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Abstract—Affine frequency division multiplexing (AFDM) has
recently emerged as a promising multicarrier waveform for
high-mobility and doubly selective channels. However, similar
to orthogonal frequency division multiplexing (OFDM), AFDM
signals suffer from a high peak-to-average power ratio (PAPR),
which limits the efficiency of radio frequency (RF) power
amplifiers. To address this issue, we propose a chirp parameter
selected mapping (CSM) scheme that exploits the tunable chirp
parameter of AFDM to generate multiple candidate signals and
selects the one with the lowest PAPR for transmission, thereby
achieving low-PAPR signal generation without introducing wave-
form extensions. A theoretical lower bound on the complementary
cumulative distribution function (CCDF) of CSM is established
under the independence assumption, which exhibits an expo-
nential tail decay with the selection order. Accordingly, both a
candidate design criterion and a practical guideline are developed
to minimize the cross-correlation between signals. Simulation
results show that the proposed CSM scheme approaches the
theoretical bound and achieves significant PAPR reduction over
existing baselines, while maintaining error-rate performance in
doubly selective channels.

Index Terms—Affine frequency division multiplexing, peak-to-
average power ratio, selected mapping, low-correlation candidate
design.

I. INTRODUCTION

AS the world moves toward the vision of sixth-generation
(6G) networks, the ultimate goal is to achieve seamless

communication across land, sea, air, and space, thereby en-
abling a truly interconnected Internet of Everything. High-
mobility scenarios such as vehicle-to-everything (V2X), un-
manned aerial vehicles (UAVs), autonomous ships, high-speed
rail, and low Earth orbit (LEO) satellites are expected to play a
central role in this vision [1]. Unlike static environments, these
scenarios involve rapid channel variations and complex prop-
agation, where conventional transceiver designs often struggle
to maintain reliable and efficient links. In particular, severe
multipath propagation combined with pronounced Doppler
shifts gives rise to doubly selective channels, which pose a
fundamental challenge to system performance.
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A. Related work

As a promising multicarrier waveform candidate, Affine
Frequency Division Multiplexing (AFDM) has demonstrated
strong robustness in high-mobility and doubly dispersive en-
vironments. By constructing its signals from orthogonal chirp
basis functions, AFDM inherits a distinctive capability of chirp
parameter tunability. This flexibility enables flexible spread-
ing of the signal energy across the time–frequency plane,
thereby enhancing resilience to fading and interference. The
theoretical foundations of AFDM are now well established. In
[2], an equivalent affine frequency-domain channel model was
derived, showing that AFDM can achieve full path diversity
under maximum-likelihood detection. Later, [3] extended the
analysis to linear equalization and demonstrated that AFDM
can approach equal-SINR transmission across subcarriers,
indicating its potential for low-complexity iterative receiver
design.

Apart from these error-rate advantages, AFDM also offers
improved spectral efficiency. As shown in [2], [4], AFDM re-
quires fewer guard intervals than Orthogonal Time Frequency
Space modulation (OTFS), thereby mitigating pilot–data inter-
ference and allowing more data to be accommodated within
each block. AFDM has also been combined with advanced
transmission schemes, such as generalized spatial modulation
and sparse code multiple access [6], [7], where it consistently
achieves better bit-error-rate (BER) performance than OTFS in
high-mobility scenarios. Moreover, AFDM is also well aligned
with the key visions of 6G. In integrated sensing and com-
munications, it offers fine delay–Doppler resolution, which
enables accurate joint sensing and communication [8]–[10].
Its robustness has also been demonstrated in non-terrestrial
networks [11], further underscoring AFDM’s versatility for
next-generation wireless systems.

Nevertheless, in the diverse Internet of Everything ecosys-
tem, many devices operate with nonlinear and low-efficiency
radio frequency (RF) chains, unlike the highly linear and effi-
cient ones used at base stations. This limitation is particularly
problematic for multicarrier transmission such as OFDM and
AFDM, which are intrinsically prone to high peak-to-average
power ratio (PAPR), as illustrated in Fig.1. Consequently,
PAPR becomes a critical bottleneck for reliable and energy-
efficient transmission in such devices. In multicarrier systems,
high PAPR typically leads to several detrimental effects. First,
it forces the power amplifier (PA) to operate with a large
input back-off, which drastically reduces power efficiency
and degrades overall spectral efficiency [12]–[14]. Second,
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Fig. 1: Superposition of multiple subcarriers leading to high
PAPR

when the back-off is insufficient, the PA enters its nonlin-
ear region, causing in-band distortion that increases error
vector magnitude (EVM) and degrades link reliability [15]–
[17]. Third, nonlinear distortion produces out-of-band spectral
regrowth, which elevates the adjacent channel leakage ratio
and may cause harmful interference to coexisting systems [16],
[18], [19]. Finally, high PAPR enlarges the dynamic-range
requirements of analog front-end components such as DACs,
ADCs, and linearization units, thereby raising hardware cost
and design complexity, and scaling unfavorably in multi-
antenna or massive-access deployments [12], [13], [20].

