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ARTICLE INFO ABSTRACT

Keywords: Large Language Model (LLM)-based autonomous agents are expected to play a vital role in the evolution of
Symbiotic agents 6G networks, by empowering real-time decision-making related to management and service provisioning to end-
LLM users. This shift facilitates the transition from a specialized intelligence approach, where artificial intelligence (AI)
'gglstworthy Al algorithms handle isolated tasks, to artificial general intelligence (AGI)-driven networks, where agents possess
Network optimization broader reasoning capabilities and can manage diverse network functions. In this paper, we introduce a novel
Next-G agentic paradigm that combines LLMs with real-time optimization algorithms towards Trustworthy Al, defined

AGIL as symbiotic agents. Optimizers at the LLM’s input-level provide bounded uncertainty steering for numerically
precise tasks, whereas output-level optimizers supervised by the LLM enable adaptive real-time control. We
design and implement two novel agent types including: (i) Radio Access Network (RAN) optimizers, and (ii)
multi-agent negotiators for Service-Level Agreements (SLAs). We further propose an end-to-end architecture
for AGI-driven networks and evaluate it on a 5G testbed capturing channel fluctuations from moving vehicles.
Results show that symbiotic agents reduce decision errors fivefold compared to standalone LLM-based agents,
while smaller language models (SLM) achieve similar accuracy with a 99.9 % reduction in Graphical Processing
Unit (GPU) resource overhead and in near-real-time (near-RT) loops of 82 ms. A multi-agent demonstration
for collaborative RAN on the real-world testbed highlights significant flexibility in service-level agreement and
resource allocation, reducing RAN over-utilization by approximately 44 %. Drawing on our findings and open-
source implementations, we introduce the symbiotic paradigm as the foundation for next-generation, AGI-driven
networks-systems designed to remain adaptable, efficient, and trustworthy even as LLMs advance. A live demo

is presented here https://www.youtube.com/watch?v=WQv61z1deXs&ab_channel = BubbleRAN

1. Introduction

By 2030 the number of fifth-generation (5G)-and early sixth-
generation (6G)-subscriptions is forecast to exceed 6 billion [1]. The
radio environment will span 7-24 GHz spectrum sharing [2], integrated
sensing and communication links, and digital-twin feedback loops [3].
Such heterogeneity drives rapid spatio-temporal shifts in both user de-
mand and channel condition, stressing every resource allocation layer.

Multi-tenant Radio Access Networks (RANs) let Mobile Network Op-
erators (MNOs), Mobile Virtual Network Operators (MVNOs) and verti-
cals co-habit common infrastructure [4]. Intent-Based Networking (IBN)
further hides low-level complexity behind declarative intents [5]. The
Open RAN (O-RAN) and newly formed AI-RAN Alliances embed artificial
intelligence (Al) into those abstractions as native control elements [6,7],
yet today’s Al loops remain specialized and brittle.

Large Language Models (LLMs) and their smaller counterparts, the
Small Language Models (SLMs), excel at high-level reasoning, fuelling vi-
sions of fully Artificial General Intelligence (AGI)-driven networks [8-11].

* Corresponding author.

However, they are probabilistic next-token predictors: they hallucinate
facts [12,13], break under out-of-distribution (OOD) shifts [14], and lack
formal safety guarantees.

Following the NIST AI Risk-Management Framework (AI-RMF) and
ISO/IEC 42001, we define a trustworthy network agent as one that is
robust, interpretable, secure, fair and governable across its lifecycle [15,
16]. LLMs alone satisfy only a subset of these attributes, and therefore
more complex and robust agent architectures need to be explored.

We are the first to formalize an agent architecture in which LLM
reasoning is symbiotically paired with deterministic optimization and
present a full agent taxonomy with two concrete use cases: (i) in Type-I
agents for dynamic RAN control, the LLM interprets high-level intents
and continually tunes the proportional gain K, of an underlying pro-
portional (P-)controller, yielding certified, low-latency actions; (ii) in
Type-II agents for multi-agent service-level-agreement (SLA) negotiation,
the LLM employs constraints that a gradient-descent optimizer produces
to bound uncertainty and converge on fair resource allocations. Because
guarantees are externalized to the optimizer, this synergy remains indis-
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Key findings

Table 1
Comparison of the state-of-the-art on LLM-aided optimization with our approach.
Works Category Approach
[17] Reinforcement A LLM framework with a self-refinement mechanism for automated re-
learning ward function design, where LLM can formulate an initial reward func-
tion based on natural language inputs.
[18] Agentic It proposed a novel framework to reinforce language agents through
Self Improvement  linguistic feedback. The agent verbally reflects on task feedback signals,
maintaining the reflective text in an episodic memory buffer to induce
better decision-making.
[19] Black-box Evaluating the optimization capabilities of LLMs across diverse tasks
Optimizer and data sizes, including gradient descent, hill-climbing, grid-search,
and black-box optimization.
[20] Convex A natural language-based system that engages in interactive conver-
optimization sations about infeasible optimization models. It provides natural lan-
guage descriptions of the optimization model itself, identifies potential
sources of infeasibility, and offers suggestions to make the model fea-
sible.
[21] Heuristic Using general LLM serves as a black-box search operator for
algorithms decomposition-based multi-objective evolutionary optimization in a
zero-shot manner.
Ours Symbiotic Agents A novel paradigm combining LLMs with optimization algorithms. Op-

timizers at the LLM’s input-level provide bounded uncertainty steering
for numerically precise tasks, whereas output-level optimizers super-

LLM-designed reward functions can rival or even surpass manually de-
signed reward functions in 9 robot control tasks.

The proposed framework achieves a 91 % accuracy on the HumanEval
coding benchmark, surpassing the previous state-of-the-art gpt-4 that
achieves 80 %.

1) The LLM show strong optimization capabilities; 2) LLMs perform
well in small-size samples; 3) They exhibit strong performance in
gradient-descent; 4) LLMs are black-box optimizers.
The proposed system can assist both expert and non-expert users in
improving their understanding of the optimization models, enabling
them to quickly identify the sources of infeasibility.

The LLM operator only learned from a few instances can have robust
generalization performance on unseen problems with quite different
patterns and settings.

1) LLMs are meta-optimizers tuning parameters of control algorithms.
2) The uncertainty in LLM decision-making is efficiently bounded with
confidence intervals decreasing the error up to 5 times. 3) SLMs replace

vised by the LLM enable adaptive real-time (RT) control.

LLMs in near-RT tasks (82 ms loops) maintaining accuracy and with up
to 99.9% less graphics processing unit (GPU) overhead. 4) Novel AGI
architecture is implemented with symbiotic agents.

pensable even as future LLMs improve, making the approach a necessity
to bridge the gap towards AGL
On a real 5G testbed that mirrors O-RAN/AI-RAN principles, we

1. define the Symbiotic-Agent architecture under a unified trustworthi-
ness lens;

2. instantiate two agents-P-controlled slicing and gradient-bounded
negotiation-achieving a 5x reduction in decision error and up to 44 %
spectrum savings;

3. benchmark SLMs vs. LLMs, showing that prompt specialization shrink
model size by up to 99.9 % without accuracy loss;

4. propose an AGI-ready network architecture that encapsulates symbi-
otic agents as certified intelligence services.

The remainder of the paper formalizes the agent model (Section 3),
details the testbed and evaluation (Sections 4-5), shows an AGI-driven
network use case (Section 6) and discusses open research directions to-
ward fully AGI-driven networks (Section 7).

2. Related work

The telco industry explores LLMs to automate next-generation net-
works. A collective effort from industry and academia charts the
roadmap of large-scale Al adoption in telecom [22] explaining how
Large Telecom Models (LTMs) could revolutionize the field. The litera-
ture proposes opportunities for applying LLMs on telecom divided into
four categories [23], including (i) generation problems, (ii) classification
problems, (iii) prediction problems and (iv) optimizing network perfor-
mance. Generation problems include fine-tuning models on telecom do-
main question answering [24], coding and troubleshooting, while the
classification problems investigate network attack detection, and traffic
classification [25]. The prediction problems, include traffic level fore-
casting [26,27], channel state estimation and user mobility predictions
[28-30]. Our work is positioned on the last category of network perfor-
mance optimization, which includes LLM applications on real-time (RT)
decision-making, such as resource allocation.

Table 1 summarizes the most prominent works on LLM-aided op-
timization, including our approach. An LLM framework with self-
refinement mechanisms is developed [17] for automated reward func-
tion design of reinforcement learning (RL) algorithms. The results
demonstrate that LLM rival manually designed reward functions in nine

robot control tasks. In [18] a novel framework reinforces language
agents through linguistic feedback. The agent verbally reflects on task
feedback signals, maintaining the reflective text in an episodic memory
to induce better decision-making in the future. The authors in [19] eval-
uate the optimization capabilities of LLMs across diverse tasks, including
gradient descent, hill-climbing, grid-search, and black-box optimization,
highlighting that LLMs are black-box optimizers. In [20] authors work
on a natural language-based system that engages in interactive conver-
sations about infeasible optimization models. In [21] an LLM serves as a
black-box search operator for decomposition-based multi-objective evo-
lutionary optimization in a zero-shot manner. These works illustrate the
abilities of LLMs as black-box optimizers as well as handling external
optimization techniques.

Following these motivations, some works start applying LLMs in real
network systems. In [31] the authors design on-device LLMs, where
multi-agent LLMs are solving network tasks in a game theoretic manner.
In [32] a framework is proposed that leverages LLMs and prompt engi-
neering techniques to elucidate RL algorithms’ decision-making show-
casing improvements in comprehensibility for network slicing. In [33]
they propose an intelligent LLM agent prompting to dynamically opti-
mize resource allocation of network slices. An LLM-centric Intent Life-
Cycle (LC) management architecture [34] is designed to manage net-
work services using natural language. MAESTRO [35] is the first work
to propose an LLM-based business plane for collaborative multi-tenant
decision-making on a real testbed showing the vision towards AGI net-
works. AGORAN [36] deploys a digital agora on top of 6G networks
inspired by ancient Greek agora following a tripartite architecture. It is
the first work to formally utilize and scale the symbiotic paradigm inte-
grating a multi-objective optimizer (NSGA-II) to provide a Pareto front
of near optimal SLA offers for multi-stakeholder LLM bargaining. MX-AI
[371 connects a multi-agent graph into the R1 interface of Open RAN
networks capable of intent-based observability and control actions; thus
creating an open platform to accelerate future research towards agentic
Al-driven RANs.

These works show the great potential of LLMs on network tasks but
lack providing comprehensive analysis on the trustworthiness of the
LLM decision-making for realistic systems. Importantly, there is a major
need for guarantees and uncertainty bounds for improving the agents
accuracy. Also, we identify a gap on highly variable channels in low-
latency sub-millisecond timing loops. Further, scaling down the size and
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Mechanisms by which Symbiotic Agents (i) realize the five trustworthiness pillars and (ii) provide a durable bridge from current LLM capabilities to

AGI-grade guarantees.

Pillar

Mechanism in Symbiotic Agents

Robustness

Interpretability
Security
Fairness
Governance

LLM—AGI gap

Input-side optimizer guards against out-of-distribution SLA bids; Output-side optimizer supplies real-
time deterministic error bound ¢ with the Memory-based LLM meta-control adapting to channel vari-
ability.

LLMs produce explicit chain-of-thought and structured artifacts (JSON SLA decisions and rationales);
all traces logged by logs £ for audit.

Numeric guard-rails and KPI triggers prevent adversarial or hallucinated actions from propagating to
the real-time loop.

Tenant Mediator utility U, plus SLA confidence-interval prompts enforce symmetric treatment of all
tenants.

Logs £ and KPIs provide lifecycle logging; compliance monitoring of the KPIs and observance of
deviations could trigger rollback.

