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 a b s t r a c t

Large Language Model (LLM)-based autonomous agents are expected to play a vital role in the evolution of 
6G networks, by empowering real-time decision-making related to management and service provisioning to end-
users. This shift facilitates the transition from a specialized intelligence approach, where artificial intelligence (AI) 
algorithms handle isolated tasks, to artificial general intelligence (AGI)-driven networks, where agents possess 
broader reasoning capabilities and can manage diverse network functions. In this paper, we introduce a novel 
agentic paradigm that combines LLMs with real-time optimization algorithms towards Trustworthy AI, defined 
as symbiotic agents. Optimizers at the LLM’s input-level provide bounded uncertainty steering for numerically 
precise tasks, whereas output-level optimizers supervised by the LLM enable adaptive real-time control. We 
design and implement two novel agent types including: (i) Radio Access Network (RAN) optimizers, and (ii) 
multi-agent negotiators for Service-Level Agreements (SLAs). We further propose an end-to-end architecture 
for AGI-driven networks and evaluate it on a 5G testbed capturing channel fluctuations from moving vehicles. 
Results show that symbiotic agents reduce decision errors fivefold compared to standalone LLM-based agents, 
while smaller language models (SLM) achieve similar accuracy with a 99.9% reduction in Graphical Processing 
Unit (GPU) resource overhead and in near-real-time (near-RT) loops of 82 𝑚𝑠. A multi-agent demonstration 
for collaborative RAN on the real-world testbed highlights significant flexibility in service-level agreement and 
resource allocation, reducing RAN over-utilization by approximately 44%. Drawing on our findings and open-
source implementations, we introduce the symbiotic paradigm as the foundation for next-generation, AGI-driven 
networks-systems designed to remain adaptable, efficient, and trustworthy even as LLMs advance. A live demo 
is presented here https://www.youtube.com/watch?v=WQv61z1deXs&ab_channel=BubbleRAN

1.  Introduction

By 2030 the number of fifth-generation (5G)-and early sixth-
generation (6G)-subscriptions is forecast to exceed 6 billion [1]. The 
radio environment will span 7–24GHz spectrum sharing [2], integrated 
sensing and communication links, and digital-twin feedback loops [3]. 
Such heterogeneity drives rapid spatio-temporal shifts in both user de-
mand and channel condition, stressing every resource allocation layer.

Multi-tenant Radio Access Networks (RANs) let Mobile Network Op-
erators (MNOs), Mobile Virtual Network Operators (MVNOs) and verti-
cals co-habit common infrastructure [4]. Intent-Based Networking (IBN) 
further hides low-level complexity behind declarative intents [5]. The 
Open RAN (O-RAN) and newly formed AI-RAN Alliances embed artificial 
intelligence (AI) into those abstractions as native control elements [6,7], 
yet today’s AI loops remain specialized and brittle.

Large Language Models (LLMs) and their smaller counterparts, the 
Small Language Models (SLMs), excel at high-level reasoning, fuelling vi-
sions of fully Artificial General Intelligence (AGI)-driven networks [8–11]. 
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However, they are probabilistic next-token predictors: they hallucinate 
facts [12,13], break under out-of-distribution (OOD) shifts [14], and lack 
formal safety guarantees.

Following the NIST AI Risk-Management Framework (AI-RMF) and 
ISO/IEC 42001, we define a trustworthy network agent as one that is 
robust, interpretable, secure, fair and governable across its lifecycle [15,
16]. LLMs alone satisfy only a subset of these attributes, and therefore 
more complex and robust agent architectures need to be explored.

We are the first to formalize an agent architecture in which LLM 
reasoning is symbiotically paired with deterministic optimization and 
present a full agent taxonomy with two concrete use cases: (i) in Type-I 
agents for dynamic RAN control, the LLM interprets high-level intents 
and continually tunes the proportional gain 𝐾𝑝 of an underlying pro-
portional (P-)controller, yielding certified, low-latency actions; (ii) in 
Type-II agents for multi-agent service-level-agreement (SLA) negotiation, 
the LLM employs constraints that a gradient-descent optimizer produces 
to bound uncertainty and converge on fair resource allocations. Because 
guarantees are externalized to the optimizer, this synergy remains indis-
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Table 1 
Comparison of the state-of-the-art on LLM-aided optimization with our approach.
Works Category Approach Key findings
[17] Reinforcement 

learning
A LLM framework with a self-refinement mechanism for automated re-
ward function design, where LLM can formulate an initial reward func-
tion based on natural language inputs.

LLM-designed reward functions can rival or even surpass manually de-
signed reward functions in 9 robot control tasks.

[18] Agentic
Self Improvement

It proposed a novel framework to reinforce language agents through 
linguistic feedback. The agent verbally reflects on task feedback signals, 
maintaining the reflective text in an episodic memory buffer to induce 
better decision-making.

The proposed framework achieves a 91% accuracy on the HumanEval 
coding benchmark, surpassing the previous state-of-the-art gpt-4 that 
achieves 80%.

[19] Black-box
Optimizer

Evaluating the optimization capabilities of LLMs across diverse tasks 
and data sizes, including gradient descent, hill-climbing, grid-search, 
and black-box optimization.

1) The LLM show strong optimization capabilities; 2) LLMs perform 
well in small-size samples; 3) They exhibit strong performance in 
gradient-descent; 4) LLMs are black-box optimizers.

[20] Convex
optimization

A natural language-based system that engages in interactive conver-
sations about infeasible optimization models. It provides natural lan-
guage descriptions of the optimization model itself, identifies potential 
sources of infeasibility, and offers suggestions to make the model fea-
sible.

The proposed system can assist both expert and non-expert users in 
improving their understanding of the optimization models, enabling 
them to quickly identify the sources of infeasibility.

[21] Heuristic
algorithms

Using general LLM serves as a black-box search operator for 
decomposition-based multi-objective evolutionary optimization in a 
zero-shot manner.

The LLM operator only learned from a few instances can have robust 
generalization performance on unseen problems with quite different 
patterns and settings.

Ours Symbiotic Agents A novel paradigm combining LLMs with optimization algorithms. Op-
timizers at the LLM’s input-level provide bounded uncertainty steering 
for numerically precise tasks, whereas output-level optimizers super-
vised by the LLM enable adaptive real-time (RT) control.

1) LLMs are meta-optimizers tuning parameters of control algorithms. 
2) The uncertainty in LLM decision-making is efficiently bounded with 
confidence intervals decreasing the error up to 5 times. 3) SLMs replace 
LLMs in near-RT tasks (82 𝑚𝑠 loops) maintaining accuracy and with up 
to 99.9% less graphics processing unit (GPU) overhead. 4) Novel AGI 
architecture is implemented with symbiotic agents.

pensable even as future LLMs improve, making the approach a necessity 
to bridge the gap towards AGI.

On a real 5G testbed that mirrors O-RAN/AI-RAN principles, we
1. define the Symbiotic-Agent architecture under a unified trustworthi-
ness lens;

2. instantiate two agents-P-controlled slicing and gradient-bounded 
negotiation-achieving a 5× reduction in decision error and up to 44% 
spectrum savings;

3. benchmark SLMs vs. LLMs, showing that prompt specialization shrink 
model size by up to 99.9% without accuracy loss;

4. propose an AGI-ready network architecture that encapsulates symbi-
otic agents as certified intelligence services.
The remainder of the paper formalizes the agent model (Section 3), 

details the testbed and evaluation (Sections 4-5), shows an AGI-driven 
network use case (Section 6) and discusses open research directions to-
ward fully AGI-driven networks (Section 7).

2.  Related work

The telco industry explores LLMs to automate next-generation net-
works. A collective effort from industry and academia charts the 
roadmap of large-scale AI adoption in telecom [22] explaining how 
Large Telecom Models (LTMs) could revolutionize the field. The litera-
ture proposes opportunities for applying LLMs on telecom divided into 
four categories [23], including (i) generation problems, (ii) classification 
problems, (iii) prediction problems and (iv) optimizing network perfor-
mance. Generation problems include fine-tuning models on telecom do-
main question answering [24], coding and troubleshooting, while the 
classification problems investigate network attack detection, and traffic 
classification [25]. The prediction problems, include traffic level fore-
casting [26,27], channel state estimation and user mobility predictions 
[28–30]. Our work is positioned on the last category of network perfor-
mance optimization, which includes LLM applications on real-time (RT) 
decision-making, such as resource allocation.

Table 1 summarizes the most prominent works on LLM-aided op-
timization, including our approach. An LLM framework with self-
refinement mechanisms is developed [17] for automated reward func-
tion design of reinforcement learning (RL) algorithms. The results 
demonstrate that LLM rival manually designed reward functions in nine 

robot control tasks. In [18] a novel framework reinforces language 
agents through linguistic feedback. The agent verbally reflects on task 
feedback signals, maintaining the reflective text in an episodic memory 
to induce better decision-making in the future. The authors in [19] eval-
uate the optimization capabilities of LLMs across diverse tasks, including 
gradient descent, hill-climbing, grid-search, and black-box optimization, 
highlighting that LLMs are black-box optimizers. In [20] authors work 
on a natural language-based system that engages in interactive conver-
sations about infeasible optimization models. In [21] an LLM serves as a 
black-box search operator for decomposition-based multi-objective evo-
lutionary optimization in a zero-shot manner. These works illustrate the 
abilities of LLMs as black-box optimizers as well as handling external 
optimization techniques.

Following these motivations, some works start applying LLMs in real 
network systems. In [31] the authors design on-device LLMs, where 
multi-agent LLMs are solving network tasks in a game theoretic manner. 
In [32] a framework is proposed that leverages LLMs and prompt engi-
neering techniques to elucidate RL algorithms’ decision-making show-
casing improvements in comprehensibility for network slicing. In [33] 
they propose an intelligent LLM agent prompting to dynamically opti-
mize resource allocation of network slices. An LLM-centric Intent Life-
Cycle (LC) management architecture [34] is designed to manage net-
work services using natural language. Maestro [35] is the first work 
to propose an LLM-based business plane for collaborative multi-tenant 
decision-making on a real testbed showing the vision towards AGI net-
works. Agoran [36] deploys a digital agora on top of 6G networks 
inspired by ancient Greek agora following a tripartite architecture. It is 
the first work to formally utilize and scale the symbiotic paradigm inte-
grating a multi-objective optimizer (NSGA-II) to provide a Pareto front 
of near optimal SLA offers for multi-stakeholder LLM bargaining. MX-AI 
[37] connects a multi-agent graph into the R1 interface of Open RAN 
networks capable of intent-based observability and control actions; thus 
creating an open platform to accelerate future research towards agentic 
AI-driven RANs.

