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Abstract—In this paper, we explore a non-cooperative zero-
sum game for a linear dynamic system, operating over wireless
Multiple-Input Multiple-Output (MIMO) fading channels that
feature an uncountable channel state space between the remote
controllers and the actuator of the dynamic plant. We initiate our
work by framing the stochastic zero-sum game as an ergodic
optimization problem, from which we derive the structural
properties of the coupled optimality equations. To overcome
the “curse of dimensionality,” we develop equivalent structured
reduced-state optimality equations. Leveraging these equations,
we derive the necessary and sufficient conditions for the existence
of a Nash equilibrium in the stochastic game. Furthermore,
we propose an online structured learning algorithm based on
Stochastic Approximation (SA) to compute the Nash equilibrium.
Employing Ordinary Differential Equation (ODE) techniques
and Lyapunov stability analysis, we demonstrate the asymptotic
optimality of our learning algorithm. Numerical results show
that the proposed method outperforms existing state-of-the-art
baselines.

Index Terms—Zero-sum games, stochastic games, optimal
control, structured online learning, stochastic approximation,
Lyapunov stability analysis.

I. INTRODUCTION

A. Background

W IRELESS control has become increasingly important
in modern networked systems due to its advantages

in scalability, flexibility, and cost efficiency. It enables remote
actuation and coordination among distributed sensors and con-
trollers, with wide applications in industrial automation, au-
tonomous systems, and smart infrastructure [1], [2]. However,
wireless communication channels are inherently unreliable.
They suffer from impairments such as fading, referring to
random fluctuations in signal strength caused by multipath
propagation or mobility, and packet dropouts, which arise
from interference, congestion, or noise [3]. These stochastic
phenomena pose significant challenges to maintaining the
stability of closed-loop control systems [4]. Moreover, wireless
links are vulnerable to adversarial interference and attacks,
which can further degrade control performance [5].

In such environments, conventional control methods such as
Proportional-Integral-Derivative (PID) control [6] and Linear
Quadratic Regulation (LQR) [7] are often suboptimal, as they
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Fig. 1: A typical architecture of a non-cooperative zero-sum game for a linear
system over the wireless network.

are typically developed for cooperative control agents and rely
on assumptions of ideal communication channels, static system
dynamics, and the absence of adversarial disturbances. In the
presence of time-varying wireless impairments or malicious
disruptions, such static control policies are incapable of main-
taining system stability.

To address these challenges, we adopt a game-theoretic
framework formulated as a zero-sum stochastic setting. Specif-
ically, we consider a linear system architecture where two
remote controllers interact with a dynamic plant through a
shared actuator connected via wireless fading channels, as
illustrated in Fig. 1. One controller is tasked with stabilizing
the plant, while the other acts adversarially, aiming to destabi-
lize it by injecting disruptive control signals. Both controllers
transmit their control inputs wirelessly to the actuator, which
then applies the combined signal directly to the plant. This
architecture effectively captures the adversarial nature and un-
certainty inherent in wireless control systems operating under
unreliable or potentially malicious communication conditions.

Given the time-varying and unpredictable nature of wireless
channels, the stabilizing controller must continuously adapt
to real-time transmission conditions. In this context, online
learning-based approaches, particularly those relying on rein-
forcement learning [8], provide a promising solution by en-
abling the controller to learn effective strategies directly from
empirical channel realizations. However, applying these meth-
ods in wireless control systems remains highly challenging due
to the complex and inherently stochastic nature of wireless
environments. These systems typically involve uncountable
state spaces and dynamic interference patterns, significantly
hindering the scalability and real-time applicability of policy
learning algorithms.

B. Related Works
Zero-sum games for linear systems over static channels have

been extensively investigated in the existing literature [9]–[14].
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For instance, recursive solutions such as value-iteration-based
and policy-iteration-based algorithms over value functions
were proposed in [9], [10] to address linear zero-sum games.
Q-learning-based approaches for the Nash equilibrium of these
games were introduced in [11] and [12]. In [13] and [14],
stochastic zero-sum differential games were considered and
the integral reinforcement learning algorithms derived from
policy iteration were utilized to learn the Nash equilibrium.
Note that the above works [9]–[14] all assume static channels
between the actuator and the remote controllers. Brute-force
application of these methods to games over wireless networks
can lead to learned control policies that deviate from the
Nash equilibrium. This deviation arises because such policies
are typically static and fail to adapt to the stochastic and
time-varying transmission opportunities inherent in wireless
environments.

Recent research has focused on zero-sum games within
linear systems that operate over wireless communication
channels [15]–[20]. These studies incorporate Channel State
Information (CSI) into the solution design to accommodate the
randomness of channel fading. Specifically, in [20], the authors
investigated on-off channels between the actuator and the
remote controllers. The Nash equilibrium was achieved using
a value-iteration-based approach. However, a fixed packet-loss
pattern was assumed in the work, and extensions of the scheme
to time-varying packet-loss channels pose challenges. In [18],
the authors considered a linear stochastic zero-sum game
with time-varying packet-loss channels. The control policy
was learned by aggregating plant states at neighboring active
slots, and can converge to the Nash equilibrium. However,
this approach requires finite burst packet dropout. In [19], the
Independent and Identically Distributed (i.i.d.) on-off channels
were considered, and the authors derived the Nash equilibrium
that can stabilize the system. However, it remains unclear
how to practically learn the equilibrium point. Additionally,
the modeling approach using a 0-1 process in [19] may over-
simplify practical wireless communication channels. [15] and
[16] tackled stochastic games over wireless fading channels
with finite state space. The structural properties of the Nash
equilibrium were developed by a set of coupled Bellman
optimality equations. However, the assumption of a finite CSI
state space is often unrealistic. Extending these methods to
general fading channels with uncountably infinite CSI states
encounters the “curse of dimensionality.” To manage this, one
may consider discretization of the CSI state space into a finite
set. However, such an approach introduces errors that leads to
the deviation of the control policy from the Nash equilibrium.
[17] investigated a linear zero-sum game over non-zero-mean
Gaussian fading channels, using CSI statistics to parameterize
control strategies and learning them through policy iteration.
However, brute-force applications of the approach in [17]
over the zero-mean Gaussian fading channels will lead to
instability of the dynamic systems. This occurs because the
control solution derived from [17] fails to effectively account
for instantaneous transmission opportunities arising from the
time-varying wireless environment. Consequently, the system
becomes uncontrollable under zero-mean Gaussian fading
channels.

C. Motivations, Contributions, and Notations

In this work, we propose a novel structured online model-
based learning algorithm to compute the Nash equilibrium of
the stochastic game over the wireless network. The algorithm
learns the parameters of the structured optimality condition via
Stochastic Approximation (SA), leveraging both the known
system parameters and real-time realizations of the wireless
channel state. The key contributions of this work can be
summarized as follows:

• Structured Bellman Optimality Equations over Un-
countable CSI State Space. The coupling among control
agents, system parameters, and random channel states
is highly nonlinear, posing significant challenges for
analyzing the Bellman optimality structure. We address
this by first studying the finite-horizon stochastic game
and, leveraging the monotonicity and contractivity of the
nonlinear Bellman operator, derive structured Bellman
equations through an asymptotic analysis tailored to our
setting.

• Structured Reduced-State Bellman Optimality Equa-
tions. By exploiting the statistical independence between
the fading process and the plant state, we derive reduced-
state equations for computing the Nash equilibrium in
the ergodic zero-sum game. Despite the uncountable CSI
space, these equations involve only a single unknown,
effectively mitigating the “curse of dimensionality.”

• Existence Conditions of the Nash Equilibrium. Estab-
lishing equilibrium existence under uncountable CSI is
challenging due to potential uncontrollability and time-
varying non-cooperation. We address this by applying a
positive semi-definite cone decomposition to the struc-
tured equations and derive explicit conditions based on
system dynamics, channel statistics, and controller activa-
tion probabilities for the existence of a Nash equilibrium.

• Online Model-based Structured Learning via
Reduced-State Equations. Standard SA algorithms
require estimating full value functions, which is
challenging in continuous state spaces. Leveraging
the reduced-state structure, we propose an SA-based
online learning algorithm that learns only the structured
function kernel from system parameters and real-
time CSI. To address the difficulty of constructing a
Lyapunov function for convergence analysis, we adopt
a non-standard Ordinary Differential Equation (ODE)
approach where convergence is established by analyzing
a virtual fixed-point iteration that approximates the
associated ODE trajectory.

A preliminary version of this work appeared in IEEE CDC
2023 [21], focusing on algorithmic implementation. This paper
significantly extends it by analyzing the Nash equilibrium,
proposing efficient algorithmic techniques, and establishing
convergence guarantees. Extensive simulations also show its
superiority over state-of-the-art baselines.