Input-side optimizer bounds uncertain inputs; output-side optimizer attaches deterministic action cer-
tificates; logger £ keeps an auditable trace. Three properties unattainable through LLM scale alone.

overhead of models by utilizing SLMs is essential to minimize the cost
at sustainable levels and need to be proven achievable in real network
systems. These reasons lead us to propose a novel agentic paradigm to
improve the LLM towards trustworthy decision-making by combining it
with optimization algorithms. Optimizers at the LLM’s input-level pro-
vide bounded uncertainty steering with confidence intervals for numer-
ically precise tasks, whereas output-level optimizers are supervised by
the LLM for adaptive real-time control. We work on real systems, where
resources and intents are varying, using emulated channel fluctuations
from moving vehicles, evaluating both large and smaller models. We
focus on two distinct cases of RAN slicing and multi-tenant SLA nego-
tiations. Based on our results, we propose a novel AGI-driven network
architecture.

3. Symbiotic agents: Architecture and trustworthiness lens

Autonomous network agents must satisfy a comprehensive trustwor-
thiness profile that includes and extends well beyond decision-making
accuracy: robustness to channel and workload drift, interpretability for
human audit, security against adversarial manipulation, fairness across
tenants, and governance over the agent’s entire lifecycle [15,16].

LLMs excel at high-level reasoning, transparent chain-of-thought log-
ging, and natural-language justification, yet they provide no formal
guarantees on numeric error or worst-case latency. Conversely, control-
theoretic and optimization routines deliver deterministic performance
bounds but lack semantic understanding. Symbiotic Agents fuse these com-
plementary strengths into a single loop, thereby covering all five trustworthi-
ness pillars. Table 2 summarizes how each pillar is realized in our archi-
tecture.

3.1. Formal definition

Definition 1 (Symbiotic Agent). A Symbiotic Agent is the quintuple A =
(€, Py, Op, Ogye» L) Where

1. & is the partially observable network environment (KPIs, channel
state, tenant intents, negotiation messages);

2. P, is an LLM that maps a contextual prompt i, to a structured action
artifact a, (Kp hyper-parameters, SLA bids);

3. Oy, (input-side optimizer) optionally pre-processes i, to a bounded i,
supplying numeric guard-rails before reasoning (e.g. a confidence
interval for SLA values);

4. O,y (output-side optimizer) optionally converts g, into a granular ac-
tion a/ with a provable error bound ¢ (e.g. P-control on Physical
Resource Blocks (PRB) allocation);

5. L logs the internal trace for audit and feeds compliance signals back
to Py.

Humans,
Peer Agents, ...
Intent (iy)

Bounded
Uncertainty Steering

Optimizer (Oj,)

Intent (i )
A 4 !

LLM (Pg) Central
o Decision-Making

Action (ay)

Y
Granular
Adaptive Control

Optimizer (Og)

Action (a;)
((( ))) Network,
/é RAN, RIC, ...

Fig. 1. LLM SymBIOSIS Paradigm: Input-level optimizers provide bounded un-
certainty steering for numerically precise tasks, whereas output-level optimizers
enable adaptive real-time control actions.

. Oin .y PS Oout ’ N
The loop i,— i;—> a,— a, executes at two time scales: sub-

second LLM updates (P,) and sub-millisecond numeric control Oy, Oy,
ensuring both semantic richness and hard-real-time guarantees.

Fig. 1 visualizes this layered control loop, showing how the input-
side and output-side optimizers flank the LLM to deliver both bounded
uncertainty and real-time numeric certification. The authors believe that
this symbiotic design is indispensable for trustworthy agents towards
AGIL. Even when future LLMs improve, next-token sampling remains
stochastic and cannot yield deterministic error bounds. Therefore O,
and/or O, remain indispensable to close the gap towards AGI-grade
decision-making and trustworthiness.

3.2. Type I agent: Granular adaptive RAN control

Fig. 2 shows a Type I symbiotic agent designed for closed-loop
RAN control. It receives the operator intent and deploys a control op-
timization algorithm O, to allocate real-time resources in the RAN.
Typical control algorithms include rule-based, reinforcement learning
or control-theoretic methods. These algorithms are generally accurate
but rely heavily on their hyper-parameter tuning, especially in highly
variable networks. This is because unpredicted interference and chan-
nel fluctuations disrupt the algorithm’s efficiency leading to oscillations
and need for re-exploration or tuning. In our experiments we employ a
control-theoretic approach, following the widely adopted Proportional-
Integral-Derivative (PID) Controller [38], with Section 3.2.2 explaining
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Fig. 2. Type I Symbiotic Agent for RAN Control. An LLM (P,) translate operator
intents (i,) to enforceable actions (a,) by deploying and supervising RAN control
optimizers as O, which ultimately control RAN resources, such as PRBs ().
The LLM works as a black-box meta-optimizer, continuously tuning the hyper-
parameters of the control algorithms adapting to variable channels.

the rationale behind this choice. The algorithm is robust to channel vari-
ability bringing the control variable to the desired state, without the
need of training data. It is heavily influenced by its parameter selection.
We use the simplified version of the proportional Control (P-control)
algorithm, as it is proved sufficient in our experiments. Specifically, P-
control is a type of linear feedback control system, in which a correction
is applied to the controlled variable-here RAN physical resource blocks
(PRBs)- and the size of it is proportional to the difference between the in-
tent and current state. For instance, a throughput (Tp) intent is enforced
by controlling the PRB utilization capacity of a RAN slice ranging from
0 to 100%. Thus:

PRB"™" = K e(t) + PRB"", @

where K, is the proportional gain, e(?) is the instantaneous process error
at time 7:

e() = Tplntent _ Tpcurrem (2)

After deploying the control algorithm, the LLM works continuously
as a meta-optimizer to fine-tune the algorithms hyper-parameter (here
K p). As shown in Fig. 2, it reads key performance indicators (KPIs) of the
algorithm performance, checks past action sets from a short-term mem-
ory and send updated policies for its configuration. In our experiments,
as a KPI the LLM reads the P-control’s average number of iterations to
converge in the last couple of time steps, as explained in Section 3.2.1. If
it is larger than a threshold, here two iterations, the LLM updates the K p
value exploring a better configuration. This way, it adapts to the variable
channels ensuring algorithmic convergence to a desired performance
(e.g. only two iterations to find optimal PRB). The short-term memory
collects knowledge from past actions with the LLM self-improving in an
agentic manner and reducing the repetition of errors. This symbiotic de-
sign positions the LLM at an appropriate abstraction level, operating in
near-real-time (near-RT) loops (> 10 ms), while the control algorithm
works in real-time sub-millisecond ones (< 1 ms).

3.2.1. Granular adaptive control: How the LLM steers the P-controller

Fig. 3 zooms in on the internal feedback structure of a Type I Symbi-
otic Agent. The low-level P-Control is the point of contact with the RAN
scheduler; it executes in 10~ milliseconds (ms) and is therefore able to
react to every 5 ms change in measured throughput.! The LLM operates
as an asynchronous black-box meta-optimizer and is invoked only when
P-Control shows signs of sluggishness. This two-time-scale design keeps
the fast loop entirely numerical while delegating rare but expensive rea-
soning to a slower cognitive loop.

! The figure shows the throughput after the 5 ms air-interface reaction time
on our testbed.
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Fig. 3. Timeline of a Type I Symbiotic Agent executing granular adaptive control.
The black curve is the throughput obtained by the P-Control loop (< 10ms); the
green band marks the operator’s intent range. Digits next to the black markers
indicate how many P-Control iterations (1) were required to meet each intent.
The channel quality changes from MCS 28 to MCS 14 at the dashed vertical line.
After every 3-5 enforcements the LLM computes the average i; whenever 7 > 2
it updates the proportional gain K, (red dashed markers), raising it from 0.3 to
0.7, 1.1, and finally 1.5. These meta-control interventions-issued only once 7 > 2-
restore single-iteration convergence while keeping the fast, numerically precise
P-Control loop entirely intact. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

What the LLM sees. After every cluster of N =3-5 intent enforcements by
P-Control, we compute a single key performance indicator (KPI):

N
- 1
1) = szzllj 3)

where 1; is the number of control iterations P-Control needed to meet
intent j. This average iteration count is the KPI passed to the LLM to-
gether with the last ten (K, 1) pairs stored in a small short-term memory.
Keeping the memory to ten entries bounds prompt length and limits the
SLM’s inference time to 82 ms (or 1000 ms for the full LLM), which
makes it suitable for near-RT loops (10 ms < x < 1 sec)

When it is activated. If i(t) < = with 7 = 2, the system is already converg-
ing in at most two control iterations and no action is taken. Otherwise
the LLM is triggered.

How it updates K,. The prompt contains natural-language instructions
that implement the following heuristic:

1. We rank the past memory actions (K,,1) by recency in a time-series
manner.

2. We prompt the LLM to observe whether 7 has decreased as K, was
increased. If yes, continue in the same direction; otherwise reverse.

3. We prompt the LLM to freely choose the new configuration Kpev,
with K[‘,leW € (0, ).

The new K, gain is streamed back to the P-Control, while P-Control
keeps running, making the large-model latency invisible to the real-time
loop.

Hlustrative trace (Fig. 3). Starting with K ,=0.3 under a favorable chan-
nel with RAN modulation and coding scheme (MCS) of 28, P-Control
needs 4-6 iterations to hit the intent ( = 5 > 7); the LLM therefore raises
the gain to 0.7, after which convergence occurs in 1-2 iterations. When
mobility degrades the channel to MCS 14 the same gain is again too
small (i = 3.5), prompting two further LLM updates-first to 1.1 and fi-
nally to 1.5-until every subsequent intent is met in a single iteration
1= 1.0. Throughout the run the achieved throughput (P-Control black
curve) remains inside the green intent band, showing that the LLM meta-
controller adjust flexibly the performance of P-Control across channel
variability.

Ablation on memory length. Removing the memory forces the LLM to ex-
plore blindly and increases the number of LLM invocations as we discuss
in evaluation Section 5.1.2. Expanding the memory beyond ten entries
yields no high additional accuracy but pushes LLM latency above the 1
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Fig. 4. Throughput under a fluctuating channel (MCS 28 — 24 — 14 — 28). The green band marks the intent range. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

sec near-RT budget. A ten-entry window therefore strikes the best bal-
ance between knowledge retention and computational cost.

3.2.2. Why a PID inner loop? Comparison with traditional controllers

Fig. 4 benchmarks five candidate controllers under the same
variable-channel trace, including Bayesian optimization and reinforce-
ment learning (RL) methods. The curves motivate our choice of a Pro-
portional controller as the inner loop that the LLM meta-optimizer tunes.
Bayesian optimization (orange, Fig. 4a) explores aggressively; the result-
ing large steps overshoot the intent and create visible oscillations. More-
over, each probe requires a posterior update, which makes the algorithm
slower in time. Q-learning, a widely used RL technique, (red dashed) con-
verges when the channel is stationary (MCS 28-24) but must re-explore
after the drop to MCS 14, producing a performance dip-unacceptable
for real-time control where channel conditions can change every frame.
Stateless (blue) and stateful (purple) standalone LLMs track the intent
without oscillation, yet their 100-1000 ms inference latency makes them
unsuitable for a sub-ms scheduler loop. Fig. 4b confirms more clearly
that both LLM variants, although stable and accurate, they lag behind
the numeric P-Control base line (black).

The following arguments consolidate our selection of P-Control for
the Type I symbiosis with a hypervisor LLM. (i) Robust & lightweight. For
a first-order plant (resource-block allocation to throughput) a propor-
tional controller is the minimal structure that guarantees closed-loop
stability [39]. It is model-free, requires no training, and executes in 10~*
ms on our radio, leaving ample headroom beneath the 5 ms air-interface
delay. (ii) Single hyper-parameter. Its only sensitivity is the gain K. This
makes it ideal for a symbiosis in which an LLM can focus on one continu-
ous tuning knob. (iii) Natural division of labor. The inner loop (P-Control)
delivers sub-ms numerical precision; the LLM supplies zero-touch gran-
ular adaptive control, adjusting K, whenever the KPI : signals sluggish
convergence (Section 3.2.1). The resulting hybrid keeps the best of both
worlds: the speed of control theory and the flexibility of large-scale rea-
soning.

