an incremental dump is available,
COSE loads it directly. Otherwise, it identifies changes by one
of three methods (Algorithm 1).

In the first scenario, both Vn and Vn+1 are available
as full graphs. In this case, COSE performs an external
merge-diff. Both graphs are sorted on the composite key
(subject,predicate,object). Two iterators, Old and New, then
scan the sorted streams in tandem. Whenever Old.current
= New.current, both advance. If a triple (s, p,onew) appears
in Vn+1 but not in Vn (or is lexicographically smaller), it
is appended to changes. If (s, p) matches but onew ̸= oold,
COSE treats it as a modification and adds (s, p,onew), while
the “old” triple (s, p,oold) is recorded in a separate deletions
list. Triples present in Vn but absent from Vn+1 (pure deletions)
are similarly collected in the deletions list but are otherwise
skipped.

In the second scenario, if explicit edit logs are available
(e.g., in Wikidata), COSE parses the log in a single pass.
The triple from each INSERT event is added to changes.
Each UPDATE (s, p,oold→onew) also contributes (s, p,onew)
to changes and (s, p,oold) to the deletions list. DELETE events
are recorded in the deletions list but are not added to changes.

Fig. 1: Overview of the six phases of COSE: 1⃝ Data Preparation, 2⃝ Change Detection, 3⃝ Filtering by Validation, 4⃝ Delta
Graph Generation, 5⃝ Delta Shapes Extraction, 6⃝ Shapes Merging and Conflict Resolution.

In the third case, when only a SPARQL endpoint is acces-
sible, COSE issues two queries. The first, SPARQLminus(Vn,
Vn+1,ADD), returns all (s, p,o) ∈ Vn+1 \ Vn. The second,
SPARQLvalueDiff(Vn,Vn+1), retrieves each (s, p,oold→onew)
where the object changed. From each returned update,
(s, p,onew) is appended to changes and (s, p,oold) is added
to the deletions list.

In all cases, by the end of this step, changes con-
tains precisely those triples that must be added or updated
(|changes| = M), and the deletions list records any removed
triples. Pure deletions do not introduce new class–predicate
patterns and therefore cannot yield new shapes, so they
are omitted from ∆. They are nevertheless retained to keep
the Ψ-maps numerically consistent when support and class-
level statistics are updated during serialization. Step 2 of
Figure 1 shows Vn+1 adds the triples (: Bob,rdf : type, :
Patient), (: Bob, treatedBy, : Dr2), (: Dr2,rdf : type, : Doctor),
(: Dr2,worksFor, : DeptB), (: DeptB,rdf : type, : Department),
(: DeptB,managedBy, : Admin2), modifies (: Dr1,worksFor, :
DeptA)→ (: Dr1,worksFor, : HospX), and deletes (ignored in
∆) (: Alice,receives, : TreatmentX), (: Dr1,worksFor, : DeptA)

C. Filtering Optimization

Although changes records all updates to the KG, many up-
dates might simply cause no changes to the shape constraints
Sn. For example, if Sn already enforces that every Person must
have a hasName property of type xsd:string, then adding the
triple (:Alice, hasName, "Alice"8sd:string) introduces
neither a new (Person,hasName) pattern nor a violation, so
it can be discarded. Thus, an optimization COSE applies
is to identify such updates and eliminate them from further
processing. Concretely, for each u = (s, p,o) ∈ changes, we
compute (c, p) = (classOf(s), p) (using s’s rdf:type) and
check via a hash lookup whether (c, p) already appears among
the (targetClass,path) keys in Sn. If it does not, u introduces a
new class–predicate pattern and is kept (we also insert (c, p)
into the hash set so future triples with that same pattern
are dropped). If it does appear, then we run Jena’s SHACL
validator to validate u against Sn. If u violates a SHACL
constraint, we keep u. If there is no violation, we discard u.

COSE employs a filtering heuristic to discard updates un-
likely to affect shape extraction, such as those not introducing
new class–predicate patterns or modifying schema-relevant
properties. To avoid cumulative errors, it conservatively filters
only updates involving predicates already covered by existing

Algorithm 1: DetectChanges
Input:

3 :
Vn,Vn+1

Output:
4 :

changes, deletions

5 changes← /0; deletions← /0;
6 if isEditLog(Vn+1) then
7 foreach event e in parseEditLog(Vn+1) do
8 if e is INSERT then
9 changes.add((s, p,onew));

10 else if e is UPDATE (s, p,oold→onew) then
11 changes.add((s, p,onew)); deletions.add((s, p,oold));
12 else
13 deletions.add((s, p,o));
14 return changes, deletions
15 else if isSPARQLEndpoint(Vn+1) then
16 foreach (s, p,o) in SPARQLminus(Vn,Vn+1, ADD) do
17 changes.add((s, p,o));
18 foreach (s, p,oold→onew) in SPARQLvalueDiff(Vn,Vn+1) do
19 changes.add((s, p,onew)); deletions.add((s, p,oold));
20 return changes, deletions
21 else
22 SortDumpOnKey(Vn); SortDumpOnKey(Vn+1); Old←

openSortedStream(Vn); New← openSortedStream(Vn+1);
while not end of both streams do

23 told← Old.current() (if exists); tnew← New.current() (if
exists); if told = tnew then

24 Old.advance(); New.advance();
25 else if tnew present and told absent or
26 (s, p,onew)< (s, p,oold) then
27 changes.add(tnew); New.advance();
28 else if (sold, pold) = (snew, pnew) and oold ̸= onew then
29 changes.add((snew, pnew,onew));

deletions.add((sold, pold,oold)); Old.advance();
New.advance();

30 else
31 deletions.add(told); Old.advance();
32 return changes, deletions

shapes and omits changes to literals without type annotations.
Empirical results (section III) suggest that this filtering intro-
duces minimal deviation in extracted shape quality.