Notation: Bold uppercase and lowercase letters denote ma-
trices and vectors. The operators (·)T and Tr(·) denote the
transpose and trace. 0m×n and 0m are m × n and m × m
zero matrices. 1S is the S×S identity matrix. Diag(a, b, . . .)
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denotes a diagonal matrix with entries a, b, . . .. Rm×n, Sm+ ,
Sm, Z+, and R+ denote the sets of m × n real matrices,
m×m positive definite matrices, m×m positive semi-definite
matrices, nonnegative integers, and positive real numbers. ∥A∥
and ∥a∥ are the spectral norm of matrix A and the Euclidean
norm of vector a. [A]i denotes the ith principal submatrix and
[A]a:b,c:d is the submatrix of A from rows a to b and columns
c to d. σmin(A) and λmin(A) denote the minimum singular
value and eigenvalue of A.

II. SYSTEM MODEL

A. Dynamic Plant

We consider a time-slotted system with S-dimensional plant
state x(t) ∈ RS×1 controlled by two remote non-cooperative
control players. The i-th remote controller (i ∈ {1, 2}) is
equipped with Ni,t ∈ Z+ transmission antennas and the
actuator is equipped with Nr ∈ Z+ receiving antennas. The
plant system is governed by the first-order coupled linear
difference equations, as follows1.

x(t+ 1) = Ax(t) +Bû(t) +w(t), t = 1, 2, ..., (1)

where the initial plant state x(1) ∈ RS×1 is randomly
generated, with each element of x(1) sampled independently
from a Gaussian distribution with zero mean and unit variance.
û(t) ∈ RNr×1 represents the received noisy control signal at
the actuator. A ∈ RS×S is the system dynamics matrix, which
characterizes the internal evolution of the dynamic plant, and
B ∈ RS×Nr is the actuator matrix. The additive plant noise
w(t) ∈ RS×1 follows a Gaussian distribution with zero mean
and a finite covariance matrix W ∈ SS .

B. Wireless MIMO Fading Channel Model

We model the communication channels between the actuator
and the i-th remote controller as Nr ×Ni,t wireless Multiple-
Input Multiple-Output (MIMO) fading channels, where Nr ∈
Z+ denotes the number of receiving antennas at the actuator.
The active controllers transmit control signals ui(t) ∈ RNi,t×1

to the actuator through these wireless communication chan-
nels. The received signal û(t) ∈ RNr×1 at the actuator is
given by

û(t) = δ1(t)H1(t)u1(t) + δ2(t)H2(t)u2(t) + v(t), (2)

where Hi(t) ∈ RNr×Ni,t represents the wireless MIMO
fading coefficients between the i-th remote controller and
the actuator. The term v(t) ∼ N (0S×1,1Nr

) denotes the
additive channel noise at the actuator. The random variable
δi(t) ∈ {0, 1} models the random access activity of the i-
th remote controller. It is i.i.d. across timeslots and remote
controllers, with Pr(δi(t) = 1) = pi ∈ [0, 1].

Assumption 1 (Wireless MIMO Fading Channel Model [3]).
The coefficient of wireless MIMO fading channels Hi(t)
between the i-th controller and the actuator remains quasi-
static within each timeslot and each controller, and is i.i.d.

1We assume the control signal û(t) is generated and applied within the
same timeslot, with negligible delay.

across remote controllers and the timeslots. Moreover, each
element of Hi(t) follows a Gaussian distribution with zero
mean and unit variance.

Assumption 1 on the fading coefficient Hi(t) reflects prac-
tical wireless systems. In reality, Hi(t) exhibits temporal
correlation governed by the coherence time, within which it is
highly correlated and becomes independent beyond. The i.i.d.
assumption aligns with standard practice that approximates the
timeslot duration to the coherence time [3]. Moreover, Hi(t)
captures signal reinforcement and cancellation from scattering;
with many scatterers, the central limit theorem justifies model-
ing Hi(t) as Gaussian. Finally, since the adversarial controller
is typically distant or hidden from the stabilizer [22], H1(t)
and H2(t) likely experience distinct scattering environments
and are naturally modeled as i.i.d..

C. Problem Formulation for the Stochastic Zero-sum Game
over Wireless MIMO Fading Channels

The dynamic system under wireless communication chan-
nels is linear and time-varying, with equivalent plant dynamics
obtained by substituting (2) into (1), yielding:

x(t+1) = Ax(t)+

2∑
i=1

δi(t)BHi(t)ui(t)+Bv(t)+w(t). (3)

The zero-sum game for the linear time-varying system (3) is
modeled over the aggregated state space S = {S(1),S(2), ...},
where S(t) = {x(t), δ1(t)H1(t), δ2(t)H2(t)} represents an
aggregation of the plant state information (PSI) x(t) and the
wireless CSI {δ1(t)H1(t), δ2(t)H2(t)}. The control policy πi

for the i-th controller maps the aggregated state S(t) ∈ S to
the control action ui(t) ∈ Ui, where t ∈ Z+. The per-stage
utility function r(S(t),u1(t),u2(t)) is defined as

r(S(t),u1(t),u2(t)) = xT (t)Qx(t) + uT
1 (t)R1u1(t)−

γ2u2(t)R2u2(t) + (δ1(t)BH1(t)u1(t))
TM1BH1(t)u1(t)

− γ2(δ2(t)BH2(t)u2(t))
TM2BH2(t)u2(t), (4)

where Q ∈ SS+, Ri ∈ SNi,t

+ , and Mi ∈ SS+ are weighting
matrices for the plant state cost, control cost, and actuation
cost, respectively. γ > 0 is a positive constant penalizing
the non-cooperation between the controllers. Furthermore, it
satisfies γ > γ∗ > 0, where γ∗ is a critical threshold [11], [12],
[23] representing the minimum value for which the zero-sum
game is solvable. The explicit derivation of γ∗ is provided in
Section III.

We formally summarize the stochastic zero-sum game for
a linear system over the wireless MIMO fading channels as
follows.

Problem 1 (The Stochastic Zero-Sum Ergodic Game of a
Linear System over Wireless MIMO Fading Channels).

Stabilizing Controller (Controller 1):

min
π1

max
π2

J π1,π2

= min
π1

max
π2

lim sup
T→∞

1

T

T∑
t=1

Eπ1,π2 [r(S(t),u1(t),u2(t))]

s.t. Dynamics (3).

(5)
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Destabilizing Controller (Controller 2):

max
π2

min
π1

J π2,π1

= max
π2

min
π1

lim sup
T→∞

1

T

T∑
t=1

Eπ1,π2 [r(S(t),u1(t),u2(t))]

s.t. Dynamics (3).

(6)

The expectations in (5) and (6) are taken With Respect To
(w.r.t.) the random access variable of the remote controllers
δi(t), the wireless fading realization Hi(t), the plant noise
w(t), and the additive channel noise v(t).

The optimal solution to Problem 1 is referred to as the Nash
equilibrium of Problem 1, as defined in the following sense.

Definition 1 (Nash Equilibrium [24]). The control policies
of the remote controllers, {π∗

1 , π
∗
2}, are said to constitute the

Nash equilibrium of Problem 1 if

J π∗
1 ,π2 ≤ J π∗

1 ,π
∗
2 ≤ J π1,π

∗
2 . (7)

According to Definition 1, the optimal policy π∗
1 minimizes

the state cost xT (t)Qx(t), while π∗
2 maximizes it. Thus,

Controller 1 serves as the stabilizer, and Controller 2 acts as
the destabilizer.

III. NASH EQUILIBRIUM OF THE STOCHASTIC ZERO-SUM
GAME FOR THE LINEAR SYSTEM OVER WIRELESS MIMO

FADING CHANNELS

A. Structured Reduced-State Bellman Optimality Equations

Traditionally, solving Problem 1 to obtain the Nash equi-
librium involves addressing the Bellman optimality equa-
tions [9]–[14], [23]. Instead of tackling these complex black-
box equations, our goal is to derive structured Bellman
optimality equations that reduce the unknowns and exploit
problem-specific structure. However, this derivation is highly
nontrivial due to the stochastic wireless setting: the channel
state space is uncountable due to continuous fading and ran-
dom access; the control signals and CSI are stochastically cou-
pled, breaking separability; and the resulting Bellman operator
is non-contractive, rendering standard dynamic programming
tools inapplicable.

To address these challenges, we analyze a finite-horizon
stochastic game and construct an induced Bellman operator
that captures the expected value update under CSI randomness.
By leveraging monotonicity and a cone-based contractivity
argument under sufficient conditions (cf. Theorem 3), we
establish asymptotic convergence of the operator. These steps
lead to the structured Bellman optimality equations for Prob-
lem 1, formally stated in the following theorem.

