
1

Interdependent Microservice Offloading and
Semantic Aware Results Transmission for 6G

Vehicular Edge Networks
Muhammad Salah ud din, Muhammad Nadeem Ali, Ghulam Musa Raza, Muhammad Imran

and Byung-Seo Kim, Senior Member, IEEE

Abstract—Microservices-centric in-network computations, coupled with Named Data Networking (NDN) and supported by vehicular
edge computing (VEC), offer a promising platform to meet the requirements of vehicular applications. However, a significant obstacle
hindering high efficiency is the interdependency of microservices (MS), which may delay the timely delivery of results due to Pending
Interest Table (PIT) timer expiration, resulting in unsolicited packet drops. Moreover, voluminous data transmission in a
resource-constrained environment may prevent the consumer from receiving results on time. Therefore, to avoid unsolicited
computation losses and enable proximate computations, this article envisions interdependent microservices offloading and semantic
aware results transmission (iMSoRT) for 6G vehicular edge networks. iMSoRT formulates an efficient strategy that allows traffic
controller (Tc) to account for MS interdependencies and allocate the PIT timer based on computational and network resource
requirements. Moreover, iMSoRT introduces a live forwarding information base (lFIB) that effectively filters out underutilized RSU-E
servers and forwards computation requests to the optimal RSU-E, accelerating processing while minimizing communication costs.
Furthermore, iMSoRT develops a Semantic Transformer (ST) that leverages YOLO and Convolutional Neural Networks (CNNs),
placing it between the caching and forwarding modules of NDN. The ST extracts and forwards semantically meaningful information,
thus reducing network resource utilization and enhancing information exchange efficiency. Simulation results revealed that iMSoRT
achieved an impressive compute-hit ratio of over 90%, restrict cloud offloading to 12%, reduced computation delays over 50%, and
optimized bandwidth utilization over threefold compared with benchmark schemes.

Index Terms—Named Data Networking, Vehicular Networks, Edge, Fog, Cloud, Internet of Things, Microservices.

✦

1 INTRODUCTION

THE evolution of sixth-generation (6G) communication
technology, coupled with advancements in vehicular

onboard resources [1]—including communication, compu-
tation, and storage—has greatly accelerated the develop-
ment of autonomous vehicular applications such as aug-
mented/virtual reality (AR/VR), driver assistance, object
detection, and assisted lane changing [2]. These applica-
tions demand substantial computation and communication
resources, often exceeding the capabilities of individual
vehicles [3], [4]. However, due to high transmission de-
lays, conventional cloud offloading is unlikely to satisfy
their stringent computation deadlines and quality of service
(QoS) requirements.

Vehicular Edge Computing (VEC) [5] has emerged as
a promising paradigm to address the limitations of cloud
computing. By deploying resource-rich edge servers along-
side roadside units (RSU-E) in close proximity to end users,

• M. Salah ud din is with Communication Systems Department, EURE-
COM, 06904 Sophia-Antipolis, France.

• Muhammad Nadeem Ali, Ghulam Musa Raza, and B. S. Kim are with
the Department of Software and Communications Engineering, Hongik
University, Sejong 30016, Republic of Korea.

• Muhammad Imran is with the School of Information Science and
Technology, Harbin Institute of Technology, Shenzhen, Guangdong
518055, China, and also with Shenzhen Municipal Key Laboratory of
AIoT Communications, Shenzhen, Guangdong 518055, China.

Manuscript received Aug 21, 2024; revised xx xx, xxxx.
(Corresponding author: Byung-Seo Kim)

VEC reduces computation and communication delays, en-
abling applications to receive results within strict latency
budgets [6]–[8]. Although RSU-E servers offer substantial
computing power, their capabilities remain several orders
of magnitude lower than those of cloud servers. During
rush hours, a surge of compute-intensive, delay-sensitive
application requests can overwhelm an RSU-E’s processing
capacity, making timely computation difficult to guarantee.
In such cases, the overloaded RSU-E, leveraging its high
transmission rate, forwards requests to the remote cloud
to avoid computation losses—albeit at the cost of higher
latency and degraded QoS.

Conventional automobile application development often
follows the monolithic model [9], in which the entire appli-
cation logic is bundled into a single artifact, or monolith. In
this architecture, modules cannot be deployed or migrated
independently due to their strong coupling with other com-
ponents. Consequently, if a highly demanded module must
be migrated between network entities (e.g., cloud–RSU or
RSU–RSU), the entire monolith must be transferred, lead-
ing to unnecessary bandwidth consumption and increased
delays. To address these limitations, the microservices (MS)
architecture has emerged as a promising alternative. This
approach decomposes applications into several atomic MS,
each performing a specific task, requiring fewer computa-
tion and communication resources, and enabling efficient
migration with minimal bandwidth usage.

At present, vehicular applications utilize the inefficient

2

host-oriented TCP/IP as the underlying communication
protocol [10]. By utilizing a unique IP address, the source
vehicle locates the host vehicle to establish an end-to-end
communication path. However, unique IP address assign-
ments and retaining the end-to-end communication path are
significantly complex due to a lack of infrastructure support,
a dynamic environment, and unreliable and lossy links.

Information-Centric Networking (ICN) and its promi-
nent realization, Named Data Networking (NDN) [11], [12],
have emerged as promising approaches to address the in-
herent limitations of host-centric communication, particu-
larly in dynamic vehicular environments. Leveraging name-
based communication and in-network caching, NDN miti-
gates issues of intermittent connectivity and high mobility
by decoupling services and content from specific physical
locations.

The MS-centric in-network computations, coupled with
NDN as the underlying communication protocol and sup-
ported by VEC, offer a promising paradigm for efficiently
meeting the resource requirements of latency-sensitive and
compute-intensive vehicular applications. However, a sig-
nificant obstacle hindering high efficiency is the interdepen-
dency of MS. For instance, a specific MS may not initiate its
execution until all predecessors of MS have finalized their
execution.

Several NDN-based MS-centric in-network computation
schemes have been proposed [9], [13]–[17] to meet the com-
munication, computation, and latency requirements of ad-
vanced autonomous vehicular applications. However, these
works primarily focus on one-shot MS offloading, overlook
dependencies among MS, and assume that requests com-
plete within NDN’s default Pending Interest Table (PIT)
timer value. In real-world vehicular applications, MS depen-
dencies are common: the execution of one MS may require
the output of a predecessor MS—possibly running on a
different computing terminal—before proceeding. Conse-
quently, executing MS with multiple dependencies may in-
volve gathering outputs from several computing terminals,
potentially causing the total execution time to exceed the
default PIT timer value.

In such cases, the consumer may fail to receive results
on time due to PIT timer expiration, leading to unnecessary
computation losses. Moreover, existing NDN-based data
forwarding schemes allow network nodes (e.g., produc-
ers or intermediate nodes) to forward requested content
indiscriminately in response to incoming interest packets,
without evaluating its effectiveness or relevance. This blind
transmission of large data volumes increases network re-
source usage and congestion, potentially delaying delivery
to the consumer vehicle—a risk that, in safety-critical sce-
narios, could have catastrophic consequences.

To address these challenges, this paper presents inter-
dependent microservices offloading and semantic aware
results transmission (iMSoRT) for 6G vehicular edge net-
works. iMSoRT considers the interdependencies of re-
quested MS and formulates a dynamic PIT timer by taking
into account the MS dependencies and required computa-
tional and network resources. Additionally, iMSoRT intro-
duces a live forwarding information base (lFIB) that effec-
tively filters out underutilized RSU-E servers and forwards
computation requests to optimal RSU-E servers during peak

hours. Furthermore, the proposed work developed a se-
mantic transformer (ST) that leverages computer vision and
convolutional neural networks (CNN) to enhance the effi-
ciency of information exchange with miniaturized network
resource utilization.

The main contributions of the proposed work are listed
as follows:

1) iMSoRT developed an NDN-based vehicular edge com-
puting framework comprising autonomous vehicles,
traffic controller-administered Edge computing termi-
nals, and cloud to enable proximate computation to MS-
centric computation requests.

2) A dependency-aware dynamic MS-specific PIT timer is
formulated, taking into account the dependencies of
MS request as well as the required computational and
network resources involved in execution to avoid un-
solicited packet drops and optimize network resource
consumption.

3) A live Forwarding Information Base (lFIB) is developed,
comprising the updated load and resource conditions
of underlying RSU-E terminals. lFIB enables the traffic
controller to offload MS requests to the optimal RSU-E,
thereby facilitating proximate computations and reduc-
ing backhaul traffic overhead.