These works show the great potential of LLMs on network tasks but 
lack providing comprehensive analysis on the trustworthiness of the 
LLM decision-making for realistic systems. Importantly, there is a major 
need for guarantees and uncertainty bounds for improving the agents 
accuracy. Also, we identify a gap on highly variable channels in low-
latency sub-millisecond timing loops. Further, scaling down the size and 
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Table 2 
Mechanisms by which Symbiotic Agents (i) realize the five trustworthiness pillars and (ii) provide a durable bridge from current LLM capabilities to 
AGI-grade guarantees.
Pillar Mechanism in Symbiotic Agents
Robustness Input-side optimizer guards against out-of-distribution SLA bids; Output-side optimizer supplies real-

time deterministic error bound 𝜀 with the Memory-based LLM meta-control adapting to channel vari-
ability.

Interpretability LLMs produce explicit chain-of-thought and structured artifacts (JSON SLA decisions and rationales); 
all traces logged by logs  for audit.

Security Numeric guard-rails and KPI triggers prevent adversarial or hallucinated actions from propagating to 
the real-time loop.

Fairness Tenant Mediator utility 𝑈0 plus SLA confidence-interval prompts enforce symmetric treatment of all 
tenants.

Governance Logs  and KPIs provide lifecycle logging; compliance monitoring of the KPIs and observance of 
deviations could trigger rollback.

LLM→AGI gap Input-side optimizer bounds uncertain inputs; output-side optimizer attaches deterministic action cer-
tificates; logger  keeps an auditable trace. Three properties unattainable through LLM scale alone.

overhead of models by utilizing SLMs is essential to minimize the cost 
at sustainable levels and need to be proven achievable in real network 
systems. These reasons lead us to propose a novel agentic paradigm to 
improve the LLM towards trustworthy decision-making by combining it 
with optimization algorithms. Optimizers at the LLM’s input-level pro-
vide bounded uncertainty steering with confidence intervals for numer-
ically precise tasks, whereas output-level optimizers are supervised by 
the LLM for adaptive real-time control. We work on real systems, where 
resources and intents are varying, using emulated channel fluctuations 
from moving vehicles, evaluating both large and smaller models. We 
focus on two distinct cases of RAN slicing and multi-tenant SLA nego-
tiations. Based on our results, we propose a novel AGI-driven network 
architecture.

3.  Symbiotic agents: Architecture and trustworthiness lens

Autonomous network agents must satisfy a comprehensive trustwor-
thiness profile that includes and extends well beyond decision-making 
accuracy: robustness to channel and workload drift, interpretability for 
human audit, security against adversarial manipulation, fairness across 
tenants, and governance over the agent’s entire lifecycle [15,16].

LLMs excel at high-level reasoning, transparent chain-of-thought log-
ging, and natural-language justification, yet they provide no formal 
guarantees on numeric error or worst-case latency. Conversely, control-
theoretic and optimization routines deliver deterministic performance 
bounds but lack semantic understanding. Symbiotic Agents fuse these com-
plementary strengths into a single loop, thereby covering all five trustworthi-
ness pillars. Table 2 summarizes how each pillar is realized in our archi-
tecture.

3.1.  Formal definition

Definition 1  (Symbiotic Agent). A Symbiotic Agent is the quintuple  =
⟨ , 𝜃 , in, out, ⟩ where

1.  is the partially observable network environment (KPIs, channel 
state, tenant intents, negotiation messages);

2. 𝜃 is an LLM that maps a contextual prompt 𝑖𝑡 to a structured action 
artifact 𝑎𝑡 (𝐾𝑝 hyper-parameters, SLA bids);

3. in (input-side optimizer) optionally pre-processes 𝑖𝑡 to a bounded 𝑖′𝑡
supplying numeric guard-rails before reasoning (e.g. a confidence 
interval for SLA values);

4. out (output-side optimizer) optionally converts 𝑎𝑡 into a granular ac-
tion 𝑎′𝑡 with a provable error bound 𝜀 (e.g. P-control on Physical 
Resource Blocks (PRB) allocation);

5.  logs the internal trace for audit and feeds compliance signals back 
to 𝜃 .

Fig. 1. LLM Symbiosis Paradigm: Input-level optimizers provide bounded un-
certainty steering for numerically precise tasks, whereas output-level optimizers 
enable adaptive real-time control actions.

The loop 𝑖𝑡
in
←←←←←←←←←←←←←←→ 𝑖′𝑡

𝜃
←←←←←←←←←←←→ 𝑎𝑡

out
←←←←←←←←←←←←←←←←←←→ 𝑎′𝑡 executes at two time scales: sub-

second LLM updates (𝜃) and sub-millisecond numeric control in,out, 
ensuring both semantic richness and hard-real-time guarantees.

Fig. 1 visualizes this layered control loop, showing how the input-
side and output-side optimizers flank the LLM to deliver both bounded 
uncertainty and real-time numeric certification. The authors believe that 
this symbiotic design is indispensable for trustworthy agents towards 
AGI. Even when future LLMs improve, next-token sampling remains 
stochastic and cannot yield deterministic error bounds. Therefore in
and/or out remain indispensable to close the gap towards AGI-grade 
decision-making and trustworthiness.

3.2.  Type I agent: Granular adaptive RAN control

Fig. 2 shows a Type I symbiotic agent designed for closed-loop 
RAN control. It receives the operator intent and deploys a control op-
timization algorithm out to allocate real-time resources in the RAN.
Typical control algorithms include rule-based, reinforcement learning 
or control-theoretic methods. These algorithms are generally accurate 
but rely heavily on their hyper-parameter tuning, especially in highly 
variable networks. This is because unpredicted interference and chan-
nel fluctuations disrupt the algorithm’s efficiency leading to oscillations 
and need for re-exploration or tuning. In our experiments we employ a 
control-theoretic approach, following the widely adopted Proportional-
Integral-Derivative (PID) Controller [38], with Section 3.2.2 explaining 
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Fig. 2. Type I Symbiotic Agent for RAN Control. An LLM (𝜃) translate operator 
intents (𝑖𝑡) to enforceable actions (𝑎𝑡) by deploying and supervising RAN control 
optimizers as out, which ultimately control RAN resources, such as PRBs (𝑎′𝑡). 
The LLM works as a black-box meta-optimizer, continuously tuning the hyper-
parameters of the control algorithms adapting to variable channels.

the rationale behind this choice. The algorithm is robust to channel vari-
ability bringing the control variable to the desired state, without the 
need of training data. It is heavily influenced by its parameter selection. 
We use the simplified version of the proportional Control (P-control) 
algorithm, as it is proved sufficient in our experiments. Specifically, P-
control is a type of linear feedback control system, in which a correction 
is applied to the controlled variable-here RAN physical resource blocks 
(PRBs)- and the size of it is proportional to the difference between the in-
tent and current state. For instance, a throughput (Tp) intent is enforced 
by controlling the PRB utilization capacity of a RAN slice ranging from 
0 to 100%. Thus:
𝑃𝑅𝐵𝑛𝑒𝑤 = 𝐾𝑝𝑒(𝑡) + 𝑃𝑅𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡, (1)

where 𝐾𝑝 is the proportional gain, 𝑒(𝑡) is the instantaneous process error 
at time 𝑡:
𝑒(𝑡) = 𝑇 𝑝𝐼𝑛𝑡𝑒𝑛𝑡 − 𝑇 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (2)

After deploying the control algorithm, the LLM works continuously 
as a meta-optimizer to fine-tune the algorithms hyper-parameter (here 
𝐾𝑝). As shown in Fig. 2, it reads key performance indicators (KPIs) of the 
algorithm performance, checks past action sets from a short-term mem-
ory and send updated policies for its configuration. In our experiments, 
as a KPI the LLM reads the P-control’s average number of iterations to 
converge in the last couple of time steps, as explained in Section 3.2.1. If 
it is larger than a threshold, here two iterations, the LLM updates the 𝐾𝑝
value exploring a better configuration. This way, it adapts to the variable 
channels ensuring algorithmic convergence to a desired performance 
(e.g. only two iterations to find optimal PRB). The short-term memory 
collects knowledge from past actions with the LLM self-improving in an 
agentic manner and reducing the repetition of errors. This symbiotic de-
sign positions the LLM at an appropriate abstraction level, operating in 
near-real-time (near-RT) loops (≥ 10 ms), while the control algorithm 
works in real-time sub-millisecond ones (≤ 1 ms).

3.2.1.  Granular adaptive control: How the LLM steers the P-controller
Fig. 3 zooms in on the internal feedback structure of a Type I Symbi-

otic Agent. The low-level P-Control is the point of contact with the RAN 
scheduler; it executes in 10−4 milliseconds (ms) and is therefore able to 
react to every 5 ms change in measured throughput.1 The LLM operates 
as an asynchronous black-box meta-optimizer and is invoked only when 
P-Control shows signs of sluggishness. This two-time-scale design keeps 
the fast loop entirely numerical while delegating rare but expensive rea-
soning to a slower cognitive loop.