Theorem 1 (Structured Bellman Optimality Equations for
Problem 1). If the Nash equilibrium of Problem 1 exists under
the sufficient conditions stated in Theorem 3, it can be obtained
by solving a pair of structured Bellman optimality equations
associated with Problem 1, given as follows:

θ∗1 + V ∗
1 (S(t)) = min

u1(t)
max
u2(t)

[
r(S(t), {ui(t)}i=1,2)+

E
[
V ∗
1 (S(t+ 1)) |x(t), {δi(t)Hi(t),ui(t)}i=1,2

]]
,

(8)

θ∗2 + V ∗
2 (S(t)) = max

u2(t)
min
u1(t)

[
r(S(t), {ui(t)}i=1,2)+

E
[
V ∗
2 (S (t+ 1)) |x(t), {δi(t)Hi(t),ui(t)}i=1,2

]]
,

(9)

where
• V ∗

i (S(t)) = xT (t)P̄({δi(t)Hi(t)}i=1,2) x(t) is
the optimal value function (i ∈ {1, 2}), and
P̄({δi (t)Hi (t)}i=1,2) ∈ SS+ is a continuous function of
the CSI {δi (t)Hi (t)}i=1,2;

• θ∗i = J π∗
1 ,π

∗
2 = Tr(BTPB + PW) is the op-

timal averaged cost of Problem 1, where P =
E[P̄({δi (t)Hi (t)}2i=1)] ∈ SS+;

• The Nash equilibrium of Problem 1 is denoted as
{π∗

i }i=1,2 = {u∗
i (t)}i=1,2, and {u∗

i (t)}i=1,2 corresponds
to the optimal solutions to both (8) and (9).

Proof: Please refer to Appendix A.
When the Nash equilibrium of Problem 1 exists, one may

consider classical iterative methods such as value iteration [9],
[11], [12], [25] to solve the Bellman equations (8) and (9).
However, direct application is challenging due to the curse
of dimensionality induced by the uncountable CSI space
{δi(t)Hi(t)}i=1,2. Specifically, value iteration attempts to
learn the value function V ∗

i (S(t)), which depends on the
unknown matrix P̄(·) over a continuous domain. This results
in an intractable number of unknowns. To address this, we
exploit the statistical independence between the plant state
x(t) and the CSI to derive equivalent structured reduced-state
Bellman equations.

Theorem 2 (Structured Reduced-State Bellman Optimality
Equations for Problem 1 [21]). If the Nash equilibrium of
Problem 1 exists under the sufficient conditions stated in
Theorem 3, it can be derived from the solution of a pair
of equivalent, structured, reduced-state Bellman optimality
equations, given as follows:

θ∗1 + Ṽ ∗
1 (x(t)) = E

[
min
u1(t)

max
u2(t)

[
r(S(t), {ui(t)}i=1,2) + E

[
Ṽ ∗
1 (

x(t+ 1)) |x(t), {δi(t)Hi(t),ui(t)}i=1,2

]] ∣∣∣∣x(t), {ui(t)}i=1,2

]
,

(10)

θ∗2 + Ṽ ∗
2 (x(t)) = E

[
max
u2(t)

min
u1(t)

[
r(S(t), {ui(t)}i=1,2) + E

[
Ṽ ∗
2 (

x(t+ 1)) |x(t), {δi(t)Hi(t),ui(t)}i=1,2

]] ∣∣∣∣x(t), {ui(t)}i=1,2

]
,

(11)

where
• Ṽ ∗

i (x (t)) = xT (t)Px(t) represents the optimal reduced-
state value function for i ∈ {1, 2}, parameterized by a
single kernel P ∈ SS+;

• The Nash equilibrium for Problem 1 is expressed as:
{π∗

i }i=1,2 = {u∗
1(t),u

∗
2(t), ∀t ∈ Z+}, where u∗

i (t) =
Ki(P, t)x(t) represents the optimal solution to both
(10) and (11), and the optimal feedback control gain
Ki(P, t) ∈ RNi,t×S is given by

K1(P, t) = −
(
R1 + δ1(t)H

T
1 (t)B

TM1BH1(t) + δ1(t)

HT
1 (t)B

T P̃1(t)BH1(t)
)−1

δ1(t)H
T
1 (t)B

T P̃1(t)A,

(12)
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and

K2(P, t) = (γ2δ2(t)H
T
2 (t)B

TM2BH2(t) + γ2R2−
δ2(t)H2(t)B

T P̃2(t)BH2(t))
−1δ2(t)H

T
2 (t)B

T P̃2(t)A,
(13)

where

P̃1(t) = (P−1 − γ−2δ2(t)BH2(t)
(
R2 + δ2(t)H

T
2 (t)

BTM2BH2(t)
)−1

HT
2 (t)B

T )−1, (14)

and

P̃2(t) = (P−1 − δ1(t)BH1(t)
(
R1 + δ1(t)H

T
1 (t)

BTM1BH1(t)
)−1

HT
1 (t)B

T )−1. (15)

Compared to solving the Bellman equations in (8) and (9),
which require learning the full value function V ∗

i (S(t)) over
an uncountable CSI space, the reduced-state equations in (10)
and (11) involve only Ṽ ∗

i (x(t)) with a single unknown P.
This alleviates the curse of dimensionality and makes learning
the Nash equilibrium feasible. Section IV presents an online
structured learning algorithm based on these equations. More-
over, the statistical independence between the CSI δi(t)Hi(t)
and the plant state x(t), required by Theorem 2, holds in
many practical scenarios, such as nonlinear systems under
Rayleigh fading. This broadens the applicability of our state-
reduction technique beyond the linear Gaussian block-fading
model considered in this work.

In the following, we discuss the structural form of the Nash
equilibrium under several special cases based on Theorem 2.

1) Asymptotic Structural Form of the Nash Equilibrium:
Note that a large γ ∈ R+ in Problem 1 imposes a strong
penalty on the destabilizing controller (Controller 2), allowing
the stabilizing controller (Controller 1) to dominate the system.
The following corollary characterizes the simplified structure
of the Nash equilibrium as γ → ∞.

Corollary 1 (Asymptotic Structural Form of
the Nash Equilibrium). If the Nash equilibrium
{π∗

1 , π
∗
2} = {u∗

1(t),u
∗
2(t), ∀t ∈ Z+} of Problem 1 exists

when γ → ∞, then the optimal control solution for the
remote controllers is given by u∗

1(t) = K1(P, t)x(t) and
u∗
2(t) = 0N2,t×1, where

K1(P, t) = −
(
R1 + δ1(t)H

T
1 (t)B

TM1BH1(t) + δ1(t)

HT
1 (t)B

TPBH1(t)
)−1

δ1(t)H
T
1 (t)B

TPA. (16)

Proof: Please refer to Appendix B.
Corollary 1 reveals a structural limit of the two-player zero-

sum game as γ → ∞. While the resulting control resembles
an LQR-type solution, it generalizes classical LQR to systems
with fading channels and uncountable CSI states. This result
is rigorously derived from our Bellman framework and reflects
a limiting equilibrium of the two-player game, rather than
eliminating the adversary.

2) Homogeneous Structural Form of the Nash Equilibrium:
We are also interested in the simplified structural form of the
Nash equilibrium when remote controllers are homogeneous
in the sense that δ1(t) = δ2(t) = 1,H1(t) = H2(t) =

H(t),R1 = R2 = R, M1 = M2 = M. This is summarized
in the following corollary.

Corollary 2 (Homogeneous Structural Form of the Opti-
mal Control Solution). If the Nash equilibrium {π∗

1 , π
∗
2} =

{u∗
1(t),u

∗
2(t), ∀t ∈ Z+} of Problem 1 exists when remote

controllers are homogeneous, the optimal control solution
for remote controllers is given by u∗

1(t) = K1(P, t)x(t),
u∗
2(t) = K2(P, t)x(t), where

K1(P, t) = −(R+HT (t)BT (t)MBH(t) +HT (t)BT

P̃1(t)BH(t))−1HT (t)BT P̃1(t)A, (17)

K2(P, t) = (γ2R+ γ2HT (t)BTMBH(t)−HTBT P̃2(t)B

H(t))−1HT (t)BT P̃2(t)A, (18)

and

P̃i(t) =
(
P−1 − γ−4+2iBH(t)(R+HT (t)BTMBH(t))−1

HT (t)BT
)−1

, i ∈ {1, 2} . (19)

Proof: Please refer to Appendix B.