In multicarrier systems, extensive research has been de-
voted to PAPR reduction schemes for OFDM over the
past two decades. Representative approaches include clip-
ping/companding, partial transmit sequence (PTS), precoding,
and selective mapping (SLM). Clipping and companding are
attractive for their simplicity, but they are distortion-based
and inevitably cause in-band EVM degradation and out-of-
band spectral regrowth [21], [22]. PTS achieves stronger PAPR
reduction by optimizing the phases of multiple subblocks, but
its combinatorial search complexity and large side-information
(SI) overhead limit practical feasibility [23]–[25]. Precoding-
based schemes can suppress envelope fluctuations without re-
quiring SI, yet they alter the inherent time–frequency resource
mapping of OFDM, and such waveform extensions inevitably
introduce new trade-offs between complexity, flexibility, and
performance [26]–[28]. In contrast, SLM has emerged as
a widely adopted distortion-free baseline: it preserves the
receiver structure but requires the transmission of additional
SI to indicate the selected candidate. With properly protected
SI, SLM achieves progressively better PAPR reduction as the
number of candidates increases [29], [30].

The candidate-selection principle from SLM has also in-
spired investigations in chirp-based multicarrier systems. For
Orthogonal Chirp Division Multiplexing (OCDM), a straight-
forward dual-candidate scheme can be obtained by switching
between positive and negative chirp slopes [31]. While this
design provides a certain degree of PAPR reduction, its
effectiveness is fundamentally constrained by the extremely
limited candidate set. Beyond OCDM, researchers have re-
cently proposed PAPR-reduction strategies tailored to AFDM.
One representative approach is grouped pre-chirp selection

(GPS) [32], where the pre-chirp parameter is varied in a group-
wise manner across subcarriers to form multiple candidates,
and the candidate with the lowest PAPR is selected for trans-
mission. However, GPS does not sufficiently exploit the corre-
lation among candidates, so under limited side information the
achievable PAPR reduction is restricted. In addition, weighted
affine Fourier transform based hybrid-carrier (HC-WAFT) [33]
has been proposed, which superimposes single-carrier compo-
nents onto AFDM blocks within a WAFT framework. While
effective in lowering PAPR, HC-WAFT introduces noticeable
error-rate degradation in doubly selective channels.

B. Motivation and Contributions

As discussed in the preceding section, prior works focus on
extending AFDM through grouped designs or weighted multi-
component extensions, but they have not fully explored the
potential of AFDM’s inherent chirp parameters for candidate
selection. This built-in flexibility makes selective mapping
straightforward, without the burden of generating or storing
large sets of phase sequences. Building on this insight, we
design a low-PAPR transmission scheme tailored for AFDM.
The main contributions are summarized as follows:

• We propose a chirp parameter selected mapping (CSM)
scheme for AFDM, which exploits multiple chirp param-
eter candidates to achieve effective PAPR reduction while
fully preserving the original AFDM signal structure.

• We derive the complementary cumulative distribution
function (CCDF) of AFDM using an asymptotic Gaussian
approximation, and further establish a lower bound for
AFDM-CSM under the independence assumption.

• We prove that the ideal lower bound cannot be achieved
in practice, and, based on the properties of generalized
quadratic Gauss sums (GQGS), we develop a more practi-
cal design principle together with an illustrative example.

• We validate the proposed AFDM-CSM scheme through
extensive simulations. Results show that AFDM-CSM
can closely approach the theoretical CCDF lower bound
without requiring any waveform extensions, thereby con-
firming its effectiveness and efficiency.

C. Organization and Notation

The rest of this paper is organized as follows. Section
II provides preliminaries on AFDM and the PAPR metric.
Section III introduces the proposed CSM scheme and its lower
bound analysis. Section IV discusses candidate design criteria
and practical guidelines. Simulation results are presented in
Section V, followed by conclusions in Section VI.

We use b to denote a scalar, b a vector, and B a matrix.
IN and 0N represent the N × N identity and zero matrices,
respectively, while FN denotes the N -point discrete Fourier
transform (DFT) matrix. The notation (·)H indicates the conju-
gate transpose, and (·)n the n-th power. The operators ⌊b⌋ and
⌈b⌉ denote the floor and ceiling of b, respectively. For a matrix
B, B(i,j) denotes its (i, j)-th entry, and for a vector b, b(i)

denotes its i-th element. We use E[·] for expectation, gcd(·, ·)
for the greatest common divisor, a | b and a ∤ b to indicate
that a divides and does not divide b, respectively, and a ≡ b



3

(mod n) to denote congruence modulo n. The symbols ℜ{·}
and ℑ{·} denote the real and imaginary parts, respectively, and
δi,j denotes the Kronecker delta. Finally, CN (µ, σ2) stands
for a circularly symmetric complex Gaussian random variable
with mean µ and variance σ2.

II. PRELIMINARIES

In this section, the fundamental concepts of AFDM and the
definition of PAPR are reviewed, forming the basis for the
subsequent analysis.

A. AFDM

AFDM is a novel multicarrier system that maps informa-
tion onto multiple orthogonal chirp subcarriers. Compared
with conventional OFDM, which performs modulation in the
frequency domain, AFDM achieves superior time–frequency
spreading, thereby providing enhanced resilience against in-
terference and fading.