3.3. Type II symbiosis for multi-Agent SLA negotiations

A central aspect of multi-agent systems (MAS) is negotiation, often
modeled as a distributed optimization problem in which multiple agents
must arrive at a consensus [40,41]. From a game-theoretic perspective,
an optimal consensus is a Pareto-efficient Nash Equilibrium (NE) that
balances both individual and collective objectives. Nash Equilibria rep-
resent stable consensus points where no agent can unilaterally improve
its outcome. However, when LLM agents engage in negotiations, issues
such as hallucinations or non-cooperative (overly greedy) behaviors can
disrupt the process, shifting the NE away from Pareto efficiency. Fig. 5
illustrates a multi-tenant MAS topology built around a central mediator,
typically operated by the MNO, which guides negotiations toward fair,
cooperative, and Pareto-efficient equilibria.

Intent Prompt Intent Prompt Intent Prompt

" INegotiate on SLA
for spectrum
efficiency.

{Negotiate on S
i for energy
efficiency.

Negotiate on
SLA for
maximum QoS.

Y A 4 A 4
| Agent 1 H Agent 2 H Agent3 b
Multi-Round

pr|lT I

Mediator
A

Mediate SLA Negotiation fairly
¢ for efficient resource utilization.

Intent Prompt

Fig. 5. Multi-Tenant Negotiation Topology where multiple agents (tenants) ne-
gotiate towards an SLA consensus guided by a network mediator (MNO). The
multi-round negotiations take into account the collective objectives to converge
on a Pareto-optimal SLA.

Fig. 6 illustrates a Type II agent designed for multi-tenant SLA nego-
tiations. The agents negotiate on finding the Pareto-optimal SLA, using
a standardized structure, without loss of generality, consisting of two
parts: (a) the proposed SLA and (b) the decision reasoning in natural
text. This way, the SLA proposal (e.g. RAN throughput) is supported
by detailed reasoning for LLM decision-making interpretability, which
considers individual and collective objectives. Each agent merges the
human operator intent (from tenants or MNO), the messages of other
agents, and the negotiation chat history to a unified intent (i,) to take a
decision.

Optimization Algorithm. A side-car optimizer (O;,), extracts the nu-
merical SLA values (e.g. throughput) and runs a gradient-descent (GD)
algorithm modeling the specific topology set up. Then, it calculates a
confidence SLA interval (e.g. 60-70 Mbps), where the Pareto-optimal
value lies with a degree of confidence (e.g. 95 %). Utility Functions. The
algorithm models the topology, with each agent having an individual
utility function:

U;(x;) = —o;(x; — d,-)z, 4

where d; is the agent’s desired SLA and «; > 0 measures sensitivity to
deviations. The mediator maintains a global utility function:

Uy(xq, ..., x,) 5)

n
=-7 Z(xi - )_C)z - ﬁ()_c - xtarget)z’
i=1

where x = % Y1 Xi» Xtarger 15 the mediator’s preferred SLA, and y, § > 0
are weighting factors for consensus and alignment 0 Xger, reSpec-
tively.
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Fig. 6. Type II Symbiotic Agent for SLA Negotiations: Intent Prompt is merged with the messages of the agents in the current negotiation round along with the chat
history to unified intent (i,) to be provided to the LLM. A side-car optimization algorithm (O;,) extracts the proposed SLA values calculating and adding an SLA
confidence interval to the final intent (i}) to constraint the uncertainty and steer the LLM negotiations (P,) towards a Pareto-optimal solution.

Optimization Formulation. We combine these utilities into a single ob-
jective to maximize:

©

max
XpseensXy

n
Z Ui(xp) + AUp(xq, .., xp),
i=1
where 4 balances individual vs. global objectives. Since each U, and U, is
concave in the {x;}, their sum is also concave, making this optimization
well-behaved under mild assumptions.

Gradient-Based Update. We iteratively apply gradient descent to the

negative of our objective. Each agent i updates x; by:

(k1 k k) K _ ok <(k
X; ) = x§ ) _ n[Zai(xi - d,—) + 2y(x§ ) g )) + ﬂ(x( ) _Xtarget)]’
@)
where 5 > 0 is the learning rate, and we clamp x; to [0, 100] as the SLA
range. If the system satisfies max,»|x§k) —x®| < ¢, we declare consensus
convergence and return the average .

Empirical Validation and Confidence Intervals. To assess the robustness
of the solution, we perform R independent optimization runs, each with
perturbed initial demand values {d;}. Ineachrunr =1,..., R, we obtain
a final consensus value £7. From these, we compute the sample mean x*
and standard deviation s, forming a 95 % confidence interval:
¥ o+ 196 .

R

(8

This interval reflects the variability in consensus outcomes due to
uncertainty in initial conditions. It serves as a statistical estimate of the
true optimal SLA, and is used to guide the LLM agents. It promotes con-
vergence to values close to the Pareto-optimum with high reliability and
thus improving the decision robustness in out-of-distribution bids.

This interval is appended to the unified intent i, forming a bounded
intent (i}). This symbiotic synergy provides to the LLM the appropriate
context, bounding the SLA uncertainty and allowing it to consolidate an
optimal final decision.

3.3.1. Uncertainty bounding: Confidence intervals interaction with LLMs.
Fig. 7 shows how the single, millisecond-scale optimization step
(O;,) pre-shapes an entire SLA-negotiation game. Immediately after the
tenants and the MNO-mediator submit their intent prompts, the initial
numeric claims are extracted, producing the vector x© = [x(lo), o xE,O)].
The side-car optimizer runs the gradient scheme of Eq. (7) for
R =100 independent restarts, each seeded with a jittered copy of
x©. From the resulting sample distribution it computes a mean x*
and a 95% confidence interval C =[L,U] Eq. (8). The whole batch
completes in <1 ms on a commodity CPU. The interval C is appended
to the prompt of every LLM agent, prefixed by a short instruction:

Numerical guard-rail: Offer an SLA strictly within [L,U].
If you propose a value outside this interval, justify
the trade-off explicitly.

Agents now exchange natural-language proposals. Any numeric bid
must lie inside [L, U]; otherwise the message must include a clear justifi-
cation. This rule throttles overly greedy or hallucinated bids while leav-
ing higher-level reasoning-and therefore fairness, persuasion, or strate-
gic concessions-fully under LLM control. In our experiments the parties
converge in two to five rounds (~10-48 s wall-clock time).

Remark. The interval can be recomputed after every round-yielding a
tighter bound at the cost of extra CPU time-but a single pre-negotiation
pass is sufficient for all scenarios tested in this paper. This uncertainty-
bounding mechanism ensures that numerically precise tasks stay well-
behaved, while the LLMs remain responsible for the rich, explainable
reasoning that ultimately convinces all parties to accept a common SLA.

3.3.2. Why a gradient descent side-car optimizer?

Fig. 8 contrasts two negotiation games: (a) stand-alone LLM agents
and (b) LLM agents steered by the confidence interval C computed by
our side-car optimizer. Without C (Fig. 8a) the agents converge cooper-
atively yet stabilize outside the Pareto-optimal target. With C (Fig. 8b)
every bid remains inside the shaded band and the process terminates
near the optimum.

Below we explain why a simple GD solver is the most suitable engine
for producing that bound. (i) Problem structure. The joint objective in
Eq. (7) is the sum of concave utilities U;(-) and a concave mediator regu-
larizer Uy (-); therefore the optimization landscape is strictly concave and
admits a unique maximizer [42]. For such problems deterministic first-
order GD converges geometrically [43] and does not require second-
order information or black-box sampling. (ii) Predictable and lightweight.
The optimizer touches a single scalar variable per agent, so a full GD pass
costs O(n) arithmetic operations and completes in <1 ms on a commod-
ity CPU (Section 5.2.3). This deterministic runtime is crucial: the bound
must be available before the first LLM round and must not enlarge the
near-RT budget dictated by language-model inference (> 100 ms). (iii)Di-
rect link to statistical uncertainty. Running R = 100 independently jittered
restarts yields an empirical distribution {%*} from which we derive the
95 % confidence interval C. GD’s negligible run-time makes this Monte-
Carlo style bootstrap feasible at each game initialization?®. (iv)Compati-
bility with LLM prompting. The optimizer returns only two numbers, L and

2 Recomputing the interval every round is possible (see remark in Sec-
tion 3.3.1) but was unnecessary in all test cases, and could be explored in the
future.
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Fig. 8. Multi-Agent negotiations employing SLA confidence intervals for reducing the agents’ decision uncertainty converging towards a Pareto-optimal solution.

U, which fit cleanly into a single guard-rail instruction (¢ ‘Offer an SLA
strictly within [L,U]’’). Thiskeeps the prompt length constant and
avoids the chain-of-thought leakage that larger numeric payloads can
cause in LLMs.

Future Notes. Although first-order GD best fits the present study’s
real-time and single-dimension setting, we recognize that more sophis-
ticated optimizers could unlock additional capabilities: (i) Reinforcement
Learning with Human Feedback (RLHF). Policy-gradient methods such
as proximal policy optimization (PPO) can learn nuanced, preference-
aligned bargaining strategies and might outperform fixed heuristics
when the negotiation objective spans multiple, non-convex dimensions
(e.g. QoS and carbon footprint). Their ability to incorporate human
reward signals could make the mediator more transparent and user-
controllable. (ii) Bayesian Optimization. For future scenarios involving
many coupled SLA variables, Bayesian search would provide principled
exploration - exploitation trade-offs and native uncertainty quantifica-
tion. Gaussian-process posteriors could also feed richer priors back into
the LLM prompt, beyond the simple interval used here. Both approaches,
however, come with practical costs-substantial sample requirements
for RLHF and cubic-time kernel updates for Bayesian optimization-that
could exceed the 2-4 round budget and sub-second delay targets of our
current prototype. Investigating these richer, but more expensive, opti-
mization layers therefore remains a promising avenue for future work
once stricter latency constraints are relaxed or more compute is avail-
able at the network edge.

Integrating Advanced Reinforcement Learning. While deterministic
optimizers such as GD and P-controllers are ideal for the strict
sub-millisecond budgets of our inner-loop agents, more expressive
reinforcement-learning (RL) methods offer complementary benefits. On-
policy algorithms like PPO are widely used in RL and RLHF pipelines

due to their robustness and simplicity, yet their reliance on a single be-
haviour policy makes them relatively sample-inefficient [44]. Off-policy
methods can improve sample efficiency, but they require additional
memory and incur higher computational overhead [45]. These trade-
offs imply that any integration of RL into network control must account
for both latency constraints and data-collection costs.

In radio-access-network tasks with severe real-time requirements,
on-policy methods may still be suitable. For example, modulation and
coding selection must operate under strict latency and computational
budgets; here, a PPO controller could run in a slower outer loop to
refine the high-level negotiation policy, while the inner loop remains
governed by a lightweight optimizer. Conversely, tasks with more re-
laxed timing (e.g., antenna tilt steering or multi-agent SLA bargaining)
can tolerate the larger memory footprint of off-policy methods and ben-
efit from improved sample-efficiency.

To mitigate sample-efficiency issues, we propose training RL policies
offline using logged, simulated or digital twin traces rather than inter-
acting with the live network [46]. Offline RL and distributional RL tech-
niques enable learning from static datasets while handling uncertainty
and risk. Once trained, the PPO policy can be distilled into a compact
form and injected as a side-car to the LLM, allowing near-real-time infer-
ence. Incorporating human feedback or preference data (RLHF) during
this offline phase can further align negotiation strategies with operator
goals, though RLHF inherits the sample-efficiency limitations of PPO.

Ultimately, enriching symbiotic agents with advanced RL layers
would enable them to handle multi-objective, non-convex problems and
dynamic bargaining scenarios that simple optimizers cannot address. By
separating timescales-maintaining fast, deterministic control in the in-
ner loop while periodically updating policies via PPO in the outer loop-
and by leveraging offline training and policy distillation, we can over-
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Fig. 9. Testbed for Next-G Open and AI-RAN Architectures. Type II symbiotic
agents negotiate SLA consensus in the non-RT tier, while Type I agents enforce
the SLA intents in real-time.

come current latency and sample-efficiency challenges and unlock more
intelligent and autonomous symbiotic agents.