B. Existence of the Nash Equilibrium of Problem 1

The existence of the Nash equilibrium in Problem 1 requires
the structured reduced-state Bellman equations in (10) and (11)
to admit well-defined solutions for all t ∈ Z+. This requires
the existence of V ∗

i (S(t)) and θ∗i , along with strict convexity
in u1(t) and strict concavity in u2(t) for the respective
optimization problems.

These conditions are easier to verify under static channels
with fixed δi(t)Hi(t), by ensuring the standard controllability
assumption and imposing a lower bound on the penalty param-
eter γ [11], [12], [23]. However, in stochastic wireless settings,
random access and fading can render (A, δ1(t)BH1(t)) un-
controllable at times. Unlike the static case where a large γ
ensures existence, it is nontrivial to check whether a given
penalty γ guarantees feasibility under channel randomness. To
address this, we derive a sufficient condition by analyzing the
reduced-state Bellman equations via a positive semi-definite
cone decomposition, leading to a closed-form expression for
the existence of the Nash equilibrium.

Theorem 3 (Sufficient Conditions for the Existence
of the Nash Equilibrium of Problem 1). Let H(t) ≜
δ1(t)BH1(t)

(
R1 +HT

1 (t)B
TM1BH1(t)

)−1
HT

1 (t)B
T −

γ−2δ2(t)BH2(t)
(
R2 +HT

2 (t)B
TM2BH2(t)

)−1
HT

2 (t)B
T .

The Nash equilibrium of Problem 1 exists if the following
conditions are satisfied:

• (a) Let the eigenvalue decomposition of H(t) be H(t) =
VT (t)ζ(t)V(t) with the diagonal elements of ζ(t) in
descending order. Let Π(t) = Diag(1, ...1, 0, ...0) ∈ SS+
satisfy Tr(Π(t)) = γ(t) where γ(t) = Rank(ζ(t)), then
∥E[(AT (I−Π(t))V(t))TAT (I−Π(t))V(t)]∥ < 1;

• (b) E[λmin((ζ(t))γ(t))] ≥ 0;
• (c) γ2 ≥ (∥Q∥∥BTB∥λ−1

min(M2) +
∥A∥2E[Tr((ζ(t))−1

γ(t))]∥B
TB∥λ−1

min(M2))(1 −
∥E[(AT (I−Π(t))V(t))TAT (I−Π(t))V(t)]∥)−1.
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Proof: Please refer to Appendix C.
The conditions in Theorem 3 depend explicitly on system

parameters (A,B) and wireless channel statistics, including
the distributions of Hi(t) and activation probabilities pi. They
are both computationally feasible through closed-form expres-
sions and physically interpretable. Specifically, a less unstable
plant (smaller ∥A∥), higher p1, lower p2, and more antennas at
the stabilizer (larger N1,t, smaller N2,t) all improve feasibility.
These factors reduce the spectral norm in Condition (a),
increase the minimal eigenvalue in Condition (b), or lower
the trace in Condition (c). Feasibility also increases with
γ, as stronger penalization of the adversary makes all three
conditions easier to meet. This is consistent with classical
results in zero-sum stochastic control (e.g., [26]), where a large
enough γ is often needed to suppress worst-case disturbances.
Unlike prior works based on implicit algebraic or Riccati-
type conditions, our framework provides explicit and verifiable
criteria tied directly to system and channel parameters.

Notably, if the Nash equilibrium of Problem 1 exists for a
finite γ, it also exists as γ → ∞ due to the monotonic character
of the Nash equilibrium w.r.t. γ [23]. This insight aids in
identifying the necessary conditions for the Nash equilibrium,
as outlined in the following theorem.

Theorem 4 (Necessary Conditions for the Existence of the
Nash Equilibrium of Problem 1). If the Nash equilibrium of
Problem 1 exists, then

• p1 > 1− 1
∥A∥2 ;

• The pair
(
A,

(
E[BH1(t)(R1 +HT

1 (t)B
TM1BH1(t))

−1

HT
1 (t)B

T ]
) 1

2

)
is controllable.

Proof: Please refer to Appendix D.
According to Theorem 4, the existence of the Nash equilib-

rium only requires the “average controllability” of the system
w.r.t. the stabilizing controller.

IV. ONLINE LEARNING ALGORITHM FOR THE NASH
EQUILIBRIUM OF THE ZERO-SUM GAME FOR THE LINEAR

SYSTEM OVER WIRELESS MIMO FADING CHANNELS

A. Online Structured Learning Algorithm for the Nash Equi-
librium of Problem 1

Using the structural form of the optimal reduced state value
function Ṽ ∗

i (x(t)), the optimal averaged cost θ∗i and the Nash
equilibrium {π∗

1 , π
∗
2} = {u∗

1(t),u
∗
2(t), ∀t ∈ Z+} in Theorem

2, the reduced-state Bellman optimality equations (10) and
(11) can be written into coupled nonlinear matrix equation, as
follows.

P = E [g(P, δ1(t)H1(t), δ2(t)H2(t))] , (20)

and g(P, δ1(t)H1(t), δ2(t)H2(t)) is given by:

g(P, δ1(t)H1(t), δ2(t)H2(t)) = Q+ATPA−AT[
δ1(t)H

T
1 (t)B

TP

δ2(t)H
T
2 (t)B

TP

]T [
M11(t) M12(t)

M21(t) M22(t)

]−1

[
δ1(t)H

T
1 (t)B

TP

δ2(t)H
T
2 (t)B

TP

]
A, (21)

where

M11(t) = R1 + δ1(t)H
T
1 (t)B

TM1BH1(t)+

δ1(t)H
T
1 (t)B

TPBH1(t), (22)

M12(t) = δ1(t)δ2(t)H
T
1 (t)B

TPBH2(t), (23)

M21(t) = MT
12(t), (24)

and

M22(t) = −γ2δ2(t)H
T
2 (t)B

TM2BH2(t) + δ2(t)

HT
2 (t)B

TPBH2(t)− γ2R2.
(25)

Since (20) is a fixed-point equation w.r.t. the unknown
variable P, we can utilize the SA theory [27] to construct
an online learning algorithm to learn the unknown variable
P based on (20). The learned unknown variable P can then
be applied to obtain the optimal reduced-state value function
Ṽ ∗
i (x(t)), and the optimal control solution u∗

i (t) for the Nash
equilibrium {π∗

i }i=1,2 of Problem 1.

Algorithm 1 Online Structured Learning for the Nash Equi-
librium of Problem 1
• Step 1: Given an arbitrary S × S dimensional positive definite
matrix P1 ∈ SS

+ (e.g., P1 = IS), the initial estimated optimal
reduced-state value function is given by

Ṽ 1
i (x(1)) = xT (1)P1x(1), i ∈ {1, 2} , (26)

and the estimated optimal control solution for remote controllers is
given by:

ui(1) = Ki(P
1, 1)x(1), i ∈ {1, 2} . (27)

• Step 2: Using Pt updated at (t − 1)-th timeslot, the estimated
optimal control solution for remote controllers at t-th timeslot is given
by:

ui(t) = Ki(P
t, t)x(t), i ∈ {1, 2} , (28)

and the estimated optimal reduced-state value function Ṽ t
i (x(t)) at

t-th timeslot is given by:

Ṽ t
i (x(t)) = xT (t)Ptx(t), i ∈ {1, 2} . (29)

• Step 3: Pt+1 is updated based on Pt via (31). Set t = t+ 1 and
proceed to Step 2.

Specifically, (20) can be further written into standard form
f(P) = 0S , where f(P) is given by

f(P) = E [g (P, δ1(t)H1(t), δ2(t)H2(t))]−P. (30)

To obtain the root of f(P) = 0S , we apply the SA algorithm
as shown in Algorithm 12. Specifically, the estimated root Pt

at t-th timeslot is updated as:

Pt+1 = Pt + αt
(
g
(
Pt, δ1(t)H1(t), δ2(t)H2(t)

)
−Pt

)
,

(31)
where {αt}∞t=1 is the step-size sequence satisfying∑∞

t=1 α
t = ∞ and

∑∞
t=1(α

t)2 < ∞. The term
g(Pt, δ1(t)H1(t), δ2(t)H2(t)) is an unbiased estimator
of the term E[g(P, δ1(t)H1(t), δ2(t)H2(t))] in (20).

Remark 1 (SA Algorithm in Algorithm 1). Our Algorithm 1
differs from standard SA methods for game solutions (e.g.,

2In Algorithm 1, the CSI {δi(t)Hi(t)}i=1,2 can be obtained via standard
channel estimation at the plant using pilot symbols and feedback from the
remote controllers [28].
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[26], [29], [30]), which assume finite-dimensional learning
variables. In contrast, our SA is conducted over an infinite-
dimensional reduced-state value function space. By leveraging
its structure, we effectively learn the value function through
its parameter P.