At the transmitter, the digital implementation relies on
the inverse discrete affine Fourier transform (IDAFT). The
IDAFT generalizes the conventional IFFT by introducing
two chirp parameters, c1 and c2, which introduce additional
quadratic phase modulation. Specifically, c1 serves as the
channel-side parameter, influencing how the signal interacts
with time–frequency dispersion, while acts as the signal-
side parameter. The resulting time-domain signal s ∈ CN×1

can be represented as a weighted sum of chirp subcarriers.
Specifically, the m-th time-domain sample is given by

s(m) =
1√
N

N−1∑
n=0

x(n) e
j2π(c1n

2+ 1
N mn+c2m

2), (1)

where x ∈ CN×1 denotes an N -length PSK/QAM symbol
vector. The entries of x are modeled as independent and
identically distributed (i.i.d.) random variables with zero mean
and variance σ2

x.
The expression in (1) can be further expressed in the

following matrix form:

s = AHx = ΛH
c1F

H
NΛH

c2x. (2)

where Λc = diag(e−j2πcn2

, n = 0, 1, . . . , N − 1) ∈ CN×N .
At the receiver, the discrete affine Fourier transform (DAFT) is
applied for demodulation. Since this paper’s primary focus is
on the PAPR of the transmitted signal, receiver-side processing
is not discussed in detail.

Moreover, the AFDM system usually introduces a chirp-
periodic cyclic prefix (CCP) to mitigate multipath effects
and inter-block interference. For analytical simplicity, it is
typically assumed that N is even and 2Nc1 ∈ Z, so that
the CCP becomes equivalent to the conventional cyclic prefix.
Hence, the introduction of CCP can be regarded as a structural
extension of the signal, without affecting the subsequent PAPR
analysis [34]. According to the chirp periodicity [35], the CCP
of length NCP is defined as

s(ncp) = s(N+ncp)e
−j2πc1(N

2+2Nncp), ncp = −NCP, · · · ,−1.
(3)

B. PAPR

PAPR is an important metric that quantifies the envelope
fluctuations of the transmitted signal, and it is defined as
the ratio between the maximum instantaneous power and the
average power.

For the discrete-time baseband signal s, sampled at the
Nyquist rate, the PAPR is defined as

P(s) ≜
max0≤n≤N−1 |s(n)|2

E{|s(n)|2}
. (4)

With the unitarity of the DAFT, i.e., AHA = I, we have

E{ssH} = AE{xxH}AH = σ2
xAIN AH = σ2

xIN . (5)

Hence, the average AFDM symbol power is

E{|s(n)|2} =
[
E{ssH}

]
(n,n)

= σ2
x. (6)

Assuming normalized average symbol power for simplicity,
the PAPR expression reduces to

P(s) = max
0≤n≤N−1

|s(n)|2. (7)

The performance of a PAPR reduction scheme is typically
characterized in terms of the CCDF of the PAPR. For a
threshold γ, the CCDF is defined as

F̄P(γ) ≜ Pr
{
P(s) > γ

}
, (8)

which quantifies the probability that the PAPR of the trans-
mitted signal exceeds γ.

Since both the DFT matrix FN and the DAFT matrix A
have entries with unit magnitude scaling (i.e., 1/

√
N ), the

contribution of each data symbol is uniformly distributed in
magnitude. This observation allows the well-known PAPR
results derived for OFDM to be naturally extended to AFDM
systems.

By the central limit theorem (CLT), when N is large,
ℜ{s(n)} and ℑ{s(n)} can be approximated as mutually un-
correlated Gaussian random variables with zero mean and
variance 1/2. Consequently, the instantaneous power

|s(n)|2 = ℜ{s(n)}2 + ℑ{s(n)}2 (9)

follows an asymptotic chi-square distribution with 2 degrees of
freedom. Equivalently, the amplitude |s(n)| follows a asymp-
totic Rayleigh distribution, whose probability density function
(PDF) is

fr(r) = 2re−r2 , r ≥ 0. (10)

Assuming that the time-domain samples are approximately
independent for large N , i.e., asymptotically independent, the
CCDF of PAPR exceeding a threshold γ for AFDM can be
approximated as

F̄P(γ) = 1−
N−1∏
n=0

Pr{|s(n)|2 ≤ γ}

= 1−
(
1− e−γ

)N
, (11)

where the exponential term arises from the Rayleigh distribu-
tion of the amplitude.
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Fig. 2: Block diagram of the AFDM-CSM transceiver.

Throughout the following analysis, we assume N is suffi-
ciently large such that the asymptotic Gaussianity and inde-
pendence approximations hold, and this assumption will not
be repeated henceforth.

III. CHIRP PARAMETER SELECTED MAPPING

A. Chirp Parameter Selected Mapping

As shown in (2), for a given deterministic data sequence
x, the parameters c1 and c2 jointly define the transmitted
time-domain signal. The phase rotation induced by c1 occurs
after the IDFT operation, affecting only the signal phase and
therefore cannot be exploited to reduce the PAPR. In contrast,
the phase rotation introduced by c2 alters the superposition of
the complex exponentials in the IDFT, which can potentially
change the peak amplitudes and hence the PAPR.