1 The figure shows the throughput after the 5 ms air-interface reaction time 
on our testbed.

Fig. 3. Timeline of a Type I Symbiotic Agent executing granular adaptive control. 
The black curve is the throughput obtained by the P-Control loop (≤ 10𝑚𝑠); the 
green band marks the operator’s intent range. Digits next to the black markers 
indicate how many P-Control iterations (𝜄) were required to meet each intent. 
The channel quality changes from MCS 28 to MCS 14 at the dashed vertical line. 
After every 3-5 enforcements the LLM computes the average 𝜄; whenever 𝜄 > 2
it updates the proportional gain 𝐾𝑝 (red dashed markers), raising it from 0.3 to 
0.7, 1.1, and finally 1.5. These meta-control interventions-issued only once 𝜄 > 2-
restore single-iteration convergence while keeping the fast, numerically precise 
P-Control loop entirely intact. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

What the LLM sees. After every cluster of 𝑁=3–5 intent enforcements by 
P-Control, we compute a single key performance indicator (KPI):

𝜄(𝑡) = 1
𝑁

𝑁
∑

𝑗=1
𝜄𝑗 (3)

where 𝜄𝑗 is the number of control iterations P-Control needed to meet 
intent 𝑗. This average iteration count is the KPI passed to the LLM to-
gether with the last ten ⟨𝐾𝑝, 𝜄⟩ pairs stored in a small short-term memory. 
Keeping the memory to ten entries bounds prompt length and limits the 
SLM’s inference time to 82 ms (or 1000 ms for the full LLM), which 
makes it suitable for near-RT loops (10 𝑚𝑠 ≤ 𝑥 ≤ 1 𝑠𝑒𝑐)
When it is activated. If 𝜄(𝑡) ≤ 𝜏 with 𝜏 = 2, the system is already converg-
ing in at most two control iterations and no action is taken. Otherwise 
the LLM is triggered.
How it updates 𝐾𝑝. The prompt contains natural-language instructions 
that implement the following heuristic:

1. We rank the past memory actions ⟨𝐾𝑝, 𝜄⟩ by recency in a time-series 
manner.

2. We prompt the LLM to observe whether 𝜄 has decreased as 𝐾𝑝 was 
increased. If yes, continue in the same direction; otherwise reverse.

3. We prompt the LLM to freely choose the new configuration 𝐾new
𝑝 ,

with 𝐾new
𝑝 ∈ (0, ∞).

The new 𝐾𝑝 gain is streamed back to the P-Control, while P-Control
keeps running, making the large-model latency invisible to the real-time 
loop.
Illustrative trace (Fig. 3). Starting with 𝐾𝑝=0.3 under a favorable chan-
nel with RAN modulation and coding scheme (MCS) of 28, P-Control
needs 4-6 iterations to hit the intent (𝜄 = 5 > 𝜏); the LLM therefore raises 
the gain to 0.7, after which convergence occurs in 1-2 iterations. When 
mobility degrades the channel to MCS 14 the same gain is again too 
small (𝜄 = 3.5), prompting two further LLM updates-first to 1.1 and fi-
nally to 1.5-until every subsequent intent is met in a single iteration 
𝜄 = 1.0. Throughout the run the achieved throughput (P-Control black 
curve) remains inside the green intent band, showing that the LLM meta-
controller adjust flexibly the performance of P-Control across channel 
variability.
Ablation on memory length. Removing the memory forces the LLM to ex-
plore blindly and increases the number of LLM invocations as we discuss 
in evaluation Section 5.1.2. Expanding the memory beyond ten entries 
yields no high additional accuracy but pushes LLM latency above the 1
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Fig. 4. Throughput under a fluctuating channel (MCS 28 → 24 → 14 → 28). The green band marks the intent range. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

sec near-RT budget. A ten-entry window therefore strikes the best bal-
ance between knowledge retention and computational cost.

3.2.2.  Why a PID inner loop? Comparison with traditional controllers
Fig. 4 benchmarks five candidate controllers under the same 

variable-channel trace, including Bayesian optimization and reinforce-
ment learning (RL) methods. The curves motivate our choice of a Pro-
portional controller as the inner loop that the LLM meta-optimizer tunes. 
Bayesian optimization (orange, Fig. 4a) explores aggressively; the result-
ing large steps overshoot the intent and create visible oscillations. More-
over, each probe requires a posterior update, which makes the algorithm 
slower in time. Q-learning, a widely used RL technique, (red dashed) con-
verges when the channel is stationary (MCS 28-24) but must re-explore
after the drop to MCS14, producing a performance dip-unacceptable 
for real-time control where channel conditions can change every frame. 
Stateless (blue) and stateful (purple) standalone LLMs track the intent 
without oscillation, yet their 100–1000 ms inference latency makes them 
unsuitable for a sub-ms scheduler loop. Fig. 4b confirms more clearly 
that both LLM variants, although stable and accurate, they lag behind 
the numeric P-Control base line (black).

The following arguments consolidate our selection of P-Control for 
the Type I symbiosis with a hypervisor LLM. (i) Robust & lightweight. For 
a first-order plant (resource-block allocation to throughput) a propor-
tional controller is the minimal structure that guarantees closed-loop 
stability [39]. It is model-free, requires no training, and executes in 10−4
ms on our radio, leaving ample headroom beneath the 5 ms air-interface 
delay. (ii) Single hyper-parameter. Its only sensitivity is the gain 𝐾𝑝. This 
makes it ideal for a symbiosis in which an LLM can focus on one continu-
ous tuning knob. (iii) Natural division of labor. The inner loop (P-Control) 
delivers sub-ms numerical precision; the LLM supplies zero-touch gran-
ular adaptive control, adjusting 𝐾𝑝 whenever the KPI 𝜄 signals sluggish 
convergence (Section 3.2.1). The resulting hybrid keeps the best of both 
worlds: the speed of control theory and the flexibility of large-scale rea-
soning.

3.3.  Type II symbiosis for multi-Agent SLA negotiations

A central aspect of multi-agent systems (MAS) is negotiation, often 
modeled as a distributed optimization problem in which multiple agents 
must arrive at a consensus [40,41]. From a game-theoretic perspective, 
an optimal consensus is a Pareto-efficient Nash Equilibrium (NE) that 
balances both individual and collective objectives. Nash Equilibria rep-
resent stable consensus points where no agent can unilaterally improve 
its outcome. However, when LLM agents engage in negotiations, issues 
such as hallucinations or non-cooperative (overly greedy) behaviors can 
disrupt the process, shifting the NE away from Pareto efficiency. Fig. 5 
illustrates a multi-tenant MAS topology built around a central mediator, 
typically operated by the MNO, which guides negotiations toward fair, 
cooperative, and Pareto-efficient equilibria.

Fig. 5. Multi-Tenant Negotiation Topology where multiple agents (tenants) ne-
gotiate towards an SLA consensus guided by a network mediator (MNO). The 
multi-round negotiations take into account the collective objectives to converge 
on a Pareto-optimal SLA.

Fig. 6 illustrates a Type II agent designed for multi-tenant SLA nego-
tiations. The agents negotiate on finding the Pareto-optimal SLA, using 
a standardized structure, without loss of generality, consisting of two 
parts: (a) the proposed SLA and (b) the decision reasoning in natural 
text. This way, the SLA proposal (e.g. RAN throughput) is supported 
by detailed reasoning for LLM decision-making interpretability, which 
considers individual and collective objectives. Each agent merges the 
human operator intent (from tenants or MNO), the messages of other 
agents, and the negotiation chat history to a unified intent (𝑖𝑡) to take a 
decision.

Optimization Algorithm. A side-car optimizer (in), extracts the nu-
merical SLA values (e.g. throughput) and runs a gradient-descent (GD) 
algorithm modeling the specific topology set up. Then, it calculates a 
confidence SLA interval (e.g. 60–70 Mbps), where the Pareto-optimal 
value lies with a degree of confidence (e.g. 95%). Utility Functions. The 
algorithm models the topology, with each agent having an individual 
utility function:

𝑈𝑖(𝑥𝑖) = −𝛼𝑖(𝑥𝑖 − 𝑑𝑖)2, (4)

where 𝑑𝑖 is the agent’s desired SLA and 𝛼𝑖 > 0 measures sensitivity to 
deviations. The mediator maintains a global utility function:

𝑈0(𝑥1,… , 𝑥𝑛) = −𝛾
𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑥̄)2 − 𝛽

(

𝑥̄ − 𝑥target
)2, (5)

where 𝑥̄ = 1
𝑛
∑𝑛

𝑖=1 𝑥𝑖, 𝑥target is the mediator’s preferred SLA, and 𝛾, 𝛽 > 0
are weighting factors for consensus and alignment to 𝑥target, respec-
tively.
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Fig. 6. Type II Symbiotic Agent for SLA Negotiations: Intent Prompt is merged with the messages of the agents in the current negotiation round along with the chat 
history to unified intent (𝑖𝑡) to be provided to the LLM. A side-car optimization algorithm (in) extracts the proposed SLA values calculating and adding an SLA 
confidence interval to the final intent (𝑖′𝑡) to constraint the uncertainty and steer the LLM negotiations (𝜃) towards a Pareto-optimal solution.

Optimization Formulation. We combine these utilities into a single ob-
jective to maximize:

max
𝑥1 ,…,𝑥𝑛

𝑛
∑

𝑖=1
𝑈𝑖(𝑥𝑖) + 𝜆𝑈0(𝑥1,… , 𝑥𝑛), (6)

where 𝜆 balances individual vs. global objectives. Since each 𝑈𝑖 and 𝑈0 is 
concave in the {𝑥𝑖}, their sum is also concave, making this optimization 
well-behaved under mild assumptions.

Gradient-Based Update. We iteratively apply gradient descent to the 
negative of our objective. Each agent 𝑖 updates 𝑥𝑖 by:

𝑥(𝑘+1)𝑖 = 𝑥(𝑘)𝑖 − 𝜂
[

2 𝛼𝑖
(

𝑥(𝑘)𝑖 − 𝑑𝑖
)

+ 2 𝛾
(

𝑥(𝑘)𝑖 − 𝑥̄(𝑘)
)

+ 𝛽
(

𝑥̄(𝑘) − 𝑥target
)

]

,

(7)

where 𝜂 > 0 is the learning rate, and we clamp 𝑥𝑖 to [0, 100] as the SLA 
range. If the system satisfies max𝑖|𝑥

(𝑘)
𝑖 − 𝑥̄(𝑘)| < 𝜖, we declare consensus 

convergence and return the average 𝑥̄(𝑘).
Empirical Validation and Confidence Intervals. To assess the robustness 

of the solution, we perform 𝑅 independent optimization runs, each with 
perturbed initial demand values {𝑑𝑖}. In each run 𝑟 = 1,… , 𝑅, we obtain 
a final consensus value 𝑥̂∗𝑟 . From these, we compute the sample mean 𝑥∗
and standard deviation 𝑠, forming a 95% confidence interval:
𝑥∗ ± 1.96 𝑠

√

𝑅
. (8)

This interval reflects the variability in consensus outcomes due to 
uncertainty in initial conditions. It serves as a statistical estimate of the 
true optimal SLA, and is used to guide the LLM agents. It promotes con-
vergence to values close to the Pareto-optimum with high reliability and 
thus improving the decision robustness in out-of-distribution bids.