B. Implementation Considerations

According to Section III-A, the structural form of the opti-
mal control solution can be further simplified when γ → ∞
and the remote controllers are homogeneous. This enables low-
complexity implementation of Algorithm 1.

1) Asymptotic Behavior: When γ → ∞, the coupled
nonlinear matrix equation (20) can be simplified as follows.

P = Q+ E[AT (P−1 + δ1(t)BH1(t)(R1 + δ1(t)

HT
1 (t)B

TM1BH1(t))
−1HT

1 (t)B
T )A]. (32)

As a result, Step 3 of Algorithm 1 can be simplified into the
per-stage update:

Pt+1 = Pt + αt(AT ((Pt)−1 + δ1(t)BH1(t)(R1 + δ1(t)

HT
1 (t)B

TM1BH1(t))
−1HT

1 (t)B
T )−1A+Q−Pt). (33)

Using the argument in Corollary 1, the learned control solution
ui(t) obtained at Step 2 of Algorithm 1 can be simplified as
follows:

u1(t) = −
(
R1 + δ1(t)H

T
1 (t)B

TM1BH1(t) + δ1(t)H
T
1 (t)

BTPtBH1(t)
)−1

δ1(t)H
T
1 (t)B

TPtAx(t), (34)

and u2(t) = 0N2,t×1. Hence, the computational complexity of
Algorithm 1 can be reduced.

2) Homogeneous Behavior: When the remote controllers
are homogeneous in the sense that δ1(t) = δ2(t) = 1,H1(t) =
H2(t) = H(t),R1 = R2 = R and M1 = M2 = M, the
coupled nonlinear matrix equation (20) can be simplified as
follows.

P = Q+ E[AT (P−1 + (1− γ−2)BH(t)(R+HT (t)BT

MBH(t))−1HT (t)BT )−1A]. (35)

As a result, Step 3 of Algorithm 1 can be simplified into the
per-stage update:

Pt+1 = Pt + αt
(
AT ((Pt

)−1
+ (1− γ−2)BH(t)(R+

HT (t)BTMBH(t))−1HT (t)BT )−1A+Q−Pt). (36)

Moreover, using the argument in Corollary 2, the learned
control solution ui(t) obtained at Step 2 of Algorithm 1 can
be simplified as follows:

u1(t) = −(R+HT (t)BTMBH(t) +HT (t)BT P̃t
1B

H(t))−1HT (t)BT P̃t
1Ax(t), (37)

and

u2(t) = (γ2R+ γ2HT (t)BTMBH(t)−HT (t)BT P̃t
2

BH(t))−1HT (t)BT P̃t
2Ax(t), (38)

where

P̃t
i =

(
(Pt)−1 − γ−4+2iBH(t)(R+HT (t)BTMBH(t))−1

HT (t)BT
)−1

, i ∈ {1, 2} . (39)

As a result, the computational complexity of Algorithm 1
can be reduced.

C. Convergence Analysis

The ODE method serves as an important tool for analyzing
the convergence of the SA algorithm [26]. While classical in
SA literature, our analysis departs from standard treatments
in two main ways. First, instead of tracking finite-dimensional
variables, we study the evolution of a structured kernel P ∈ SS+
within an infinite-dimensional value function. Second, due to
the nonlinearity and randomness from MIMO fading, we avoid
direct Lyapunov analysis. Instead, we construct a virtual fixed-
point iteration whose trajectory approximates the ODE and
use it to prove convergence. This structure-aware and indirect
approach allows us to rigorously analyze Algorithm 1 in a
non-standard setting.

We now present the formal convergence statements and sup-
porting lemmas. Specifically, the following lemma establishes
that the stochastic evolution in Algorithm 1 asymptotically
tracks a limiting ODE trajectory, which forms the basis of our
convergence analysis.

Lemma 1 (The ODE Trajectory for the Stochastic Evolution
(31)). The stochastic evolution (31) will asymptotically track
the ODE trajectory given by:

˙̄Pk = f(P̄k), k ∈ [1,∞], P̄1 = P1. (40)

In other words, Pr(limk→∞ P̄k = limt→∞ Pt) = 1.

Proof: Please refer to Appendix E.
As a result, we can analyze the convergence of the stochastic

evolution (31) in Algorithm 1 by analyzing the convergence
of the ODE trajectory (40).

Typically, Lyapunov stability analysis is employed to
demonstrate the convergence of the ODE trajectory (40),
but finding suitable analytical Lyapunov functions for our
scenario is challenging. To address this, we construct a virtual
fixed-point discrete iteration whose associated interpolated
continuous trajectory closely approximates the ODE trajectory
(40).

Lemma 2 (Virtual Fixed-Point Discrete Iteration). Let the
virtual fixed-point discrete iteration

{
P̂t, P̂1 = P1, t ∈ Z+

}
follows the recursion:

P̂t+1 = P̂t + ηf(P̂t), (41)

where η > 0 is an arbitrary given positive con-
stant. Further let the interpolated continuous trajectory{
P̃k, k ∈ [1,∞], P̃1 = P̂1

}
for the virtual fixed-point discrete

iteration
{
P̂t, P̂1 = P1, t ∈ Z+

}
follows the dynamics:

P̃k = P̂t + (k − kt)f(P̂
t), k ∈ [kt, kt+1], (42)
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where kt = tη. We have:

sup
k∈[0,L]

∥P̃l+k − P̄l
l+k∥ = O(η), (43)

where P̄l
k is the limiting ODE (40) with the initial condition

P̄l
l = P̃l, l ≥ 1 and L > 0.

Proof: Please refer to Appendix F.
Since the constant value η can be made arbitrary small

by letting η → 0, the convergence of the stochastic it-
eration (31) for Algorithm 1 can be obtained by analyz-
ing the convergence of virtual discrete fixed-point iteration{
P̂t, P̂1 = P1, t ∈ Z+

}
. The full convergence result for Al-

gorithm 1 is summarized in the following theorem.

Theorem 5 (Almost Sure Convergence of Algorithm 1). If
the sufficient conditions in Theorem 3 are satisfied, and the
online learning step-size sequence {αt} satisfies

∑∞
t=1 α

t =
∞,

∑∞
t=1(α

t)2 < ∞, then we have:
• (a) The learned kernel Pt via Algorithm 1 con-

verges to the ground truth kernel P almost surely, i.e.,
Pr(limt→∞ Pt = P) = 1;

• (b) The learned reduced-state value function Ṽ t
i (x(t))

via Algorithm 1 converges to the optimal reduced-state
value function Ṽ ∗

i (x(t)) = xT (t)Px(t) almost surely,
i.e., Pr(limt→∞ Ṽ t

i (x(t)) = Ṽ ∗
i (x(t))) = 1, i ∈ {1, 2};

• (c) The control solution ui(t) via Algorithm 1 converges
to the optimal control solution u∗

i (t) in Theorem 2, i.e.,
Pr(limt→∞ ui(t) = u∗

i (t)) = 1, where u∗
1(t) and u∗

2(t)
is the t-th element of the Nash equilibrium of Problem 1,
i.e., {π∗

i }i=1,2 = {u∗
1(t),u

∗
2(t), ∀t ∈ Z+}.

Proof: Please refer to Appendix G.

V. NUMERICAL RESULTS

In this section, we compare the proposed stabilizing control
scheme in Algorithm 1 with various existing stabilizing control
approaches for u1(t) under external interference u2(t) from
two sources: (a) Worst-case disturbance: where the attacker
uses the optimal destabilizing control from Theorem 2; and (b)
Random disturbance: where a sine wave disturbance gener-
ator [31] applies u2(t) = 10 sin(6t)ϕ(t), with ϕ(t) ∈ RN2,t×1

drawn from a Gaussian distribution with zero mean and unit
variance. The baseline schemes for u1(t) are summarized
below.

• Baseline 1: (Prior-Known Nash Equilibrium [23]) The
Nash equilibrium of Problem 1 is known at the stabilizing
controller. Specifically, P that satisfies (20) is presumed
to be known at the stabilizing controller. The optimal
stabilizing control solution u∗

1(t), derived from Theorem
2, is implemented in the system.

• Baseline 2: (Brute-Force Value Iteration without State
Reduction [15]) The uncountable state space of the
CSI {δ1(t)H1(t), δ2(t)H2(t)} are firstly discretized into
(N1,t ×Nr +N2,t ×Nr)× 2L finite intervals. The value
for the optimal value function of the stabilizing controller
V ∗
1 (S(t)) is approximated by the value of the pseudo

value function V̂ d
1 (x(t)) = xT (t)Pdx(t),Pd ∈ SS+, 1 ≤

d ≤ (N1,t×Nr+N2,t×Nr)×2L if {δi(t)Hi(t)} belongs

(a) MSE vs. iteration for optimal stabiliz-
ing control.