4) iMSoRT introduced a novel semantic transformer (ST)
and mounted it between the caching and forwarding
modules in NDN. The ST avoids blind data forwarding
by extracting and forwarding semantically meaningful
information, thereby reducing bandwidth utilization and
results retrieval latency.

The remainder of this paper is organized as follows.
Section 2 provides a brief background on NDN and related
work. The proposed scheme is described in Section 3. Sec-
tion 4 reports the performance evaluation. The complexity
analysis of the proposed scheme is presented in Section 5
and finally, Section 6 concludes the paper.

2 BACKGROUND & RELATED WORK

2.1 Vehicular Named Data Networking: An overview

In vehicular networks, the NDN-based content retrieval
process begins when a consumer vehicle interested in fetch-
ing named content broadcasts an Interest packet within its
coverage radius. Any receiving vehicle within the transmis-
sion range processes the Interest and Data packets using
intrinsic NDN data structures: the Pending Interest Table
(PIT), Content Store (CS), and Forwarding Information Base
(FIB). Upon receiving an Interest packet, the node first
checks the PIT for an entry with the same name. If such an
entry exists, Interest aggregation is performed; otherwise,
the CS is checked. If the requested content is found in the
CS, the node returns a Data packet along the reverse path
of the incoming interface. If not, a new PIT entry is created,
and the Interest packet is forwarded toward the upstream
node via FIB lookup. Data packets follow the chain of PIT
entries in the reverse path to reach the consumer vehicle. If
no PIT entry matches an incoming Data packet, the packet
is considered unsolicited and discarded.

3

TABLE 1: Related work comparison

Ref Title MS/Task dependency Reverse path maintenance Semantic forwarding In-network
computations

[18] NFN × × × ✓
[19] NFAAS × × × ✓
[20] FoggyEdge × ✓ × ✓
[14] CFEC × ✓ × ✓
[13] CLEDGE × ✓ × ×
[21] Resource Breadcrumbs × ✓ × ×
[22] MACPE × ✓ × ×
[23] VTDF × ✓ × ×
[24] DBPM × ✓ × ×
[25] MobiVNDN, × ✓ × ×
[26] SCD × ✓ × ×

Proposed iMSoRT ✓ ✓ ✓ ✓

2.2 Related Work:
The enchanting features of NDN [11], such as name-based
content acquisition, name-based Interest/Data forwarding,
and in-network caching, enable NDN to meet the challeng-
ing requirements of autonomous vehicular networking sce-
narios. Several state-of-the-art vehicular NDN schemes have
been proposed in the literature, aiming to improve network
efficiency and QoS in continuously mobile environments.
Table 1 presents a comparison of various state-of-the-art
NDN-based schemes devoted to the literature.

In [18], NDN-based named-function networking (NFN)
was proposed, which uses function names to identify re-
mote compute resources and perform in-network computa-
tions. An extension of NFN, known as NFaaS, was proposed
in [19]. NFaaS focuses on function placement within the
network and their execution via virtual machines. In this
framework, any in-network node can download functions
using Uni-Kernels. While these schemes perform well under
stable network conditions, they may suffer from perfor-
mance degradation in highly dynamic vehicular environ-
ments due to their reliance on maintaining long-lasting
network state during function execution.

In [9], FoggyEdge—an information-centric computation
offloading and management framework for edge-based ve-
hicular fog computing—was proposed to enable proximate
service computations with minimized delay. The framework
integrates vehicular fog with edge computing and leverages
microservices to perform in-network computations. Perfor-
mance evaluations demonstrated that FoggyEdge reduces
computational delays compared to benchmark schemes.
Another NDN-based approach, CFEC [14], utilizes the idle
computational resources of on-road vehicles, effectively
transforming them into a large-scale distributed comput-
ing platform for proximate, microservice-centric processing.
CFEC introduces a Zonal Traffic Controller to manage load
conditions across RSUs, preventing resource overutilization
through intelligent forwarding decisions. Experimental re-
sults showed that CFEC outperforms benchmark schemes
in terms of reduced latency, lower bandwidth usage, and
decreased backhaul traffic overhead. However, both Fog-
gyEdge and CFEC consider only independent microservices
and do not account for microservice dependencies or the
semantics of data during computation and forwarding.

In [13], the authors proposed CLEDGE: a hybrid cloud-
edge computing framework over information-centric net-
working. CLEDGE developed an in-network computing

framework by combining edge and cloud computing re-
sources to provide proximate computations and address
the diverse latency requirements of advanced and diverse-
natured computation tasks of modern IoT devices. The
authors claimed that CLEDGE achieved over 90% timely
task completion with modest overheads.

In [21], the authors proposed resource breadcrumbs:
discovering edge computing resources over NDN, which fo-
cuses on addressing edge resource overutilization caused by
blindly transmitting requests to specific edge nodes without
considering their resource availability—often resulting in
request failures. The proposed solution introduces a robust
resource discovery mechanism in which each compute node
periodically shares its available resource status within a
limited scope using scoped flooding, enabling neighboring
nodes to make informed forwarding decisions.

In [27], the authors proposed a mechanism for service
discovery and invocation in data-centric Edge networks to
tackle challenges related to service discovery, invocation,
and user mobility management in edge computing. The
proposed framework effectively leverages available edge
resources and enhances network performance in terms of
computation satisfaction rate and reduced execution delays.

In [22], the authors introduced mobility-aware content
provisioning in Edge-based Content-Centric IoV (MACPE),
aimed at ensuring seamless content delivery in mobile
vehicular environments. MACPE implements a zone-based
management system that allows content routers to main-
tain up-to-date information on mobile content producers,
thereby improving content delivery efficiency.

In [28], the authors developed an efficient scheme to
mitigate packet losses resulting from frequent path dis-
ruptions caused by high vehicular mobility. The approach
incorporates parameters such as received signal strength
(RSS), GPS coordinates, and vehicle speed to dynamically
estimate vehicle locations in real-time and facilitate adaptive
data packet forwarding.

Another similar scheme named Vehicle tracking-based
data packet forwarding (VTDF) for vehicle tracking in the
VNDN environment [23] was proposed, which mainly ad-
dresses link breakages between RSUs and vehicles. VTDF
utilized a Tabu Node Search (TNS) to track vehicle direction
in order to efficiently deliver data packets.

Another TNS-based scheme called a Data packet for-
warding strategy (DPFM) [29] primarily focuses on tracking
the producer vehicle to fetch and deliver content. However,

4

Autonomous
Driving

	Driver
assistance

AR/VR * *1 *2

*R

*

* MS	Interest
* MS	dependency

Wireless
Wired

Speed=Km/h

S1 S2

S3

S4 Sn

S5

S(n-1)

SD-TC
(TC)

Backbone
Network

Fig. 1: iMSoRT system architecture.

DPFM assumes that the location of the vehicle is known,
which may not be feasible in highly mobile vehicular net-
works.

Another notable work addressing reverse path partition-
ing is presented in [24]. The authors propose a cluster chain-
based content delivery method (DBPM) for vehicular named
data networking scenarios. In DBPM, the cluster chain is
designed to create a backbone that enhances the stability
of reverse paths. This allows cluster members to aggregate
requests and share content along these reverse paths. A
scheme named SCD [26] was developed to address the
issue of reverse path partitioning in Vehicular Named Data
Networks (VNDN). SCD introduces a forwarding strategy
based on the social attributes of vehicular nodes, such as
centrality, similarity, and intimacy. These metrics are used
to select the optimal next-hop forwarder. However, the
approach faces challenges in maintaining accurate social
attribute values in dynamic vehicular environments and
does not account for the coalition time—the duration ve-
hicles remain within communication range. As a result, the
scheme often experiences frequent packet retransmissions
and redundant broadcasts, which can lead to network con-
gestion and resource overutilization, ultimately limiting its
effectiveness.

The authors in [25] developed a mobility management
framework called MobiVNDN, aiming to enable seamless
content retrieval in a vehicular environment. MobiVNDN
employs a Distributed Hash Table (DHT) to store and
retrieve location-based content. However, maintaining ac-
curate location information in a highly dense and mobile
vehicular environment is quite challenging.

In [24], the authors proposed a Data packet backhaul
prediction method (DBPM) for vehicular-named data net-
working. DBPM utilized GPS and a convex programming
location algorithm (CPLA) at RSUs to obtain the positioning
information of vehicles in clusters. However, maintaining
stable clusters under highly dynamic conditions is signifi-
cantly complex.