This interval is appended to the unified intent 𝑖𝑡 forming a bounded 
intent (𝑖′𝑡). This symbiotic synergy provides to the LLM the appropriate 
context, bounding the SLA uncertainty and allowing it to consolidate an 
optimal final decision.

3.3.1.  Uncertainty bounding: Confidence intervals interaction with LLMs.
Fig. 7 shows how the single, millisecond-scale optimization step 

(in) pre-shapes an entire SLA-negotiation game. Immediately after the 
tenants and the MNO-mediator submit their intent prompts, the initial 
numeric claims are extracted, producing the vector 𝐱(0) = [𝑥(0)1 ,… , 𝑥(0)𝑛 ]. 
The side-car optimizer runs the gradient scheme of Eq.  (7) for 
𝑅 = 100 independent restarts, each seeded with a jittered copy of 
𝐱(0). From the resulting sample distribution it computes a mean 𝑥∗
and a 95% confidence interval  = [𝐿,𝑈 ] Eq.  (8). The whole batch 
completes in <1 ms on a commodity CPU. The interval  is appended 
to the prompt of every LLM agent, prefixed by a short instruction: 

Numerical guard-rail: Offer an SLA strictly within [𝐿,𝑈 ].
If you propose a value outside this interval, justify
the trade-off explicitly. 

 

.
Agents now exchange natural-language proposals. Any numeric bid 

must lie inside [𝐿,𝑈 ]; otherwise the message must include a clear justifi-
cation. This rule throttles overly greedy or hallucinated bids while leav-
ing higher-level reasoning-and therefore fairness, persuasion, or strate-
gic concessions-fully under LLM control. In our experiments the parties 
converge in two to five rounds (∼10-48 s wall-clock time).
Remark. The interval can be recomputed after every round-yielding a 
tighter bound at the cost of extra CPU time-but a single pre-negotiation 
pass is sufficient for all scenarios tested in this paper. This uncertainty-
bounding mechanism ensures that numerically precise tasks stay well-
behaved, while the LLMs remain responsible for the rich, explainable 
reasoning that ultimately convinces all parties to accept a common SLA.

3.3.2.  Why a gradient descent side-car optimizer?
Fig. 8 contrasts two negotiation games: (a) stand-alone LLM agents 

and (b) LLM agents steered by the confidence interval  computed by 
our side-car optimizer. Without  (Fig. 8a) the agents converge cooper-
atively yet stabilize outside the Pareto-optimal target. With  (Fig. 8b) 
every bid remains inside the shaded band and the process terminates 
near the optimum.

Below we explain why a simple GD solver is the most suitable engine 
for producing that bound. (i) Problem structure. The joint objective in 
Eq. (7) is the sum of concave utilities 𝑈𝑖(⋅) and a concave mediator regu-
larizer 𝑈0(⋅); therefore the optimization landscape is strictly concave and 
admits a unique maximizer [42]. For such problems deterministic first-
order GD converges geometrically [43] and does not require second-
order information or black-box sampling. (ii) Predictable and lightweight.
The optimizer touches a single scalar variable per agent, so a full GD pass 
costs (𝑛) arithmetic operations and completes in <1ms on a commod-
ity CPU (Section 5.2.3). This deterministic runtime is crucial: the bound 
must be available before the first LLM round and must not enlarge the 
near-RT budget dictated by language-model inference (≥100ms). (iii)Di-
rect link to statistical uncertainty. Running 𝑅 = 100 independently jittered 
restarts yields an empirical distribution {𝑥̂∗𝑟 } from which we derive the 
95% confidence interval . GD’s negligible run-time makes this Monte-
Carlo style bootstrap feasible at each game initialization2. (iv)Compati-
bility with LLM prompting. The optimizer returns only two numbers, 𝐿 and 

2 Recomputing the interval every round is possible (see remark in Sec-
tion 3.3.1) but was unnecessary in all test cases, and could be explored in the 
future.
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Fig. 7. Three negotiation Games using a pre-negotiation pipeline that bounds numerical uncertainty for all LLM agents. A light-weight optimizer computes a 
confidence interval  = [𝐿,𝑈 ] for the Pareto-optimal SLA and injects it into the prompt of every agent (including the mediator) before the first dialogue round. 
Subsequent bids must stay within ; natural-language argumentation is unconstrained. The game ends when the spread of the bids shrinks below an 𝜖-wide band.

Fig. 8. Multi-Agent negotiations employing SLA confidence intervals for reducing the agents’ decision uncertainty converging towards a Pareto-optimal solution.

𝑈 , which fit cleanly into a single guard-rail instruction (‘‘Offer an SLA 
strictly within [L,U]’’). This keeps the prompt length constant and 
avoids the chain-of-thought leakage that larger numeric payloads can 
cause in LLMs.

Future Notes. Although first-order GD best fits the present study’s 
real-time and single-dimension setting, we recognize that more sophis-
ticated optimizers could unlock additional capabilities: (i) Reinforcement 
Learning with Human Feedback (RLHF). Policy-gradient methods such 
as proximal policy optimization (PPO) can learn nuanced, preference-
aligned bargaining strategies and might outperform fixed heuristics 
when the negotiation objective spans multiple, non-convex dimensions 
(e.g. QoS and carbon footprint). Their ability to incorporate human 
reward signals could make the mediator more transparent and user-
controllable. (ii) Bayesian Optimization. For future scenarios involving 
many coupled SLA variables, Bayesian search would provide principled 
exploration - exploitation trade-offs and native uncertainty quantifica-
tion. Gaussian-process posteriors could also feed richer priors back into 
the LLM prompt, beyond the simple interval used here. Both approaches, 
however, come with practical costs-substantial sample requirements 
for RLHF and cubic-time kernel updates for Bayesian optimization-that 
could exceed the 2–4 round budget and sub-second delay targets of our 
current prototype. Investigating these richer, but more expensive, opti-
mization layers therefore remains a promising avenue for future work 
once stricter latency constraints are relaxed or more compute is avail-
able at the network edge.

Integrating Advanced Reinforcement Learning. While deterministic 
optimizers such as GD and P-controllers are ideal for the strict 
sub-millisecond budgets of our inner-loop agents, more expressive 
reinforcement-learning (RL) methods offer complementary benefits. On-
policy algorithms like PPO are widely used in RL and RLHF pipelines 

due to their robustness and simplicity, yet their reliance on a single be-
haviour policy makes them relatively sample-inefficient [44]. Off-policy 
methods can improve sample efficiency, but they require additional 
memory and incur higher computational overhead [45]. These trade-
offs imply that any integration of RL into network control must account 
for both latency constraints and data-collection costs.

In radio-access-network tasks with severe real-time requirements, 
on-policy methods may still be suitable. For example, modulation and 
coding selection must operate under strict latency and computational 
budgets; here, a PPO controller could run in a slower outer loop to
refine the high-level negotiation policy, while the inner loop remains 
governed by a lightweight optimizer. Conversely, tasks with more re-
laxed timing (e.g., antenna tilt steering or multi-agent SLA bargaining) 
can tolerate the larger memory footprint of off-policy methods and ben-
efit from improved sample-efficiency.

To mitigate sample-efficiency issues, we propose training RL policies 
offline using logged, simulated or digital twin traces rather than inter-
acting with the live network [46]. Offline RL and distributional RL tech-
niques enable learning from static datasets while handling uncertainty 
and risk. Once trained, the PPO policy can be distilled into a compact 
form and injected as a side-car to the LLM, allowing near-real-time infer-
ence. Incorporating human feedback or preference data (RLHF) during 
this offline phase can further align negotiation strategies with operator 
goals, though RLHF inherits the sample-efficiency limitations of PPO.

Ultimately, enriching symbiotic agents with advanced RL layers 
would enable them to handle multi-objective, non-convex problems and 
dynamic bargaining scenarios that simple optimizers cannot address. By 
separating timescales-maintaining fast, deterministic control in the in-
ner loop while periodically updating policies via PPO in the outer loop-
and by leveraging offline training and policy distillation, we can over-
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Fig. 9. Testbed for Next-G Open and AI-RAN Architectures. Type II symbiotic 
agents negotiate SLA consensus in the non-RT tier, while Type I agents enforce 
the SLA intents in real-time.

come current latency and sample-efficiency challenges and unlock more 
intelligent and autonomous symbiotic agents.

4.  Next-generation AGI architecture

We experiment on a 5G testbed, shown in Fig. 9, working on a novel 
architecture to contribute on next-generation (Next-G) Open and AI 
RAN designs. It is built using OpenAirInterface (OAI) [47] for the 5G 
Core, RAN and UEs, FlexRIC [48] for the RIC, and custom implementa-
tions for the rest of the components. The testbed extends the Open RAN 
design, adding dedicated controllers for each network tenant, thus en-
abling collaborative automation on the shared 5G RAN. The competing 
tenant controllers negotiate using the Type II agents through a new in-
terface, and our proposal, for resolving Conflict and Collaboration (CC). 
The mediation of the negotiations is done by the Service, Management 
and Operation (SMO) controller, belonging to the MNO, with a dedi-
cated module, named service operation. The latter comprises the Type 
II mediator agent. After consensus, Type I agents enforce the SLA to the 
network. Since these agents unlock sub-millisecond resource allocation, 
employing control optimizers, they can be placed from the non-real-time 
(non-RT) RIC at the rApp level, down to near-RT RIC xApps, and even 
internally in the RAN at the level of dApps [49].

Fig. 10 presents the sequence diagram of the communication be-
tween the subsystems in three distinct phases. In parallel, Table 3 shows 
the details of the exchanged messages. In the first phase, the human 
operators (tenants) express their intents to their dedicated controller. 
Here, the two tenants, belonging to a vertical and a service provider 
(SP), have conflicting interests. The former demands to minimize the 
OPEX and thus reduce the resource utilization. On the contrary, the lat-
ter pushes for maximum Quality of Service (QoS) and hence increased 
resource utilization. The network operator (MNO) engages the service 
operator residing in the SMO to promote fairness.