(b) MSE vs. iteration for Baseline 1 solu-
tion.

Fig. 2: The convergence analysis for the control schemes. The worse-case
disturbance by the attacker is presented. The system parameters are configured

as follows: A =

[
1.37 0.44 0.15

0.13 0.82 0.36

0.41 0.57 0.36

]
and B =

[
1.61 0.67

0.74 0.52

1.02 0.56

]
. p = 0.8,

N1,t = N2,t = Nr = 2, R1 = R2 = I2, M1 = M2 = Q = I3,
γ = 10, W = I3, and L = 2. The Baseline 1 solution is P =[
3.2564 0.3377 0.0479

0.3377 2.3516 0.6592

0.0479 0.6592 1.3388

]
.

(a) Averaged L2-norm of plant state vs.
iteration under worst-case disturbance.

(b) Averaged L2-norm vs. iteration under
sinusoidal random disturbance.

Fig. 3: Robustness analysis for the control schemes. The system parameters

are configured as follows: A =

[
1.46 0.44 0.17

0.13 0.92 0.43

0.41 0.67 0.56

]
, B =

[
1.41 0.43

0.67 0.44

0.92 0.51

]
.

The Baseline 1 solution is P =

[
4.3580 0.2186 −0.0981

0.2186 3.2266 1.2930

−0.0981 1.2930 1.8146

]
.

to d-th interval. The control policy for the stabilizing
controller is learned by value iteration on value function
V̂ d
1 (x(t)), 1 ≤ d ≤ (N1,t ×Nr +N2,t ×Nr)× 2L.

• Baseline 3: (Brute-Force Value Iteration over Static
Channels [12]) The optimal value function for the sta-
bilizing controller is approximated by the pseudo value
function V̂ s

1 (x(t)) = xT (t)Px(t),P ∈ SS+. Based on
x(t) at each t-th timeslot, the stabilizing controller learns
the control policy via brute-force value iteration using the
least square with {x(1),x(2), ...,x(t)}.

• Baseline 4: (Naive LQR Control [32]) The stabilizing
controller applies the naive LQR control solution without
awareness of the disturbance.

A. Convergence Analysis

Fig. 2(a) shows the Mean Square Error (MSE) between the
learned control u1(t) and the Nash solution u∗

1(t) from Base-
line 1. The proposed structured learning algorithm converges
reliably, confirming the asymptotic optimality of Algorithm 1.
In contrast, Baselines 2–4 diverge due to different modeling or
approximation errors. Baseline 2 suffers from CSI discretiza-
tion; Baseline 3 assumes static channels, leading to mismatch
under dynamics; and Baseline 4 applies a fixed LQR gain
without accounting for interference.

These trends can be understood via the structure u1(t) =
K(Pt, t)x(t), where Pt is the evolving policy kernel. In our
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algorithm, Pt is updated via structured SA and converges
to the optimal P, ensuring u1(t) → u∗

1(t), as shown in
Fig. 2(b). In Baselines 2 and 3, Pt fails to converge due to
CSI discretization or model mismatch, leading to simultaneous
instability in both policy Pt and state x(t). Baseline 4 uses a
fixed kernel Pl, avoiding instability from fluctuating Pt, but
the static gain K(Pl, t), which reduces to K(Pl), cannot adapt
to dynamic channels or disturbances, resulting in a persistent
suboptimality and gradually increasing deviation in state x(t)
and control u1(t) = K(Pt, t)x(t) over time.

B. Robustness Analysis

Fig. 3(a) shows the averaged state norm E[∥x(t)∥2] under
worst-case disturbance. The proposed method and Baseline 1
achieve the lowest values, reflecting robustness by following
the true Nash equilibrium, consistent with Fig. 2. In contrast,
Baselines 2 and 3 rely on approximate value iteration or
static CSI assumptions and fail to mitigate adversarial effects,
leading to instability. Baseline 4, which lacks disturbance
modeling, also diverges under interference.

Fig. 3(b) presents results under random sinusoidal distur-
bances. Again, the proposed method and Baseline 1 maintain
low state norms, showing resilience to stochastic interference.
Baseline 2 considers CSI and disturbance but suffers from
discretization errors. Baseline 3 neglects channel variation and
fails to stabilize the plant. Baseline 4 performs poorly due to its
fixed, disturbance-unaware policy, highlighting the importance
of adaptive control under uncertainty.

VI. CONCLUSION

In this paper, we explored a zero-sum game for a linear
system over wireless MIMO fading channels with uncountable
CSI state space. We framed the problem as a stochastic ergodic
game and derived structured reduced-state Bellman optimality
equations to overcome the “curse of dimensionality” inherent
in learning the Nash equilibrium from the uncountable CSI
state space. Utilizing these equations, we derived the sufficient
and necessary conditions for the existence of the Nash equilib-
rium and proposed a novel structured online learning algorithm
that asymptotically achieves the Nash equilibrium via SA
iteration. Numerical results demonstrated superior stability and
convergence performance of the proposed scheme compared
to the baseline approaches.

APPENDIX

A. Proof of Theorem 1

We begin by analyzing the finite-horizon zero-sum game
and derive the structural properties of the optimality conditions
within our framework through asymptotic analysis.

Problem 2 (The Finite-Horizon Game).
Stabilizing Controller (Controller 1):

min
π1

max
π2

J̃ π1,π2 , s.t. (3). (44)

Destabilizing Controller (Controller 2):

max
π2

min
π1

J̃ π2,π1 , s.t. (3), (45)

where J̃ π1,π2 = Eπ1,π2 [
∑T

t=1 r(S(t),u1(t),u2(t))+xT (T +
1)QxT (T + 1)].

The optimal solution to Problem 2 can be obtained by
backward induction. We define the value functions V1(t,S(t))
and V2(t,S(t)) that satisfy V1(T + 1,S(T + 1)) = V2(T +
1,S(T + 1)) = xT (T + 1)Qx(T + 1) as the solutions to:

V1(t,S(t)) = min
u1(t)

max
u2(t)

[r(S(t),u1(t),u2(t)) + E[V1(t+ 1,

S(t+ 1))|S(t),u1(t),u2(t)]], (46)
V2(t,S(t)) = max

u2(t)
min
u1(t)

[r(S(t),u1(t),u2(t)) + E[V2(t+ 1,

S(t+ 1))|S(t),u1(t),u2(t)]], t = 1, 2, ..., T. (47)

Let t = T . We have:

V1(T,S(T )) = V2(T,S(T )) = V (T,S(T ))

= xT (T )(ATQA+Q)x(T ) + Tr(QW +BTQB)

+ max
u2(T )

min
u1(T )

(uT
1 (T )(R1 + δ1(T )H

T
1 (T )B

TM1BH1(T )

+ δ1(T )H
T
1 (T )B

TQBH1(T ))u1(T ) + uT
2 (T )(−γ2R2 − γ2δ2(T )

×HT
2 (T )B

TM2BH2(T ) + δ2(T )H
T
2 (T )B

TQBH2(T ))u2(T )

+ 2uT
1 (T )(δ1(T )δ2(T )H

T
1 (T )B

TQBH2(T ))u2(T )), (48)

with the optimal solution in the Right-Hand Side (R.H.S.) of
(48) given by

u∗
1(T ) = −(R1 + δ1(T )H

T
1 (T )B

TM1BH1(T ) + δ1(T )

HT
1 (T )B

T Z̃1(T )BH1(T ))
−1δ1(T )H

T
1 (T )B

T Z̃1(T )Ax(T ), (49)

u∗
2(T ) = (γ2δ2(t)H

T
2 (T )B

TM2BH2(T ) + γ2R2 − δ2(T )

H2(T )B
T Z̃2(T )BH2(T ))

−1δ2(T )H
T
2 (T )B

T Z̃2(T )Ax(T ), (50)

where

Z̃1(T ) = (Q−1 − γ−2δ2(T )BH2(T )(R2 + δ2(T )H
T
2 (T )

×BTM2BH2(T ))
−1HT

2 (T )B
T )−1, (51)

Z̃2(T ) = (Q−1 − δ1(T )BH1(T )(R1 + δ1(T )H
T
1 (T )B

TM1

×BH1(T ))
−1HT

1 (T )B
T )−1. (52)