The aforementioned state-of-the-art schemes neither
consider microservice (task) dependencies nor data se-
mantics before forwarding. However, modern applications
typically involve interdependent microservices, where the
execution of one microservice relies on the output of its
predecessors. Neglecting these dependencies may result in
incomplete or delayed computation responses, potentially
exceeding the default static PIT timer. Additionally, ignor-
ing data semantics and indiscriminately forwarding large
volumes of data may lead to inefficient resource utilization,

5

an
m (1)

an
m (2)

an
m (3)

an
m (4)

an
m (5)

an
m (6) an

m (7)

an
m (1)

an
m (2)

an
m (3)

an
m (4)

an
m (5)

an
m (1)

an
m (2)

an
m (3)

an
m (5)

Fig. 2: Application model.

increased latency, and degraded Quality of Service — chal-
lenges that are especially critical in resource-constrained and
highly dynamic vehicular environments.

3 IMSORT: PROPOSED WORK

Before delving into the operation of iMSoRT, we first shed
light on iMSoRT system architecture, as well as the system
model and assumptions. Subsequent to that, a detailed
proposed methodology is presented.

3.1 iMSoRT System Architecture

The iMSoRT system architecture (depicted in Fig. 1) pro-
vides a resourceful platform for compute-intensive and
latency-strict vehicular applications. The proposed architec-
ture is comprised of four linked layers by the power and
importance from the bottom to the top such as:
• Autonomous vehicles: This layer is composed of au-

tonomous vehicles (i.e., the request initiators) that for-
ward MS-centric computation requests to upstream RSU-
E servers.

• The RSU Edge Servers: This layer is composed of
lightweight Edge computing nodes co-located with the
fixed roadside unit (RSU). iMSoRT calls these computing
terminals RSU Edge Servers (RSU-E).

• Software-defined traffic controller (SD-TC or Tc): SD-TC
or Tc manages traffic on roads by coordinating RSU-Es,
CCTV cameras, and other infrastructure units, ensuring
road users have a comfortable and safe journey. Upon
receiving MS requests, the Tc analyzes the dependencies,
computes the PIT timer of request, and offloads the pre-
decessor MS (if any) to the optimal RSU-E in its vicinity.

• Centralized cloud (CC): CC corresponds to several
diverse-natured server clusters equipped with powerful
computation, communication, and storage facilities. Tc

routes the computation request towards the CC when fails
to perform the computation task locally or via underuti-
lized RSU-E.

3.2 System Model and Assumptions

iMSoRT considers a hybrid vehicular network composed of
L mobile vehicular nodes denoted as V = {v1, v2, v3. . . vl..
vL}, N vehicular applications denoted by A = { al, a2, a3. . .
an.. aN }, M microservices represented by M={ml, m2, m3

. . . mm.. mM }. Each application comprises a collection of
dependent and independent microservices, such as aN ∈ A

TABLE 2: Symbols and Definitions

Symbol Definition
RSU-E RSU Edge server
SD-TC or Tc Software-defined traffic controller
CC Central cloud
V Set of vehicular nodes
A Set of vehicular applications
M Set of microservices
R Set of RSU-E
vL Lth vehicle
sR Rth RSU-E
mM Mth microservice
tTx
({vl},{sR}) Request uploading time from vL and SR

∂input
{mM} Input size of mM

K Data rate
B({vl},{sR}) Link bandwidth between vL and SR

ρvl Transmission power
g
sR
vl Channel gain

ξ
mM
sR an Execution time
C(an,mM) Required computational resources
fsR Computational capability
tRx
(sR,vl)

Transmission time
TPIT Computed PIT timer
dT Default PIT timer
PEL PIT Entry lifetime
T ready
mM

Ready time of mM

T start
mM

Start time of mM

T finish
mM

Finish time of mM

T comp
mM

Total compute time of mM

Γ
si
k Available kth resources of ith s

ℜmM
reqk Required k resources

ρsi Health status of ith s

λ̂ Images dataset
λ Input Image
H,W,C Height, Width and Colour channels
TP, FP, FN True positive, False positive, and False negative

= (a
(m1)
N , a(m2)

N , aN (m1,m2)m3),.). We consider a set of R
RSU − E servers denoted by S = {s1, s2, s3. . . sl.. sR}.
These servers handle computation tasks offloaded by the
v ∈ V which are beyond the computational capability of v.

We consider an Tc that monitors underlying RSU-E
(s ∈ S) in terms of available resources, load conditions, and
available bandwidth. The Tc analyzes the dependencies in
the received MS-centric computation requests, computes a
dynamic PIT timer, and determines the most suitable sR ∈ S
to offload the received request. If the computed PIT timer
exceeds the default value, the Tc informs v ∈ V to adjust the
PIT time accordingly via the s ∈ S server currently covering
the vehicle.

iMSoRT assumes that each vehicle is equipped with a
location module (e.g., GPS for location estimation using
polar or cartesian coordinates), speed sensors, and direction
sensors, in addition to computation, storage, and communi-
cation units. Furthermore, the RSU-E communicates with
neighboring units via wireless backhauls, while a wired
connection is employed for communication between the
RSU-E and Tc, as well as between the Tc and CC.

Table 2 presents the notations and their definitions used
in the proposed work.

3.3 Application Model:
We consider a MS-centric intelligent autonomous vehicular
application composed of both dependent and independent

6

microservices, as illustrated in Fig. 2. The former refer to
those that cannot execute independently and require input
from one or more predecessor microservices while the later
can execute without any such dependencies.

To enhance clarity, the MS-centric application—denoted
as an ∈ A—can be represented as a Directed Acyclic Graph
(DAG), defined as G = (γ, ε), as shown in Eq. 1:

ε =


0 e1,2 e1,3 · · · e1,m
0 0 e2,3 · · · e2,m
...

...
...

. . .
...

0 0 0 · · · a(M−1),M

 (1)

Where ei,j ∈ {0, 1} and ei,j = 1 indicates that microservice
j is dependent on microservice i, meaning j requires the
output of i to begin execution. Conversely, ei,j = 0 implies
that microservices i and j are independent.

3.4 iMSoRT: Operation
This section provides a comprehensive description the pro-
posed work.

3.4.1 Microservice adaptive PIT timer computation:
Consider a vehicle vL ∈ V (shown in Fig.3) offloads an
MS-centric computation request (i.e., mM ∈ M) to sR.
To compute the execution time of mM , it is necessary to
identify the processes involved in its execution. Specifically,
the completion time of mM is mainly comprised of:
1) Request uploading time: Refers to the time taken to

route the request to sR.
2) Request execution time: Refers to the time required to

execute the request by the given sR.
3) Results delivery time: Defines the time to deliver the

computed results back to vL.
Consider the scenario where a vehicle vL offloads the

mM to the covering sR (shown by yellow dotted arrowhead
in Fig.3).

The request forwarding time from vL to sR is denoted as
tTx
(vL,sR) and is defined as follows:

tTx
(vL,sR) =

∂input
mM

κ
(2)

Where ∂
input
mM represents the input data size of microservice

mM , and κ denotes the transmission rate between vL and
sR, such that:

κ = B(vL,sR) log(1 +
ρvlg

sR
vL

N0
) (3)

B(vL,sR) represents the link bandwidth between vL and sR,
ρvL denotes the transmission power of vL, gsRvL is the channel
gain, and N0 denotes the noise.

Upon receiving the mM request, the corresponding sR
determine whether to execute it locally or offload it to Tc.
We define a decision variable i.e., sRX

an
mM

such that:

sRX
an
mM

=

{
1, if required resources and mM is available
0, otherwise

(4)
If adequate computational resources and the MS code (in-
cluding any dependencies) are available (i.e.,sRX

an
mM

=1),

the sR proceeds to compute the execution time of the
request using the following equation:

sRξ
an
mM

=
C(an,mM)

fsR
(5)

Here, sRξ
an
mM

denotes the time taken by the sR to compute
the mM of application an. C(an,mM) represents the amount
of computational resources required to execute mM , while
fsR denotes the computational capability of sR respectively.

If sRξ
an
mM

exceeds the default PIT timer (i.e., dT), the sR
informs the vL to adjust the PIT timer presented as follows.

y =

{
ξan
mM

> dT adjust the PIT timer
otherwise compute and forward

(6)

After computing the sRξ
an
mM

, the result transmission time
(i.e., tRx

(sR,vL)) from sR to vL is presented as follows:

tRx
(sR,vL) =

∂output
mM

κ
(7)

Where ∂output
mM

shows the output results size and κ repre-
sents the data transmission rate.

Considering the aforementioned computations, the PIT
time set by the consumer is the sum of the dT , sRξ

an
mM

and
tRx
(sR,vL) presented as follows:

TPIT = dT + sRξ
an
mM

+ tRx
(sR,vL) (8)

The sR forwards an acknowledgment message containing
the updated timer information to vL, which then updates
the PIT timer entry corresponding to the respective interest.