In the second phase, the Type II agents of the tenant controllers are 
steering the process. They negotiate on the throughput SLA mediated by 
the SMO in multiple rounds. Fig. 11 presents a snapshot of the negotia-
tions between three tenants and the SMO mediator as a visual reference. 
After a few iterations, the interests of all stakeholders are aligned at 54
Mbps. In the third phase, the consensus SLA is enforced as a slicing 
policy to the RIC dedicated to the shared RAN. There a Type I agent en-
forces the SLA throughput in a closed-loop manner by monitoring and 
controlling the PRB allocation.

5.  Evaluation

To evaluate the agents, we employ both large and smaller language 
models, including the OpenAI gpt-4o API [50] for LLMs, and a plethora 

Table 3 
Detailed information of the exchanged messages between agents and sub-
systems. A major part of the network decision-making is automated by the 
agents following human intents.
 ID  Actor  Intent Details
 1  Human  Tenant 1: {"Minimize OPEX"}
 2  Human  Tenant 2: {"Maximize QoS"}
 3  Human  SMO: {"Find a Fair SLA."}
 4  Agent II  Tenant 1: {SLA: 10Mbps, Reasoning: "For Minimum OPEX."}
 5  Agent II  Tenant 2: {SLA: 90Mbps, Reasoning: "For Maximum QoS."}
 6–7  Agent II  SMO: {SLA: 54Mbps, Reasoning: "Balance all needs."}
 8  Agent II  Consensus: {Slice Throughput: 54Mbps}
 9  System  Slice KPIs: {"Throughput": 30Mbps, "PRB": 50%}
 10  Agent I  New Slice Policy: {"PRB": 70%}

of SLMs from different vendor families, such as mistral [51], gpt-4o-
mini [52], meta/llama [53], alibaba/qwen [54], google/gemma [55] us-
ing the Ollama framework [56] to deploy them. LLMs are tested for 
cloud deployments, while SLMs target resource-constrained edge sce-
narios [23]. The evaluation is divided into two parts: (1) Type I: Agen-
tic RAN Control, (2) Type II: Multi-Agent SLA Negotiations. The for-
mer evaluates LLMs as meta-optimizers of the underlying P-control al-
gorithm. The latter assesses LLMs as multi-tenant SLA negotiators for 
convergence to a Pareto-optimal consensus within specified confidence 
intervals.

5.1.  Type I agentic RAN control

5.1.1.  Mobility, channel variability, and agent designs
Our testbed employs mobility utilizing channel quality indicator 

(CQI) patterns of 78 moving vehicles [27,57,58]. We extract and map 
the CQI values to MCS ones, based on the 3GPP-defined CQI Table [59]. 
We enforce them to the RAN using an xApp connected to our RIC. The 
variability in the total RAN downlink throughput, with connected UEs, 
is shown in Fig. 12a. As the vehicles pass through a geographical lo-
cation with low coverage the throughput plunges from 120 Mbps to 30
Mbps (due to MCS drop). The operator intent is a stable SLA of 20 Mbps 
across the whole vehicle route. To achieve this, the RAN agent needs to 
adapt the resource allocation (slice PRBs) to channel variability. The in-
tent tolerance is 5 Mbps, with an acceptable SLA interval between 15–25 
Mbps.

Agentic Design. We evaluate different agent designs. (i) A stan-
dalone P-Control algorithm is tested as the baseline state-of-the-
art including a well-tuned (𝑘𝑝 ∶ 0.75) and an untuned configuration 
(𝑘𝑝 ∶ 0.10) according to our testbed configuration. (ii) A standalone 
LLM/SLM and (iii) a Type I symbiotic agent (Section 3.2) are also
tested.

RAN Snapshots. Fig. 12 illustrates RAN snapshots of the agents as a 
visual reference. In Fig. 12a no agent is employed showing throughput 
fluctuations during the vehicle route. Next Fig. 12b and c illustrate the 
standalone P-control with the untuned and tuned configuration respec-
tively, while Fig. 12d demonstrates the symbiotic agent utilizing the 
Mistral-7b SLM. In the last one, the symbiotic agent enforces the intent 
of 20 Mbps efficiently across the route, matching the performance of the 
well-tuned P-Control (Fig. 12c), showing an effective hyperparameter 
tuning of the underlying P-Control by the SLM.

Throughput Boxplots. Fig. 13 collects the results of the agents across 
all the 78 vehicle routes and presents them as throughput box-plots 
demonstrating the deviation from the intent interval. Noticeably, sym-
biotic agents with LLM or SLM perform comparably with the tuned P-
Control, while standalone LLMs perform poorly. This proves that stan-
dalone LLMs are not the right fit for real-time resource allocation in 
variable environments. Instead, they excel at a higher abstraction level 
as meta-optimizers of control algorithms.
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Fig. 10. Sequence Diagram presents the communication of the agentic components. Two agent-driven loops negotiate on multi-tenant SLA and enforce it through 
RAN resource allocation respectively.

Fig. 11. Snapshot of Multi-Agent Negotiations. Three agents belonging to different tenants negotiate on the throughput SLA guided by the network mediator towards 
a Pareto-optimal solution. The negotiations are facilitated by a template that includes the desired SLA value along with detailed reasoning for the models to provide 
extensive interpretability of their decisions.
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Fig. 12. Snapshots of RAN throughput using different agentic designs to enforce an SLA intent of 20 MBps with 5 Mbps tolerance during moving vehicle routes. The 
channel quality fluctuates in time makes the PRB allocation a complex adaptive problem.

Fig. 13. Box-plot of the different methods on enforcement of 20 Mbps intent with 5 Mbps tolerance at the fluctuating RAN channel.

Fig. 14. Comparison with traditional controllers, contextualizes the decision for a Type I symbiotic design. Employment of gpt-4o..

5.1.2.  Benchmarking traditional controllers and symbiotic designs
Figs. 14a-b benchmark more traditional controllers contextualizing 

appropriately the advantages of the symbiotic method to the current 
state-of-the-art. They quantify three aspects of each controller: (i) it-
erations to converge (blue box-plots, left axis), (ii) root-mean-squared 
error (RMSE, caption), and (iii) inference latency (red or black mark-
ers, right axis). In Fig. 14a P-Control converges in 2.2 iterations, with 
the lowest RMSE (7.7Mbps) and a 1𝜇s run time-but it needs manual 𝐾𝑝
tuning. Bayesian optimization explores aggressively: 5.3 iterations on av-
erage, a large RMSE (38.5Mbps), and highly variable latency from 0.4 

to 4 seconds (secs); the oscillation renders it unusable for real-time slic-
ing. Q-learning copes in static conditions but re-explores after each MCS 
change, yielding 5 iterations and 26.8Mbps RMSE. Although inference 
is fast (13𝜇s), the instability phase violates SLA guarantees. Stateless
gpt-4o reaches the target in 2.3 iterations but at 0.47 secs latency and 
17.5Mbps RMSE. Stateful gpt-4o (150 past actions, big memory) drops 
to 1.7 iterations and 8.8Mbps RMSE, yet latency climbs to 1.1 secs.

Why Symbiosis? The numbers reveal a gap: P-Control is fast and accu-
rate if someone keeps the gain tuned; LLMs are zero-touch but too slow 
for sub-ms loops. A Type I Symbiotic Agent bridges this gap by letting 
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Table 4 
Convergence stability and overhead of Type I agents. Rows are sorted by 
RMSE (ascending). Design: symbiotic (bold), standalone LLM/SLM, and P-
Control baselines (red). Metrics shown: RMSE, iterations to converge, wall-
clock convergence time, LLM/SLM inference latency, and GPU VRAM foot-
print.

 Model  Design  RMSE ↑  Con. Iters  Con. Time  Inference  VRAM
 gpt-4o-mini  symbiotic 4.3 𝑀𝑏𝑝𝑠 1.7 9 𝑚𝑠 ≈ 450 𝑚𝑠 ≈ 140.0 𝐺𝐵
 llama3.2:3b  symbiotic 4.4 𝑀𝑏𝑝𝑠 1.5 8 𝑚𝑠 82 𝑚𝑠 2.0 𝐺𝐵
 qwen2:7b  symbiotic 4.6 𝑀𝑏𝑝𝑠 2.0 10 𝑚𝑠 133 𝑚𝑠 4.4 𝐺𝐵
 mistral-7b  symbiotic 4.4 𝑀𝑏𝑝𝑠 2.0 10 𝑚𝑠 317 𝑚𝑠 5.0 𝐺𝐵
 gpt-4o  symbiotic 4.5 𝑀𝑏𝑝𝑠 1.6 8 𝑚𝑠 ≈ 450 𝑚𝑠 ≈ 3500 𝐺𝐵
 P-Control  tuned 𝟒.𝟓 𝐌𝐛𝐩𝐬 𝟐.𝟎 𝟏𝟎 𝐦𝐬 ≈ 𝟎 𝟎.𝟎 𝐆𝐁
 llama3.3:70b  symbiotic 4.6 𝑀𝑏𝑝𝑠 1.6 8 𝑚𝑠 860 𝑚𝑠 42.0 𝐺𝐵
 llama3.1:8b  symbiotic 4.8 𝑀𝑏𝑝𝑠 1.5 8 𝑚𝑠 135 𝑚𝑠 4.9 𝐺𝐵
 llama3.2:1b  symbiotic 11.8 𝑀𝑏𝑝𝑠 59.5 300 𝑚𝑠 69 𝑚𝑠 1.3 𝐺𝐵
 P-Control  untuned 𝟏𝟐.𝟎 𝐌𝐛𝐩𝐬 𝟔𝟏.𝟎 𝟑𝟎𝟓 𝐦𝐬 ≈ 𝟎 𝟎.𝟎 𝐆𝐁
 gpt-4o  standalone 12.8 𝑀𝑏𝑝𝑠 1.8 1810 𝑚𝑠 ≈ 450 𝑚𝑠 ≈ 3500.0 𝐺𝐵
 llama3.3:70b  standalone 13.7 𝑀𝑏𝑝𝑠 2.0 1720 𝑚𝑠 860 𝑚𝑠 42.0 𝐺𝐵
 mistral-7b  standalone 20.5 𝑀𝑏𝑝𝑠 1.9 580 𝑚𝑠 317 𝑚𝑠 5.0 𝐺𝐵
 gemma2:2b  symbiotic 21.7 𝑀𝑏𝑝𝑠 45.6 228 𝑚𝑠 98 𝑚𝑠 1.6 𝐺𝐵
 llama3.1:8b  standalone 48.0 𝑀𝑏𝑝𝑠 3.4 476 𝑚𝑠 135 𝑚𝑠 4.9 𝐺𝐵

the P-controller handle micro-second actuation while the LLM retunes 
𝐾𝑝 only when necessary (Section 3.2.1).