This observation naturally motivates a PAPR reduction
scheme based on the selection of c2, hereafter referred to as
CSM, analogous to the SLM scheme widely used in OFDM
systems. In contrast to [32], [33], our scheme avoids waveform
extensions and instead achieves PAPR gain while preserving
the original AFDM signal structure through the selection of
c2. Specifically, let A = {α1, α2, . . . , αU} ⊂ R denote a
set of candidate c2 parameters. For a given deterministic data
sequence x, each candidate αu ∈ A generates a corresponding
time-domain signal

su = ΛH
c1F

H
NΛH

αu
x, u = 1, 2, . . . , U, (12)

all of which share the same amplitude-invariant relation with
c1, i.e., the final transmitted signals for any c1 candidate
will have the same PAPR as su. Therefore, c1 can be freely
selected based on channel conditions to optimize equalization
performance without affecting the PAPR reduction.

By computing the PAPR of each candidate su, the transmit-
ter selects the c2 value that minimizes the PAPR:

α∗ = arg min
αu∈A

P
(
su
)
. (13)

The signal corresponding to α∗ is then transmitted, achieving
reduced PAPR.

The overall process is illustrated in Fig. 2. As c1 has no
effect on PAPR (as discussed earlier), the minimum-PAPR
decision can be performed prior to the c1 phase-rotation
module. Thus, the c1 rotation needs to be applied only once to
the finally selected candidate, resulting in a saving of (U−1)N
complex multiplications per AFDM symbol.

Note that the transmitter needs to transmit the selected c2
value to the receiver, similar to the SI required in conventional

OFDM SLM scheme. In practice, this can be implemented by
sending a small number of bits indicating the index of the
chosen candidate in A, ensuring correct demodulation without
affecting the PAPR reduction performance.

B. Lower Bound Analysis of CSM

We first reformulate the exceedance event of CSM in a
general set-theoretic form. For a threshold γ, define the event

Bu(γ) ≜ {P(su) ≤ γ} =

N−1⋂
n=0

{
|su(n)|2 ≤ γ

}
, (14)

which corresponds to the event where the PAPR of the u-th
candidate does not exceed γ.

Accordingly, the CCDF of CSM can be written as

F̄CSM
P (γ) = Pr

{
min

u=1,...,U
P(su) > γ

}
= 1− Pr

(
U⋃

u=1

Bu(γ)

)
, (15)

where the second equality follows from De Morgan’s law and
the complement rule of probability.

The union probability in (15) can be evaluated using the
inclusion–exclusion principle:

Pr

(
U⋃

u=1

Bu(γ)

)
=

U∑
w=1

cw
∑
I⊆U
|I|=w

Pr

(⋂
u∈I

Bu(γ)

)
, (16)

where U = {1, 2, . . . , U} and cw = (−1)w+1. As an
illustrative example, for U = 3 and w = 2, the expansion
contains 3 pairwise terms:∑

I⊆U |I|=2

Pr

(⋂
u∈I

Bu(γ)

)
= Pr (B1(γ) ∩B2(γ))

+Pr (B1(γ) ∩B3(γ)) + Pr (B2(γ) ∩B3(γ)) .

For any I ⊆ U with |I| = w,

Pr
( ⋂

u∈I
Bu(γ)

)
= Pr

( ⋂
u∈I

N−1⋂
n=0

{ |su(n)|2 ≤ γ }
)
, (17)

namely, the probability that all wN time-domain samples
(from w candidates, each with N samples) satisfy the threshold
simultaneously.

To analyze (17), we now stack the wN instantaneous
samples under consideration into a single vector

sI ≜
[
{su(n)} u∈I

n=0,...,N−1

]T ∈ CwN×1. (18)
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The correlation matrix of sI is defined as

RI ≜ E{sIsHI } ∈ CwN×wN ,

which admits a natural w × w block structure with N × N
submatrices:

RI =


R11 R12 · · · R1w

R21 R22 · · · R2w

...
...

. . .
...

Rw1 Rw2 · · · Rww

 , (19)

where the (p, q)-th block Rpq corresponds to the pair of
candidates (up, uq) ∈ I. Substituting the explicit expressions
of the AFDM time-domain samples into (19), and noting that
E[s(k)] = E[(Ax)(k)] = 0, the (m,m′)-entry of Rpq can be
expressed as

Rpq (m,m′) =
1

N
e j2πc1(m

2−m′2)

×
N−1∑
n=0

N−1∑
n′=0

E
[
x(n)x

∗
(n′)

]
e
j2π

(
αupn

2+
m
N n−αuqn

′2−m′

N n′
)
.

(20)

Considering that E
[
x(n)x

∗
(n′)

]
= δn,n′ , (20) can be simpli-

fied as

Rpq (m,m′)

=
1

N
e j2πc1(m

2−m′2)
N−1∑
n=0

ej2π
[
(αup−αuq )n

2+m−m′
N n

]
. (21)

From (21), the block correlation matrix Rpq has the following
properties.