Let Z̄(T + 1) = Q. For t = 1, 2, ..., T, we have

V (t,S(t)) = xT (t)Z(t)x(t) +

T∑
i=t

Tr(Z̄(i+ 1)W +BT Z̄(i+ 1)B),

(53)
Z(t) = g(Z̄(t+ 1), δ1(t)H1(t), δ2(t)H2(t)), (54)

where

g(Z̄(t+ 1), δ1(t)H1(t), δ2(t)H2(t)) = Q+AT Z̄(t+ 1)A−AT

×
[
δ1(t)HT

1 (t)BT Z̄(t + 1)

δ2(t)HT
2 (t)BT Z̄(t + 1)

]T [
Z11(t) Z12(t)

Z21(t) Z22(t)

]−1
[
δ1(t)HT

1 (t)BT Z̄(t + 1)

δ2(t)HT
2 (t)BT Z̄(t + 1)

]
A,

(55)
Z11(t) = R1 + δ1(t)H

T
1 (t)B

TM1BH1(t)

+ δ1(t)H
T
1 (t)B

T Z̄(t+ 1)BH1(t), (56)

Z12(t) = δ1(t)δ2(t)H
T
1 (t)B

T Z̄(t+ 1)BH2(t), (57)

Z21(t) = ZT
12(t), (58)

Z22(t) = −γ2δ2(t)H
T
2 (t)B

TM2BH2(t)

+ δ2(t)H
T
2 (t)B

T Z̄(t+ 1)BH2(t)− γ2R2, (59)

and Z̄(t) = Eδ1(t)H1(t),δ2(t)H2(t)[Z(t)].
Note that the optimal average cost in Problem 1 can be

characterized by J π∗
1 ,π

∗
2 , where π∗

i = {u∗
i (t), t ∈ Z+} and

u∗
i (t) is characterized in (49) and (50), as the horizon length

K → ∞. The structure of the optimality conditions for
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Problem 1 can therefore be analyzed by investigating the
asymptotic behavior of the following recursion:

Z(i+ 1) = g(Z̄(i), δ1(i)H1(i), δ2(i)H2(i)),Z(1) = Q. (60)

To analyze this, we consider the induced expected recursion:

Z̄(i+ 1) = E[g(Z̄(i), δ1(i)H1(i), δ2(i)H2(i))], Z̄(1) = Q. (61)

Due to the monotonicity of the operator E[g(·)] w.r.t.
Z̄(i) [23], and its contractivity under the conditions of The-
orem 3, there exists an upper bound Z̄u such that for any
Z̄ ⪰ Z̄u, we have E[g(Z̄)] ≺ Z̄.

Hence, based on the bounded convergence theorem, the
sequence converges with lim supi→∞ Z̄(i) = P, and hence

lim sup
i→∞

Z̄(i+ 1) = P̄(δ1(i+ 1)H1(i+ 1), δ2(i+ 1)H2(i+ 1)),

(62)

which is a continuous function of the i.i.d. variables {δ1(i +
1)H1(i+ 1), δ2(i+ 1)H2(i+ 1)}. This gives the equilibrium
structure, optimal cost, and value function in Theorem 1,
completing the proof.

B. Proof of Corollary 1 and Corollary 2
Let S1(t) = δ1(t)H

T
1 (t)B

TPBH1(t) and define
D(t) = −γ2δ2(t)H

T
2 (t)B

TM2BH2(t) − γ2R2 +
δ2(t)H

T
2 (t)B

TPBH2(t). As γ → ∞, we have:

lim
γ→∞

[R1 + δ1(t)H
T
1 (t)B

TM1BH1(t) + S1(t)− δ1(t)δ2(t)H
T
1 (t)

×BTPBH2(t)D
−1(t)δ2(t)H

T
2 (t)B

TPBH1(t)]
−1

= [R1 + δ1(t)H
T
1 (t)B

TM1BH1(t) + S1(t)]
−1, (63)

lim
γ→∞

HT
1 (t)B

TPBH2(t)D
−1(t)HT

2 (t)B
TPA = 0N1,t×S , (64)

lim
γ→∞

K1(P, t) = [R1 + δ1(t)H
T
1 (t)B

T (M1 +P)BH1(t)]
−1

× δ1(t)H
T
1 (t)B

TPA. (65)

A symmetric argument gives limγ→∞ K2(P, t) = 0N2,t×S ,
completing the proof of Corollary 1.

When the controllers are homogeneous, we obtain:

K1(P, t) = [R+HT (t)BT (M+P)BH(t)

−HT (t)BTPBH(t)(Dγ(t))
−1HT (t)BTPBH(t)]−1

× [HT (t)BTPBH(t)(Dγ(t))
−1HT (t)BTPA−HT (t)BTPA],

(66)

where

Dγ(t) = −γ2HT (t)BTMBH(t)− γ2R+HT (t)BTPBH(t).
(67)

Taking γ → ∞ in (66) yields Corollary 2.

C. Proof of Theorem 3
If P ∈ SS+ exists, (10) and (11) can be reformulated as

follows.

xT (t)Px(t) = E{δi(t)Hi(t)}[max
u2(t)

min
u1(t)

xT (t)Qx(t) + uT
1 (t)R1u1(t)

− γ2u2(t)R2u2(t) + (δ1 (t)BH1 (t)u1 (t))
T M1BH1(t)u1(t)

− γ2 (δ2 (t)BH2 (t)u2 (t))
T M2BH2 (t)u2 (t) + (Ax(t)

+

2∑
i=1

δi(t)Hi(t)ui(t))
TP(Ax(t) +

2∑
i=1

δi(t)Hi(t)ui(t))]. (68)

The existence of a Nash equilibrium is ensured if γ2 ≥
∥P∥ ∥BTB∥
λmin(M2)

. This condition highlights the need to analyze the
existence of P and to characterize how P depends on the
system parameters, assuming P exists.

Note that (10) and (11) define a fixed-point equation w.r.t.
the P in (20), which can be further expressed as follows.

P = E
[
AT

(
P−1 +

[
δ1(t)H

T
1 (t)B

T

δ2(t)H
T
2 (t)B

T

]T [
N1(t) 0

0 N2(t)

]
[
δ1(t)H

T
1 (t)B

T

δ2(t)H
T
2 (t)B

T

])−1

A

]
+Q

= Q+ E[AT (P−1 +BM̄(t)BT )−1A], (69)

where

M̂11(t) = M11(t)− δ1(t)H
T
1 (t)B

TPBH1(t), (70)

M̂22(t) = M22(t)− δ2(t)H
T
2 (t)B

TPBH2(t), (71)

N1(t) = M̂−1
11 (t),N2(t) = M̂−1

22 (t), (72)

M̄(t) = δ1(t)H1(t)N1(t)H
T
1 (t) + δ2(t)H2(t)N2(t)H

T
2 (t). (73)

Let

Pc(t) = VT (t)

[
[P(t)]γ(t) [P(t)]γ(t)L(t)

LT (t)[P(t)]γ(t) LT (t)[P(t)]γ(t)L(t)

]
V(t),

(74)

Pu(t) = VT (t)(IS −Π(t))V(t)PVT (t)(IS −Π(t))V(t)

−VT (t)

[
0S−γ(t) 0

0 LT (t)[P(t)]γ(t)L(t)

]
V(t), (75)

L(t) = [P(t)]γ(t)(V(t)P(t)VT (t))1:γ(t),γ(t)+1:S , (76)

where [P(t)]γ(t) denotes the γ(t)-th order principal submatrix
of V(t)PVT (t).