In Fig. 14b we benchmark a Type I symbiotic agent with different 
memory components. Stateless LLM needs 3.1 𝐾𝑝 tuning attempts (sd 
2.0). Small memory (10 past actions) improves to 2.7 attempts (sd 1.0) 
with no extra latency (≈ 0.47 secs). Large memory (100) hits 2.0 at-
tempts but at 1.1 secs latency. A 10-entry memory therefore offers the 
best accuracy-speed trade-off. In all cases the underlying P-control RMSE 
stays <10Mbps, proving that the LLM explores only the safe part of the 
𝐾𝑝 space.

Overall, traditional controllers (Bayes, Q-learning) either oscillate or 
re-explore under fast-changing channels. Standalone LLMs deliver zero-
touch and flexible accuracy but incur hundreds of milliseconds of delay. 
Our P-Control and LLM symbiosis keeps the 1 𝜇s actuation path intact 
while exploiting the LLM’s reasoning to retune a single 𝐾𝑝 knob at 0.3-
0.5 secs intervals, achieving SLA-level stability with minimal overhead.

5.1.3.  Cross-model benchmarking of agent stability and overhead
Table 4 presents a detailed benchmarking across all model ven-

dor families (OpenAI-GPT, Llama-3, Qwen-2, Gemma-2, Mistral) with 
more insights on the convergence stability and overhead. The results are 
sorted in an ascending order of the RMSE, the metric for quantitative 
error and stability measurement of the convergence process. The itera-
tions and time convergence metrics demonstrate the average number of 
iterations along with the time in milliseconds needed for each method to 
converge respectively. The video random access memory (VRAM) met-
ric in gigabytes demonstrates the total amount of VRAM overhead of 
each method on the GPU. These measurements consider a 5 ms net-
work reaction time in our set up (from each PRB allocation to the actual 
throughput change).

The symbiotic design dominates all evaluations. (i) Accuracy. All 
symbiotic variants except the tiny 1-b parameter llama reduce RMSE 
to ≈4.3 - 4.8 𝑀𝑏𝑝𝑠, indistinguishable from a hand-tuned P-controller 
(4.5Mbps).3 (ii) Convergence speed. The LLM-driven retune brings the 
inner loop to the target in 1.5-2 iterations, which translates to an 8-
10 ms wall-clock convergence time thanks to the sub-ms actuation of P-
control. (iii) Latency budget (O-RAN taxonomy).  Small/medium models 
(3-8 B) add only 82-135 ms inference delay-squarely inside the near-RT 
RIC window (10-1000 ms).  Large models (≥ 40 B) push latency towards 
one second and are therefore suited to the non-RT tier, but still main-
tain the same RMSE when used symbiotically. Standalone LLMs exceed 

3 The intent band in our experiments is ±5 Mbps; all symbiotic models stay 
inside that bound.

1720 𝑚𝑠 and cannot serve the scheduler loop. (iv) Resource efficiency.
A quantized llama-3-3b achieves tuned-P accuracy while fitting in 2 𝐺𝐵
of GPU VRAM-99.9 % smaller than a float-16 gpt-4o deployment. This 
allows a single edge GPU to co-locate the supervisory LLM next to the 
near-RT RIC or even at the dApp level next to the radio. (v) Baseline con-
trast. Untuned P-control (red row) drifts to 12 𝑀𝑏𝑝𝑠 RMSE and requires 
∼ 60 iterations; symbiosis closes that gap automatically with negligible 
extra compute, proving that the LLM supplies the missing zero-touch 
adaptivity.

Overall, coupling an ultra-fast numeric kernel with a light-footprint 
SLM yields real-time sub-ms actuation and near-RT cognitive tuning 
within a few hundred milliseconds-something neither standalone con-
trollers nor standalone language models can offer. Future work will ex-
plore fine-tuning sub-3 B models to push VRAM below 1 𝐺𝐵 while re-
taining the ≤ 5 Mbps accuracy observed here.

5.2.  Type II multi-agent SLA negotiations

5.2.1.  Agentic design and NLG evaluation methodology
For the use case of multi-tenant SLA negotiations we evaluate differ-

ent agent designs. (i) We use the standalone gradient-based optimization 
algorithm discussed in Section 3.3 as the baseline state-of-the-art. (ii) A 
standalone LLM/SLM and (iii) a Type II symbiotic agent (Section 3.3) 
are also tested. We conduct a large number of negotiation games emu-
lating large variability in the tenants’ SLA intents ranging from 0 to 100
Mbps scaling also to multiple agents.

We carefully evaluate the quality of the agents’ reasoning in their 
natural language generation (NLG). The NLG evaluation is an arduous 
task, and therefore recruiting human annotators for model assessment 
is still considered the best approach. In parallel, novel NLG evaluation 
approaches use LLM-based annotators for large-scale automated testing 
[60,61] showing high alignment with human evaluators. This lead us to 
employ both human and automated LLM annotators to assess the NLG 
quality of the agents.

Table 5 shows the evaluation results of three human annotators re-
cruited from our research lab to assess 50 negotiation samples. Fur-
ther, Table 6 shows the automated LLM evaluation employing gpt-4o 
as a backend on 300 negotiations samples. Both evaluation methods are 
structured in the same manner, testing the agents on four key principles, 
including coherence, fairness, alignment and harmlessness with a score 
ranging from 0 to 5 following latest research trends [62,63]. (i) Coher-
ence stands for the logical flow and clarity of the dialogue, ensuring that 
each response follows naturally with correct grammar and structure. (ii) 
Fairness refers to the agents’ ability to engage respectfully and without 
bias, making balanced and non-manipulative proposals. (iii) Alignment
captures how well the agents stay on-task and adhere to the negotiation 
goals and optimization constraints. (iv) Harmlessness ensures that the 
dialogue remains free from toxic, offensive, or manipulative content, 
including implicit bias or harmful stereotypes. After conducting both 
human and LLM evaluations, we calculate their correlation using Spear-
man’s 𝜌 (0.723) and Kendall’s 𝜏 (0.585) [64,65]. These high correlation 
values indicate strong alignment between human and LLM judgments, 
thereby strengthening the validity of the evaluation results.

5.2.2.  NLG Benchmarking: Standalone vs. Symbiotic
Tables 5,6 benchmark models from multiple vendor families demon-

strating three main insights: (i) Symbiosis consistently lifts every score di-
mension. Across all model sizes the confidence-interval raises the Align-
ment metric by 1.2–2.4 points and improves the overall score by 0.3–1.1. 
(ii)Small open-source models now rival proprietary giants. A symbiotic llama-
70b attains the same human score (4.4 ± 0.4, Table 5) as stand-alone gpt-
4o but with an order-of- magnitude smaller footprint (42 GB vs. 3.5 ter-
abytes (TB)). The 72-b qwen model shows a similar gain, and even the 
32-b version crosses the 3.9-point threshold when symbiotic (Table 6). 
(iii)Best-in-class performance is achieved with symbiosis. gpt-4o topped by 
the optimizer obtains the highest human score (4.9 ± 0.1, Table 5) and 
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Table 5 
Three Human Annotators Evaluate 50 Samples of Multi-Agent (Type II) Ne-
gotiations.

 Model  Design  Coherence  Fairness  Alignment  Harmlessness  Score ↓
 gpt-4o  symbiotic 5.0 ± 0.0 5.0 ± 0.0 4.9 ± 0.3 5.0 ± 0.0 4.9 , 0.1

 llama3.3:70b  symbiotic 4.3 ± 0.6 4.3 ± 0.6 4.7 ± 0.6 4.3 ± 0.6 4.4 ± 0.4
 gpt-4o  standalone 5.0 ± 0.0 4.2 ± 0.8 3.2 ± 1.3 5.0 ± 0.0 4.4 ± 0.5
 qwen2:72b  symbiotic 4.3 ± 0.6 4.3 ± 0.6 3.7 ± 0.6 4.3 ± 0.6 4.2 ± 0.3
 gpt-4o-mini  symbiotic 3.3 ± 0.5 4.0 ± 0.5 4.6 ± 0.5 4.0 ± 0.5 4.0 ± 0.3
 qwen2:72b  standalone 4.3 ± 0.6 4.3 ± 0.6 2.3 ± 0.6 4.3 ± 0.6 3.8 ± 0.3
 llama3.3:70b  standalone 4.3 ± 0.6 3.7 ± 0.6 2.3 ± 0.6 4.3 ± 0.6 3.7 ± 0.3
 gpt-4o-mini  standalone 3.1 ± 0.3 3.6 ± 0.7 2.9 ± 0.9 3.8 ± 0.4 3.4 ± 0.4
 qwen2.5vl:32b  symbiotic 2.3 ± 0.6 2.7 ± 0.6 3.0 ± 1.0 3.7 ± 0.6 2.9 ± 0.1
 qwen2.5vl:32b  standalone 2.3 ± 0.6 3.3 ± 0.6 1.7 ± 0.6 3.3 ± 0.6 2.7 ± 0.4
 llama3.1:8b  symbiotic 1.5 ± 0.7 2.5 ± 0.7 3.5 ± 0.7 2.5 ± 0.7 2.5 ± 0.1
 llama3.1:8b  standalone 1.5 ± 0.7 2.5 ± 0.7 1.5 ± 0.7 2.5 ± 0.7 2.0 ± 0.1

Table 6 
LLM Annotators (gpt-4o) Evaluate 300 Samples of the Negotiations Following 
the GPTScore Approach. Correlation Between LLM and Human Rankings is 
calculated with Spearman’s 𝜌 ∶ 0.723 and Kendall’s 𝜏 ∶ 0.585 indicating strong 
alignment.