Case w = 1 (single candidate): When w = 1, the stacked
vector reduces to sI = su ∈ CN and RI = IN , i.e., no
intra-candidate correlation.

Case w > 1 (multiple candidates): Arrange RI as a w×w
block matrix with N ×N submatrices {Rpq}.

• Diagonal blocks: For p = q, one obtains Rpp = IN , in-
dicating unit variance and no intra-candidate correlation.

• Off-diagonal blocks: For p ̸= q, the magnitude of each
entry depends only on the lag τ = m−m′.

Assuming further that the time-domain signals s1, . . . , sU
are mutually independent (no cross-candidate correlation), one
has

RI = IwN , for any I ⊆ U . (22)

In this case, the CSM CCDF coincides with the independence
expression (which is also the theoretical lower bound):

F̄CSM
P (γ) = 1− Pr

( U⋃
u=1

Bu(γ)
)

= 1−
U∑

w=1

(−1)w+1

(
U

w

)
(1− e−γ)wN

=
[
1− (1− e−γ)N

]U
. (23)

Motivated by diversity-order analyses for outage probability
[36], [37], we define the selection order as the asymptotic
decay rate of the PAPR CCDF

Gsel ≜ lim
γ→∞

− ln F̄CSM
P (γ)

γ
, (24)

For any 0 ≤ e−γ ≤ 1, Bernoulli’s inequality and the binomial
expansion yield

1−Ne−γ ≤ (1− e−γ)N ≤ 1−Ne−γ +
(
N
2

)
e−2γ , (25)

which implies

Ne−γ −
(
N
2

)
e−2γ ≤ 1− (1− e−γ)N ≤ Ne−γ . (26)

Raising both sides to the power U ,(
Ne−γ −

(
N
2

)
e−2γ

)U ≤
[
1− (1− e−γ)N

]U ≤ (Ne−γ)U .
(27)

Taking logarithms and dividing by γ > 0 gives

U − U lnN

γ
− U

γ
ln
(
1− N−1

2 e−γ
)

≥

− ln F̄CSM
P (γ)

γ
≥ U − U lnN

γ
. (28)

As γ → ∞, both bounds in the inequality converge to U .
Therefore, by the squeeze theorem,

lim
γ→∞

− ln F̄CSM
P (γ)

γ
= U. (29)

Therefore, under the independence lower bound, the CCDF
shows an exponential decay in the high-threshold regime.
Equivalently, each independent candidate contributes one unit
to the asymptotic decay rate.

IV. CHIRP PARAMETER CANDIDATE DESIGN

A. Chirp Parameter Candidate Design Criteria

To approach the theoretical lower bound in (23), the can-
didate set A must be carefully designed. As shown in (22),
this requires that for any pair of distinct candidates p ̸= q, the
corresponding block Rpq should ideally equal the zero matrix.
More specifically, the (m,m′)-entry of Rpq depends only on
the lag τ = m−m′ and can be written in terms of

C(τ) ≜
1

N

N−1∑
n=0

ej2π(∆αn2+
τ
N n), ∆α = αup

− αuq
, (30)

where the ideal condition Rpq = 0N would correspond to
C(τ) = 0 for all τ . Note that the criterion in (30) differs
from the parameter design rule in [32]: while [32] only
accounts for the correlation across different candidates at the
same time index, (30) additionally captures the cross-candidate
correlations across different time lags.

However, as will be shown next, such a strict condition
cannot hold in general. This observation is formalized in the
following proposition and can be readily extended to other
phase-selection-based AFDM designs.

Proposition 1: For any deterministic chirp difference ∆α,
there exists at least one τ ∈ {0, 1, . . . , N − 1} such that

C(τ) ̸= 0. (31)
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Equivalently,

̸ ∃∆α ∈ R, s.t. C(τ) = 0, ∀τ. (32)

Proof: By rewriting C(τ) as the scaled DFT of the sequence

an = ej2π∆αn2

, n = 0, 1, . . . , N − 1,

we obtain

C(τ) =
1

N

N−1∑
n=0

ane
jωτn, ωτ = 2π

τ

N
. (33)

If C(τ) = 0 for all τ , then by the inverse DFT,

an =

N−1∑
τ=0

C(τ)e−jωτn = 0, (34)

which contradicts |an| = 1 for all n. Hence the claim
follows. ■

Therefore, rather than enforcing the strict criterion in (30),
we relax it to an asymptotic one given by:

lim
N→∞

C(τ) = 0, ∀τ ∈ {0, 1, . . . , N − 1}. (35)

B. Practical Guidelines for Designing A
Under the design criteria specified in (35), the design of A

can be approached in various ways, such as optimization-based
methods, heuristic searches, or exhaustive enumeration. From
a practical standpoint and to reduce computational complexity,
we exploit the properties of generalized quadratic Gaussian
sums to simplify the design of A.

Proposition 2: (Bound on GQGS) : Let

G(f, g, h) =

h−1∑
n=0

e
2πj
h

(
fn2+gn

)
.

where f, g, h ∈ Z and h > 0. If h ≡ 0 (mod 4), then

|G(f, g, h)| ≤
√
2h, ∀ f with gcd(f, h) = 1. (36)

Proof: Please refer to Appendix A. ■
The structure of C(τ) in (21) closely resembles a GQGS.