Apart from independent microservices, an MS-centric
computation request may also depend on its predecessor
microservices, requiring their outputs before it can begin
execution. Consider a scenario where a vehicle vL, offloads a
MS request (e.g., mM indicated by a yellow bold arrowhead
in Fig. 3) to sR. sR verifies whether a dependency is
required to execute mM . If execution of any interdependent
MS is required, sR checks for the availability of the interde-
pendent MS code and the required resources for execution.
If available, sR executes and hands over the results. If not
available, sR offloads the request to the Tc.
Upon receiving the mM request, the Tc first identifies the
predecessors of mM and exploits the potential RSU-E (i.e.,
s ∈ S), to perform computations. Since the request has de-
pendencies and involve multiple Edge servers to complete
the execution, the overall execution time may exceed the
default PIT timer due to multiple transmissions, compu-
tations, and results receptions between Tc and underlying
sR. To address this, the Tc computes a dynamic PIT timer
by taking into account the predecessor MS, alongwith the
required processing and communication resources.
The process for computing the PIT time while considering
MS dependencies is outlined as follows:

A dependent MS-centric request (e.g., mM) can begin
execution only after the completion of its predecessor MS
(e.g., mMx), as the successor requires the predecessor’s
output as input. Consequently, the start time of mM is
determined by the finish time of mMx. It is important to
note that the execution of mM at sR may be delayed if its
predecessor mMx is offloaded to a different server. In such

7

m1

m2

m3

mM

3a

3b

vL

3.O
fflo
ad
ing

de
cis
sio
n

1.m
M	

sR

s4

s2

s3

SD-TC(T
C)

2.	Offload

	Dependency
check

3m

4.	results
development

5.	results
delivery

6.	results
delivery

vL
1.m

x	

1.m
x	

Independent	MS	Interest

Independent	MS	Data
Dependent	MS	Interest

Dependent	MS	Data

MS	Type
(in/dependent)	

Self
Computations

Fig. 3: Dynamic PIT timer computation mechanism

cases, sR must wait for the output from the predecessor
before initiating the execution of mM .

Upon receiving the output results of mMx, mM becomes
ready for execution, as represented below:

T ready
mM

= max
TmMx

∈pre(TmM
)
T finish
mMx

(9)

Where T ready
mM

represents a ready time of mM and T finish
mMx

represents the finish time of all predecessors i.e., mMx.
When mM is ready to execute at sR, its execution can

begin immediately if no other MS is currently running and
the required resources are available. However, if another
microservice is already in execution at sR, mM must wait
until the necessary resources become available.

Thus, the start time of execution (i.e., T start
mM

) of mM is
presented as:

T start
mM

= max {sRT ready
mM

, sRT
available
mM

} (10)

Where sRT
available
mM

is the time when the resources are avail-
able at sR to execute mM . The execution time of mM at sR
is provided as follows:

sRξmM
=

CmM

fsR
(11)

Where, sRξmM
denotes the time taken by the sR to compute

the mM , fsR and CmM
represent the amount of required

computational resources and computational capability of sR
respectively. The finish time of mM is provided as follows.

T finish
mM

= T start
mM

+ sRξmM
(12)

The total time taken by the sR to compute the mM (e..g.,
T comp
mM

) is provided as follows

T comp
mM

= T finish
mM

− T start
mM

(13)

Considering the formulations, the PIT time computed by
the Tc is presented as follows.

TPIT = dT + tTx
(sR,Tc)

+
n∑

i=1

[
tTx
(Tc,si)

+ siξ
an

pre(mM) + tRx
(si,Tc)

]
+ T comp

mM
+ tRx

(Tc,sR) + tRx
(sR,vL)

(14)
The Tc forwards the computed PIT timer (i.e., TPIT) value
to the vL via the sR, which is currently covering the vL.

After sharing the PIT timer, Tc delegates the predecessor
microservice to the most suitable RSU-E servers in its vicin-
ity using the proposed live Forwarding Information Base
(lFIB).

3.5 Live Forwarding Information Base (lFIB) depen-
dency aware request offloading:
An RSU-Edge server (i.e., s ∈ S) is considered optimal
if it possesses high computational resources, is located at
a shorter distance from Tc, has ample storage capacity,
and offers sufficient bandwidth to perform computations
efficiently. It is important to note that resource availability at
RSU-Es can fluctuate over time depending on their location.
For example, an RSU-E situated at a major junction typically
experiences a higher workload compared to those in less
congested or rural areas.

8

To manage this variability, each RSU-E proactively
shares its current resource availability with Tc whenever
its load exceeds a predefined application-specific threshold.
Based on the collected load information from underlying
RSU-Es, Tc constructs the live Forwarding Information Base
(lFIB), in which each interface is ranked according to its real-
time load condition—referred to as its health status.

The formulation of RSU-E health status and the mecha-
nism for developing the lFIB are outlined as follows:

Problem Formulation: As already discussed, an RSU-
E is considered an optimal offloading candidate if it has
enough resources to accomplish the incoming computations
requests i.e.,

avΓ
si
k > reqℜmM

k ∀ reqℜk ∈ R, m ∈ M (15)

Where avΓ
si
k represent the available kth resources of ith s

and reqℜmM

k denote the required k resources to execute mth

microservice. In order to evaluate the overall health status
of each s, the Tc computes the individual score (i.e., Ψk) of
each available resource and normalizes the individual score
to a specific range i.e., [u v] using the following equations.

Ψk =
avΓ

si
k

reqℜmM

k

(16)

ρsi =
∑
k∈R

φk[u+
(Ψk)− min (Ψk) × (v − u)

max (Ψk)−min (Ψk)
] , s ∈ S

(17)
Where ρsi corresponds to the health status of ith RSU-E (i.e.,
s ∈ S) and φk is the decision maker’s assigned application-
specific weight factor of kth resource and R is the set of
resources. An RSU-E that bears the highest health value is
considered a potential offloading candidate.

It is important to note that vehicles frequently change
their locations; therefore, due to high mobility, it is likely
that vL may not remain within the coverage area of the
same RSU-E server to which it initially offloaded the re-
quest. Therefore, Tc routes the response through the RSU-E
currently serving vL.

3.6 Semantic Transformer:
Modern autonomous vehicular applications rely on data
from smart sensing equipment—such as inductive loops,
ultrasonic sensors, radar, and CCTV cameras—to make
informed decisions that enhance passenger comfort and
safety. These devices generate vast amounts of data, includ-
ing high-definition images and continuous video streams.
For example, a single CCTV camera can produce 25–30
frames per second during video transmission, and even low
frame rate sequences (e.g., 1.25 Hz) can generate over 100
MB of data per second [30]. As a result, substantial compu-
tational, storage, and bandwidth resources are required to
process, manage, and transmit such data in real-time.

In resource-constrained vehicular environments, existing
NDN-based forwarding schemes [9], [11], [13], [14], [24],
[26], [29] allow nodes—such as producers or intermediate
forwarders—to blindly forward requested content in re-
sponse to incoming Interests, without evaluating the rel-
evance or effectiveness of the transmitted data. This ap-
proach leads to increased network resource consumption
and congestion, which can delay the delivery of critical

data to the consumer vehicle and, in extreme cases, result
in catastrophic consequences.

To overcome these challenges, we modified the NDN
protocol suite and introduced a Semantic Transformer (ST),
positioned between the caching and forwarding modules.
Powered by Convolutional Neural Networks (CNNs) and
the YOLO (You Only Look Once) computer vision algo-
rithm, the ST enhances the efficiency of information ex-
change by extracting semantically meaningful content from
requested data. For example, when a consumer requests
visual content (e.g., images or videos) of a specific road
segment captured by an RSU-E’s CCTV cameras, the RSU-
E first processes the raw data through the ST. The ST
identifies and extracts relevant semantic information—such
as objects, events, or anomalies—and forwards only this
distilled information to the consumer via the selected FIB
interface. This mechanism significantly reduces unnecessary
data transmission, conserves network bandwidth, and de-
livers precise situational awareness to the consumer with
low latency.

A complete process of ST development and semantic
extraction depicted in Fig.4 is provided as follows:

3.6.1 CNN-enabled image segmentation:

Consider an sR ∈ S receiving a request from a consumer
autonomous vehicle requiring the traffic condition of a spe-
cific road segment at a certain time. The corresponding sR
fulfills the request either from its local cache or by capturing
the real-time traffic information using the CCTV camera
mounted at the location, depending upon the nature (i.e.,
real-time or historical data) and availability of requested
content.