 Model  Design  Coherence  Fairness  Alignment  Harmlessness  Score ↓
 llama3.3:70b  symbiotic 4.3 ± 0.6 4.3 ± 0.6 5.0 ± 0.0 5.0 ± 0.0 4.7 , 0.3

 gpt-4o  symbiotic 4.6 ± 0.5 4.6 ± 0.5 4.6 ± 0.5 5.0 ± 0.0 4.7 ± 0.4
 qwen2:72b  symbiotic 4.0 ± 0.1 4.0 ± 0.1 3.7 ± 0.6 5.0 ± 0.0 4.2 ± 0.1
 gpt-4o-mini  symbiotic 4.1 ± 0.3 3.6 ± 0.7 3.8 ± 0.8 4.5 ± 0.5 4.0 ± 0.5
 gpt-4o  standalone 4.1 ± 0.3 4.1 ± 0.3 2.7 ± 0.7 5.0 ± 0.0 4.0 ± 0.3
 llama3.1:8b  symbiotic 3.5 ± 0.7 4.0 ± 0.1 3.5 ± 0.7 5.0 ± 0.0 4.0 ± 0.4
 qwen2.5vl:32b  symbiotic 3.7 ± 0.6 3.7 ± 0.6 3.7 ± 0.6 4.7 ± 0.6 3.9 ± 0.8
 llama3.3:70b  standalone 4.0 ± 0.1 4.0 ± 0.1 2.0 ± 0.2 5.0 ± 0.1 3.8 ± 0.1
 gpt-4o-mini  standalone 3.9 ± 0.3 3.3 ± 0.5 2.8 ± 0.4 4.3 ± 0.5 3.6 ± 0.3
 qwen2:72b  standalone 4.0 ± 0.0 3.7 ± 0.5 2.0 ± 0.1 4.7 ± 0.5 3.6 ± 0.2
 qwen2.5vl:32b  standalone 4.0 ± 0.1 3.7 ± 0.6 2.0 ± 0.1 4.7 ± 0.6 3.6 ± 0.3
 llama3.1:8b  standalone 2.5 ± 0.7 3.5 ± 0.7 2.0 ± 0.1 4.5 ± 0.7 3.1 ± 0.5

Table 7 
Error and resource footprint for Type II negotiation agents. Rows are sorted 
by MAE (ascending). Red=optimizer-only baselines, Green=edge-efficient 
symbiotic designs. Metrics: MAE across all rounds, number of negotiation 
rounds, total wall-clock time to consensus, single-round LLM/SLM inference 
latency, and GPU VRAM required.
 Model  Design  MAE ↑  Rounds  Converge  Inference  VRAM (GB)
 gpt-4o  symbiotic 0.6 𝑀𝑏𝑝𝑠 2.5 10.0 𝑠𝑒𝑐𝑠 ≈ 4.0 𝑠𝑒𝑐𝑠 ≈ 3500.0 𝐺𝐵
 llama3.3:70b  symbiotic 0.7 𝑀𝑏𝑝𝑠 2.0 23.4 𝑠𝑒𝑐𝑠 11.7 𝑠𝑒𝑐𝑠 42.0 𝐺𝐵
 qwen2:72b  symbiotic 0.9 𝑀𝑏𝑝𝑠 2.5 36.0 𝑠𝑒𝑐𝑠 14.4 𝑠𝑒𝑐𝑠 41.0 𝐺𝐵
 Grad-Descent  tuned 𝟎.𝟗 𝐌𝐛𝐩𝐬 𝟏𝟎.𝟎 ≈ 𝟎.𝟎 𝐬𝐞𝐜𝐬 ≈ 𝟎.𝟎 𝐬𝐞𝐜𝐬 ≈ 𝟎.𝟎 𝐆𝐁
 qwen2.5vl:32b  symbiotic 1.2 𝑀𝑏𝑝𝑠 3.5 31.9 𝑠𝑒𝑐𝑠 9.1 𝑠𝑒𝑐𝑠 21.0 𝐺𝐵
 gpt-4o-mini  symbiotic 1.2 𝑀𝑏𝑝𝑠 4.5 9.0 𝑠𝑒𝑐𝑠 ≈ 2.0 𝑠𝑒𝑐𝑠 ≈ 140.0 𝐺𝐵
 llama3.1:8b  symbiotic 1.3 𝑀𝑏𝑝𝑠 10.0 35.0 𝑠𝑒𝑐𝑠 3.5 𝑠𝑒𝑐𝑠 4.9 𝐺𝐵
 gpt-4o  standalone 9.0 𝑀𝑏𝑝𝑠 2.5 10.0 𝑠𝑒𝑐𝑠 ≈ 4.0 𝑠𝑒𝑐𝑠 ≈ 3500.0 𝐺𝐵
 qwen2.5vl:32b  standalone 9.7 𝑀𝑏𝑝𝑠 2.7 24.6 𝑠𝑒𝑐𝑠 9.1 𝑠𝑒𝑐𝑠 21.0 𝐺𝐵
 qwen2:72b  standalone 12.0 𝑀𝑏𝑝𝑠 3.3 47.5 𝑠𝑒𝑐𝑠 14.4 𝑠𝑒𝑐𝑠 21.0 𝐺𝐵
 llama3.3:70b  standalone 13.3 𝑀𝑏𝑝𝑠 3.0 35.1 𝑠𝑒𝑐𝑠 11.7 𝑠𝑒𝑐𝑠 42.0 𝐺𝐵
 gpt-4o-mini  standalone 14.0 𝑀𝑏𝑝𝑠 4.5 9.0 𝑠𝑒𝑐𝑠 ≈ 2.0 𝑠𝑒𝑐𝑠 ≈ 140.0 𝐺𝐵
 llama3.1:8b  standalone 18.5 𝑀𝑏𝑝𝑠 10.0 35.0 𝑠𝑒𝑐𝑠 3.5 𝑠𝑒𝑐𝑠 4.9 𝐺𝐵
 Grad-Descent  untuned 𝟐𝟐.𝟎 𝐌𝐛𝐩𝐬 𝟑𝟎𝟎𝟎.𝟎 ≈ 𝟎.𝟎 𝐬𝐞𝐜𝐬 ≈ 𝟎.𝟎 𝐬𝐞𝐜𝐬 ≈ 𝟎.𝟎 𝐆𝐁

the joint-best LLM score (4.7 ± 0.4, Table 6), indicating that numerical 
guard-rails enhance quality even for the most capable models.

Implications. Symbiotic negotiation agents are architecture-agnostic: 
the same two-number guard-rail boosts fairness, coherence, and-
crucially-the alignment of models ranging from 8b to 70b parameters, 
while allowing smaller models to run on a single ≤40 GB edge GPU. This 
widens the deployment envelope far beyond what standalone LLMs can 
offer.

5.2.3.  Stability & overhead benchmarking
Table 7 compares mean-absolute error (MAE) in throughput, nego-

tiation rounds to consensus, wall-clock convergence time, LLM/SLM 

inference latency, and GPU footprint. Red rows are the optimization 
baseline (gradient descent, tuned/untuned); green rows mark the two 
most edge-friendly symbiotic designs (llama-3-70b and qwen-2-72b, 
both ≤42 GB). The main observations are the following. (i) Symbiosis 
minimizes numeric error. Every symbiotic agent achieves sub-1.3 𝑀𝑏𝑝𝑠
MAE-a more than 8 times reduction over its standalone counterpart. gpt-
4o drops from 9.0 𝑀𝑏𝑝𝑠 to 0.6 𝑀𝑏𝑝𝑠; the 32-b Qwen variant falls from 
9.7𝑀𝑏𝑝𝑠 to 1.2𝑀𝑏𝑝𝑠. A poorly tuned optimizer, by contrast, explodes to 
22 𝑀𝑏𝑝𝑠 MAE (red "untuned" row), underscoring the need for the care-
ful confidence-interval tuning. (ii) Rounds remain low and predictable. All 
agents with high NLG scores (except llama-8b) converge in a fixed 2-5 
rounds, thanks to the framework’s parallel messaging. This keeps total 
wall-clock time within the 10 − 48 𝑠𝑒𝑐𝑠 non-RT envelope, dominated by 
LLM latency rather than negotiation logic. (iii) Edge deployment is prac-
tical. The llama-3-70b and qwen-2-72b symbiotic agents fit on a single 
48 𝐺𝐵 edge GPU (42∕41 𝐺𝐵) while matching gpt-4o’s accuracy. Smaller 
models (8 𝐵, 32 𝐵) drive VRAM down to ∼ 5–21 𝐺𝐵, trading a modest 
MAE increase for a 2-4× latency reduction. (iv) Standalone LLMs are nu-
merically brittle. Even state-of-the-art gpt-4o fails to stay within 5 𝑀𝑏𝑝𝑠
of the Pareto target when used without the optimizer, confirming that 
probabilistic text generation alone cannot guarantee SLA fidelity even 
with future LLM improvements. This establishes the symbiotic paradigm 
a necessity to close the gap towards AGI.

Scalability. Fig. 15 scales the negotiation game from 2 to 20 agents. Be-
cause messages are exchanged in parallel, all configurations converge 
in a fixed 𝐾=2–5 rounds, retaining the wall-clock of ∼10–48 secs. Cru-
cially, the confidence-interval guard-rail keeps the median error below 
1.3 𝑀𝑏𝑝𝑠 regardless of team size; without the optimizer the error grows 
to 10–22 𝑀𝑏𝑝𝑠 as the game becomes more crowded.

Overall, the confidence-interval side-car converts diverse language 
models into numerically trustworthy negotiators while keeping GPU and 
latency budgets compatible with high-level non-RT orchestration loops. 
The approach is architecture-agnostic and scales from ultra-large propri-
etary LLMs down to compact open-source models that fit comfortably 
on edge hardware.