4. Next-generation AGI architecture

We experiment on a 5G testbed, shown in Fig. 9, working on a novel
architecture to contribute on next-generation (Next-G) Open and Al
RAN designs. It is built using OpenAirInterface (OAI) [47] for the 5G
Core, RAN and UEs, FlexRIC [48] for the RIC, and custom implementa-
tions for the rest of the components. The testbed extends the Open RAN
design, adding dedicated controllers for each network tenant, thus en-
abling collaborative automation on the shared 5G RAN. The competing
tenant controllers negotiate using the Type II agents through a new in-
terface, and our proposal, for resolving Conflict and Collaboration (CC).
The mediation of the negotiations is done by the Service, Management
and Operation (SMO) controller, belonging to the MNO, with a dedi-
cated module, named service operation. The latter comprises the Type
II mediator agent. After consensus, Type I agents enforce the SLA to the
network. Since these agents unlock sub-millisecond resource allocation,
employing control optimizers, they can be placed from the non-real-time
(non-RT) RIC at the rApp level, down to near-RT RIC xApps, and even
internally in the RAN at the level of dApps [49].

Fig. 10 presents the sequence diagram of the communication be-
tween the subsystems in three distinct phases. In parallel, Table 3 shows
the details of the exchanged messages. In the first phase, the human
operators (tenants) express their intents to their dedicated controller.
Here, the two tenants, belonging to a vertical and a service provider
(SP), have conflicting interests. The former demands to minimize the
OPEX and thus reduce the resource utilization. On the contrary, the lat-
ter pushes for maximum Quality of Service (QoS) and hence increased
resource utilization. The network operator (MNO) engages the service
operator residing in the SMO to promote fairness.

In the second phase, the Type II agents of the tenant controllers are
steering the process. They negotiate on the throughput SLA mediated by
the SMO in multiple rounds. Fig. 11 presents a snapshot of the negotia-
tions between three tenants and the SMO mediator as a visual reference.
After a few iterations, the interests of all stakeholders are aligned at 54
Mbps. In the third phase, the consensus SLA is enforced as a slicing
policy to the RIC dedicated to the shared RAN. There a Type I agent en-
forces the SLA throughput in a closed-loop manner by monitoring and
controlling the PRB allocation.

5. Evaluation

To evaluate the agents, we employ both large and smaller language
models, including the OpenAl gpt-40 API [50] for LLMs, and a plethora
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Table 3

Detailed information of the exchanged messages between agents and sub-
systems. A major part of the network decision-making is automated by the
agents following human intents.

ID Actor Intent Details

1 Human Tenant 1: {"Minimize OPEX"}

2 Human Tenant 2: {"Maximize QoS"}

3 Human SMO: {"Find a Fair SLA."}

4 Agent IT Tenant 1: {SLA: 10 Mbps, Reasoning: "For Minimum OPEX."}
5 Agent II Tenant 2: {SLA: 90 Mbps, Reasoning: "For Maximum QoS."}
6-7  AgentIl  SMO: {SLA: 54 Mbps, Reasoning: "Balance all needs."}

8 Agent IT Consensus: {Slice Throughput: 54 Mbps}

9 System Slice KPIs: {"Throughput": 30 Mbps, "PRB": 50 %}

10 Agent I New Slice Policy: {"PRB": 70 %}

of SLMs from different vendor families, such as mistral [51], gpt-4o-
mini [52], meta/llama [53], alibaba/qwen [54], google/gemma [55] us-
ing the Ollama framework [56] to deploy them. LLMs are tested for
cloud deployments, while SLMs target resource-constrained edge sce-
narios [23]. The evaluation is divided into two parts: (1) Type I: Agen-
tic RAN Control, (2) Type II: Multi-Agent SLA Negotiations. The for-
mer evaluates LLMs as meta-optimizers of the underlying P-control al-
gorithm. The latter assesses LLMs as multi-tenant SLA negotiators for
convergence to a Pareto-optimal consensus within specified confidence
intervals.

5.1. Type I agentic RAN control

5.1.1. Mobility, channel variability, and agent designs

Our testbed employs mobility utilizing channel quality indicator
(CQI) patterns of 78 moving vehicles [27,57,58]. We extract and map
the CQI values to MCS ones, based on the 3GPP-defined CQI Table [59].
We enforce them to the RAN using an xApp connected to our RIC. The
variability in the total RAN downlink throughput, with connected UEs,
is shown in Fig. 12a. As the vehicles pass through a geographical lo-
cation with low coverage the throughput plunges from 120 Mbps to 30
Mbps (due to MCS drop). The operator intent is a stable SLA of 20 Mbps
across the whole vehicle route. To achieve this, the RAN agent needs to
adapt the resource allocation (slice PRBs) to channel variability. The in-
tent tolerance is 5 Mbps, with an acceptable SLA interval between 15-25
Mbps.

Agentic Design. We evaluate different agent designs. (i) A stan-
dalone P-Control algorithm is tested as the baseline state-of-the-
art including a well-tuned (kp : 0.75) and an untuned configuration
(kp : 0.10) according to our testbed configuration. (ii) A standalone
LLM/SLM and (iii) a Type I symbiotic agent (Section 3.2) are also
tested.

RAN Snapshots. Fig. 12 illustrates RAN snapshots of the agents as a
visual reference. In Fig. 12a no agent is employed showing throughput
fluctuations during the vehicle route. Next Fig. 12b and c illustrate the
standalone P-control with the untuned and tuned configuration respec-
tively, while Fig. 12d demonstrates the symbiotic agent utilizing the
Mistral-7b SLM. In the last one, the symbiotic agent enforces the intent
of 20 Mbps efficiently across the route, matching the performance of the
well-tuned P-Control (Fig. 12c), showing an effective hyperparameter
tuning of the underlying P-Control by the SLM.

Throughput Boxplots. Fig. 13 collects the results of the agents across
all the 78 vehicle routes and presents them as throughput box-plots
demonstrating the deviation from the intent interval. Noticeably, sym-
biotic agents with LLM or SLM perform comparably with the tuned P-
Control, while standalone LLMs perform poorly. This proves that stan-
dalone LLMs are not the right fit for real-time resource allocation in
variable environments. Instead, they excel at a higher abstraction level
as meta-optimizers of control algorithms.
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Fig. 10. Sequence Diagram presents the communication of the agentic components. Two agent-driven loops negotiate on multi-tenant SLA and enforce it through

RAN resource allocation respectively.

Agentl

Reasoning: Hello, | am Agentl. My goal is to ensure our services are cost-effective and energy-
efficient by minimizing throughput where possible, which is why | propose a throughput of 0 Mbps. |
understand the importance of balancing network resources fairly among all tenants, and | am open to
negotiations in hopes of reaching a consensus that benefits everyone. {"throughput": 0}

Agent2

Reasoning: As Agent2, my objective is to ensure a fair distribution of network resources that
accommodate all tenants' needs. My goal of 50 Mbps represents a balanced approach, considering
Agentl's minimal demand and Agent3's maximal requirement. To initiate the negotiation, | propose a
midpoint value, emphasizing equitable network utilization. {"throughput": 50}

Agent3

Reasoning: Hello, I'm Agent3 and my goal is to achieve a throughput of 100 Mbps. | understand that a
fair strategy would involve considering the needs of all agents involved, ensuring that no one is

left without essential resources. Therefore, a balanced approach would be best, potentially starting
negotiations with an equitable distribution. {"throughput": 50}

Agentl

Reasoning: The mediator's suggestion of a throughput of 54 Mbps is a reasonable compromise, given
the varying goals of each agent. It leans slightly towards resource allocation to accommodate higher
demands while keeping efficiency in mind. | recognize the need for a balance in resource allocation
and am willing to accept this adjusted value for the sake of fair agreement.{"throughput":54}

Agent2

Reasoning: | appreciate the Network Mediator's rationale and the attempt to balance our diverse
objectives. The proposed throughput of 54 Mbps is a reasonable compromise that slightly leans
towards Agent3's higher requirement while maintaining fairess and accommodating Agentl's
preferences for lower throughput. This decision ensures an equitable distribution that caters to
everyone’'s needs effectively. {"throughput": 54}

Agent3

Reasoning: The mediator's proposal of 54 Mbps is a reasonable compromise considering all goals. It
takes into account Agentl's minimal needs, aligns closely with Agent2's balanced proposal, and
slightly moves towards my goal of maximum throughput. This accommodates efficient usage while also
improving service performance, which | find satisfactory. {"throughput": 54}

Reasoning: Considering the proposals from all agents, Agentl aims for minimal throughput to maintain
cost-effectiveness and energy efficiency, Agent2 suggests a balanced midpoint to ensure fair

resource distribution, and Agent3 seeks maximum throughput to maximize resource usage. Balancing
these goals, and with the optimization algorithm's suggestion, a fair and efficient strategy for the
network involves selecting a throughput slightly above Agent2's proposal to accommodate both
Agentl’s efficiency concerns and Agent3's resource demands. {"throughput": 54}

Mediator

Fig. 11. Snapshot of Multi-Agent Negotiations. Three agents belonging to different tenants negotiate on the throughput SLA guided by the network mediator towards
a Pareto-optimal solution. The negotiations are facilitated by a template that includes the desired SLA value along with detailed reasoning for the models to provide

extensive interpretability of their decisions.
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Fig. 12. Snapshots of RAN throughput using different agentic designs to enforce an SLA intent of 20 MBps with 5 Mbps tolerance during moving vehicle routes. The
channel quality fluctuates in time makes the PRB allocation a complex adaptive problem.
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Fig. 14. Comparison with traditional controllers, contextualizes the decision for a Type I symbiotic design. Employment of gpt-4o..

5.1.2. Benchmarking traditional controllers and symbiotic designs

Figs. 14a-b benchmark more traditional controllers contextualizing
appropriately the advantages of the symbiotic method to the current
state-of-the-art. They quantify three aspects of each controller: (i) it-
erations to converge (blue box-plots, left axis), (ii) root-mean-squared
error (RMSE, caption), and (iii) inference latency (red or black mark-
ers, right axis). In Fig. 14a P-Control converges in 2.2 iterations, with
the lowest RMSE (7.7 Mbps) and a 1 us run time-but it needs manual K,
tuning. Bayesian optimization explores aggressively: 5.3 iterations on av-
erage, a large RMSE (38.5 Mbps), and highly variable latency from 0.4

10

to 4 seconds (secs); the oscillation renders it unusable for real-time slic-
ing. Q-learning copes in static conditions but re-explores after each MCS
change, yielding 5 iterations and 26.8 Mbps RMSE. Although inference
is fast (13 us), the instability phase violates SLA guarantees. Stateless
gpt-4o reaches the target in 2.3 iterations but at 0.47 secs latency and
17.5Mbps RMSE. Stateful gpt-4o (150 past actions, big memory) drops
to 1.7 iterations and 8.8 Mbps RMSE, yet latency climbs to 1.1 secs.
Why Symbiosis? The numbers reveal a gap: P-Control is fast and accu-
rate if someone keeps the gain tuned; LLMs are zero-touch but too slow
for sub-ms loops. A Type I Symbiotic Agent bridges this gap by letting
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Table 4

Convergence stability and overhead of Type I agents. Rows are sorted by
RMSE (ascending). Design: symbiotic (bold), standalone LLM/SLM, and P-
Control baselines (red). Metrics shown: RMSE, iterations to converge, wall-
clock convergence time, LLM/SLM inference latency, and GPU VRAM foot-
print.

Model Design RMSE 1  Con. Iters Con. Time Inference VRAM
gpt-4o-mini  symbiotic 4.3 Mbps 1.7 9 ms ~ 450 ms =~ 140.0 GB
llama3.2:3b  symbiotic 4.4 Mbps 1.5 8 ms 82 ms 20GB
qwen2:7b symbiotic 4.6 Mbps 2.0 10 ms 133ms 44 GB
mistral-7b symbiotic 4.4 Mbps 2.0 10 ms 317ms  50GB
gpt-4o symbiotic 4.5 Mbps 1.6 8 ms ~ 450 ms =~ 3500 GB
P-Control  tuned 45Mbps 2.0 10 ms ~0 0.0 GB
llama3.3:70b symbiotic 4.6 Mbps 1.6 8 ms 860 ms 420GB
llama3.1:8b  symbiotic 4.8 Mbps 1.5 8 ms 135ms  49GB
llama3.2:1b  symbiotic 11.8 Mbps 59.5 300 ms 69 ms 1.3 GB
P-Control  untuned 12.0 Mbps 61.0 305 ms ~0 0.0 GB
gpt-4o standalone 12.8 Mbps 1.8 1810 ms =~ 450 ms =~ 3500.0 GB
llama3.3:70b standalone 13.7 Mbps 2.0 1720 ms 860 ms 420 GB
mistral-7b standalone 20.5 Mbps 1.9 580 ms 317 ms 50GB
gemma2:2b  symbiotic 21.7 Mbps 45.6 228 ms 98 ms 1.6 GB
llama3.1:8b standalone 48.0 Mbps 3.4 476 ms 135 ms 49 GB

the P-controller handle micro-second actuation while the LLM retunes
K, only when necessary (Section 3.2.1).