D. Delta Graph Generation

Filtered changes are then used to build a delta graph Vδ.
We first add any filtered triple u to Vδ. While these triples
supply additions and modifications, they alone are insufficient
for shapes extraction, as support and confidence metrics com-
puted by QSE to identify non-spurious shapes depend on the
statistical co-occurrence of types, properties, and object types.
Therefore, Vδ must not only represent the filtered changes
but must also be enriched to include entities of the same
class and their associated properties to provide the necessary
context. COSE provides three possible strategies to perform
this enrichment.

The Type-Specific Sampling (TSS) strategy proceeds as
follows. For each class c among the subjects of Vδ, we
retrieve
Ec = |Ψn

cec[c].entities|, then compute Nc = max
(
⌈α ×

Ec⌉, kmin
)
, draw Nc entities uniformly at random without

replacement from that pool, and for each sampled entity
e append all its ∆(c) property–object-type pairs (from
Ψn

cpot[c]) to Vδ. Here, F is the number of filtered triples
already in Vδ, and ∆(c) is the number of triples each

sampled entity of class c contributes. Summing over all
classes yields D = F + ∑c Nc ∆(c). Step 4 of Figure 1
enriches V δ

n by re-inserting (: Dr1,worksFor, : DeptA),
(: Alice,consultedBy, : Dr1), (: Alice,receives, : TreatmentX),
so V δ

n = {(: Dr1,worksFor, : HospX),(: Bob, treatedBy, :
Dr2),(: Dr1,works−For, : DeptA),(: Alice,consultedBy, :
Dr1),(: Alice,receives, : TreatmentX)}.

The second enrichment strategy is Full Sampling (FS). For
each class c we simply set Nc = Ec, meaning every c-typed
entity is added to Vδ along with all its property–object-type
pairs.

Finally, in our third enrichment strategy, which we refer to
as No Enrichment (NS), we set Nc = 0 for every class, so no
additional context beyond the F filtered triples is included.
Consequently, Vδ contains only those F triples.

The use of type-aware sampling introduces a probabilistic
bias toward more frequently updated types. While this helps
retain representative patterns in practice, it may under-sample
rare shape structures. Assuming a uniform random sampling
per type with sampling ratio ε, the expected support for a
constraint in the sampled delta graph is ε · supportfull. Thus,
setting thresholds too high may suppress low-frequency but
valid shapes. In our design, we mitigate this by using relaxed
support thresholds during delta shape extraction and by merg-
ing overlapping patterns incrementally.

E. Delta Shapes Extraction

With Vδ enriched, COSE invokes QSE on Vδ to obtain the
candidate delta-shape set Sδ. Step 5 of Figure 1 runs QSE on
V δ

n to extract Sδ.

F. Shapes Merging and Conflict Resolution

COSE now merges the candidate delta shapes Sδ into the
existing full-graph shape set Sn to produce Sn+1. First, we
make a Sn+1 as a shallow copy of Sn. Next, for each shape
s∈ Sδ, we compute its unique key k = (c, p) based on s’s target
class c and path p. If k does not yet exist in Sn+1, then s is
truly new and can be inserted. If k already exists, we compare
s against the existing shape sold = Sn+1[k]. When sold and s
agree on object-type, support, and confidence, s is considered
overlapping and can be safely ignored.

If, however, s differs from sold in object-type or in its
(support, confidence) pair, we must decide which version to
keep. To do so, we compute a “significance” score for both s
and sold. First, let support(s) be the number of (c, p,objType)
occurrences in Vδ and confidence(s) = support(s)/Ψδ

cec[c]. We
then normalize support by the maximum support observed over
all shapes in Sn∪Sδ:

supportmax = max
s′∈Sn∪Sδ

support(s′)

sup norm(s) =
support(s)
supportmax

, conf norm(s) = confidence(s).

Because confidence is already a fraction in [0, 1], there is no
need to normalize it. Given user-specified weights αsup,αconf >
0 (default 1 :1), we define

significance(s) =
αsup sup norm(s)+ αconf conf norm(s)

αsup +αconf
.

We compute the same for sold. If significance(s) >
significance(sold), then sold is replaced by s; other-
wise, s is marked unresolved. Unresolved shapes do
not block downstream processing. Step 6 of Figure 1
merges Sδ into Sn: Department’s (: Department,managedBy, :
Administrator) stays; Doctor’s (: Dr1,worksFor, : DeptA)
stays and (: Dr1,worksFor, : HospX) is added; Patient’s (:
Alice,consultedBy, : Dr1) and (: Alice,receives, : TreatmentX)
stay and (: Bob, treatedBy, : Dr2) is added.

While the merging strategy described above uses statistical
significance to resolve conflicts, it does not account for seman-
tic consistency. In particular, incompatible object types (e.g., a
property inferred as both xsd:integer and xsd:string) may
result in contradictory constraints that always trigger validation
errors. To help identify such cases, COSE provides an
optional post-merge validation step, which evaluates merged
shapes over sampled instances and records any inconsistencies.
Conflicting patterns that cannot be reconciled are flagged for
manual inspection. Incorporating domain-specific knowledge
(e.g., ontologies or type hierarchies) to guide future merging
decisions remains an area for future exploration.

G. Serialization

After merging, COSE updates the three Ψ-maps used
by QSE to reflect the graph changes and persist them for
the next version. incUpdateMaps receives Ψn

cec, Ψn
cpot, Ψn

sts,
the unified change list changes, and the deletions list. It
processes each inserted or modified triple (s, p,o) ∈ changes
by incrementing class counts, property–object-type counts, and
support counters. Similarly, each deletion (s, p,oold) not paired
with an update decrements the corresponding Ψsts, Ψcec, and
Ψcpot entries. Once the new Ψ-maps and merged shape set
Sn+1 are ready, COSE serializes the maps via Kryo. We
have modified QSE so that it can directly use these maps
as the baseline state for loading in V n+2 without having to
recompute them from the full graph.