It then gives that

P = Q+ATE[Pu(t)]A+ATE[VT (t)ζ̂(t)−1(ζ̂(t)V(t)Pc(t)

×VT (t)ζ̂(t)Π(t) + I
)−1

ζ̂(t)V(t)Pc(t)VT (t)ζ̂(t)ζ̂−1(t)V(t)]A

= Q+ATE[VT (t)(I−Π(t))V(t)PVT (t)(I−Π(t))V(t)]A

+ATE[VT (t)

[
(ζ(t))

− 1
2

γ(t)
P11(t)(ζ(t))

− 1
2

γ(t)
P12(t)

P21(t) P22(t) − LT (t)[P(t)]γ(t)L(t)

]
V(t)]A. (77)

Given Condition (b), we have:

E

[[
(ζ(t))

− 1
2

γ(t)P11(t)(ζ(t))
− 1

2
γ(t) P12(t)

P21(t) P22(t)− LT (t)[P(t)]γ(t)L(t)

]]
⪯ E[Diag((ζ(t))−1

γ(t),0S−γ(t))] ⪯ E[Tr(ζ−1(t))] IS , (78)

P ⪯ Q+ATE[VT (t)(I−Π(t))V(t)PVT (t)(I−Π(t))V(t)]A

+ ∥A∥2 E[Tr(ζ−1(t))] IS . (79)

Further, under Condition (a), there exists an upper bound Pup

satisfying

(∥Q∥+ ∥A∥2 E[Tr(ζ−1(t))]) · ∥IS −AT E[VT (t)(I−Π(t))V(t)

×Pup VT (t)(I−Π(t))V(t)]A)−1∥ IS ≺ Pup, (80)

such that E[g(Pup)] ≺ Pup.
To analyze the fixed-point equation, we construct two matrix

sequences for t ∈ Z+:

P(1)(t+ 1) = E[g(P(1)(t))], P(1)(1) = 0S , (81)

P(2)(t+ 1) = E[g(P(2)(t))], P(2)(1) ⪰ Pup. (82)
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Due to the monotonicity of E[g(P)] w.r.t. P [23], we have

P(1)(t+ 1) ⪰ P(1)(t), ∀t ≥ 1, (83)

P(2)(t+ 1) ⪯ P(2)(t), ∀t ≥ 1, (84)

P(1)(t) ⪯ P(1)(t+ 1) ⪯ P(2)(t+ 1) ⪯ P(2)(t) ⪯ P(2). (85)

As a result, the sequence {P(1)(t)} is monotonically in-
creasing and bounded above, while {P(2)(t)} is decreasing
and bounded below. Hence, by the bounded convergence
theorem:

lim
t→∞

P(1)(t) = (P(1))∗ = E[g((P(1))∗)], (86)

lim
t→∞

P(2)(t) = (P(2))∗ = E[g((P(2))∗)]. (87)

To prove the uniqueness of the Nash equilibrium of Prob-
lem 1, assume that the fixed-point equation (69) admits two
distinct solutions P∗

1 ̸= P∗
2 such that E[g(P∗

1)] = P∗
1 and

E[g(P∗
2)] = P∗

2. Then, there exists a scalar γ ∈ (0, 1) such
that P∗

1 ⪰ γP∗
2 but P∗

1 ⪰̸ γ′P∗
2 for some γ′ > γ. Note that

due to the monotonicity of g(·) and the positive definiteness
of Q,

E[g(γP∗
2)] ⪰ γE[g(P∗

2)] + γc1P
∗
2 = (1 + c1)γP

∗
2, (88)

where c1 = γσmin(Q)
∥E[g(P∗

2)]∥
> 0 and σmin(Q) = 1/∥Q−1∥.

Therefore,

P∗
1 ⪰ E[g(γP∗

2)] ⪰ (1 + c1)γP
∗
2, (89)

which contradicts the assumption that P∗
1 ⪰̸ γ′P∗

2 for some
γ′ > γ, since (1 + c1)γ > γ′. Hence, the fixed-point solution
must be unique: P∗

1 = P∗
2.

Further, given the condition γ2 ≥ ∥P∥∥BTB∥/λmin(M2),
the existence of the Nash equilibrium in Problem 1 is guaran-
teed. Note that

∥P∥ ≤ (∥Q∥+ ∥A∥2 E[Tr(ζ−1(t))])

× (1− ∥E[(AT (I−Π(t))V(t))TAT (I−Π(t))V(t)]∥)−1. (90)

As a result, we need

γ2 ≥ (∥Q∥∥BTB∥λ−1
min(M2) + ∥A∥2 E[Tr(ζ−1(t))]∥BTB∥λ−1

min(

M2))(1− ∥E[(AT (I−Π(t))V(t))TAT (I−Π(t))V(t)]∥)−1. (91)

This establishes Condition (c) and completes the proof.

D. Proof of Theorem 4

Let the R.H.S. of (69) be denoted as h(P, γ). According to
Lemma 3.5 in [23], h(P, γ) is a decreasing function w.r.t.
the non-cooperation penalty γ. Consequently, if the Nash
equilibrium exists, the solution P to the fixed-point equation
P = h(P,∞) must also exist. This further implies that the
following iteration is stable:

P(3)(t+ 1) = h(P(3)(t),∞), P(3)(1) ∈ SS+. (92)

Using similar arguments as in Theorem 2 of [33], we derive
two stable lower bounds, P(3a)(t) and P(3b)(t), for P(3)(t).
These bounds are governed by the following dynamics, re-
spectively:

P(3a)(t+ 1) = (1− p1)A
TP(3a)(t)A, P(3a)(1) = P(3)(1),

P(3b)(t+ 1) = p1 A
T (2E

[
BH1(t)(R1 +HT

1 (t)B
TM1BH1(t))

−1

·HT
1 (t)B

T ]+ (P(3b)(t))−1)−1A, P(3b)(1) = P(3)(1). (93)

This establishes the conditions stated in Theorem 4 and
completes the proof.

E. Proof of Lemma 1

It is straightforward to verify that f(P) in (30) satisfies the
following conditions:
(a) (Lipschitz Continuity): For P1,P2 ∈ SS+, the function

f(P) satisfies

∥f(P1)− f(P2)∥ ≤ (1 + ∥A∥2)∥P1 −P2∥, ∀ . (94)

(b) (Martingale Difference Noise): Let f̂(Pt) = g(Pt)−Pt

and define the noise term N(t) = f̂(Pt) − f(Pt).
Then, the sequence {N(t), t ∈ Z+} forms a martingale
difference sequence w.r.t. the filtration

F(t) ≜ σ(P1, . . . , δ1(t)H1(t), δ2(t)H2(t)), (95)

satisfying the condition E[N(t+ 1) | F(t)] = 0S .
(c) (Square Integrability): The sequence {N(t), t ∈ Z+} is

square-integrable and satisfies

E
[
∥N(t+ 1)∥2 | F(t)

]
≤ 2∥A∥2

(
1 + ∥P(t)∥2

)
, ∀ t > 0.

(96)

As stated in Chapter 2 of [26], the stochastic evolution in
(31) will asymptotically follow the ODE trajectory described
in (40). This completes the proof of Lemma 1.

F. Proof of Lemma 2

Let L = Nη ∈ R+ for some N ∈ Z+. For k ∈ R+, define
[k] = min{tη : t ∈ R+, tη < k} and kt = tη.

For t ∈ Z+ and 0 ≤ l ≤ N − 1, we have:

P̃kt+l = P̃kt +

∫ kt+l

kt

f(P̃[k]) dk, (97)

P̄kt
kt+l

= P̃kt +

∫ kt+l

kt

f(P̄kt
[k]) dk +

∫ kt+l

kt

(f(P̄kt
k )− f(P̄kt

[k]))dk.

(98)

This yields the following bound:

sup
0≤j≤l

∥P̃kt+j − P̄kt
kt+j

∥ ≤

c1η(1 + ∥P̃kt∥) + ηL∥A∥2
l−1∑
m=0

sup
j≤m

∥P̃kt+j − P̄kt
kt+j

∥, (99)

where c1 > 0 is a constant. By applying Grönwall’s in-
equality, it follows that supt≤j≤t+N−1 ∥P̃kj

− P̄kt

kj
∥2 ≤ c2η

and supk∈[0,L] ∥P̃l+k − P̄l
l+k∥ ≤ c3η for some constants

c2, c3 > 0. This completes the proof.

G. Proof of Theorem 5
The convergence of Algorithm 1 can be established by

analyzing the virtual fixed-point process {P̂t, t ≥ 1} under
an arbitrarily small step size ξ → 0. Define the mapping
g̃(P) = P+ ξf(P), which corresponds to the iterative update
P̂t+1 = g̃(P̂t). As shown in Appendix C, the fixed-point
equation P∗ = g̃(P∗) admits a unique solution P∗. According
to Section 3.4 of [34], the operator P 7→ P + ξf(P) is con-
tractive. Following the bounding technique from Appendix C,
we construct two matrix bounds: a lower bound P̂(1) = 0S

satisfying P̂(1) ⪯ g̃(P̂(1)), and an upper bound P̂(2) ≺ ∞
such that P̂(2) ⪰ g̃(P̂(2)). Then for t = 1, 2, ..., define the
following two matrix sequences:

P̂(1)(t+ 1) = g̃(P̂(1)(t)), P̂(1)(1) = 0S , (100)

P̂(2)(t+ 1) = g̃(P̂(2)(t)), P̂(2)(1) = P̂(2). (101)
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By construction, the virtual iteration satisfies P̂(1)(t) ⪯ P̂t ⪯
P̂(2)(t). Taking the limit as t → ∞ and using the uniqueness
of P∗, we obtain lim supt→∞ P̂t = P∗. Consequently, the
associated functions Ṽ t(x(t)), u1(t), and u2(t) converge
almost surely to their optimal values. This concludes the proof
of Theorem 5.
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