Consider the input image λ ∈ λ̂ e.g., λ ∈ λ̂ ⊂ βH×W×C

captured by the CCTV camera with height H , width W ,
and color channels C and data set λ̂ and integer grey values
β. Each input image is composed of grey values e.g., λi ∈
βC at every pixel position |I| = H.W where I denotes the
set of pixel positions with the cardinality |I| = H.W . A
specific patch of the image is denoted by λIi ∈ βh×w×C

where h, w, and c denote the height, width, color channels,
pixel position Ii ⊆ I and |Ii| = h.w.

A CNN (depicted in the upper half of Fig.4) is comprised
of various layers (i.e., L). Each respective layer (i.e., l ∈ L
) has feature map activation i.e., fl(λ) ∈ RHl×Wl×Cl , input
image i.e., λ ∈ λ̂ in the first layer, the feature map height Hl,
width Wl and the number of color channels Cl. When the
input image is fed into the CNN for image classification,
it outputs a probability score i.e., P (s|λ) ∈ I for each class
i.e., s ∈ S where I = [0, 1] , S denotes the set of available
classes while N = |S| is the total number of classes. The
predicted class of input image λ is presented as follows.

s∗(λ) = argmax
s∈S

P (s|λ) (18)

From now on, we will consider a CNN capable of perform-
ing semantic segmentation (℘). Given the input image λ
and the class s ∈ S, the CNN provides a probability i.e.,
P (s|i, λ), against each pixel position i.e., i ∈ I . For all pixel
positions (i.e., i ∈ I) and classes (e.g., s ∈ S), the output
class score is as follows.

9

NDN Node
Cache

Upsampling (2x) Downsampling (2x)

Upsampling (2x) Downsampling (2x)

1 x 1

Maxpooling 5x5

Maxpooling 9x9

Maxpooling 13x13

YOLO

Backbone:
CSP Darknet

 Semantic Extraction

 Prediction

Path Aggregation Netw ork
(PAN)

Neck

Head

Spatial pyramid pooling
(SPP)

Convolution+RELU
Max-Pooling

DropOut

UpSampling
Deconvolution
Softmax Layer

Encoder Decoder

Segmented
Image

Image Segmentation

FIB check

Data packet generation

Interface selectionData Forwarding

Fed segmented image to YOLO

Fig. 4: Semantic transformer

p(λ) = ℘(λ) ∈ IH×W×N (19)

℘ : βH×W×C → IH×W×N (20)

The semantic segmentation mask denoted by m(λ) ∈
SH×W composed of predicted class (i.e., mi(λ) = s∗i (λ))
at every pixel position of the input image λ is computed as
follows.

m(λ) = argmax
s∈S

P (λ) (21)

Finally, the mean intersection over union (i.e., ∂) is utilized
to measure the performance of CNN.

∂ =
1

N

∑
s∈S

TP (s)

TP (s) + FP (s) + FN(s)
(22)

Where TP , FP , and FN denote true positive, false positive,
and false negative respectively.

3.6.2 YOLO-based object detection, localization and label-
ing:
The segmented image obtained from the CNN is fed into
Y OLO depicted in the lower half of Fig.4 to identify and
locate objects within the image. Y OLO enables real-time
object detection with high accuracy, making it an optimal
choice for use in autonomous vehicular decision-making.
The proposed work adopts Y OLO − v4 that employs

CSPDarkNet− 53 as its backbone to extract features from
the provided input image. The backbone comprises five
residual blocks. The output of these residual blocks is passed
to the NECK , where the spatial pyramid pooling (SPP)
module resides. The SPP module, using kernels of size1x1,
5 × 5, 9 × 9, and 13 × 13 (stride=1 for the max-pooling
operation), concatenates the max-pooling results of the low-
resolution feature map to extract the most representative
features. The output of the SPP module is then fused
with high-resolution feature maps using a Path Aggregation
Network (PAN). The PAN employs up − sampling and
down − sampling operations to establish bottom-up and
top-down paths for combining low-level and high-level fea-
tures. The PAN module outputs a set of aggregated feature
maps for predictions. The Y OLO − v4 network has three
detection heads, each of which is a Y OLO − v3 network
that computes the final predictions. The YOLO-v4 network
outputs feature maps of sizes 19×19, 38×38, and 76×76 to
predict bounding boxes, classification scores, and abjectness
scores. By combining the speed of Y OLO with the precision
of image segmentation, autonomous vehicular applications
achieve more balanced and efficient use of network and
communication resources.

The ST ensures that only critical information is processed
and transmitted efficiently, thereby enhancing the overall
safety, responsiveness, and performance of NDN-enabled

10

TC

RSU-E2RSU-E1

RSU-E3

/m
s1

/m
s1

|D

/ms3

DoC<compTime:

Offlo
ad

/m
s3|D

Dependeny	Exist/
Resource	unavailable

Offloading	to	TCPrefix Face Score

/ms1 f1 Q1

/ms2 f3 Q2

*** *** ***

Name In Out PEL

/ms1 f1 f2 5

/ms2 f3 f4 4

*** ** ** ***

/ms5

1 1

4

2

3

1

2

2.1

2.2

/ms5|D
4

2 3

/PEL

**M
S-A

pplications

Forwarding	
Strategy

PIT

lFIB

CS

NDN	Forwarding	Plane

A A

A

B
B

1

2

/PEL	

1 2

CCTV

3

Fig. 5: Computations offloading and results delivery

autonomous vehicles.

3.7 iMSoRT: Computation Philosophy and Offloading
Mechanism

3.7.1 MS Centric Naming Schema:

A MS-centric naming design plays a crucial role in com-
putation offloading, migration, and result delivery. iMSoRT
adopts an MS-centric naming schema that follows the hi-
erarchical and semantically meaningful principles of NDN.
We consider an intelligent driver-assistance application com-
posed of various dependent and independent MS.

To name the MS, we incorporate vehicle
trajectory information—such as speed, direc-
tion, current location, and destination coordi-
nates—in addition to the MS name (e.g., /drivAs-
sist/vehNum/curLoc/destLoc/speed/direction|MS?P1,P2).
These additional components in the namespace, including
current and destination coordinates, vehicle speed, and
direction, enable the corresponding RSU-E or Tc to avoid
reverse-path partitioning and to ensure guided result

delivery in a continuously varying environment. A vertical
pipe symbol (i.e., “|”) is used to separate the vehicular
dynamics from the MS name. The MS name also includes
its input parameters (e.g., “P1, P2”), which are prefixed by
a question mark (i.e., “?”) and separated by commas (i.e.,
“,”).

3.7.2 MS centric computation Offloading and results deliv-
ery:
A computation offloading process mainly triggers when
the required resources to perform a specific MS-centric
computation exceed the available resource capacity of the
autonomous vehicle. In such scenarios, the vehicle offloads
the computation tasks to the RSU-E currently covering
the region. We consider different MS-centric computation
offloading and results handover scenarios starting from
obvious to complex cases as depicted in Fig.5.

The detailed MS offloading and computations delivery
procedure is provided as follows.
1) Consumer Vehicle to Edge Offloading: Let us start with

a simple case (as illustrated in steps 1-2 in red in Fig.5)

11

TABLE 3: Simulation parameters

Parameter Value
Simulator NS-3 (ndnSIM)
Communication stack NDN
Mobility generator SUMO
Traffic Scenario Urban
Number of RSU-Es 5
Wireless interface IEEE 802.11p
Network size (i.e., num-
ber of vehicles) 30

RSU tx Range 300m
Vehicle tx Range 250m
Average vehicle speed 40Kmph, 65Kmph
Total number of MS 7 (dependent = 4, independent=3)
MS request rate 5-30 requests/sec
MS request distribution Random
Simulation time 200s

where the consumer vehicle “A” requires the optimal
route between two locations. It offloads a MS-centric
request ms1 (e.g.,/drivAssist/../..|RoutePlan?loc1,loc2),
comprising the initial location (i.e., loc1) and final des-
tination coordinates (i.e, loc2).
Upon receiving the request, the corresponding RSU-
E first computes the DoC [15] with “A” and verifies
whether the requested MS has any dependencies. In
this case, the DoC exceeds the computation time, and
the requested MS does not require the output from any
predecessor MS. Furthermore, the computation time is
within the default PIT timer value. The RSU-E then cal-
culates the optimal route based on the received location
coordinates and returns the results via the reverse path,
following vanilla NDN principles.

2) Inter Edge Offloading: Consider a scenario (shown
in Fig. 5, steps 1-3 in blue color) where the fast-
moving vehicle “A” offloads a computation request to
RSU-E1 (e.g.,/../..|liveRoad?loc1,loc2/<timestamp>), re-
quiring live traffic conditions of a particular road seg-
ment within the coverage area of RSU-E2. Upon receiving
the request, RSU-E1 computes the DOC as well as the
required computation time based on the nature of the
received request.
As the computation time exceeds both the DoC and
the default PIT entry lifetime (PEL), RSU-E1 sends a
response message containing an updated PIT entry life-
time, allowing the consumer to adjust the PIT timer of
the Interest and thereby avoid unsolicited data losses.
Simultaneously, RSU-E1 appends the adhoc response to
the incoming Interest packet and forwards it to RSU-E2.
RSU-E2 then obtains live traffic conditions via a CCTV
camera mounted within its coverage area, performs the
semantic transformations using ST, and delivers the re-
sults to the consumer over the ad-hoc interface. “B”.