To make this connection precise, we first rewrite it in the
following form:

C(τ) =
1

N

N−1∑
n=0

e
2πj
2N

[
(2N∆α)n2+2τn

]
. (37)

Assuming that 2N∆α ∈ Z, this summation, up to the prefactor
1/N , has the same quadratic form as the generalized Gauss
sum G(f, g, h) introduced in Proposition 2, with parameters1

f = 2N∆α, g = 2τ, h = 2N

except that in C(τ) the summation is truncated to the first N
terms (0 ≤ n ≤ N − 1) instead of covering the full range
(0 ≤ n ≤ 2N − 1).

1In practical communication systems N is typically a power of two; hence
for large subcarrier numbers we assume h = 2N ≡ 0 (mod 4).

Partitioning the full sum into two segments and changing
variables n′ = n−N gives

G(f, g, 2N)

=

N−1∑
n=0

e
2πj
2N (fn2+gn) +

2N−1∑
n=N

e
2πj
2N (fn2+gn)

=

N−1∑
n=0

e
2πj
2N (fn2+gn) +

N−1∑
n′=0

e
2πj
2N

(
f(n′+N)2+g(n′+N)

)

=
(
1 + e jπ(fN+g)

)N−1∑
n=0

e
2πj
2N (fn2+gn). (38)

Noting that fN + g = 2(N2∆α+ τ) is even, we obtain

|C(τ)| = 1

2N
|G(2N∆α, 2τ, 2N)|. (39)

To further characterize this Gaussian sum, let d =
gcd(2N∆α, 2N). If d ∤ 2τ , then G(2N∆α, 2τ, 2N) = 0.
If instead d | 2τ , we can write

2N∆α = df1, 2τ = dg1, 2N = dh1,

with gcd(f1, h1) = 1. By the Gauss sum reduction formula
(see [38]),

G(2N∆α, 2τ, 2N) = d ·G(f1, g1, h1). (40)

Using Propostion 2, the magnitude satisfies

|G(f1, g1, h1)| ≤
√
2h1 = 2

√
N/d, (41)

and hence

|C(τ)| = d

2N
|G(f1, g1, h1)| ≤

√
d/N. (42)

Therefore, as
√
d/N → 0, (35) becomes asymptotically

valid. This observation provides practical insight for the design
of candidate sets A under the constraint 2N∆q ∈ Z: to achieve
low cross-covariance, the chirp parameters should be chosen
to keep the pairwise values of

dp,q = gcd(2N(αup − αuq ), 2N), ∀αup ̸= αuq ∈ A

as small as possible across all sequence pairs.
In practical scenarios, a significant reduction in PAPR can

often be achieved without a large candidate set size U [30].
Ideally, one would prefer maxp̸=q dp,q = 1, i.e., all pairwise
differences being odd. However, as U increases, it becomes
impossible to guarantee that every pairwise difference is odd;
even differences inevitably appear. Moreover, the magnitude
of these even differences grows with U , which in turn in-
creases the worst-case value of dp,q . Therefore, the proposed
CSM scheme is particularly effective when U ≪ N . As an
illustrative design example in the regime U ≪ N , we consider

αu =
u− 1

2N
, u = 1, . . . , U, (43)

for which the worst-case pairwise gcd can be expressed as

dmax ≜ max
p̸=q

dp,q = 2⌊log2(U−1)⌋. (44)

This construction provides a simple yet effective candidate set
with predictable cross-covariance behavior.
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TABLE I: Complexity comparison
Assumes radix-2 IFFT implementation; CSM and GPS consider U candidates.

Scheme Complex multiplications Complex additions
CSM UN

2
log2 N + (U + 1)N UN log2 N

GPS UN
2

log2 N + 2UN UN log2 N

HC-WAFT N
2
log2 N + 6N N log2 N + 3N

V. SIMULATION RESULTS

In this section, we present numerical results to validate the
proposed CSM scheme for PAPR reduction in AFDM systems.

A. Simulation Setup

Unless otherwise specified, the number of subcarriers is
set to N = 512, and QPSK constellation is employed. The
default candidate set for the chirp parameters follows the
design in (43) with U = 4 candidates. Each CCDF curve
is obtained by averaging over 107 independent Monte Carlo
trials to ensure statistical reliability.

We consider two baseline algorithms to benchmark the
proposed CSM scheme for PAPR reduction in AFDM systems.
The first baseline is GPS [32], where the candidate set is
generated by dividing the pre-chirp parameters into W groups,
each providing V candidates. To ensure fairness, the GPS
parameters are designed such that WV = U , i.e., the total
number of candidates is matched to CSM, and thus all schemes
require log2 U bits of side information. The second baseline is
HC-WAFT [33], in which the system is configured by a pair
of parameters (αHC, βHC). By decreasing αHC towards zero,
the relative weight of the embedded single-carrier component
is increased, which effectively suppresses signal peaks and
reduces the PAPR.