III. EVALUATION

In this section, we present an evaluation of COSE and its
effectiveness in performing continuous shapes extraction.

a) Software and Hardware Setup.: COSE is imple-
mented in JAVA-11. The source code is available as open
source 1 along with experimental settings and datasets. All
experiments were conducted on a single machine with Ubuntu
22.04, equipped with an Intel(R) Core(TM) i9-10920X CPU
@ 3.50GHz having 24 cores and 128 GB RAM. We compare
COSE with state-of-the-art shape extraction tools: SheXer,

1https://github.com/bayadhouib/COSE

Algorithm 2: COSE Incremental Shapes Extraction
Input:

3 :
Vn, Sn,Vn+1, α, kmin

Output:
4 :

Ψn+1
cec , Ψ

n+1
cpot , Ψ

n+1
sts , new Sn+1

5 if no serialized Ψ-maps exist then
6 (Ψn

cec, Ψn
cpot, Ψn

sts)← QSE(Vn)
7 else
8 (Ψn

cec, Ψn
cpot, Ψn

sts)← loadMaps()
9 (changes, deletions)← DetectChanges(Vn,Vn+1); Vδ← /0;

10 foreach triple u in changes do
11 if violatesSHACL(u, Sn) or novelPattern(u, Sn) then
12 Vδ.add(u)
13 foreach class c in subjects(Vδ) do
14 pool←Ψn

cec[c].entities; Nc←max
(
⌈α · |pool|⌉, kmin

)
;

sampleSet← randomSample(pool, Nc);
15 foreach entity e in sampleSet do
16 foreach (prop,objType) in Ψn

cpot[c] do
17 Vδ.add(e, prop, objType)
18 (Ψδ

cec, Ψδ
cpot, Ψδ

sts)← QSE(Vδ); Sδ← /0;
19 foreach (c,prop,objType) in keys(Ψδ

sts) do
20 support←Ψδ

sts[(c,prop,objType)];
confidence← support/Ψδ

cec[c];
s← buildShape(c, prop, objType, support, confidence);
Sδ.add(s)

21 Sn+1← copy(Sn);
22 foreach shape s in Sδ do
23 k← shapeKey(s) (“k = (c, p)”); if k /∈ Sn+1 then
24 Sn+1.add(s)
25 else
26 sold← Sn+1[k];
27 if significance(s, Ψδ

cec, Ψδ
sts)> significance(sold, Ψn

cec, Ψn
sts)

then
28 Sn+1.replace(k, s)
29 else
30 markUnresolved(s)
31 (Ψn+1

cec , Ψ
n+1
cpot , Ψ

n+1
sts)←

incUpdateMaps(Ψn
cec, Ψn

cpot, Ψn
sts, changes, deletions);

32 serialize(Ψn+1
cec , Ψ

n+1
cpot , Ψ

n+1
sts , Sn+1)

QSE-FG (full-graph), and QSE-Approx (approximate vari-
ant). QSE-FG was run in exact mode (ε = 0.0), and QSE-
Approx was executed with its default approximation threshold
(ε = 0.05), as suggested in [4]. Default parameters were used
for all tools unless otherwise stated. COSE implements both
QSE-FG and QSE-Approx; unless explicitly specified, we run
COSE with QSE-FG.

We invoke SheXer with the option {output=SHACL so that
it produces SHACL-format shapes (instead of ShEx). This
enables us to compare each tool’s SHACL shapes directly
against COSE’s SHACL output, rather than comparing ShEx
vs. SHACL. We also considered ShapeDesigner [11], and
SHACLGEN [12]. However, as reported in prior work [4],
their current implementations cannot handle KGs larger than
a few million triples, and they do not manage to extract shapes
of KGs having more than a few hundred classes. Since QSE-
FG and QSE-Approx have been shown to outperform these
tools in both scalability and shape quality [4], we excluded
them from our experiments.

b) Datasets.: For our experiments, we selected multiple
versions of three prominent real-world datasets containing
hundreds of millions of triples: DBpedia, YAGO, and Wiki-
data. An overview of the content of these datasets is provided

Fig. 2: Size and Statistics Across DBpedia Versions.

in table II and fig. 2. DBpedia: We used 25 consecutive
versions starting from November 2014 and including each
subsequent monthly release [13] [14].
YAGO: We used 4 versions: YAGO1, YAGO2, YAGO2S, and
YAGO3. These versions were chosen to represent the major
updates and enhancements that YAGO underwent, each com-
bining information from Wikipedia and WordNet to various
extents [15] [16] [17] [18].
Wikidata: We used 6 consecutive versions, starting with the
latest-lexemes release, followed by several updates released
between March and April 2024. [19] [20] [21]. Wikidata
provides updates as incremental dumps, and each increment is
around 150GB. However, SOTA shapes extraction tools, such
as SheXer and QSE-FG, require the full graph for each new
version and are unable to scale to such large graphs. To enable
a fair comparison, we therefore generated a 23 GB subset from
each version by uniformly sampling triples (fixed random seed
= 42), which preserves the original (entity, property, object)
distribution while keeping the graph tractable for all methods.

TABLE II: Size and Statistics of Datasets Versions.

Dataset version # Triples # Objects # Subjects Size

Wikidata-v1 938.59M 220.45M 133.31M 127GB
Wikidata-v2 168.41M 39.51M 23.90M 23GB
Wikidata-v3 168.66M 39.57M 23.94M 23GB
Wikidata-v4 168.89M 39.62M 23.98M 23GB
Wikidata-v5 168.99M 39.64M 23.99M 23GB
Wikidata-v6 169.53M 39.78M 24.08M 23GB

Yago1 18.26M 10.93M 2.22M 2.6G
Yago2 109.89M 46.03M 10.12M 16G
Yago2S 220.42M 38.67M 72.14M 37G
Yago3 121.23M 58.49M 15.17M 20G

A. Performance Analysis

In this section, we compare COSE’s performance with
SheXer, QSE-FG, and QSE-Approx using the three public
KGs. Unlike COSE, SheXer, QSE-FG, and QSE-Approx only
work on a single, complete snapshot of a graph. YAGO
releases are full graph snapshots and hence can be directly
used as input to all three baseline methods. Therefore, we
applied the direct comparison approach to detect changes

TABLE III: Processing Time For Wikidata Dataset.