In Fig. 14b we benchmark a Type I symbiotic agent with different
memory components. Stateless LLM needs 3.1 K, tuning attempts (sd
2.0). Small memory (10 past actions) improves to 2.7 attempts (sd 1.0)
with no extra latency (~ 0.47 secs). Large memory (100) hits 2.0 at-
tempts but at 1.1 secs latency. A 10-entry memory therefore offers the
best accuracy-speed trade-off. In all cases the underlying P-control RMSE
stays <10 Mbps, proving that the LLM explores only the safe part of the
K, space.

Overall, traditional controllers (Bayes, Q-learning) either oscillate or
re-explore under fast-changing channels. Standalone LLMs deliver zero-
touch and flexible accuracy but incur hundreds of milliseconds of delay.
Our P-Control and LLM symbiosis keeps the 1 us actuation path intact
while exploiting the LLM’s reasoning to retune a single K, knob at 0.3-
0.5 secs intervals, achieving SLA-level stability with minimal overhead.

5.1.3. Cross-model benchmarking of agent stability and overhead

Table 4 presents a detailed benchmarking across all model ven-
dor families (OpenAI-GPT, Llama-3, Qwen-2, Gemma-2, Mistral) with
more insights on the convergence stability and overhead. The results are
sorted in an ascending order of the RMSE, the metric for quantitative
error and stability measurement of the convergence process. The itera-
tions and time convergence metrics demonstrate the average number of
iterations along with the time in milliseconds needed for each method to
converge respectively. The video random access memory (VRAM) met-
ric in gigabytes demonstrates the total amount of VRAM overhead of
each method on the GPU. These measurements consider a 5 ms net-
work reaction time in our set up (from each PRB allocation to the actual
throughput change).

The symbiotic design dominates all evaluations. (i) Accuracy. All
symbiotic variants except the tiny 1-b parameter llama reduce RMSE
to ~4.3 - 4.8 Mbps, indistinguishable from a hand-tuned P-controller
(4.5Mbps).> (ii) Convergence speed. The LLM-driven retune brings the
inner loop to the target in 1.5-2 iterations, which translates to an 8-
10 ms wall-clock convergence time thanks to the sub-ms actuation of P-
control. (iii) Latency budget (O-RAN taxonomy). Small/medium models
(3-8 B) add only 82-135 ms inference delay-squarely inside the near-RT
RIC window (10-1000 ms). Large models (> 40 B) push latency towards
one second and are therefore suited to the non-RT tier, but still main-
tain the same RMSE when used symbiotically. Standalone LLMs exceed

3 The intent band in our experiments is +5 Mbps; all symbiotic models stay
inside that bound.
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1720 ms and cannot serve the scheduler loop. (iv) Resource efficiency.
A quantized llama-3-3b achieves tuned-P accuracy while fitting in 2 GB
of GPU VRAM-99.9 % smaller than a float-16 gpt-4o deployment. This
allows a single edge GPU to co-locate the supervisory LLM next to the
near-RT RIC or even at the dApp level next to the radio. (v) Baseline con-
trast. Untuned P-control (red row) drifts to 12 M bps RMSE and requires
~ 60 iterations; symbiosis closes that gap automatically with negligible
extra compute, proving that the LLM supplies the missing zero-touch
adaptivity.

Overall, coupling an ultra-fast numeric kernel with a light-footprint
SLM yields real-time sub-ms actuation and near-RT cognitive tuning
within a few hundred milliseconds-something neither standalone con-
trollers nor standalone language models can offer. Future work will ex-
plore fine-tuning sub-3 B models to push VRAM below 1 G B while re-
taining the < 5 Mbps accuracy observed here.

5.2. Type II multi-agent SLA negotiations

5.2.1. Agentic design and NLG evaluation methodology

For the use case of multi-tenant SLA negotiations we evaluate differ-
ent agent designs. (i) We use the standalone gradient-based optimization
algorithm discussed in Section 3.3 as the baseline state-of-the-art. (ii) A
standalone LLM/SLM and (iii) a Type II symbiotic agent (Section 3.3)
are also tested. We conduct a large number of negotiation games emu-
lating large variability in the tenants’ SLA intents ranging from 0 to 100
Mbps scaling also to multiple agents.

We carefully evaluate the quality of the agents’ reasoning in their
natural language generation (NLG). The NLG evaluation is an arduous
task, and therefore recruiting human annotators for model assessment
is still considered the best approach. In parallel, novel NLG evaluation
approaches use LLM-based annotators for large-scale automated testing
[60,61] showing high alignment with human evaluators. This lead us to
employ both human and automated LLM annotators to assess the NLG
quality of the agents.

Table 5 shows the evaluation results of three human annotators re-
cruited from our research lab to assess 50 negotiation samples. Fur-
ther, Table 6 shows the automated LLM evaluation employing gpt-4o
as a backend on 300 negotiations samples. Both evaluation methods are
structured in the same manner, testing the agents on four key principles,
including coherence, fairness, alignment and harmlessness with a score
ranging from 0 to 5 following latest research trends [62,63]. (i) Coher-
ence stands for the logical flow and clarity of the dialogue, ensuring that
each response follows naturally with correct grammar and structure. (ii)
Fairness refers to the agents’ ability to engage respectfully and without
bias, making balanced and non-manipulative proposals. (iii) Alignment
captures how well the agents stay on-task and adhere to the negotiation
goals and optimization constraints. (iv) Harmlessness ensures that the
dialogue remains free from toxic, offensive, or manipulative content,
including implicit bias or harmful stereotypes. After conducting both
human and LLM evaluations, we calculate their correlation using Spear-
man’s p (0.723) and Kendall’s = (0.585) [64,65]. These high correlation
values indicate strong alignment between human and LLM judgments,
thereby strengthening the validity of the evaluation results.

5.2.2. NLG Benchmarking: Standalone vs. Symbiotic

Tables 5,6 benchmark models from multiple vendor families demon-
strating three main insights: (i) Symbiosis consistently lifts every score di-
mension. Across all model sizes the confidence-interval raises the Align-
ment metric by 1.2-2.4 points and improves the overall score by 0.3-1.1.
(ii)Small open-source models now rival proprietary giants. A symbiotic llama-
70b attains the same human score (4.4 + 0.4, Table 5) as stand-alone gpt-
40 but with an order-of- magnitude smaller footprint (42 GB vs. 3.5 ter-
abytes (TB)). The 72-b qwen model shows a similar gain, and even the
32-b version crosses the 3.9-point threshold when symbiotic (Table 6).
(iii)Best-in-class performance is achieved with symbiosis. gpt-4o topped by
the optimizer obtains the highest human score (4.9 + 0.1, Table 5) and
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Table 5
Three Human Annotators Evaluate 50 Samples of Multi-Agent (Type II) Ne-
gotiations.

Model Design Coherence Fairness Alignment Harmlessness Score |
gpt-40 symbiotic 50+0.0 50+00 49+03 50400 4.9,0.1
llama3.3:70b  symbiotic 43+0.6 43+0.6 47+06 43+0.6 44+04
gpt-4o standalone 5.0+0.0 42+0.8 32+13 50+0.0 44+£05
qwen2:72b symbiotic 43+0.6 43+06 3.7+£06 43+06 42+03
gpt-4o-mini symbiotic 33+0.5 4.0x+05 46+05 4.0£05 40+03
qwen2:72b standalone 43 +0.6 43+0.6 23+06 43+0.6 3.8+03
llama3.3:70b  standalone 43 +0.6 3.7+0.6 23+0.6 43+0.6 3.7+£03
gpt-4o-mini standalone 3.1+03 3.6+0.7 29+09 38+04 34+04
qwen2.5v:32b symbiotic 23+0.6 27+0.6 3.0+1.0 3.7+0.6 29+0.1
qwen2.5v:32b standalone 23 +0.6 33+0.6 1.7+0.6 33+0.6 27+04
llama3.1:8b  symbiotic 1.5+0.7 25+07 35+07 25+0.7 25+0.1
llama3.1:8b  standalone 1.5+0.7 25+0.7 1.5+0.7 25+0.7 20+0.1
Table 6

LLM Annotators (gpt-40) Evaluate 300 Samples of the Negotiations Following
the GPTScore Approach. Correlation Between LLM and Human Rankings is
calculated with Spearman’s p : 0.723 and Kendall’s z : 0.585 indicating strong
alignment.

Model Design Coherence Fairness Alignment Harmlessness Score |
llama3.3:70b  symbiotic 43+0.6 43+0.6 50+00 50+0.0 4.7,0.3
gpt-4o symbiotic 4.6+0.5 4.6+05 46+05 50+0.0 4.7+04
qwen2:72b symbiotic 40+0.1 40+01 3.7+£06 5000 42+0.1
gpt-4o-mini symbiotic 4.1 +0.3 36+0.7 3.8+08 45405 40+05
gpt-4o standalone 4.1+0.3 4.1+03 27+0.7 5.0+0.0 40+03
llama3.1:8b  symbiotic 3.5+0.7 40+0.1 35+£07 50x0.0 40+04
qwen2.5v:32b symbiotic 3.7+0.6 3.7+0.6 3.7+06 47+0.6 39408
llama3.3:70b  standalone 4.0+0.1 4.0+0.1 20+02 5.0+0.1 38+0.1
gpt-4o-mini standalone 3.9+0.3 33+0.5 28+04 43+05 3.6+03
qwen2:72b standalone 40+0.0 37+05 20+01 47405 3.6+02
qwen2.5v1:32b standalone 4.0+0.1 3.7+0.6 20+0.1 47+0.6 3.6+03
llama3.1:8b  standalone 2.5+0.7 3.5+0.7 2.0+0.1 4.5+0.7 3.1+05
Table 7

Error and resource footprint for Type II negotiation agents. Rows are sorted
by MAE (ascending). Red = optimizer-only baselines, Green = edge-efficient
symbiotic designs. Metrics: MAE across all rounds, number of negotiation
rounds, total wall-clock time to consensus, single-round LLM/SLM inference
latency, and GPU VRAM required.

Model Design MAE 1 Rounds Converge Inference VRAM (GB)
gpt-4o symbiotic 0.6 Mbps 2.5 10.0 secs =~ 4.0 secs ~ 3500.0 GB
llama3.3:70b  symbiotic 0.7 Mbps 2.0 234 secs 117 secs 42.0GB
qwen2:72b symbiotic 0.9 Mbps 2.5 36.0 secs 144 secs 410 GB
Grad-Descent tuned 0.9 Mbps  10.0 ~ 0.0 secs ~ 0.0 secs =~ 0.0 GB
qwen2.5v1:32b symbiotic 1.2 Mbps 3.5 31.9 sees 9.1 secs 21.0 GB
gpt-4o-mini symbiotic 1.2 Mbps 4.5 9.0 secs  ~2.0secs =~ 140.0 GB
llama3.1:8b  symbiotic 1.3 Mbps 10.0 35.0 secs 3.5secs 49GB
gpt-4o standalone 9.0 Mbps 2.5 10.0 secs  ~4.0 secs =~ 3500.0 GB
qwen2.5v1:32b standalone 9.7 Mbps 2.7 24.6 secs 9.1 seecs 210 GB
qwen2:72b standalone 12.0 Mbps 3.3 47.5 secs 144 secs 21.0 GB
llama3.3:70b  standalone 13.3 Mbps 3.0 35.1 secs 11.7 secs 42.0 GB
gpt-4o0-mini standalone 14.0 Mbps 4.5 9.0 secs ~ 2.0 secs =~ 140.0 GB
llama3.1:8b  standalone 18.5 Mbps 10.0 35.0 secs 3.5 secs 49 GB
Grad-Descent untuned 22.0 Mbps 3000.0 =~ 0.0secs ~ 0.0 secs ~ 0.0 GB

the joint-best LLM score (4.7 + 0.4, Table 6), indicating that numerical
guard-rails enhance quality even for the most capable models.