6.  AGI-RAN demonstration: Vehicle mobility

The full framework with Type I and II agents is deployed on the 
testbed to demonstrate a use case of AGI-driven RAN control under 
highly fluctuating channels of moving vehicles. The RAN MCS vari-
ability during a vehicle route is shown in Fig. 16a, demonstrating an 
MCS plunge in the middle of the route (200–400 secs) due to low cover-
age. Three tenants share the RAN resources and negotiate utilizing their 
dedicated Type II agents on the optimal throughput SLA enforcement 
mediated by the SMO. Their initial intents are 100, 50, and 10 Mbps 
respectively, but they continuously adapt based on the current RAN ca-
pabilities and the collective objectives. Fig. 16b illustrates the SLA ne-
gotiations in different phases. The solution is compared to a static SLA 
enforcement of 55 Mbps (intent average) that does not employ the agen-
tic framework. Fig. 16c presents the final enforced throughput compar-
ing the collaborative with the static method, while Fig. 16d shows the 
real-time PRB adaptation of the RAN to align with the SLA consensus. 
The latter is fine-tuned by a Type I agent placed in the near-RT RIC at 
the xApps level.

Phase I: SLA Agreement. The tenants express their intents of 10, 50, 
100 Mbps, reaching to a consensus of 51 Mbps as a balance between user 
QoS and OPEX. The Type II agent reduces the PRB to 40%, as shown in 
Fig. 16d, avoiding PRB over-utilization.

Phase II: SLA Violation. At 200 secs the SLA is violated (Fig. 16c) 
as the MCS plunges (Fig. 16a). The RAN uses 100% of the PRB capacity 
(Fig. 16d) without reaching the SLA intent of 51 Mbps. Only a maximum 
of 30 Mbps is achievable under these conditions. Thus, the SMO triggers 
a new negotiation, where the tenants adjust their intents at 0, 20 and 
20 Mbps, with one of tenants demanding to switch off the RAN to save 
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Fig. 15. Large scale experimentation of LLM negotiations with different models, number of agents, and with the employment or absence of the optimizer’s SLA 
confidence interval. In every setting the optimizer contracts the error envelope by an order of magnitude.

Fig. 16. Collaborative AGI-RAN: Multi-Tenant SLA Consensus and Resource Allocation under Fluctuating Channels of Moving Vehicle tackling Massive Resource 
Over-utilization compared to current designs.
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unnecessary OPEX. After negotiating they settle to 13 Mbps consensus 
for maintaining service continuity even with low data rates. The PRB 
allocation is fine-tuned at 50% in that interval (220–300 secs) reducing 
massively the PRB over-utilization (Fig. 16d).

Phase III: Unsatisfactory QoS. At 300 secs the tenants decide that this 
SLA is no longer satisfactory based on user feedback. Hence, they unan-
imously agree to switch-off the RAN to save resources.

Phase IV: Channel Improvement. At 400 seconds the channel quality is 
substantially improved (Fig. 16a). The SMO triggers a new negotiation 
with the agents converging to a consensus of 55 Mbps. The Type II agent 
reacts and enforces around 50% of the PRBs.

Overall, the adaptive agentic framework manages to save 44.43% of 
the PRBs over the course of the vehicle route tackling a huge resource 
over-utilization compared to the static SLA enforcement.

7.  Limitations and future work

While our prototype demonstrates that symbiotic agents can close 
control loops and broker SLAs, it is still a single-cell, single-RIC testbed 
with one optimization algorithm per task. Below we outline a concrete 
road-map for taking the concept to city-scale public networks.

A hierarchical agent fabric is needed. Ultra-light PID kernels run on 
central and distributed unit (CU/DU) hardware, while the LLM’s role is 
limited to periodic gain updates. Quantized 3-8B SLMs, proven viable 
in Section 5.1.3, supervise dozens of cells at the near-RT RICs level, 
select optimizer libraries, and handle on-the-fly intent translation. Full-
size LLMs orchestrate multi-tenant policy, long-horizon forecasting, and 
RLHF or simulation-based retraining next to the non-RT RIC and SMO.

Scaling to hundreds of KPIs will require a library of optimizers-rule-
based, convex quadratic programming, PID, and multi-objective meta 
heuristics such as NSGA-II. The LLM can use contextual bandits to pick 
the most sample-efficient solver. Specifically, public SLAs rarely hinge 
on a single metric. Future work will extend the side-car optimizer to 
output an entire Pareto front (e.g., via NSGA-II). The LLM agents will then 
reason over language-level trade-offs (cost vs. carbon vs. QoS) while 
numeric guard-rails keep each proposal on the frontier. Agoran [36] 
demonstrates one such promising solution on a live 5G network.

Large-scale deployment implies terabytes of KPI streams. We will 
store only task-relevant embeddings in a vector database and fetch them 
on demand via function-calling-limiting prompt growth while preserv-
ing long-term context. To stay within the power envelope of public RAN 
sites we plan to: (i) distil 1-3b SLMs from the current 3-70b set, (ii) ex-
ploit mixture of experts (MoE) routing to activate a fraction of param-
eters per request, and (iii) embed formal policy checkers that validate 
every numeric action before execution, ensuring fail-safe operation.

Once longer non-RT budgets are available, a top-layer PPO agent can 
periodically fine-tune the LLM’s negotiation policy using operator feed-
back. The resulting policy artifacts will then trickle down to the edge 
in distilled form-combining the sample efficiency of optimization with 
the preference alignment of RLHF. These concrete steps-hierarchical de-
ployment, optimizer auto-selection, Pareto-front guard-rails, streaming 
memory, and staged RLHF-map out a scalable path from our single-cell 
prototype to nationwide public networks.

8.  Conclusion

In this work we introduced a novel paradigm for improving LLM 
decision-making towards trustworthy and low overhead actions by 

combining them with optimizers, defining the approach as symbiotic 
agents. We experiment on a real-world 5G testbed employing channel 
fluctuations of moving vehicles. We designed and evaluated two agents 
for real-time decision-making: (a) Type I agents for RAN control and 
(b) Type II agents for multi-tenant SLA negotiations. In both designs the 
performance is significantly enhanced when optimizers are employed. 
The decision error is decreased up to 5 times steering the agents to 
more accurate and trustworthy actions. Experiments with smaller 
models (SLMs) prove that they can effectively replace larger ones on 
such network tasks decreasing the GPU overhead by a factor of 99.9%
and operate in near-RT loops (82 𝑚𝑠). This agentic invention led us 
to implement a novel next-generation network architecture towards 
artificial general intelligence (AGI). The overall evaluation results 
signify an important milestone achievement towards AGI networks 
that even future LLM improvements cannot achieve alone due to their 
probabilistic nature. The symbiotic paradigm opens many threads for 
future research. Part of the developed code and results is open-sourced 
to bolster research efforts of the community. A live demo is presented 
here https://www.youtube.com/watch?v=WQv61z1deXs&ab_chan-
nel=BubbleRAN

9.  Ethical considerations

LLMs are increasingly proposed for automating the decision-making 
in next-generation networks, laying the groundwork for the potential 
emergence of Artificial General Intelligence. Although the notion of AGI 
is divisive within the industry, it promises to revolutionize system au-
tomation with unprecedented adaptability and efficiency. At the same 
time, its powerful capabilities necessitate caution, as unchecked devel-
opment could introduce substantial risks. A coordinated effort among 
researchers, policymakers, and industry stakeholders, supported by ro-
bust ethical frameworks and regulations, is crucial to harness AGI’s ben-
efits without compromising safety and trust. By advancing carefully and 
collaboratively, the field can unlock transformative network automation 
while minimizing dangers inherent to AGI-driven systems.
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Appendix A.  Optimization Algorithm for Type II Agents

The optimization Algorithm 1 is used by the Type II agents to model 
the whole topology as a distributed optimization algorithm and calcu-
late the confidence intervals where the optimal SLA lies:

Algorithm 1 Optimal SLA Consensus.
Require: intents (list of initial proposals), network_target (desired sla)
Ensure: Converged sla or None
1:
2: Initialize parameters:
3: 𝑛_𝑎𝑔𝑒𝑛𝑡𝑠 ← size of intents
4: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 1000
5: 𝑒𝑡𝑎 ← 0.01
6: 𝑎𝑙𝑝ℎ𝑎𝑠 ← [7, 7,… , 7]
7: 𝑔𝑎𝑚𝑚𝑎𝑠 ← [7, 7,… , 7]
8: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑏𝑒𝑡𝑎𝑠 ← 0.5
9: 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 ← 0.01
10: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.5
11: 𝑠𝑙𝑎 ← copy(intents)
12: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑙𝑎 ← copy(sla)
13:
14: for 𝑘 = 0 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 1 do
15:  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ← mean(sla)
16:  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ← variance(sla)
17:  𝑏𝑒𝑡𝑎𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑏𝑒𝑡𝑎𝑠 + 𝑘 ⋅ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑓𝑎𝑐𝑡𝑜𝑟
18:  𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 ← 𝑏𝑒𝑡𝑎𝑠 ⋅ (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑡𝑎𝑟𝑔𝑒𝑡)
19:  for 𝑖 = 1 to 𝑛_𝑎𝑔𝑒𝑛𝑡𝑠 do
20:  𝑡𝑒𝑛𝑎𝑛𝑡_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ← 2 ⋅ 𝑎𝑙𝑝ℎ𝑎𝑠[𝑖] ⋅ (𝑠𝑙𝑎[𝑖] − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑙𝑎[𝑖])
21:  𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ← 2 ⋅ 𝑔𝑎𝑚𝑚𝑎𝑠[𝑖] ⋅ (𝑠𝑙𝑎[𝑖] − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
22:  𝑠𝑙𝑎[𝑖] ← 𝑠𝑙𝑎[𝑖] − 𝑒𝑡𝑎 ⋅ (𝑡𝑒𝑛𝑎𝑛𝑡_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 +

𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡)
23:  Clamp 𝑠𝑙𝑎[𝑖] to [0, 100]
24:  end for
25:  if max(abs(𝑠𝑙𝑎[𝑖] − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒)) < 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
26:  return floor(current_average)
27:  end if
28: end for

return None ⊳ If no convergence achieved

Appendix B.  Example prompts and logs for LLMs

Below are examples of prompts used in the experiments with the 
LLM-based agents, along with their corresponding logs when the agents 
are operating (Fig. B.1–B.4).

Fig. B.1. Prompts of LLMs in Type I Agents.

Fig. B.2. Negotiations Logs between LLMs using gpt-4o.
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Fig. B.3. Prompt for Type II agents.

Fig. B.4. Logs of Type II agent using gpt-4o.
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