Dataset SheXer QSE-FG QSE-Approx COSE Speedup

Wikidata-v1 42h 17h58min 9h15min — —
Wikidata-v2 48h 21h14min 10h55min 3h12min 6.6×–15×
Wikidata-v3 Timeout 24h30min 12h48min 3h50min 6.4×
Wikidata-v4 Timeout 27h47min 13h35min 4h35min 6.1×
Wikidata-v5 Timeout 31h05min 14h42min 4h51min 6.4×
Wikidata-v6 Timeout 34h23min 15h31min 5h09min 6.9×

TABLE IV: Processing Time For YAGO Dataset.

Dataset SheXer QSE-FG QSE-Approx COSE Speedup

YAGO1 3h30min 48min 24min — —
YAGO2 14h 6h20min 3h09min 40min 9.5×–21×
YAGO2S 23h16min 12h38min 6h55min 1h35min 8×–14.7×
YAGO3 15h53min 7h21min 3h55min 58min 7.6×–16.4×

between consecutive YAGO versions. However, Wikidata and
DBpedia include only updates in their releases. Thus, to run
SheXer, QSE-FG, and QSE-Approx, we reconstructed the full
graph for each version Vn+1 of Wikidata and DBpedia by
merging updates with the preceding version Vn.

table III, table IV, and fig. 3 show the execution time of
all four solutions under various datasets. First, we observe
that COSE and QSE-Approx are able to handle large graph
sizes. With Wikidata, SheXer fails to scale beyond v2, as it
times out for larger graph sizes. QSE-Approx performs better
than QSE-FG in all cases but still suffers from full-graph
dependency. Second, COSE consistently outperforms all three
baselines. It achieves a 6×–28× reduction in execution time
across all datasets. This is because the execution time of
SheXer, QSE-FG, and QSE-Approx is proportional to the
size of the complete graph, whereas COSE’s execution time
is proportional to the delta graph size. This also explains
the difference in speed-ups observed across datasets. For
instance, as the Wikidata graph size doubles from v1 to v6,
QSE-FG’s execution time nearly doubles (17h to 34h), while
COSE scales more efficiently. Similarly, datasets with smaller
updates, like DBpedia, show a much larger performance gap,
where COSE outperforms QSE-FG and SheXer by up to 10×
and 28×, respectively.

fig. 4 presents a breakdown of COSE’s processing time
across the core stages for the three KGs (only v2 is shown,
as the results with other versions are similar). First, we notice
that only YAGO has extra time spent on the change detection
stage. For Wikidata and DBpedia, new versions of the graph
are released as updates, and COSE skips change detection.
Second, the majority of the time is spent on the validation-
based filtering optimization and delta graph generation. Gen-
erating SHACL shapes from the graph and performing shapes
merging/conflict resolution is fast over the delta graph. We
can also see that validation takes more time than graph
generation for YAGO and DBpedia, while the converse is true
for Wikidata. The difference in complexity of updates across
these KGs results in variation across these stages, and the

Fig. 3: Processing Time for DBpedia Dataset.

Fig. 4: Time Taken At Various Stages For Different Datasets.

resulting differences in the delta graph are the reason why
COSE provides different degrees of improvement for the
three KGs; while COSE provides up to 7× improvement
with Wikidata, it provides up to 28×/21× improvement with
DBpedia/YAGO respectively.

B. Accuracy Analysis

We now focus our evaluation on the accuracy of COSE.
table V reports the number of SHACL shapes generated by
COSE, QSE-FG, QSE-Approx, and SheXer for each of the
three public datasets. We provide the results for v2 here. We
present results for other versions later in Section III-B5 when
we evaluate drift across increments. As can be seen, both QSE-
FG and QSE-Approx, as well as COSE , extract more shapes
than SheXer. This reproduces results from prior work [4] that
demonstrated that QSE-FG extracts more relevant shapes than
SheXer, and also shows that COSE and QSE-Approx can pro-
vide better accuracy than SheXer even when operating under
incremental or approximate assumptions. While QSE-Approx
slightly underperforms QSE-FG in terms of precision and
recall, it remains competitive and demonstrates the tradeoff
between scalability and exactness. Notably, COSE achieves
accuracy comparable to QSE-Approx, despite working on
delta graphs.

To understand the difference between COSE and QSE-FG,
we used SHACL shapes generated by QSE-FG as the ground
truth and computed precision and recall scores for COSE .
Precision indicates the proportion of relevant shapes extracted
compared to all shapes extracted by COSE. Recall measures

TABLE V: Accuracy Results Across Tools and Datasets
(Shapes Extracted / Precision / Recall).

Tool Wikidata-v2 YAGO2 DBpedia-v2

QSE-FG 47,512 / 100% / 100% 4,656 / 100% / 100% 1,372 / 100% / 100%
QSE-Approx 47,000 / 93.2% / 94.5% 4,610 / 92.3% / 93.1% 1,360 / 93.5% / 94.1%
SheXer 26,132 / 81.5% / 78.3% 2,328 / 80.4% / 76.9% 823 / 82.2% / 79.5%
COSE 46,850 / 92.5% / 91.8% 4,617 / 91.2% / 90.5% 1,362 / 93.5% / 92.8%

TABLE VI: Categorization Of COSE-generated SHACL
Shapes With Respect To QSE-FG-generated SHACL.