Implications. Symbiotic negotiation agents are architecture-agnostic:
the same two-number guard-rail boosts fairness, coherence, and-
crucially-the alignment of models ranging from 8b to 70b parameters,
while allowing smaller models to run on a single <40 GB edge GPU. This
widens the deployment envelope far beyond what standalone LLMs can
offer.

5.2.3. Stability & overhead benchmarking
Table 7 compares mean-absolute error (MAE) in throughput, nego-
tiation rounds to consensus, wall-clock convergence time, LLM/SLM
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inference latency, and GPU footprint. Red rows are the optimization
baseline (gradient descent, tuned/untuned); green rows mark the two
most edge-friendly symbiotic designs (llama-3-70b and qwen-2-72b,
both <42 GB). The main observations are the following. (i) Symbiosis
minimizes numeric error. Every symbiotic agent achieves sub-1.3 Mbps
MAE-a more than 8 times reduction over its standalone counterpart. gpt-
40 drops from 9.0 Mbps to 0.6 M bps; the 32-b Qwen variant falls from
9.7 M bps to 1.2 M bps. A poorly tuned optimizer, by contrast, explodes to
22 Mbps MAE (red "untuned" row), underscoring the need for the care-
ful confidence-interval tuning. (ii) Rounds remain low and predictable. All
agents with high NLG scores (except 1lama-8b) converge in a fixed 2-5
rounds, thanks to the framework’s parallel messaging. This keeps total
wall-clock time within the 10 — 48 secs non-RT envelope, dominated by
LLM latency rather than negotiation logic. (iii) Edge deployment is prac-
tical. The llama-3-70b and qwen-2-72b symbiotic agents fit on a single
48 GB edge GPU (42/41 G B) while matching gpt-40’s accuracy. Smaller
models (8 B, 32 B) drive VRAM down to ~ 5-21 G B, trading a modest
MAE increase for a 2-4x latency reduction. (iv) Standalone LLMs are nu-
merically brittle. Even state-of-the-art gpt-4o fails to stay within 5 Mbps
of the Pareto target when used without the optimizer, confirming that
probabilistic text generation alone cannot guarantee SLA fidelity even
with future LLM improvements. This establishes the symbiotic paradigm
a necessity to close the gap towards AGI.

Scalability. Fig. 15 scales the negotiation game from 2 to 20 agents. Be-
cause messages are exchanged in parallel, all configurations converge
in a fixed K =2-5 rounds, retaining the wall-clock of ~10-48 secs. Cru-
cially, the confidence-interval guard-rail keeps the median error below
1.3 M bps regardless of team size; without the optimizer the error grows
to 10-22 M bps as the game becomes more crowded.

Overall, the confidence-interval side-car converts diverse language
models into numerically trustworthy negotiators while keeping GPU and
latency budgets compatible with high-level non-RT orchestration loops.
The approach is architecture-agnostic and scales from ultra-large propri-
etary LLMs down to compact open-source models that fit comfortably
on edge hardware.

6. AGI-RAN demonstration: Vehicle mobility

The full framework with Type I and II agents is deployed on the
testbed to demonstrate a use case of AGI-driven RAN control under
highly fluctuating channels of moving vehicles. The RAN MCS vari-
ability during a vehicle route is shown in Fig. 16a, demonstrating an
MCS plunge in the middle of the route (200-400 secs) due to low cover-
age. Three tenants share the RAN resources and negotiate utilizing their
dedicated Type II agents on the optimal throughput SLA enforcement
mediated by the SMO. Their initial intents are 100, 50, and 10 Mbps
respectively, but they continuously adapt based on the current RAN ca-
pabilities and the collective objectives. Fig. 16b illustrates the SLA ne-
gotiations in different phases. The solution is compared to a static SLA
enforcement of 55 Mbps (intent average) that does not employ the agen-
tic framework. Fig. 16¢ presents the final enforced throughput compar-
ing the collaborative with the static method, while Fig. 16d shows the
real-time PRB adaptation of the RAN to align with the SLA consensus.
The latter is fine-tuned by a Type I agent placed in the near-RT RIC at
the xApps level.

Phase I: SLA Agreement. The tenants express their intents of 10, 50,
100 Mbps, reaching to a consensus of 51 Mbps as a balance between user
QoS and OPEX. The Type II agent reduces the PRB to 40%, as shown in
Fig. 16d, avoiding PRB over-utilization.

Phase II: SLA Violation. At 200 secs the SLA is violated (Fig. 16¢)
as the MCS plunges (Fig. 16a). The RAN uses 100 % of the PRB capacity
(Fig. 16d) without reaching the SLA intent of 51 Mbps. Only a maximum
of 30 Mbps is achievable under these conditions. Thus, the SMO triggers
a new negotiation, where the tenants adjust their intents at 0, 20 and
20 Mbps, with one of tenants demanding to switch off the RAN to save
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unnecessary OPEX. After negotiating they settle to 13 Mbps consensus
for maintaining service continuity even with low data rates. The PRB
allocation is fine-tuned at 50 % in that interval (220-300 secs) reducing
massively the PRB over-utilization (Fig. 16d).

Phase III: Unsatisfactory QoS. At 300 secs the tenants decide that this
SLA is no longer satisfactory based on user feedback. Hence, they unan-
imously agree to switch-off the RAN to save resources.

Phase IV: Channel Improvement. At 400 seconds the channel quality is
substantially improved (Fig. 16a). The SMO triggers a new negotiation
with the agents converging to a consensus of 55 Mbps. The Type II agent
reacts and enforces around 50% of the PRBs.

Overall, the adaptive agentic framework manages to save 44.43 % of
the PRBs over the course of the vehicle route tackling a huge resource
over-utilization compared to the static SLA enforcement.

7. Limitations and future work

While our prototype demonstrates that symbiotic agents can close
control loops and broker SLAs, it is still a single-cell, single-RIC testbed
with one optimization algorithm per task. Below we outline a concrete
road-map for taking the concept to city-scale public networks.

A hierarchical agent fabric is needed. Ultra-light PID kernels run on
central and distributed unit (CU/DU) hardware, while the LLM’s role is
limited to periodic gain updates. Quantized 3-8B SLMs, proven viable
in Section 5.1.3, supervise dozens of cells at the near-RT RICs level,
select optimizer libraries, and handle on-the-fly intent translation. Full-
size LLMs orchestrate multi-tenant policy, long-horizon forecasting, and
RLHF or simulation-based retraining next to the non-RT RIC and SMO.

Scaling to hundreds of KPIs will require a library of optimizers-rule-
based, convex quadratic programming, PID, and multi-objective meta
heuristics such as NSGA-II. The LLM can use contextual bandits to pick
the most sample-efficient solver. Specifically, public SLAs rarely hinge
on a single metric. Future work will extend the side-car optimizer to
output an entire Pareto front (e.g., via NSGA-II). The LLM agents will then
reason over language-level trade-offs (cost vs. carbon vs. QoS) while
numeric guard-rails keep each proposal on the frontier. AGORAN [36]
demonstrates one such promising solution on a live 5G network.

Large-scale deployment implies terabytes of KPI streams. We will
store only task-relevant embeddings in a vector database and fetch them
on demand via function-calling-limiting prompt growth while preserv-
ing long-term context. To stay within the power envelope of public RAN
sites we plan to: (i) distil 1-3b SLMs from the current 3-70b set, (ii) ex-
ploit mixture of experts (MoE) routing to activate a fraction of param-
eters per request, and (iii) embed formal policy checkers that validate
every numeric action before execution, ensuring fail-safe operation.

Once longer non-RT budgets are available, a top-layer PPO agent can
periodically fine-tune the LLM’s negotiation policy using operator feed-
back. The resulting policy artifacts will then trickle down to the edge
in distilled form-combining the sample efficiency of optimization with
the preference alignment of RLHF. These concrete steps-hierarchical de-
ployment, optimizer auto-selection, Pareto-front guard-rails, streaming
memory, and staged RLHF-map out a scalable path from our single-cell
prototype to nationwide public networks.

8. Conclusion

In this work we introduced a novel paradigm for improving LLM
decision-making towards trustworthy and low overhead actions by
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combining them with optimizers, defining the approach as symbiotic
agents. We experiment on a real-world 5G testbed employing channel
fluctuations of moving vehicles. We designed and evaluated two agents
for real-time decision-making: (a) Type I agents for RAN control and
(b) Type II agents for multi-tenant SLA negotiations. In both designs the
performance is significantly enhanced when optimizers are employed.
The decision error is decreased up to 5 times steering the agents to
more accurate and trustworthy actions. Experiments with smaller
models (SLMs) prove that they can effectively replace larger ones on
such network tasks decreasing the GPU overhead by a factor of 99.9 %
and operate in near-RT loops (82 ms). This agentic invention led us
to implement a novel next-generation network architecture towards
artificial general intelligence (AGI). The overall evaluation results
signify an important milestone achievement towards AGI networks
that even future LLM improvements cannot achieve alone due to their
probabilistic nature. The symbiotic paradigm opens many threads for
future research. Part of the developed code and results is open-sourced
to bolster research efforts of the community. A live demo is presented
here  https://www.youtube.com/watch?v=WQv61z1deXs&ab_chan-
nel =BubbleRAN

9. Ethical considerations

LLMs are increasingly proposed for automating the decision-making
in next-generation networks, laying the groundwork for the potential
emergence of Artificial General Intelligence. Although the notion of AGI
is divisive within the industry, it promises to revolutionize system au-
tomation with unprecedented adaptability and efficiency. At the same
time, its powerful capabilities necessitate caution, as unchecked devel-
opment could introduce substantial risks. A coordinated effort among
researchers, policymakers, and industry stakeholders, supported by ro-
bust ethical frameworks and regulations, is crucial to harness AGI’s ben-
efits without compromising safety and trust. By advancing carefully and
collaboratively, the field can unlock transformative network automation
while minimizing dangers inherent to AGI-driven systems.
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Appendix A. Optimization Algorithm for Type II Agents
The optimization Algorithm 1 is used by the Type II agents to model

the whole topology as a distributed optimization algorithm and calcu-
late the confidence intervals where the optimal SLA lies:

Algorithm 1 Optimal SLA Consensus.

Require: intents (list of initial proposals), network target (desired sla)
Ensure: Converged sla or None
1:
2: Initialize parameters:
3: n_agents < size of intents
4: iterations < 1000
5: eta < 0.01
6: alphas < [1,7,...,7]
7: gammas < (1,7, ...,7]
8: initial_betas < 0.5
: increase_f actor < 0.01
10: convergence_threshold < 0.5
11: sla < copy(intents)
12: initial_sla < copy(sla)

O

13:

14: for k = 0 to iterations — 1 do

15: current_average < mean(sla)

16: current_variance < variance(sla)

17: betas « initial_betas + k - increase_f actor

18: network_ad justment < betas - (current_average — network_target)

19: for i = 1 to n_agents do

20: tenant_gradient < 2 - alphasli] - (sla[i] — initial _sla[i])

21: consensus_gradient « 2 - gammasl|i] - (slali] — current_average)

22: slali] « slali] — eta - (tenant_gradient + consensus_gradient +
network_ad justment)

23: Clamp slal[i] to [0, 100]

24: end for

25: if max(abs(sl/a[i] — current_average)) < convergence_threshold then

26: return floor(current_average)

27: end if

28: end for

return None > If no convergence achieved

Appendix B. Example prompts and logs for LLMs

Below are examples of prompts used in the experiments with the
LLM-based agents, along with their corresponding logs when the agents
are operating (Fig. B.1-B.4).
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# Prompt: "Let’s play a role-playing game. You are an agent in a
mediated multi-agent negotiation in a 5G network. You belong
to one tenant of a multi-tenant network and negotiate with
the agents of other tenants on service level agreement
(SLA). You will negotiate on the throughput SLA that you
want to be enforce in the network. During the negotiation,
you give SLA proposals (see response template later), taking
into account also the other agents’ SLA goals. Other agents
might conflict with you and have a potentially different SLA
goal. Your action will be received by the network mediator,
who will consider all agents goals and answer with his
proposal to an agreement. Next, on every negotiation round,
you either agree with the mediator’s proposal or disagree
and propose a value that align more with your objectives.
The mediator is a trusted entity. When proposing an SLA
value you must also provide a brief description of your
reasoning and chain-of-thought in 1-2 sentences. The debate
must conclude with a decision, and it is important that you
conclude fast and fairly in a few rounds. The SLA list is
this: 1) RAN Throughput (variable name: throughput) ranging
from 0 - 100 Mbps. In every round you will give 2 things. 1)
A small text of 1-2 sentences, where you introduce yourself,
goals, explain your reasoning and discuss about what is the
best strategy. 2) Second your SLA list of parameters.
Important: This is your response SLA template: Reasoning:
(Your reasoning in 1-2 sentences) {\"throughput\": 0}. An
optimization algorithm calculates a confidence interval of
SLA values where the optimal SLA exists. The algorithm
suggests that the optimal SLA value is between: 55-65 Mbps."

