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Abstract

We propose an information-geometric framework for merging variational foun-
dation models that preserves global robustness while integrating domain-specific
knowledge in a principled manner. Assuming that the foundation models have been
pretrained or fine-tuned using the Improved Variational Online Newton (IVON)
optimizer, matching Adam’s computational cost while providing Bayesian advan-
tages, we formulate the merging problem between the pretrained and fine-tuned
models as an information-geometric projection. Under mild assumptions, this
reduces to computing a barycenter in the variational parameter space, yielding a
computationally efficient and theoretically grounded merging rule. The framework
naturally extends to multi-model barycentric merging, minimizing the average
discrepancy among fine-tuned models.

1 Introduction

Foundation Models (FMs) have emerged as powerful general-purpose learners, capable of adapting
to a wide range of downstream tasks after large-scale pretraining. However, as data distributions
shift and new domains appear, keeping these models up to date without retraining from scratch
remains a major challenge [2]]. Approaches such as continual pretraining [9, [19]], fine-tuning [6],
and model merging [15} [13} 3 3] offer promising paths forward, allowing FMs to integrate new
knowledge while retaining broad generalization. Yet, updating such large systems at scale faces
key obstacles: high computational cost, catastrophic forgetting [14], and potential misalignment in
uncertainty quantification. Addressing these challenges requires principled and efficient update rules
that incorporate domain-specific adaptations into a global FM while preserving statistical rigor and
scalability.

Within the spectrum of adaptation strategies, variational approaches provide a principled framework
for representing model uncertainty, making them particularly well-suited to settings where both
reliability and interpretability are critical. We focus on variational FMs whose parameters encode
posterior distributions, enabling updates to be expressed as operations on the statistical manifold
of distributions. We assume that these models are pretrained or fine-tuned using the Improved
Variational Online Newton (IVON) optimizer [18]], which is grounded in the Bayesian learning rule
[LO] and matches Adam’s computational cost while providing strong Bayesian performance at scale.
In this setting, we formulate FM merging as an information-geometric projection from a global
model (i.e., the pretrained model) onto a sphere centered at a specialized model (i.e, the fine-tuned
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model). Under mild assumptions, this projection reduces to computing a barycenter in the variational
parameter space. The formulation naturally extends from single specialization to multi-model
aggregation via barycentric averaging, minimizing the average information-geometric discrepancy
across multiple fine-tuned models. Our approach thus yields an interpretable, computationally
efficient, and theoretically grounded merging mechanism that generalizes existing techniques such as
Fisher-weighted averaging [13]] and mixture or product-of-experts.

2 Related Work

Variational Foundation Models. Despite their strong empirical performance, deep learning meth-
ods often fall short in practical aspects such as reliability and calibrated uncertainty quantification. In
contrast, Bayesian learning provides well-calibrated models and principled, risk-aware adaptation,
but its computational overhead has limited its scalability to FM levels [17]. The IVON optimizer
[18] brings variational learning to near-Adam efficiency and has demonstrated large-scale viability
by pretraining GPT-2 on OpenWebText and ResNet on ImageNet from scratch, as well as fine-
tuning large masked language models (e.g., DeBERTaV3). IVON has also proven to be effective in
curvature-based (Fisher/Hessian) model merging [[18, 3]

Model Merging. Originally introduced in the context of Federated Learning (FL) to reduce com-
munication overhead and enhance privacy [[15], model merging has since been adopted in domains
including computer vision and large language models (LLMs) [5]. Wortsman et al. [20] show that
averaging the weights of models fine-tuned under varied hyperparameters improves both accuracy
and out-of-distribution robustness. Using only a small number of fine-tuned models, Jang et al. []]
achieve robust merges via layer-wise linear interpolation that explicitly operates in the Euclidean
parameter space. In contrast, we focus on the manifold geometry of variational posteriors. Building
on the barycentric aggregation framework proposed in Bayesian FL [7], we formulate merging
between a pretrained and a fine-tuned variational model as an information-geometric projection
in posterior space, and show that, under mild assumptions, it is equivalent to a barycentric merge.
We further extend this formulation to multi-model barycentric aggregation, generalizing several
established FM-merging techniques, while respecting the inherently non-Euclidean geometry of the
variational parameter space.

3 Variational FM Specialization through Information-Geometric Projections

Figure 1: Specialization through information-geometric projection. The figure presents two projection
scenarios illustrated with two local spheres S} and S7 of increasing radius r;, and 7, highlighting
the impact of the radius on the closeness of the projected distribution to the global or specialized
distribution.