3) Edge to Tc Offloading: Consider a scenario (steps 1-4 in
green in Fig. 5) where a vehicle “B” offloads a dependent
MS-centric computation request to RSU-E2. The RSU-E2
first authenticates the request, computes DoC, and veri-
fies the availability of the required resources (e.g., com-
putational resources, requested MS, and its predecessors)
to perform the execution. Due to resource unavailability,
the RSU-E2 appends the DoC to the Interest name and
forwards it to the Tc. The Tc verifies the request and
computes the required computation time, considering

TABLE 4: Training parameters

Parameter Value
Batch size 4
Conv 3× 3× 3
Max-pooling 2× 2× 2
Kernel size 2
Learning rate 0.01
Epochs 30
Loss function Mean square error (MSE)
Optimizer Adam
Activation function ReLU
Training dataset 2780 (80%)
Validation dataset 695 (20%)

the dependencies of the requested MS.
If the computation time exceeds the default PIT entry
lifetime, the Tc first verifies the DoC value of the con-
sumer with RSU-E2. Since the DoC is not expired, the Tc

forwards the updated PEL to the consumer vehicle via
the reverse path (i.e., /PEL denoted by the green dotted
arrow in Fig. 5). If the DoC has expired, the Tc forwards
the updated PEL to the consumer vehicle via the RSU
currently covering consumer vehicle. After sharing the
updated PEL, the Tc exploits the optimal RSU Edge-E
servers (via lFIB) capable of executing the predecessor
MS (as illustrated in steps 2.1 and 2.2 in red and brown
in Fig. 5) to offload the computation request and obtain
the subsequent computation results.
Once the results of the predecessors are obtained, the Tc

performs the requested MS computations, compiles the
results, and hands them over to the consumer via the
RSU-E3 currently managing the consumer.

4) Tc to Cloud Offloading: This process is initiated when
the load on an RSU-E exceeds a specified threshold or
when the required MS code to fulfill a user request is un-
available. In such cases, Tc either offloads the consumer
request to the CC or retrieves the MS code to execute
the requested computations. This mechanism prevents
computation losses and enhances the QoS of consumer
applications (illustrated in Fig. 5, steps 1–2 in black).

4 PERFORMANCE EVALUATION

This section deals with detailed performance evaluation.

4.1 Simulation Setup

To analyze and evaluate the performance of iMSoRT, ex-
tensive simulations were conducted in ndnSIM (an NS-3-
based network simulator). The OpenStreetMap [31] and
SUMO [32] mobility generator is integrated with ndnSIM
to envision a realistic urban traffic environment.

The proposed work is compared with state-of-the-art
schemes, specifically the Cluster Routing-Based Data Packet
Backhaul Prediction Method in Vehicular Named Data Net-
working (DBPM) [24] and the Social Attributes-Based
Content Delivery for Sparse Vehicular Content-Centric Net-
work (SCD) [26], to benchmark performance. The sim-
ulation environment comprises five RSU-E servers with
heterogeneous computing capabilities, a Tc responsible for
managing the RSU-E servers within its vicinity, and a cloud
station.

12

The number of vehicular nodes in the simulations ranges
from 5 to 30, with speeds varying between 40 km/h and
65 km/h. The setup also includes seven different types of
dependent and independent MS, each with distinct com-
putational requirements. To simulate computational behav-
ior, iMSoRT employs the ndnCSIM [33] codebase, which
provides the core functionality for MS execution and node
resource management.

For ST , we employed the CNN and Y OLO-v4 al-
gorithms. The models were trained using the Cityscapes
dataset [34], which is well-suited for analyzing intelligent
vehicular networking scenarios. To further evaluate the
performance of ST , we collected a custom dataset from road
conditions around Jochiwon Station in Sejong City, Korea.
This dataset contains diverse images featuring vehicles of
varying sizes (small, medium, and large) and surrounding
environments, including buildings, trees, pedestrians, and
traffic signals. The trained model was then integrated into
ndnSIM to perform semantic extractions.

The complete simulation and training parameters are
summarized in Table 3 and Table 4, respectively.

To evaluate the performance of iMSoRT against the
benchmark schemes the following metrics are considered:
1) Compute hit ratio (CHR): The compute hit ratio (CHR)

is defined as the ratio of the number of MS-centric in-
terest packets that successfully received the computation
results (i.e., Data packets) within the PIT timer.
Mathematically, the CHR can be represented as:

CHR =


n∑
1
Ihit

n∑
1
Ihit +

n∑
1
Imiss

× 100 (23)

Where Ihit denotes MS-centric Interest packets that suc-
cessfully received computation results and Imiss denotes
MS-centric Interest packets that failed to receive any
computation results.

2) Computation satisfaction delays (CSD): The computa-
tion satisfaction delay (CSD) is the total time taken by
an MS-centric request to reach the corresponding com-
pute node, the request processing time, and the results
delivery time to the consumer.

3) Average hop count: The average hop count corresponds
to the number of hops the packet traverses from a content
source (i.e., compute node) to the consumer node.

4) Edge resource utilization: Edge resource utilization is
defined as the fraction of resources utilized to the total
available resources of the Edge computing node during
different workload conditions.

5) Task offloading to cloud: It measures the proportion of
MS-centric computation requests offloaded to the cloud.

6) Bandwidth consumption: The bandwidth consumption
is the total bandwidth consumed in Data packet trans-
missions following both semantic and conventional data
forwarding strategies.

4.2 Evaluation Results
1) Compute hit ratio (CHR): We evaluate the efficacy of

the proposed work by measuring the CHR as a function
of Interest frequency and vehicle speed, as shown in

(a)

(b)

Fig. 6: Compute hit Ratio

Fig. 6(a) and Fig. 6(b), respectively. The results clearly
demonstrate the effectiveness of iMSoRT in maintaining
high CHR in both scenarios. As Interest frequency and
vehicular speed increase, iMSoRT achieves CHR values
exceeding 95% and 85%, respectively, outperforming the
baseline techniques. This improvement is attributed to
the proposed dynamic PIT timer mechanism, which ad-
justs the timer according to the resource requirements
of both dependent and independent MS-centric requests.
This prevents premature PIT timer expiration and en-
sures that vehicles receive computation results in a timely
manner.
Furthermore, iMSoRT effectively addresses the reverse-
path partitioning problem by estimating the consumer
vehicle’s current location from its trajectory informa-
tion—including speed, current location, and destination
coordinates—and offloading computation results via the
RSU-E server currently covering the vehicle. This sig-
nificantly improves CHR. In contrast, neither DBPM
nor SCD account for MS dependencies or adapt the PIT
timer to the computation and communication require-
ments of MS requests. As a result, compute nodes may
be unable to complete processing within the default 2-
second PIT lifetime, causing unnecessary computation
losses. Additionally, DBPM employs RSU clustering
to predict vehicle locations, while SCD leverages social

13

Fig. 7: Computation satisfaction delays

Fig. 8: Average hop count

metrics (e.g., centrality, similarity, intimacy) to avoid path
breakage during result delivery. In highly mobile traffic
conditions, maintaining stable connectivity solely based
on these factors—without considering vehicle speed
and trajectory—limits timely result delivery and reduces
CHR.

2) Computation satisfaction delays (CSD):
We evaluate the computation satisfaction delay (CSD)
by varying the number of vehicular nodes, as shown in
Fig. 7. The CSD is directly correlated with traffic load;
as the workload increases, the RSU-E’s ability to process
concurrent MS requests decreases, resulting in longer
delays. Fig. 7 shows that CSD rises across all schemes
as the number of vehicles grows. However, the proposed
method consistently outperforms the baseline schemes,
achieving lower CSD even under high traffic conditions.
This improvement is attributed to iMSoRT’s proximate
computation policy, which enables Tc to maintain up-
dated resource information for the underlying RSU-E
servers in its lFIB table. Consequently, under heavy load,
an overloaded RSU-E can offload computation requests
to Tc, which then forwards them to idle or underutilized
RSUs, thereby reducing traversal distance and minimiz-
ing latency.
In comparison, although DBPM outperforms SCD,
both exhibit higher CSD than iMSoRT. This is due to the
limited availability of computational resources in SCD
and DBPM , which constrains the compute node’s onsite

(a)

(b)

Fig. 9: Resource utilization

processing capacity. As a result, tasks must be offloaded
to the cloud, leading to extended CSD.