Dataset %Overlap Conflicting (%) Distinct (%)

Total / Resolved / Unresolved

Wikidata-v2 10 5 / 4.8 / 0.2 85
DBpedia-v2 30 20 / 18.8 / 1.2 50
YAGO2 22 20 / 18.7 / 1.3 58

the proportion of relevant shapes extracted by COSE out of all
shapes extracted by QSE-FG. table V shows these values for
various KGs. As can be seen, COSE provides a precision and
recall of more than 90.5% across all KGs. This result raises
four questions:
• Which SHACL shapes differ between QSE-FG and

COSE leading to the drop in accuracy?
• Which stage of COSE’s pipeline is responsible for the

drop in accuracy?
• What is the effect of this accuracy loss when these

SHACL shapes are used to validate the KG?,
• How does accuracy drop further as we perform incremen-

tal shapes extraction across several versions?
1) Analyzing shape constraints.: To answer these questions,

we first analyzed the evolution of SHACL shapes from the
base-KG Vn and the delta-KG Vδ. We categorized SHACL
shapes generated by COSE for Vδ into one of three types:
(i) distinct, (ii) overlapping, and (ii) conflicting. Overlap repre-
sents the case where COSE generated a shape from Vδ that is
identical to one already generated from Vn. Conflict represents
the case where COSE generates a shape from Vδ that corre-
sponds to a shape generated from Vn, but the two shapes are
different. Distinct represents the case where COSE generates
shapes that are unique to KGδ. table VI shows the breakdown
of these categories across various datasets. As can be seen,
the distinct category accounts for the largest proportion of
shapes in all KGs. This suggests that incremental updates
across the three KGs result in many more new SHACL shapes
being generated compared to existing SHACL shapes being
modified.

Figures 5a,5b, and 5c present an analysis of the type of
updates across various versions of the three KGs. For each
version, the figures show a breakdown of updates into three
categories, namely new triples that have been added to the
KG (Added), modifications to triples that already exist in
the KG (Modified), and deletion of triples that exist in the
KG (Deleted). As can be seen, across all KGs, updates are
dominated by the addition of new triples. This explains the
high proportion of distinctly new SHACL constraints, as they
are derived by COSE from these new triples. Further analysis

TABLE VII: Distribution Of Detected Conflict Types.

Conflict Type Wikidata v2 DBpedia v2 YAGO2

Class Violation 63% 49% 57%
Datatype Mismatch 37% 36% 43%
Cardinality Violation 0% 15% 0%

revealed that neither distinct nor overlap categories contributed
to accuracy loss, as shapes generated by COSE in these
categories were also found to be generated by QSE-FG. This
points to the conflict category as the source of accuracy loss.

To further analyze the conflicting shapes, we categorized
them into various types: (i) class violations, where entities
are assigned to incorrect classes, thereby violating class-
based constraints (for example dbo:Place is reclassified as
dbo:Location), (ii) node kind violations, where IRIs are re-
placed with literals or vice versa, breaking expected node types
(for example in Wikidata, an IRI such as Q42 may be replaced
by the literal ‘Douglas Adams‘ in a property that expects
and IRI), (iii) property datatype violations, such as converting
integers to strings, dates to incorrect formats, or using invalid
values for certain fields (for example dbo:populationTotal
transitions from xsd:integer to xsd:string), (iv) pattern
violations that occur by deviating from predefined regular
expressions, such as incorrectly formatted email addresses or
URLs, (v) cardinality violations by exceeding or falling short
of the allowed number of property occurrences (sh:minCount
or sh:maxCount), and (vi) range violations, where values
are assigned outside permissible boundaries, such as negative
values where only positive numbers are allowed (for example
dbo:age might incorrectly include a negative value). table VII
shows the fraction of conflicting shapes across various cat-
egories. As can be seen, class violations and datatype mis-
matches are the most common across the three KGs.

Recall that the COSE pipeline generates SHACL shapes
using the enriched delta graph and then performs SHACL
merging and conflict resolution. There are two possible ways
these violations could have been handled by COSE. The
first case is where the SHACL merge stage took conflicting
shapes and merged them successfully with shapes from Vn.
The second case is where the merge process fails. table VI
shows a breakdown of the conflict category across these two
possibilities (Resolved and Unresolved). As can be seen, a
majority of conflicts were automatically merged by COSE.

TABLE VIII: Breakdown Of Resolved And Unresolved In
Various Categories Across Datasets.

Dataset Category Class
Violation

Datatype
Mismatch

Cardinality
Violation

Wikidata Resolved 48% 52% –
v2 Unresolved 92% 8% –

DBpedia Resolved 42% 38% 20%
v2 Unresolved 78% 18% 4%

YAGO2 Resolved 50% 50% –
Unresolved 88% 12% –

table VIII shows a breakdown of resolved and unresolved
conflicts across various categories. As can be seen, class
violations account for a majority of unresolved conflicts across
all KGs. Recall that a class violation occurs when entities are
assigned to different classes in the shapes extracted from base-
KG and delta-KG. This suggests that the distribution of entity
types created by sampling in delta KG differs from that of the
base KG.

2) Impact of Sampling Strategies: To evaluate the effect
of sampling, we compare Type-Specific Sampling (TSS) with
two other strategies, namely, Full Sampling (FS) and No
Enrichment (NS). In the FS case, COSE adds all entities
of the same type (instead of just a random sample as done by
TSS) to the delta graph. In the NS case, COSE completely
skips sampling and uses only the changed triples as its input.
The performance and accuracy results of the three strategies
are summarized in table IX. First, comparing TSS with FS, we
can see the performance–accuracy trade-off. When we perform
full sampling, we see that COSE achieves 100% accuracy
for YAGO and DBpedia, and 99.8% accuracy for Wikidata.
Manual inspection of shapes that did not match the ground
truth showed that the small discrepancy with Wikidata is due
to schema changes introduced by updates that lead to minor
variations in a few shapes. However, this high accuracy comes
at the trade-off of performance, as FS is 7–21× slower than
TSS.