We interpret the adaptation of a global FM to a domain-specific variant as a projection problem on
a specialization set within the manifold of model posteriors. To formalize this, let p, denote the
variational posterior of the global FM, and let p;, denote the posterior of a specialized FM (e.g., one
fine-tuned on a particular domain). We define the specialization set for py, as a sphere centered at py,
with radius 7:



Definition 1 (Specialization set Sp (p, 7). Given a statistical manifold M and a divergence measure
D, the specialization set Sp(p,r) for p € M and radius r € [0, 00) is

Sp(p,r)={qe M : D(qllp) <r} S M.

The radius r; encodes the degree of specialization: smaller values enforce stronger adherence to py,
while larger values allow greater influence from p,. We denote Si, = Sp (pk, %) for brevity.

Problem 1 (Projection for FM specialization). Given a statistical manifold M, a divergence measure
D, a global posterior p, € M, and a specialization set Sy, the projection problem is formulated as

in D . 1
min (pllpg) (1)

The solution, py ), = arg minyecs, D(p|| pg), is referred to as the specialized global posterior for
domain k.

Remark 1. Varying ri, between 0 and D(py, || pg) traces a geodesic, i.e., the shortest path, between
pi. and pg on the manifold M, interpolating between the specialized and global posteriors.

To support our derivation and establish the link between the projection and the barycenter formulations,
we now recall the definition of a barycenter with respect to a given divergence D.

Definition 2. (D-barycenter) Given a statistical manifold M, a divergence measure D, and a set of
distributions {py }2_, C M with associated normalized weights {wy }~_,, the D-barycenter of the
set {py }1_, is defined as

N

pp({prdirs {we}ily) = argmin wiD(ql|pr). @
M 5

The following mild assumption is crucial for establishing the equivalence between projection and
barycenter formulations, as shown in Theoremﬂ}

Assumption 1. The divergence measure D is convex in its first argument.

Remark 2. Most commonly used divergences, including the family of f-divergences and the
Wasserstein-p distances, are convex in both arguments.

Theorem 1. Under Assumption[l] the solution of the projection problem (1)) is equivalent to the
weighted barycenter problem (@), i.e.,

pg.k = Pp({pg, P}, {wy, wi}) (3)

where the weights wy and wy, are given by wg = Wi for some X\ € [0, 00).

1 _ A
A1 AT

We highlight the following observations regarding the relationship between 7 and \.

Remark 3. As A\ — 0, we have rj, — oo and pg j, coincides with py; conversely, as A — oo, we
have ri, — 0 and pgy 1. coincides with py. Therefore, the choice of )\ implicitly determines the
specialization radius 1.

The key advantage of the equivalence between projection and barycenter formulations lies in the
greater tractability of the latter. For instance, under the assumption of independent marginal Gaus-
sian distributions, analytical solutions exist for both the reverse Kullback-Leibler (KL) divergence
and the Wasserstein-2 distance [[L1} [1]. These closed-form solutions enable a straightforward and
computationally efficient merging process for FMs. To support such covariance-based aggregations
and to avoid tuning IVON’s effective sample size, which may be unknown at aggregation time, we
implement an IVON variant that explicitly maintains the posterior covariance and samples from it
directly, rather than relying on a Hessian proxy. More details are provided in Appendix B}

4 Information-Geometric Barycenters: An Interpretable Generalization of
FM Merging Techniques

Averaging the weights of fine-tuned models trained under varied hyperparameters has been shown to
improve both accuracy and robustness [20]]. Motivated by this observation, we extend FM adapta-
tion beyond the specialization framework to multi-model merging through information-geometric
barycenters, which minimize the average discrepancy across models. This approach yields a single
posterior that balances global generality and domain specificity without relying on ad-hoc parameter
heuristics.



Generalization via D-Barycenters. Let {pk}}f:l denote the variational posteriors of the fine-tuned
FMs, for example, those obtained using IVON, and let py (y|x) represent the predictive distribution
of the k-th FM.

* Forward KL With D = KL(p, || ¢), the minimizer is the mixture in the posterior space:
ph(0) = 22721 wy, p(0). After marginalizing over 6, the resulting predictive distribution
also mixes pointwise as p}, (y | ) = Zivzl wy, pi(y | x), a construction commonly referred
to as Mixture of Experts.

* Reverse KL With D = KL(q|| px), the solution is the log-opinion pool or Prod-
uct of Experts: p}(0) o Hszl pi(0)¥*. In exponential families, this corresponds
to natural-parameter averaging. For Gaussians posteriors, A* = Z,ivzl wi, Ay and

p* = (M)~ SO wy, Ak, where Ay denotes the precision matrix of the k-th model;
this formulation connects directly to Fisher merging [[13].