3) Average hop count: The comparison of average hop
count (AHC) as a function of Interest frequency is shown
in Fig. 8. For this analysis, the Interest packet frequency
was varied from 5 to 30 interests per second. The re-
sults indicate that iMSoRT consistently outperforms both
benchmark schemes in terms of AHC. This improvement
stems from iMSoRT’s ability to enable Tc to account for
vehicular dynamics—such as speed, direction, and trajec-
tory—when returning computed results to the consumer
vehicle. Consequently, Tc forwards the results directly to
the consumer through the RSU-E currently covering the
vehicle, minimizing hop count.
In contrast, DBPM requires the cluster-member RSU
to forward the Interest packet to a distant cluster-head
RSU, which either performs the computation locally or
offloads it to the producer RSU-E, thereby increasing
the number of hops. Similarly, in SCD, the Interest
packet is forwarded to the node with the highest social
weight, continuing this process until it reaches a potential
compute node—also resulting in a higher hop count.

4) Resource utilization: Fig. 9(a) and Fig. 9(b) show the
impact of compute resource utilization as a function of
Interest frequency and the number of vehicles, respec-
tively. The results indicate that the proposed scheme

14

Fig. 10: Tasks offloading to cloud

utilizes more resources compared to DBPM and SCD.
This is because iMSoRT avoids cloud offloading and
maximizes the use of available in-network resources to
provide proximate computation for consumer requests.
To achieve this, the proposed scheme leverages the in-
terdependencies of MS-centric computation tasks. When
necessary—due to resource constraints or unavailability
of MS code—iMSoRT exploits the resources of optimal
RSU-E servers in its vicinity to offload and execute
computation requests. The involvement of multiple RSU-
E servers in request execution leads to higher resource
utilization, as observed in Fig. 9(a) and Fig. 9(b).
In contrast, both DBPM and SCD ignore MS inter-
dependencies and execute only independent requests,
resulting in lower resource utilization.

5) Task Offloading to cloud: The analysis of the number of
MS-centric requests offloaded to the cloud as a function
of Interest frequency is shown in Fig. 10. As illustrated,
in all schemes, the number of requests forwarded to the
cloud increases with Interest frequency. However, iM-
SoRT significantly reduces cloud offloading compared to
DBPM and SCD. This improvement is attributed to the
proposed confined computing strategy, which maximizes
the use of in-network computing resources to provide
proximate computations, thereby avoiding unnecessary
cloud routing.
In contrast, both DBPM and SCD employ blind trans-
mission of requests to specific compute nodes—namely,
the cluster-head node in DBPM or the high-social-
weight node in SCD—without considering current re-
source conditions. This approach leads to resource bot-
tlenecks, forcing the compute node to offload requests to
the cloud and resulting in high backhaul traffic.

6) Bandwidth Consumption: The bandwidth utilization
of the proposed scheme compared with the benchmark
schemes is presented in Fig. 11(a) and Fig. 11(b). To eval-
uate performance, we varied the hop count and Interest
frequency with step sizes of 1 and 2, respectively. The
results clearly demonstrate that iMSoRT outperforms the
benchmark schemes, reducing bandwidth utilization by
approximately threefold in both cases. This improvement
is attributed to iMSoRT’s ST, powered by CNN and
Y OLO algorithms and positioned between the caching
and forwarding modules of the NDN stack. The ST

(a)

(b)

Fig. 11: Bandwidth utilization

performs data distillation on large volumes of data before
forwarding, extracting and transmitting only semanti-
cally meaningful content to the consumer. This process
significantly reduces data size by removing redundant
and irrelevant details, thereby decreasing bandwidth
consumption across the network.
In contrast, both the baseline and conventional NDN
forwarding schemes blindly forward all requested data
to the consumer without considering data semantics,
resulting in higher bandwidth utilization.

5 IMSORT COMPUTATIONAL AND SPACE COM-
PLEXITY ANALYSIS

The computational and space complexities of iMSoRT and
the benchmark schemes are analyzed in terms of both time
and space, as outlined below.

The time complexity of iMSoRT primarily depends on
the number of microservices involved in resolving interde-
pendencies. The worst-case scenario can be expressed as
O(M2), where M denotes the number of microservices.
Additionally, each microservice requires a certain execu-
tion time, contributing a linear time complexity of O(M).
Another factor is the management of valid PIT timers,
which depends on the length of the dependency chain.
This introduces an additional complexity of O(D), where
D represents the number of dependent microservices in a

15

sequence. Moreover, since microservice-based requests may
traverse multiple hops, the hop-related latency adds a com-
ponent of O(H). Combining these factors, the overall time
complexity of the iMSoRT operation can be approximated
as O(M2 +D +H).

In comparison, benchmark schemes such as DBPM,
which use Cluster Position Location Awareness (CPLA)
with bisection sensing, incur a time complexity of O(N2 +
logR), where N is the number of Road Side Units (RSUs)
and R is the communication radius. DBPM also incorporates
a cluster-based routing algorithm, which introduces intra-
cluster and inter-cluster complexities of O(N2 + V × M)
and O(N2 +M +H), respectively, where V is the number
of vehicles. Thus, the overall time complexity of DBPM can
be stated as O(N2 + V ×M). Another benchmark, the SCD
scheme, employs social behavior-based metrics for content
delivery. Although the time complexity of iMSoRT may be
higher than that of DBPM and SCD, this is justified by its
ability to handle more complex functionalities, particularly
in managing dependent microservices.

The space complexity of the iMSoRT scheme is expressed
as O(M2 + R), where M is the number of microservices
and R is the number of active requests. The proposed
lFIB mechanism performs tasks such as tracking available
resources and monitoring node health status, resulting in
an additional space complexity of O(K × (S +M)), where
S is the number of RSU servers and K denotes the types
of resources being monitored. These values represent re-
alistic upper bounds for practical deployment. For com-
parison, the DBPM scheme’s space complexity includes
several components: the CPLA algorithm O(N), Kalman
filter prediction O(1), cluster routing O(V × M + C), and
inter-cluster communication O(C + V), where N is the
number of RSUs, V the number of vehicles, M the number
of cluster members, and C the number of clusters. The
SCD scheme exhibits a higher space complexity, given by
O(N2 + N × (AI + Cn) + Nc), where N is the number of
vehicles, AI the average number of Interests, Cn the number
of content items, and Nc the number of communities. Due
to its quadratic growth with the number of vehicles and
communities, SCD demonstrates greater spatial overhead
compared to iMSoRT and DBPM.

Overall, the iMSoRT scheme presents a computation-
ally efficient and scalable approach for managing complex
microservice dependencies. By integrating semantic-aware
data transmission and dynamic resource allocation, it offers
significant functional advantages in the context of vehicular
edge networks.

6 CONCLUSION

This paper presented MAKS, an efficient knowledge shar-
ing framework designed to provide timely knowledge to
consumer vehicles in highly dynamic vehicular environ-
ments. To address the challenges of mobility, we intro-
duced MaFIB-assisted knowledge forwarding for guided
and reliable data delivery in frequently changing topologies.
Furthermore, novel upstream and downstream recovery
mechanisms were devised to sustain communication during
unforeseeable path disruptions, thereby minimizing redun-
dant transmissions, optimizing network resource utilization,

and improving overall QoS. Simulation results demonstrate
that MAKS achieves a KDR exceeding 85%, RSD by over
55%, and decreases bandwidth utilization by nearly 50%
compared to benchmark schemes.

For future work, we plan to develop a testbed us-
ing robotic vehicles equipped with Raspberry Pi devices
to evaluate the real-world performance of the proposed
framework. Additionally, we are implementing the NDN
protocol in MS vanets simulator by incorporating 5G NR
as underlying Data link layer and evaluating the proposed
work on large scale more realistic scenarios.

ACKNOWLEDGMENTS

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No.2022R1A2C1003549).

REFERENCES

[1] J. Posner, L. Tseng, M. Aloqaily, and Y. Jararweh, “Federated
learning in vehicular networks: Opportunities and solutions,”
IEEE Network, vol. 35, no. 2, pp. 152–159, 2021.

[2] C. Liu, K. Liu, H. Ren, X. Xu, R. Xie, and J. Cao, “Rtds: real-time
distributed strategy for multi-period task offloading in vehicular
edge computing environment,” Neural Computing and Applications,
pp. 1–15, 2021.

[3] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu,
and R. Y. K. Kwok, “Intelligent edge computing in internet of
vehicles: A joint computation offloading and caching solution ,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 4,
pp. 2212–2225, 2021.