Second, comparing TSS with NS, we can see that skipping
enrichment completely provides 2× improvement in perfor-
mance. However, this comes at the price of accuracy, as it
can lead to up to 10% loss in precision and recall with the
public KGs. We estimate that this fraction is optimistic because
updates in these public KGs are mostly additions of new triples
that lead to new SHACL shapes, as we showed earlier. In other
scenarios where updates are modification intensive, a lack of
sampling would lead to a much bigger loss in accuracy. TSS
thus provides a middle-ground in balancing performance and
accuracy, as it provides performance close to NS with accuracy
close to FS.

TABLE IX: Impact Of Sampling Strategies On Precision And
Processing Time.

Version Sampling Precision
(%)

Recall
(%) Time

Wikidata v2 TSS 92.5 91.8 3h12min
FS 99.8 99.5 (>, 24 hours)
NS 81.9 78.2 1h46min

DBpedia v2 TSS 93.5 92.8 31min
FS 100 100 3h30min
NS 88.6 85.1 11min

YAGO2 TSS 91.2 90.5 40min
FS 100 100 14h00min
NS 84.3 80.3 16min

3) Sensitivity Analysis of Sampling Parameters: We now
present a sensitivity analysis of COSE’s sampling parameters
((α) and (kmin). To recall, these parameters are used to compute
the sampling threshold, where α controls the fraction of

(a) Detected Changes in YAGO. (b) Detected Changes in DBpedia. (c) Detected Changes in Wikidata.

Fig. 5: Detected Changes Across Different Knowledge Graphs

entities sampled from the base graph Vn and kmin ensures a
minimum number of triples are included. In all experiments
presented in this evaluation, we set α = 0.15 and kmin = 5000.
In contrast, table X shows results for varying α with kmin
fixed at 5000 and table XI shows results for varying kmin with
α fixed at 0.15. Across all datasets, we see the performance–
accuracy tradeoff; increasing α or kmin provides an improve-
ment in accuracy and a drop in performance, and decreasing
both has the opposite effect. We set α = 0.15 or kmin = 5000
for all experiments in this evaluation, as these values provided
the best tradeoff between performance and accuracy. Beyond
this value, we observed only marginal improvements in accu-
racy with a much bigger drop in performance. For instance,
increasing α to 0.25 incurs a slowdown of up to 1.7×, while
improving precision/recall only by up to 1.4%/0.5%.

TABLE X: Sensitivity Analysis Of α With kmin = 5000.

Dataset α
Processing

Time
Precision

(%)
Recall
(%)

3*DBpedia-v2 0.05 4min21 88.7 85.3
0.15 6min09 93.5 92.8
0.25 9min45 94.9 93.1

3*Wikidata-v2 0.05 2h23min 87.2 84.8
0.15 3h12min 92.5 91.8
0.25 5h24min 93.9 92.3

3*YAGO2 0.05 30min17 85.8 82.3
0.15 40min 91.2 90.5
0.25 1h09min 92.3 90.4

TABLE XI: Sensitivity Analysis Of kmin With α = 0.15.

Dataset kmin
Processing

Time
Precision

(%)
Recall
(%)

3*DBpedia-v2 1000 4min97 89.8 86.4
5000 6min09 93.5 92.8

10,000 10min12 95.4 94.2

3*Wikidata-v2 1000 2h06min 88.7 85.2
5000 3h12min 92.5 91.8

10,000 5h47min 93.2 93.2

3*YAGO2 1000 23min11 87.6 84.1
5000 40min 91.2 90.5

10,000 1h18min 92 91.5

4) Practical Implication: Comparison of QSE-FG and
COSE: To assess the practical implication of QSE-FG and
COSE and to answer the third question raised earlier, we
evaluate the correctness of their extracted SHACL shapes and
their impact when used to validate the graph. We extract
shapes from DBpedia v2 using both QSE-FG and COSE.
Rather than selecting five arbitrary shapes, we employed a
stratified sampling strategy to ensure statistical representative-
ness: we chose five SHACL shapes, each targeting a distinct
class (i.e., dbo:Village, dbo:Film, dbo:Organisation,
dbo:Software, and dbo:City). Each of these five shapes gov-
erns between 92 and 342 property constraints and collectively
covers over 1,000 triples sampled from millions of entities,
capturing both true positives and false negatives. To confirm
that this five-shape sample was sufficiently stable, we repeated
the selection process using two additional random seeds (17
and 91), observing a minimal variance of ±1.2% in precision
and recall. These checks indicate that (1) each class exhibits
a distinct constraint pattern, (2) each shape covers well over
100 governed triples meeting common thresholds for statisti-
cal significance and (3) the resulting precision/recall metrics
converge, validating our sampling methodology. Precision and
recall are calculated as follows: Precision: TP

TP+FP , Recall:
TP

TP+FN , where TP (True Positives) are correctly identified
shapes, FP (False Positives) are incorrect shapes, and FN
(False Negatives) are valid shapes that were missed.

table XII shows the statistics, precision, and recall of
property shapes extracted by QSE-FG and COSE across these
classes. The total number of entities per class is reported in
column Entities, while PS ALL represents the total number of
property shapes. Columns PS Correct and PS Wrong indicate
how many extracted shapes were deemed valid or spurious
after manual inspection. PS QSE-FG and PS COSE denote
the number of shapes retained by QSE-FG and COSE, re-
spectively, while the last four columns report true negatives,
false negatives, precision, and recall for both methods.

As can be seen, QSE-FG achieves a perfect precision due its
ability to effectively filter out spurious shapes while preserving
valid ones using statistical confidence values derived from
the full graph. COSE’s 10% loss in accuracy actually results
only in marginally lower precision values. This shows that
COSE’s validation is also effective despite working with the

TABLE XII: Analysis Of 5 Randomly Selected SHACL Shapes.