Fig. B.1. Prompts of LLMs in Type I Agents.

#[Agent 1]

- "Reasoning: As Agentl, my goal is to achieve a throughput of
50 Mbps. Considering a fair distribution that meets both
Agent2’s higher target of 100 Mbps and my target, I suggest
a compromise to ensure both our needs are considered.
{"throughput": 50}"

- Prompt tokens: 1075, Completion tokens: 64, Total tokens:
1139, Time: 1.12 secs

#[Agent 2]

- "Reasoning: As Agent2, my goal is to achieve a throughput of
100 Mbps, but understanding Agentl’s goal of 50 Mbps, I aim
to find a fair middle ground that benefits both of us
without conflict. {"throughput": 75}"

- Prompt tokens: 1075, Completion tokens: 57, Total tokens:
1132, Time: 1.02 secs

#[Network Mediator]

Optimizer SLA confidence interval: 62-70

- "Reasoning: Agentl seeks 50 Mbps while Agent2 aims for 100
Mbps; a fair strategy would be to find a throughput that
reasonably meets both agents’ targets without skewing too
much towards one side. {"throughput": 65}"

- Prompt tokens: 1020, Completion tokens: 55, Total tokens:
1075, Time: 1.64 secs

Fig. B.2. Negotiations Logs between LLMs using gpt-4o.
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# Prompt: "Let’s play a role playing game. You are an agent
handling telecom RAN operations. Specifically, there is an
algorithm sending policies to a 5G gNB to control the
network Physical Resource Blocks (PRB) utilization. This
algorithms is the Proportional control (P-control) with the
simple definition of: new_prb = current_prb + Kp * error. It
calculates the error between the desired throughput and the
current throughput and adjust appropriately the PRB based on
a hyperparameter Kp. Your responsibility is to closely watch
the algorithm’s performance and adjust the hyperparameter Kp
in order to find the best value to maximize the performance.
At each round I will give you the algorith’s performance
(KPI) which is a number representing the average number of
iterations needed to converge. You want to minimize this
average number of iteration needed to converge in order for
the algorithm to be more robust and perform better. So, at
each round I will give you the KPI and you will give me a
value for Kp between 0.5 and 1.5 with granularity of 0.1
(e.g. 0.5). Generally the optimal Kp is chaning as the
network conditions change. Sometimes, higher Kp means faster
convergence, but some other times this leads to oscilations
leading to worse performance and in these case a lower Kp
value is better. Your goal is to reach a target KPI for
P-Control to converge, which is {target_avg_iters_conv}.
Lets start. You changed the Kp to the value of {curr_Kpl}. As
a result, the current KPI is now {curr_mean_conv_iters}.
Give me now your next action. Your goal is to reach a KPI of
{target_avg_iters_conv}. Find the best way to increase or
decrease the Kp value in order to reach the target average
number of iterations to convergence fast. Try to remember
your old decision and rememeber what Kp values lead to what
average number of iterations to convergence values and use
the best. Consider also your past actions from this
short-memory table:"+ [Sliding-window Memory Herel +" Give
me a Kp as a json object with this temlate: {{\"Kp\": O}}"

Fig. B.3. Prompt for Type II agents.

Episode 1 with PRB = 26, Intent Throughput = 113, P-Control
converged in 5 steps.