Wasserstein-2. With D = W2(py. || ¢), the minimizer is the Wasserstein-2 barycen-
ter. For Gaussians posteriors, the barycenter remains Gaussian with Ewg =

l 2
(Zszl wkEg) o Bwz = Zszl wy g, often yielding more robust summaries than

naive parameter averaging.

Practical implications. Barycentric merging provides a single interpretable control parameter
(the weights {wy, }) that balances global and domain-specific knowledge. It recovers popular FM-
merging schemes as special cases and admits closed-form solutions for common variational families
(e.g., diagonal Gaussians) under widely used divergences. When combined with the IVON training
regime, these weights can be derived from curvature estimates, assigning greater importance to
higher-curvature models [3. [18]. Consequently, models with higher uncertainty (i.e., lower curvature)
are naturally down-weighted in the aggregation.

5 Preliminary Experimental Evaluation

As a preliminary study, we evaluate our approach on non-FM image tasks within a Bayesian FL setup
with 10 heterogeneous clients. The analysis focuses on how the Lagrangian multiplier A governs the
trade-off between generalization and specialization (interpreted as personalization in the FL context).
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Figure 2: Effect of the Lagrangian multiplier A on model performance across local and global data
distributions. Results are reported for the CIFAR-10 dataset. Note that A = 0 corresponds to the
global model, while A — oo corresponds to the local model.

We analyze the specialization parameter A in three image datasets with Dirichlet-simulated hetero-
geneity. By design, A=0 corresponds to the global model, while A—oc yields the fully local one.
In CIFAR-10 (Fig. [2)), and consistently across datasets, increasing A improves local performance
(Accuracy?, ECEJ, NLL|) up to a plateau, while degrading performance on the global distribution
(the union of client test sets, approximately class-balanced). Excessively large values of A lead to
over-personalization (worsening global ECE/NLL), whereas small A underfits client-specific patterns.
These results underscore the critical role of A in controlling the generalization-specialization trade-off,
enabling effective adaptation to heterogeneous, non-i.i.d. data distributions in federated settings.



6 Challenges and Future Directions

Like most merging methods in the distribution space (Bayesian) or parameter space (deterministic),
our approach assumes architecturally aligned models, i.e., compatible layers and widths, to enable
layer-wise aggregation. This constraint is particularly limiting for foundation models, where special-
ized adapters or domain-specific variants are often smaller than the pretrained backbone. As the next
step, our aim is to relax this assumption using Gromov—Wasserstein Optimal Transport maps (e.g.,
see [4,112]), which enable mappings between spaces of different dimensionalities. Furthermore, we
plan to conduct foundation model-scale experiments to assess the method’s efficiency at large scale.
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A Proof of Theorem (1]

Proof. Under Assumption [I| the optimization problem in (I) is convex. Therefore, Lagrangian
duality applies to the projection formulation. For a fixed Lagrangian multiplier A, the minimization
problem becomes

;233 Lx(p), where Lx(p) = D(pllpy) + AD(pl|pk)-

We can rewrite £ (p) as

£30) = 0 1) (55 D0l + 55 Dol

Let wy and wy, be defined as in (). Then the minimization problem simplifies to

min wyD(pl|py) + wrD(p||pk).- )
peEM

By Definition 2} the probability distribution p minimizing the weighted sum in (@) coincides with the
D-Barycenter. This concludes the proof. O

B Covariance-Based Aggregation of IVON-Trained Models

To support aggregation strategies that operate directly on covariance matrices, and to avoid manually
specifying the effective sample size parameter in IVON, which ideally corresponds to the full
dataset size but is often unknown at merge time, we consider a subclass of IVON that explicitly
stores the covariance matrix and samples directly from it, rather than relying solely on the Hessian
approximation. This follows from the relation [[18]

9 1

o = m7 ©)

which expresses the variance o2 as a function of the dataset size N, the Hessian approximation A,

and the weight decay term d. This enables computing the covariance matrix directly from the Hessian.
In practice, each model first estimates its Hessian locally and then converts it to a covariance matrix,
which is subsequently aggregated across models. Unlike prior work [[16]] that applied IVON but was
restricted to Reverse KL Barycenter (RKLB) aggregation due to its Hessian-based formulation, our
approach supports a broader class of covariance-based aggregation methods, including Wasserstein
barycenters (WB).
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