Class #Entities #PS ALL #PS
Correct

#PS
Wrong

#PS
QSE-FG

True
Neg QSE-FG

False
Neg QSE-FG

Prec
QSE-FG

Rec
QSE-FG

#PS
COSE

True
Neg COSE

False
Neg COSE

Prec
COSE

Rec
COSE

dbo:Village 310,248 342 74 98 72 98 2 1.0 0.97 69 93 5 0.96 0.93
dbo:Film 157,682 130 56 74 55 73 3 1.0 0.95 52 70 5 0.96 0.91
dbo:Organisation 46,218 122 45 77 44 75 2 1.0 0.96 41 71 4 0.95 0.91
dbo:Software 18,659 92 40 52 39 50 1 1.0 0.98 37 48 2 0.95 0.95
dbo:City 34,120 170 60 110 59 108 1 1.0 0.98 57 105 3 0.95 0.95

delta graph. Similarly, COSE retains marginally fewer shapes
than QSE-FG across all classes we verified. For example,
for the class dbo:Village, QSE-FG retains 72 shapes, while
COSE retains 69. This explains QSE-FG’s marginally higher
recall, as by reprocessing the entire graph it preserves more
valid constraints. In contrast, COSE’s incremental approach
occasionally omits a few shapes during updates, resulting
in a small number of false negatives and a slight drop in
recall. These results underscore an important trade-off. QSE-
FG ensures a more comprehensive set of constraints but
requires reprocessing the entire graph, making it computation-
ally demanding for continuously evolving KGs. In contrast,
COSE efficiently extracts a refined set of constraints by
leveraging incremental updates, significantly reducing compu-
tational overhead (6×–10×) and making it advantageous for
dynamic KGs that require frequent updates.

5) Drift Across Increments: We now present an analysis of
COSE’s accuracy as we use it across multiple KG versions to
answer the fourth and final question raised earlier. Recall that
COSE serializes and tracks merged shapes and data structures
across versions. The question we aim to answer here is whether
COSE’s drop in accuracy compared to QSE-FG progressively
deteriorates as we increase the number of versions.

fig. 6 and fig. 7 show the accuracy of COSE across all
versions of three public KGs. As can be seen, COSE maintains
a precision and recall of more than 90% across multiple
versions in all three KGs; Wikidata and YAGO had less than a
0.5% drop in accuracy, while DBpedia had a 3% drop across
25 versions. This shows the robustness of COSE with the
public KGs considered in this study. From our analysis of the
practical implications of using COSE’s shapes, we know that
this drop in accuracy will not lead to a major drop in validation
accuracy. However, we would like to explicitly point out here
that a straightforward strategy of dealing with such drift across
increments is to adopt a hybrid strategy for dealing with
continuous shapes extraction. Similar to the way enterprise
storage systems perform periodic full backup and interim
incremental backups, COSE can be used to perform shapes
extraction on a full KG periodically, with interim updates
following incremental shapes extraction. The exact window
between two full extractions can be customized depending on
the update rate and update complexity of each graph. Recall
that COSE tracks and serializes data structures and SHACL
shapes across versions. Using this, COSE already supports
such a hybrid shapes extraction strategy out of the box.

IV. RELATED WORK

Early work on KG constraint extraction and validation
focused on static data. Tools like NADEEF [22], LLU-
NATIC [23], and the unified repair model [24] process in-
dividual snapshots using fixed rules, offering no support for
efficient updates and addressing data cleaning rather than
shape extraction. QSE [4] scales SHACL shape extraction to
large KGs but requires full recomputation for each version.
SheXer [3] similarly targets static graphs, lacking reuse of
prior shape computations. ShapeDesigner [11] and SHA-
CLGEN [12] generate SHACL constraints but do not scale
to large KGs and remain limited to single snapshots. These
approaches operate on static snapshots and largely target data-
cleaning or validation tasks, which are conceptually distinct
from deriving SHACL constraints [25].

Incremental techniques for evolving data have been explored
in related domains. IncRML [26] and Belhajjame et al. [27]
incrementally maintain mappings or schema saturation but
do not handle shape extraction. Volkovs et al. [28] address
constraint adaptation for tabular data, not RDF. Fan et al. [5],
[6] develop incremental graph query maintenance, while Pa-
pavasileiou et al. [29] and Onias et al. [30] target evolving
query and ontology constraints. Bleifuß et al. [31] study tem-
poral schema recommendations for user-curated web tables,
providing complementary insights into schema evolution.Yet,
none support continuous SHACL shape inference.

Other systems like Guided Data Repair (GDR) [32] rely on
user feedback to fix violations but assume static constraints
and perform validation per snapshot.

COSE bridges this gap by enabling continuous SHACL
shape extraction over delta graphs, combining QSE’s statistical
inference [4] with incremental maintenance [5], [6], [27]. To
our knowledge, it is the first end-to-end framework to support
shape mining over evolving KGs.

V. CONCLUSION AND FUTURE WORK

We introduced COSE, a system for continuous SHACL
shape extraction over dynamic KGs. By adapting QSE to
work incrementally over delta graphs, COSE avoids costly
full graph reprocessing while maintaining shape quality. Ex-
periments on real-world datasets show that COSE offers
an order-of-magnitude performance gain over full-graph QSE
with minimal accuracy loss.

Several future directions emerge. First, while type-specific
sampling balances accuracy and performance, smarter strate-
gies could further reduce the trade-off. Second, although
COSE scales to large updates, real-time extraction remains a
challenge; batching updates or lightweight filtering may offer

Fig. 6: Precision Of COSE Across Datasets. Fig. 7: Recall Of COSE Across Datasets.

practical solutions. Lastly, COSE assumes constraints persist
across versions, but dynamic data may require evolving the
constraints themselves. Our framework lays the groundwork
to explore such adaptive validation in evolving KGs.

REFERENCES

[1] H. Knublauch and D. Kontokostas, “Shapes constraint language (shacl),”
W3C Candidate Recommendation, 2017, available at: https://www.w3.
org/TR/shacl/.

[2] E. Prud’hommeaux, J. E. Labra Gayo, and H. R. Solbrig, “Shape expres-
sions: An rdf validation and transformation language,” in Proceedings of
the 10th International Conference on Semantic Systems (SEMANTiCS).
Leipzig, Germany: ACM, 2014, pp. 32–40.