[4] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in
urban informatics ,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 7635–7647, 2019.

[5] W. Fan, Y. Zhang, G. Zhou, and Y. Liu, “Deep reinforcement
learning-based task offloading for vehicular edge computing with
flexible rsu-rsu cooperation,” IEEE Transactions on Intelligent Trans-
portation Systems, 2024.

[6] X. Hou, J. Wang, Z. Fang, Y. Ren, K.-C. Chen, and L. Hanzo, “Edge
intelligence for mission-critical 6g services in space-air-ground
integrated networks,” IEEE Network, vol. 36, no. 2, pp. 181–189,
2022.

[7] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, “Adaptive
resource efficient microservice deployment in cloud-edge contin-
uum,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 8, pp. 1825–1840, 2022.

[8] X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K.-C. Chen, and
H. Zhang, “Reliable computation offloading for edge-computing-
enabled software-defined iov,” IEEE Internet of Things Journal,
vol. 7, no. 8, pp. 7097–7111, 2020.

[9] M. A. U. Rehman, M. Salah ud din, S. Mastorakis, and B.-S. Kim,
“Foggyedge: An information-centric computation offloading and
management framework for edge-based vehicular fog comput-
ing,” IEEE Intelligent Transportation Systems Magazine, vol. 15, no. 5,
pp. 78–90, 2023.

[10] M. Amadeo, C. Campolo, and A. Molinaro, “Crown: Content-
centric networking in vehicular ad hoc networks,” IEEE Commu-
nications Letters, vol. 16, no. 9, pp. 1380–1383, 2012.

[11] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data network-
ing,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 66–73, 2014.

[12] M. A. U. Rehman, R. Ullah, B.-S. Kim, B. Nour, and S. Mas-
torakis, “Ccic-wsn: An architecture for single-channel cluster-
based information-centric wireless sensor networks,” IEEE Internet
of Things Journal, vol. 8, no. 9, pp. 7661–7675, 2021.

[13] M. W. Al Azad, S. Shannigrahi, N. Stergiou, F. R. Ortega, and
S. Mastorakis, “Cledge: A hybrid cloud-edge computing frame-
work over information centric networking,” in 2021 IEEE 46th
Conference on Local Computer Networks (LCN). IEEE, 2021, pp.
589–596.

16

[14] M. Salahuddin, M. A. u. Rehman, B. S. Kim et al., “Cfec: An ultra-
low latency microservices-based in-network computing frame-
work for information-centric iovs,” Authorea Preprints, 2023.

[15] M. Salah Ud Din, M. Atif Ur Rehman, M. Imran, and
B. S. Kim, “Evaluating the impact of microservice-centric
computations in internet of vehicles,” Journal of Systems
Architecture, vol. 150, p. 103119, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762124000560

[16] M. Imran, M. N. Ali, M. S. U. Din, M. A. U. Rehman, and B.-S. Kim,
“An efficient communication and computation resources sharing
in information-centric 6g networks,” IEEE Internet of Things Jour-
nal, pp. 1–1, 2024.

[17] M. Imran, M. S. U. Din, M. A. U. Rehman, and B.-S. Kim,
“Mia-ndn: Microservice-centric interest aggregation in named
data networking,” Sensors, vol. 23, no. 3, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/3/1411

[18] C. Scherb, B. Faludi, and C. Tschudin, “Execution state manage-
ment in named function networking,” in 2017 IFIP Networking
Conference (IFIP Networking) and Workshops. IEEE, 2017, pp. 1–
6.

[19] M. Król and I. Psaras, “Nfaas: Named function as a service,”
in Proceedings of the 4th ACM Conference on Information-Centric
Networking, 2017, pp. 134–144.

[20] M. A. U. Rehman, M. Salah ud din, S. Mastorakis, and B.-S. Kim,
“Foggyedge: An information centric computation offloading and
management framework for edge-based vehicular fog computing
,” arXiv preprint arXiv:2304.10204, 2023.

[21] D. Kondo, T. Ansquer, Y. Tanigawa, and H. Tode, “Resource bread-
crumbs: Discovering edge computing resources over named data
networking,” IEEE Transactions on Network and Service Management,
2024.

[22] S. Rizwan, M. Ahmed, G. Husnain, M. Khanam, and S. Lim,
“Macpe: Mobility aware content provisioning in edge based
content-centric internet of vehicles,” IEEE Access, 2024.

[23] S. Zhou, M. Cui, R. Hou, and L. Zhao, “Data packet forwarding
strategy based on vehicle tracking in named data networking,”
in 2019 2nd International Conference on Hot Information-Centric Net-
working (HotICN), 2019, pp. 66–71.

[24] R. Hou, S. Zhou, Y. Zheng, M. Dong, K. Ota, D. Zeng, J. Luo, and
M. Ma, “Cluster routing-based data packet backhaul prediction
method in vehicular named data networking,” IEEE Transactions
on Network Science and Engineering, vol. 8, no. 3, pp. 2639–2650,
2021.

[25] J. M. Duarte, T. Braun, and L. A. Villas, “Mobivndn: A distributed
framework to support mobility in vehicular named-data network-
ing,” Ad Hoc Networks, vol. 82, pp. 77–90, 2019.

[26] X. Wang and X. Chen, “Social attributes-based content delivery
for sparse vehicular content-centric network,” IEEE Transactions on
Intelligent Transportation Systems, vol. 24, no. 12, pp. 14 406–14 414,
2023.

[27] S. Mastorakis and A. Mtibaa, “Towards service discovery and
invocation in data-centric edge networks,” in 2019 IEEE 27th
International Conference on Network Protocols (ICNP). IEEE, 2019,
pp. 1–6.

[28] S. A. Khan and H. Lim, “Real-time vehicle tracking-based data
forwarding using rls in vehicular named data networking,” IEEE
Transactions on Intelligent Transportation Systems, 2024.

[29] S. Zhou, M. Cui, R. Hou, and L. Zhao, “Data packet forwarding
strategy based on vehicle tracking in named data networking,”
in 2019 2nd International Conference on Hot Information-Centric Net-
working (HotICN). IEEE, 2019, pp. 66–71.

[30] S. Wan, S. Ding, and C. Chen, “Edge computing enabled video seg-
mentation for real-time traffic monitoring in internet of vehicles,”
Pattern Recognition, vol. 121, p. 108146, 2022.

[31] M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[32] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of sumo-simulation of urban mo-
bility,” International journal on advances in systems and measurements,
vol. 5, no. 3&4, 2012.

[33] “Ndncsim: A microservices based compute simulator for
ndn,” 2021. [Online]. Available: https://github.com/11th-ndn-
hackathon/ndncompute-simulator

[34] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016, pp.
3213–3223.

Muhammad Salah ud din is a Postdoctoral
Research fellow at the Communication Systems
Department, EURECOM - Campus SophiaTech
France. He earned a Ph.D. degree in Elec-
tronics and Computer Engineering from BCN
Lab Hongik University, South Korea in August
2023. His major interests are in the field of Au-
tonomous vehicular communication, Knowledge
centric networking, Edge/Fog/Cloud Computing,
Named data networking, IoT, and 5G/6G com-
munication.

Muhammad Nadeem ALi is currently pursuing
the Ph.D. degree in Computer Engineering with
the Department of Electronics and Computer
Engineering in Graduate School, Hongik Univer-
sity, South Korea. His major interests are in the
field of Machine learning for Wireless networks,
Deep learning, Internet of things (IOT), Named
Data Networking.

Ghulam Musa Raza is currently pursuing the
Ph.D. degree in Computer Engineering with the
Department of Electronics and Computer En-
gineering in Graduate School, Hongik Univer-
sity, South Korea. His major interests are in the
field of Natural Language Processing, Internet
of things (IOT), Information-Centric Networking
and Named Data Networking.

Muhammad Imran is a Postdoctoral Fellow at
the Shenzhen Municipal Key Laboratory of AIoT
Communications, Harbin Institute of Technol-
ogy, Shenzhen, China. He earned his Ph.D. in
Software and Communication Engineering from
Hongik University, South Korea, in February
2025. His research focuses on wireless commu-
nication, IoT, edge/cloud computing, ICN/NDN,
future networks, AI-driven networking, and re-
inforcement learning. He received the Best Re-
searcher Award in 2022–2023 and 2024–2025.

Byung-Seo Kim (M’02-SM’17) received the
M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of Florida,
in 2001 and 2004, respectively. From 2005 to
2007, he was with Motorola Inc., Schaumburg,
IL, USA, as a Senior Software Engineer in net-
works and enterprises. He is a Professor at the
Department of Software and Communications
Engineering, at Hongik University, South Korea.