To further assess the practicality of CSM relative to these
baselines, we compare their computational complexities. Since
all three schemes rely on IFFT operations, their dominant
complexity scales on the order of N logN . Nevertheless, the
additional operations differ across algorithms, which leads to
non-negligible differences in the actual number of complex
multiplications and additions. For a more precise comparison,
Table I summarizes the operation counts under radix-2 IFFT
implementation, assuming U candidate sequences.

B. Results and Discussion

We first examine the impact of candidate set design on
the PAPR performance of AFDM-CSM, as illustrated in
Fig. 3. The achievable PAPR reduction largely depends on
the design of the candidate set, highlighting the importance
of careful set design. With the design in (43), the simulated
CCDF closely approaches the theoretical lower bound. At
CCDF = 10−4, AFDM-CSM with the design in (43) achieves
about 2.6 dB improvement over conventional AFDM. For this
set, dmax = 3. For comparison, we also consider uniformly
spaced candidates of the form αu = s(u−1)

2N , u = 1, . . . , U ,
where s ∈ {16, 64, 256}. In these cases, dmax = s − 1, i.e.,
15, 63, and 255, respectively. As shown in Fig. 3, the PAPR
reduction gradually deteriorates as dmax increases, reflecting

Fig. 3: CCDF of PAPR for AFDM-CSM under different
candidate set designs.

Fig. 4: CCDF comparison of PAPR for AFDM and AFDM-
CSM with different candidate set sizes.

stronger cross-candidate correlation (cf. the covariance indica-
tor C(τ)) and thus a larger deviation from the independence
lower bound. Notably, when αu = 256(u−1)

2N , the performance
improvement is less than 1 dB at 10−4 CCDF, indicating that
excessive candidate correlation severely limits the achievable
PAPR reduction.

We then evaluate the CCDF of the PAPR for conventional
AFDM and AFDM-CSM with different candidate set sizes,
as shown in Fig. 4. Under the large-N assumption, the
CCDF of conventional AFDM closely matches the theoretical
curve derived from the CLT approximation, confirming that
AFDM, similar to OFDM, inherits the high-PAPR drawback
of multicarrier systems. By introducing multiple c2 candidates
in CSM, the PAPR performance can be significantly improved.
Furthermore, conventional AFDM can be regarded as the spe-
cial case of CSM with U = 1, and increasing U consistently
leads to further PAPR reduction. The analytical expression in
(29) shows a close match with the simulation results in the
high threshold regime. This confirms that the proposed design
effectively approaches the full selection-order behavior of the
transmitted signal, thereby validating its effectiveness across
different candidate set sizes.
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Fig. 5: CCDF of PAPR for AFDM-CSM with different sub-
carrier settings.

Fig. 6: CCDF comparison of PAPR for AFDM-CSM and
baseline schemes.

Fig. 5 presents the CCDF performance of CSM under dif-
ferent subcarrier settings. The results for QPSK and 16QAM
are almost identical. This phenomenon can be explained by
CLT: when the number of subcarriers N is large, the super-
position of many independently subcarriers makes the time-
domain AFDM samples approximately Gaussian, and hence
the modulation format has little impact on the PAPR statistics.
As N increases, the PAPR of CSM also grows, but the CCDF
curve progressively approaches the theoretical lower bound.
For smaller subcarrier sizes, however, a noticeable deviation
from the bound can be observed. This deviation mainly arises
from two factors: (i) the Gaussian approximation in the time
domain becomes less accurate for small N , and (ii) the cross-
candidate correlation term C(τ) in (36) remains significant,
limiting the validity of the independence assumption.

The preceding simulations are conducted at the Nyquist
sampling rate, which offers low computational complexity
and still reflects the relative performance differences among
the schemes. These results can therefore serve as a useful
reference. Nevertheless, Nyquist-rate signals may not fully
capture the true peaks of the continuous-time waveform. To
obtain a more accurate approximation of the continuous-time

Fig. 7: BER performance comparison of AFDM-CSM and
baseline schemes under the EVA channel.

behavior, the signal is typically oversampled by inserting zeros
in the frequency domain and applying a higher-point inverse
DFT. In practice, an oversampling factor of L ≥ 4 is widely
adopted as sufficient [39], [40]. Accordingly, we also provide
oversampled simulation results to complement the Nyquist-
rate analysis and to more faithfully characterize the actual
PAPR performance.

Fig. 6 shows the CCDF performance of PAPR for CSM
and the baseline schemes under four-times oversampling with
U = 4, corresponding to 2 bits of side information. It can
be clearly observed that the proposed CSM outperforms GPS.
This is because the GPS design does not explicitly account
for the cross-lag correlation between different sequences; as a
result, some candidate sequences may exhibit strong temporal
correlation, preventing GPS from fully realizing its potential
PAPR reduction. For HC-WAFT, we consider weighting pa-
rameters αHC = 0.3 and 0.6. As αHC decreases towards zero,
the relative proportion of single-carrier components increases
while the multicarrier contribution diminishes, which explains
why αHC = 0.3 achieves better PAPR performance than
αHC = 0.6. Nevertheless, since HC-WAFT is not based on
a selective mapping mechanism, its CCDF curve exhibits a
different decay behavior. Specifically, when γ < 8.7 dB, HC-
WAFT with αHC = 0.3 achieves lower PAPR than CSM,
but for γ > 8.7 dB the proposed CSM yields superior
performance. In the high-PAPR regime, it shows a diversity-
like slope due to the multi-candidate selection gain. Overall,
these results highlight that GPS is fundamentally limited by
candidate correlation, HC-WAFT and CSM show complemen-
tary strengths in different operating regions.