[3] M. Poveda-Villalón et al., “Automatic extraction of shapes using shexer,”
in Proceedings of the ISWC 2021 Satellite Tracks (CEUR Workshop
Proceedings). Springer, Cham, 2021, pp. 221–235.

[4] K. Rabbani, M. Lissandrini, and K. Hose, “Extraction of validating
shapes from very large knowledge graphs,” Proceedings of the VLDB
Endowment, vol. 16, no. 5, pp. 1023–1032, 2023.

[5] W. Fan, X. Wang, and Y. Wu, “Incremental graph pattern matching,”
ACM Transactions on Database Systems, vol. 38, no. 3, pp. 12:1–12:47,
2013.

[6] W. Fan, C. Hu, and C. Tian, “Incremental graph computations: Doable
and undoable,” in Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD ’17), 2017, pp. 155–169.

[7] SciencesDaily. (2020) Inconsistent data presentation on covid-19 dash-
boards risks public health efforts. Online. Retrieved from https://www.
sciencedaily.com/releases/2020/08/200820110900.htm.

[8] BMJ Global Health. (2021) Challenges in composite data sourcing dur-
ing the covid-19 pandemic. Online. BMJ Global Health, 6(5), e005542.
Retrieved from https://gh.bmj.com/content/6/5/e005542.

[9] OpenStreetMap Community, “Best practices for mapping
temporary road closures due to natural disasters,” Online, 2020,
retrieved from https://help.openstreetmap.org/questions/81647/
best-practice-for-mapping-5-month-road-closure-with-approximate-end-date.

[10] E. Software, “Kryo: Fast, efficient java serialization,” https://github.com/
EsotericSoftware/kryo, 2024.

[11] I. Boneva, J. Dusart, D. Fernández-Álvarez, and J. E. Labra Gayo,
“Shape designer for shex and shacl constraints,” in Proceedings of the
ISWC 2019 Satellite Tracks (CEUR Workshop Proceedings), vol. 2456.
Auckland, New Zealand: CEUR-WS.org, 2019, pp. 269–272.

[12] A. Keely. (2022) Shaclgen. Online. Retrieved from https://pypi.org/
project/shaclgen/; Accessed 20th January.

[13] J. Lehmann, L. Bühmann, P. Westphal, S. Bin, M. Brümmer, C. Dirschl,
and C. Stadler, “Dbpedia – a large-scale, multilingual knowledge base
extracted from wikipedia,” Semantic Web, vol. 7, no. 1, pp. 1–19, 2016.

[14] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, and C. Bizer, “Dbpedia – a large-scale, multilingual knowledge
base extracted from wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–
195, 2015.

[15] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic
knowledge,” in Proceedings of the 16th International Conference on
World Wide Web. ACM, 2007, pp. 697–706.

[16] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2: A
spatially and temporally enhanced knowledge base from wikipedia,” vol.
194, 2013, pp. 28–61.

[17] ——, “Yago2s: A spatially enhanced knowledge base from wikipedia
and wordnet,” vol. 194, 2013.

[18] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “Yago3: A knowledge
base from multilingual wikipedias,” in Proceedings of the 7th Biennial
Conference on Innovative Data Systems Research (CIDR), 2015.

[19] Wikimedia Foundation. (2014) Introducing wikidata to the linked data
web. In The Semantic Web – ISWC 2014.

[20] ——. (2023) Wikidata: A free knowledge base. Retrieved October 10,
2024. [Online]. Available: https://www.wikidata.org/

[21] ——. (2024) Wikidata: A free knowledge base. [Online]. Available:
https://www.wikidata.org/

[22] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Nadeef: A commodity
data cleaning system,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. New York, NY, USA:
ACM, 2013, pp. 541–552.

[23] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Llunatic: A local
logic for universal constraints with attributes,” in Proceedings of the
VLDB Endowment, vol. 5, no. 11, 2012, pp. 1338–1349.

[24] F. Chiang and R. J. Miller, “A unified model for data and constraint
repair,” in Proceedings of the IEEE 24th International Conference on
Data Engineering (ICDE). Cancun, Mexico: IEEE, 2008, pp. 446–455.

[25] A. Polleres, A. Bonifati, O. Hartig, A. Hogan, M. Höller, S. Kirrane,
M. Šimkus, S. Steyskal, and A. Zimmermann, “Rdf constraints: A
systematic analysis and framework,” Journal of Web Semantics, vol. 78,
p. 100772, 2023.

[26] D. Van Assche et al., “Incrml: Incremental knowledge graph construc-
tion from heterogeneous data sources,” in ESWC 2021: The Semantic
Web – ESWC 2021 Satellite Events. Springer, Cham, 2021, pp. 113–
118.

[27] K. Belhajjame and M.-Y. Mejri, “Online maintenance of evolving knowl-
edge graphs with rdfs-based saturation and why-provenance support,”
Journal of Web Semantics, vol. 64, p. 100584, 2020.

[28] M. Volkovs, C. Cheng, K. Doka, and G. Hinton, “Cleaner: Continuous
learning for data repair,” pp. 5787–5796, 2019.

[29] V. Papavasileiou, N. Konstantinou, Y. Tzitzikas, and D. Spanos, “Incre-
mental query rewriting and processing in evolving rdf knowledge bases,”
Journal of Web Semantics, vol. 19, pp. 1–16, 2014.

[30] N. Onias et al., “Maintaining ontology-based constraints in dynamic
rdf datasets,” International Journal on Semantic Web and Information
Systems, vol. 11, no. 3, pp. 21–39, 2015.

[31] D. Bleifuß, R. Le Bras, I. F. Ilyas, and T. Rekatsinas, “Temporal schema
recommendation for evolving web tables,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2025.

[32] M. Yakout, A. Elmagarmid, M. Ouzzani, and I. F. Ilyas, “Guided data
repair,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 193–
204, 2013.