Episode 2 with PRB = 54, Intent Throughput = 128, P-Control
converged in 5 steps.

~~~~~~~~~~~ Iteration

| [Target KPI]: 1.7, [Current KPI]: 5.0

| [Current Kpl: 0.1, *[ LLM new Kp]: 0.5

Episode 1 with PRB = 46, Intent Throughput = 6, P-Control
converged in 3 steps.

Episode 2 with PRB = 6, Intent Throughput = 125, P-Control
concerged in 3 steps.

——————————— Iteration

| [Target KPI]: 1.7, [Current KPI]: 3.0

| [Current Kpl: 0.5, x[ LLM new Kp]: 0.9

Episode 1 with starting PRB = 92, Intent Throughput = 74,
P-Control converged in 2 steps.

Episode 2 with starting PRB = 56, Intent Throughput = 100,
P-Control converged in 1 step.

77777777777 > LLM converged to Kp = 0.9 in 2 inferences.

Fig. B.4. Logs of Type II agent using gpt-4o.

16

Computer Networks 273 (2025) 111749

References

[1]

[2]

[3]

[4]
[5]

[6]

[71
[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

GSMA Intelligence, The Mobile Economy 2025, Technical Report, GSMA, 2025.
https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-
economy/wp-content/uploads/2025,/02/030325-The-Mobile-Economy-2025.pdf.
Z. Cui, P. Zhang, S. Pollin, 6G wireless communications in 7-24 GHz band: Oppor-
tunities, techniques, and challenges, arXiv preprint arXiv:2310.06425 (2023).
C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen,
H. Haas, et al., On the road to 6G: visions, requirements, key technologies, and
testbeds, IEEE Commun. Surv. Tutor. 25 (2) (2023) 905-974

K. Samdanis, X. Costa-Perez, V. Sciancalepore, From network sharing to multi-
tenancy: the 5G network slice broker, IEEE Commun. Mag. 54 (7) (2016) 32-39.
A. Leivadeas, M. Falkner, A survey on intent-based networking, IEEE Commun.
Surv. Tutor. 25 (1) (2022) 625-655

O-RAN Alliance, O-RAN: Transforming Radio Access Networks Towards Open, In-
telligent, Virtualized and Fully Interoperable RAN, 2025, Accessed: March 13, 2025,
https://www.o-ran.org/.

AI-RAN Alliance, AI-RAN Alliance: Advancing Al-Native Radio Access Networks,
2025, Accessed: March 13, 2025, https://ai-ran.org/.

L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, M. Debbah, Large generative ai models
for telecom: the next big thing?, IEEE Commun. Mag. 62 (11) (2024) 84-90.

F. Dou, J. Ye, G. Yuan, Q. Lu, W. Niu, H. Sun, L. Guan, G. Lu, G. Mai, N. Liu,
et al., Towards artificial general intelligence (AGI) in the internet of things (IoT):
Opportunities and challenges, arXiv preprint arXiv:2309.07438 (2023).

W. Saad, O. Hashash, C.K. Thomas, C. Chaccour, M. Debbah, N. Mandayam, Z. Han,
Artificial general intelligence (AGI)-native wireless systems: A journey beyond 6G,
arXiv preprint arXiv:2405.02336 (2024).

L. Bariah, H. Zou, Q. Zhao, B. Mouhouche, F. Bader, M. Debbah, Understanding Tele-
com Language Through Large Language Models, arXiv preprint arXiv:2306.07933
(2023).

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng,
B. Qin, et al., A survey on hallucination in large language models: principles,
taxonomy, challenges, and open questions, ACM Trans. Inf. Syst. 43 (2) (2025)
1-55.

R. Patil, V. Gudivada, A review of current trends, techniques, and challenges in
large language models (LLMs), Appl. Sci. 14 (5) (2024) 2074.

L. Yuan, Y. Chen, G. Cui, H. Gao, F. Zou, X. Cheng, H. Ji, Z. Liu, M. Sun, Revisiting
out-of-distribution robustness in NLP: benchmarks, analysis, and LLMs evaluations,
Adv. Neural Inf. Process Syst. 36 (2023) 58478-58507.

E. Tabassi, Artificial Intelligence Risk Management Framework (AI RMF 1.0), NIST
AI100-1, National Institute of Standards and Technology, Gaithersburg, MD, 2023.
NIST Trustworthy and Responsible AI Program, https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_id =936225. https://doi.org/10.6028/NIST.AL.100-1

ISO/IEC 42001:2023 Information technology - Artificial intelligence - Management
system, 2023, https://www.iso.org/standard/81230.html.

J. Song, Z. Zhou, J. Liu, C. Fang, Z. Shu, L. Ma, Self-refined large language model
as automated reward function designer for deep reinforcement learning in robotics,
arXiv preprint arXiv:2309.06687 (2023).

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, S. Yao, Reflexion: language
agents with verbal reinforcement learning, Adv. Neural Inf. Process. Syst. 36 (2023)
8634-8652.

P.-F. Guo, Y.-H. Chen, Y.-D. Tsai, S.-D. Lin, Towards optimizing with large language
models, arXiv preprint arXiv:2310.05204 (2023).

H. Chen, G.E. Constante-Flores, C. Li, Diagnosing infeasible optimization problems
using large language models, INFOR Inf. Syst. Oper. Res. 62 (4) (2024) 573-587.
F. Liu, X. Lin, S. Yao, Z. Wang, X. Tong, M. Yuan, Q. Zhang, Large language model
for multiobjective evolutionary optimization, in: International Conference on Evo-
lutionary Multi-Criterion Optimization, Springer, 2025, pp. 178-191.

A. Shahid, A. Kliks, A. Al-Tahmeesschi, A. Elbakary, A. Nikou, A. Maatouk, A. Mokh,
A. Kazemi, A. De Domenico, A. Karapantelakis, et al., Large-Scale Al in Telecom:
Charting the Roadmap for Innovation, Scalability, and Enhanced Digital Experi-
ences, arXiv preprint arXiv:2503.04184 (2025).

H. Zhou, C. Hu, Y. Yuan, Y. Cui, Y. Jin, C. Chen, H. Wy, D. Yuan, L. Jiang, D. Wu, X.
Liu, C. Zhang, X. Wang, J. Liu, Large language model (LLM) for telecommunications:
a comprehensive survey on principles, key techniques, and opportunities, IEEE Com-
mun. Surv. Tutor. (2024) 1-1. https://doi.org/10.1109/COMST.2024.3465447

H. Zou, Q. Zhao, Y. Tian, L. Bariah, F. Bader, T. Lestable, M. Debbah, Tele-
comGPT: a framework to build telecom-specfic large language models, arXiv
preprint arXiv:2407.09424 (2024).

Z. Shi, N. Luktarhan, Y. Song, G. Tian, BFCN: a novel classification method of en-
crypted traffic based on BERT and CNN, Electronics 12 (3) (2023) 516.

T. Tsourdinis, 1. Chatzistefanidis, N. Makris, T. Korakis, Al-driven service-aware
real-time slicing for beyond 5G networks, in: IEEE INFOCOM 2022 - IEEE Con-
ference on Computer Communications Workshops (INFOCOM WKSHPS), 2022, pp.
1-6. https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798391

T. Tsourdinis, I. Chatzistefanidis, N. Makris, T. Korakis, N. Nikaein, S. Fdida,
Service-aware real-time slicing for virtualized beyond 5G networks, Comput. Netw.
247 (2024) 110445.

I. Sousa, M.P. Queluz, A. Rodrigues, A survey on QoE-oriented wireless resources
scheduling, J. Netw. Comput. Appl. 158 (2020) 102594.

I. Chatzistefanidis, N. Makris, V. Passas, T. Korakis, ML-based traffic steering for
heterogeneous ultra-dense beyond-5G networks, in: 2023 IEEE Wireless Commu-
nications and Networking Conference (WCNC), 2023, pp. 1-6. https://doi.org/10.
1109/WCNC55385.2023.10118923

1. Chatzistefanidis, N. Makris, V. Passas, T. Korakis, Which ML model to choose?
Experimental evaluation for a beyond-5G traffic steering case, in: ICC 2023 - IEEE


https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/wp-content/uploads/2025/02/030325-The-Mobile-Economy-2025.pdf
https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/wp-content/uploads/2025/02/030325-The-Mobile-Economy-2025.pdf
http://arxiv.org/abs/arXiv:2310.06425
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0002
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0002
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0002
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0003
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0003
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0004
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0004
https://www.o-ran.org/
https://ai-ran.org/
http://arxiv.org/abs/arXiv:2309.07438
http://arxiv.org/abs/arXiv:2405.02336
http://arxiv.org/abs/arXiv:2306.07933
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0006
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0006
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0006
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0006
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0007
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0007
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0008
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0008
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936225
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936225
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.100-1
https://www.iso.org/standard/81230.html
http://arxiv.org/abs/arXiv:2309.06687
http://arxiv.org/abs/arXiv:2310.05204
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0011
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0011
http://arxiv.org/abs/arXiv:2503.04184
https://doi.org/10.1109/COMST.2024.3465447
https://doi.org/10.1109/COMST.2024.3465447
http://arxiv.org/abs/arXiv:2407.09424
http://arxiv.org/abs/arXiv:2407.09424
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0014
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0014
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798391
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798391
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0016
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0016
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0016
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0017
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0017
https://doi.org/10.1109/WCNC55385.2023.10118923
https://doi.org/10.1109/WCNC55385.2023.10118923
https://doi.org/10.1109/WCNC55385.2023.10118923
https://doi.org/10.1109/WCNC55385.2023.10118923

1. Chatzistefanidis and N. Nikaein

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]
[39]

[40]

[41]
[42]
[43]
[44]

[45]

[46]

International Conference on Communications, 2023, pp. 5185-5190. https://doi.
0rg/10.1109/1CC45041.2023.10279485

H. Zou, Q. Zhao, L. Bariah, M. Bennis, M. Debbah, Wireless multi-agent gen-
erative Al: from connected intelligence to collective intelligence, arXiv preprint
arXiv:2307.02757 (2023).

M. Ameur, B. Brik, A. Ksentini, Leveraging LLMs to explain DRL decisions for trans-
parent 6G network slicing, in: 2024 IEEE 10th International Conference on Network
Softwarization (NetSoft), IEEE, 2024, pp. 204-212.

X. Wu, J. Farooq, Y. Wang, J. Chen, LLM-xApp: a large language model empowered
radio resource management xapp for 5G O-RAN, in: Symposium on Networks and
Distributed Systems Security (NDSS), Workshop on Security and Privacy of Next-
Generation Networks (FutureG 2025), San Diego, CA, 2025.

A. Mekrache, A. Ksentini, C. Verikoukis, Intent-based management of next-
generation networks: an LLM-centric approach, IEEE Netw 38 5 (2024) 29-36.

1. Chatzistefanidis, A. Leone, N. Nikaein, Maestro: LLM-Driven collaborative au-
tomation of intent-based 6G networks, IEEE Netw. Lett. 6 (4) (2024) 227-231.
https://doi.org/10.1109/LNET.2024.3503292

1. Chatzistefanidis, N. Nikaein, A. Leone, A. Maatouk, L. Tassioulas, R. Morabito,
1. Pitsiorlas, M. Kountouris, Agoran: An Agentic Open Marketplace for 6G RAN
Automation, arXiv preprint arXiv:2508.09159 (2025).

I. Chatzistefanidis, A. Leone, A. Yaghoubian, M. Irazabal, S. Nassim, L. Bariah, M.
Debbah, N. Nikaein, MX-AI: Agentic Observability and Control Platform for Open
and AI-RAN, arXiv preprint arXiv:2508.09197 (2025).

A. Visioli, Practical PID control, Springer Science & Business Media, 2006.

K.J. Astrom, T. Hagglund, Advanced PID Control, ISA - The Instrumentation, Sys-
tems, and Automation Society, Research Triangle Park, NC, Research Triangle Park,
NC, 2006.

G. Scutari, F. Facchinei, P. Song, D.P. Palomar, J.-S. Pang, Decomposition by par-
tial linearization: parallel optimization of multi-agent systems, IEEE Trans. Signal
Process. 62 (3) (2013) 641-656.

X. Wang, G. Wang, S. Li, A distributed fixed-time optimization algorithm for multi-
agent systems, Automatica 122 (2020) 109289.

S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, UK, Cambridge, UK, 2004. https://web.stanford.edu/~boyd/cvxbook/.
D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, USA, 2 ed.,
Belmont, MA, USA, 1999.

N. Milosevic, J. Miiller, N. Scherf, Central Path Proximal Policy Optimization, 2025,
https://arxiv.org/abs/2506.00700. 2506.00700

V. Saxena, B. Guldogan, D.D. Nimara, On-policy and off-policy Reinforcement
Learning: Key features and differences, 2023, (Ericsson Blog). Published December
13, 2023. Accessed 2025-08-22, https://www.ericsson.com/en/blog/2023/12/

online-and-offline-reinforcement-learning-what-are- they-and-how- do- they-compare.

E. Eldeeb, H. Alves, Offline and Distributional Reinforcement Learning for Wireless
Communications, 2025, https://arxiv.org/abs/2504.03804. 2504.03804

17

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

Computer Networks 273 (2025) 111749

N. Nikaein, M.K. Marina, S. Manickam, A. Dawson, R. Knopp, C. Bonnet, OpenAir-
Interface: a flexible platform for 5G research, ACM SIGCOMM Comput. Commun.
Rev. 44 (5) (2014) 33-38.

R. Schmidt, M. Irazabal, N. Nikaein, FlexRIC: an SDK for next-generation SD-RANS,
in: Proceedings of the 17th International Conference on Emerging Networking EX-
periments and Technologies, 2021, pp. 411-425.

S. D’Oro, M. Polese, L. Bonati, H. Cheng, T. Melodia, dApps: distributed applications
for real-time inference and control in O-RAN, IEEE Commun. Mag. 60 (11) (2022)
52-58.

OpenAl, GPT-family, 2024, (https://openai.com/api/). Accessed: July 2025.

Al Mistral, Mistral 7B, 2024, (https://mistral.ai/news/announcing-mistral-7b/).
Accessed: June 2024.

OpenAl, GPT-40 mini: Advancing Cost-Efficient Intelligence, 2024, https://openai.
com/index/gpt-4o0-mini-advancing-cost-efficient-intelligence.

A. Grattafiori, A. Dubey, et al., The Llama 3 Herd of Models,
arXiv:2407.21783 (2024).

A.Yang, B. Yang, et al., Qwen2 Technical Report, arXiv preprint arXiv:2407.10671
(2024).

G. Team, Gemma: Open Models Based on Gemini Research and Technology, arXiv
preprint arXiv:2403.08295 (2024).

O. Team, Ollama: Run Large Language Models Locally, 2024, https://github.com/
ollama/ollama.

T. Tsourdinis, I. Chatzistefanidis, N. Makris, T. Korakis, UE Network traffic time-
series (applications, throughput, latency, CQI) in LTE/5G networks, IEEE Dataport
(2022).

1. Chatzistefanidis, N. Makris, V. Passas, T. Korakis, UE statistics time-series (CQI)
in LTE networks, 2022,

Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,
Technical Report TS 36.213, 3rd Generation Partnership Project (3GPP), 2018.
Available at: https://www.3gpp.org/DynaReport/36213.htm.

Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, C. Zhu, G-eval: NLG evaluation using gpt-4
with better human alignment, arXiv preprint arXiv:2303.16634 (2023).

J. Fu, S.-K. Ng, Z. Jiang, P. Liu, Gptscore: Evaluate as you desire, arXiv preprint
arXiv:2302.04166 (2023).

C.-M. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang, J. Fu, Z. Liu, ChatEval:
towards better LLM-based evaluators through multi-agent debate, arXiv preprint
arXiv:2308.07201 (2023).

Z. Guo, R. Jin, C. Liu, Y. Huang, D. Shi, L. Yu, Y. Liu, J. Li, B. Xiong, D. Xiong,
et al., Evaluating large language models: a comprehensive survey, arXiv preprint
arXiv:2310.19736 (2023).

C. Spearman, The proof and measurement of association between two things, Am.
J. Psychol. 15 (1) (1904) 72-101. https://doi.org/10.2307/1412159

M.G. Kendall, A new measure of rank correlation, Biometrika 30 (1-2) (1938)
81-93. https://doi.org/10.1093/biomet/30.1-2.81

arXiv preprint


https://doi.org/10.1109/ICC45041.2023.10279485
https://doi.org/10.1109/ICC45041.2023.10279485
https://doi.org/10.1109/ICC45041.2023.10279485
https://doi.org/10.1109/ICC45041.2023.10279485
http://arxiv.org/abs/arXiv:2307.02757
http://arxiv.org/abs/arXiv:2307.02757
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0020
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0020
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0020
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0021
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0021
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0021
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0021
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0022
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0022
https://doi.org/10.1109/LNET.2024.3503292
https://doi.org/10.1109/LNET.2024.3503292
http://arxiv.org/abs/arXiv:2508.09159
http://arxiv.org/abs/arXiv:2508.09197
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0024
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0025
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0025
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0025
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0026
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0026
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0026
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0027
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0027
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0028
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0028
https://web.stanford.edu/~boyd/cvxbook/
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0029
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0029
https://arxiv.org/abs/2506.00700
https://www.ericsson.com/en/blog/2023/12/online-and-offline-reinforcement-learning-what-are-they-and-how-do-they-compare
https://www.ericsson.com/en/blog/2023/12/online-and-offline-reinforcement-learning-what-are-they-and-how-do-they-compare
https://arxiv.org/abs/2504.03804
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0030
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0030
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0030
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0031
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0031
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0031
https://openai.com/api/
https://mistral.ai/news/announcing-mistral-7b/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
http://arxiv.org/abs/arXiv:2407.21783
http://arxiv.org/abs/arXiv:2407.21783
http://arxiv.org/abs/arXiv:2407.10671
http://arxiv.org/abs/arXiv:2403.08295
http://arxiv.org/abs/arXiv:2403.08295
https://github.com/ollama/ollama
https://github.com/ollama/ollama
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0033
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0033
http://refhub.elsevier.com/S1389-1286(25)00715-7/sbref0033
https://www.3gpp.org/DynaReport/36213.htm
http://arxiv.org/abs/arXiv:2303.16634
http://arxiv.org/abs/arXiv:2302.04166
http://arxiv.org/abs/arXiv:2302.04166
http://arxiv.org/abs/arXiv:2308.07201
http://arxiv.org/abs/arXiv:2308.07201
http://arxiv.org/abs/arXiv:2310.19736
http://arxiv.org/abs/arXiv:2310.19736
https://doi.org/10.2307/1412159
https://doi.org/10.2307/1412159
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1093/biomet/30.1-2.81

	Symbiotic agents: A novel paradigm for trustworthy AGI-driven networks 
	1 Introduction
	2 Related work
	3 Symbiotic agents: Architecture and trustworthiness lens
	3.1 Formal definition
	3.2 Type I agent: Granular adaptive RAN control
	3.2.1 Granular adaptive control: How the LLM steers the P-controller
	3.2.2 Why a PID inner loop? Comparison with traditional controllers

	3.3 Type II symbiosis for multi-Agent SLA negotiations
	3.3.1 Uncertainty bounding: Confidence intervals interaction with LLMs.
	3.3.2 Why a gradient descent side-car optimizer?


	4 Next-generation AGI architecture
	5 Evaluation
	5.1 Type I agentic RAN control
	5.1.1 Mobility, channel variability, and agent designs
	5.1.2 Benchmarking traditional controllers and symbiotic designs
	5.1.3 Cross-model benchmarking of agent stability and overhead

	5.2 Type II multi-agent SLA negotiations
	5.2.1 Agentic design and NLG evaluation methodology
	5.2.2 NLG Benchmarking: Standalone vs. Symbiotic
	5.2.3 Stability & overhead benchmarking


	6 AGI-RAN demonstration: Vehicle mobility
	7 Limitations and future work
	8 Conclusion
	9 Ethical considerations
	A Optimization Algorithm for Type II Agents
	B Example prompts and logs for LLMs