As a complement to Fig. 6, Fig. 7 illustrates the BER
performance of AFDM-CSM and the baseline schemes. The
simulation assumes a carrier frequency of 9 GHz, a subcarrier
spacing of 30 kHz, and a maximum normalized Doppler of
0.15 under the EVA channel model, which represents a typical
doubly selective fading environment. The results show that
both GPS and CSM preserve the BER performance of AFDM
without introducing noticeable degradation. In contrast, HC-
WAFT exhibits a slight performance loss when the proportion
of single-carrier components is increased: for Eb/N0 > 16 dB,
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the BER curve deviates downward, reflecting reduced ro-
bustness against doubly selective fading. This indicates that
while HC-WAFT can suppress peaks, it inevitably introduces
a new trade-off in terms of reliability. Taken together, Fig. 6
and Fig. 7 demonstrate that AFDM-CSM achieves significant
PAPR reduction with only a small amount of side information,
while fully preserving the BER performance of the underlying
AFDM system.

VI. CONCLUSION

This work introduced CSM as an effective approach for
reducing the PAPR of AFDM systems. We showed that, by
properly designing the c2 candidate set, CSM can closely
approach the theoretical lower bound derived from the in-
dependence assumption. Asymptotic analysis and simulation
results consistently indicate that CSM approximately achieves
a selection-order gain. Compared with GPS and HC-WAFT
baselines, CSM achieves superior PAPR reduction while main-
taining the same BER performance. Since CSM operates solely
via selected mapping of the signal-side parameter c2 without
altering the channel-side parameter c1, it effectively decou-
ples PAPR control from channel-related BER optimization,
enabling a practical and robust waveform design for AFDM
systems. Overall, CSM contributes to more efficient utilization
of the RF hardware resources in AFDM implementations, and
future work may extend the framework to joint design with
coding or multiple-antenna systems.

APPENDIX A
PROOF OF PROPOSITION 2

Consider the quadratic exponential sum

G(f, g, h) =

h−1∑
n=0

exp
(
2πi
h (fn2 + gn)

)
, (45)

with f, g, h ∈ Z, h > 0, and gcd(f, h) = 1. We show that for
h ≡ 0 (mod 4) it holds that

|G(f, g, h)| ≤
√
2h. (46)

If g is odd, pairing n with n+ h/2 yields

G(f, g, h) =

h/2−1∑
n=0

e2πi(fn
2+gn)/h (1 + eπig) = 0. (47)

If g = 2m is even, completing the square gives

G(f, 2m,h) = g1(f, h) eh(−fm2), (48)

where

g1(f, h) =

h−1∑
n=0

e2πifn
2/h (49)

is the classical quadratic Gauss sum. Its absolute value is given
by the following standard result (see, e.g., [41], [42]):

|g1(f, h)| =


√
h, h odd,

2(t+1)/2, h = 2t, t ≥ 2,

0, h ≡ 2 (mod 4).

(50)

Since in practical systems the number of subcarriers is
typically a power of two, we focus on the case h = 2t with
t ≥ 2, so that

|G(f, g, h)| = |g1(f, h)| = 2(t+1)/2 =
√
2h. (51)

Combining the two cases of g being odd and even, we obtain

|G(f, g, h)| ≤
√
2h,

which completes the proof of Proposition 2.
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[11] D. Stojanović, I. Djurović, and B. R. Vojcic, “Multicarrier commu-
nications based on the affine Fourier transform in doubly dispersive
channels,” EURASIP J. Wireless Commun. Networking, vol. 2010, no. 1,
Art. no. 868314, Dec. 2010.

[12] S. H. Han and J. H. Lee, “An overview of peak-to-average power
ratio reduction techniques for multicarrier transmission,” IEEE Wireless
Commun., vol. 12, no. 2, pp. 56–65, Apr. 2005.

[13] T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction
techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2,
pp. 257–268, Jun. 2008.

[14] J. Joung, C. K. Ho, and S. Sun, “Spectral efficiency and energy efficiency
of OFDM systems: Impact of power amplifiers and countermeasures,”
IEEE J. Sel. Areas Commun., vol. 32, no. 2, pp. 208–220, Feb. 2014.

[15] D. Kim and S. An, “Experimental analysis of PAPR reduction technique
using hybrid peak windowing in LTE system,” EURASIP J. Wireless
Commun. Networking, vol. 2015, no. 1, Art. no. 75, Mar. 2015.

[16] Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduction
in OFDM systems: A survey and taxonomy,” IEEE Commun. Surveys
Tuts., vol. 15, no. 4, pp. 1567–1592, Fourth Quart. 2013.

[17] A. Cheaito, J.-F. Hélard, M. Crussière, and Y. Louët, “EVM derivation
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