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Abstract—In this work, we investigate the H-infinity tracking
control problem for linear systems operating within an AI-driven
radio access network (AI-RAN), where communication between
the remote tracking controller and the dynamic plant occurs over
random wireless multiple-input multiple-output (MIMO) fading
channels. We formulate the problem as a stochastic zero-sum
game and derive the corresponding coupled optimality condition
that characterizes the Nash equilibrium. To address the curse of
dimensionality, we introduce a structured reduced-order optimal-
ity condition that significantly simplifies the solution process. We
further develop an online learning algorithm based on structured
stochastic approximation (SA) that asymptotically learns the
Nash equilibrium in real time. Extensive simulations validate the
proposed method, demonstrating superior performance in track-
ing accuracy, convergence speed, and computational efficiency
compared to state-of-the-art methods.

Index Terms—Robust control, H-infinity control, stochastic
game, online learning, stochastic approximation.

[. INTRODUCTION

The rapid proliferation of intelligent applications, such as
autonomous vehicles and UAV swarms, is driving the evolu-
tion of Radio Access Networks (RANs) towards greater in-
telligence and responsiveness. Al-enabled RANs (AI-RANS),
by embedding Al capabilities at the network edge, enable
real-time sensing, inference, and control between edge nodes
and user devices [1], [2]. This architectural shift not only
reduces latency but also facilitates the deployment of closed-
loop control systems over wireless networks, where robust
control becomes essential to ensure stability and performance
under uncertain and dynamic conditions [3], [4]. In such
AI-RAN scenarios, control systems must operate over time-
varying multiple-input multiple-output (MIMO) fading chan-
nels, which are inherently unreliable. These uncertainties,
compounded by potential adversarial attacks on communica-
tion channels, significantly challenge the design of reliable
feedback controllers. Robust control, particularly H-infinity
(H o) tracking control, has become a critical tool for enabling
safe and effective control in RAN environments [5], [6].

Several prior works have investigated robust control
strategies in networked systems. For instance, heuris-
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Fig. 1: The architecture of the H-infinity tracking control system over the
random MIMO fading channels within AI-RAN.

tic Proportional-Integral-Derivative (PID)-based frequency-
domain methods have been applied in [7], though their perfor-
mance is constrained by the lack of systematic optimization.
Linear Quadratic Tracking (LQT) approaches [8] compute
optimal gains under idealized communication assumptions, but
perform poorly in realistic fading conditions. Moreover, most
existing approaches [6]-[9] either neglect stochastic channel
variation or fail to account for adversarial threats. This leaves a
critical gap when deploying such controllers in adversarial and
stochastic AI-RAN environments. Recent efforts have explored
Hoo control in simplified wireless settings. For example, [10]
cast the problem as a zero-sum game under constant chan-
nel assumptions, while [11] introduces AWGN-based channel
models but ignores real-time channel state information (CSI),
which is crucial for decision-making in AI-RANSs.

To address these challenges, this paper investigates robust
Hoo tracking control over general wireless MIMO fading
channels with stochastic dynamics and adversarial interfer-
ence. The key contributions are as follows: i) We first propose
a novel AI-RAN framework for robust control, and then
formulate the H, tracking control problem as a stochastic
zero-sum game over the internal plant state, target state, and
random channel state. To mitigate the curse of dimensionality,
we derive a structured reduced-order optimality condition
applicable to general random fading channels with an un-
countable state space. ii) Using the structured reduced-order
optimality condition, we derive a closed-form expression for
the Nash equilibrium in the H,, tracking control problem.
iii) Utilizing the structured stochastic approximation (SA)
framework, we propose an efficient online learning algorithm
that asymptotically converges to the Nash equilibrium. The
proposed methods provide a principled and scalable approach
to robust wireless control in AI-RANS, paving the way for
secure and real-time feedback systems over dynamic and
adversarial communication environments. The main notations
are listed in Table L.



TABLE I: Main Notations & Definitions

Notation Definition / Physical Meaning
Xk, Tk Plant and target state at timeslot &
ui Control input of the tracking controller at timeslot k&
uz Control input of the external attacker at timeslot k
Sik Channel access indicator for controller ¢ at timeslot k
H. MIMO fading channel matrix between
ik Controller ¢ and the plant at timeslot k
W,V Additive plant and channel noise at timeslot &k
A, B System matrices of the dynamic plant
QR MM | L e e o
v, & Non-cooperative penalty coefficient and Discount factor
Sk Aggregated state at timeslot k
Ty, T2 Policies of tracking controller and attacker at timeslot k
P Kernel matrix of the reduced-state value function
g Step size for SA update at timeslot k
a Correlation coefficient of the channel fading
N, N, Number of transmit and receive antennas
S Dimension of plant/target state

II. SYSTEM MODEL

As Fig. 1 shows, we reinterpret the classical control
loop—comprising a dynamic plant, a co-located actuator, a
remote tracking controller, and an external attacker—within
the modular AI-RAN architecture [1]. The dynamic plant and
actuator are co-located on a User Equipment (UE), while the
controller and attacker are modeled as intelligent agent-based
xApps deployed within the near-real-time RAN Intelligent
Controller (Near-RT RIC). Both xApps transmit control and
disturbance signals, respectively, through the E2 interface to
the RAN node, which then forwards them over the 5G NR
wireless links to the UE [4].

A. System Components and AI-RAN Mapping

1) Dynamic Plant (UE-side physical system): The plant
represents a real-world physical process, such as an au-
tonomous vehicle, or UAV, hosted on a UE. Its discrete-time
dynamics are governed by a linear state-space model:

Xp+1 = Axp +Bug +wi, k=0,1,2, .., (1)
where x;, € R9%! is the plant state, i, € RV <! is the
received noisy control signal at the actuator, N, € Z. is
the number of receiving antennas at the actuator, wj ~
N(0sx1, W) is the additive plant noise with finite noise
covariance matrix W € SY. A € R5*% is the potentially
unstable plant dynamics, i.e., |A| > 1 and B € R¥*Nr g
the actuation matrix. We assume the plant system (A, B) is
controllable.

2) Actuator (embedded in UE): The actuator is co-located
with the dynamic plant within the same UE. It executes control
signals 1 received from the RAN infrastructure and applies
them to the physical system in real time.

3) Remote Tracking Controller (xApp in Near-RT RIC):
The controller is deployed as an xApp within the Near-Real-
Time RAN Intelligent Controller (Near-RT RIC). It observes
plant state feedback and computes control policies based on
Hoo optimization. These control signals are transmitted to
RAN nodes via the standardized E2 interface, and then sent
to the target user equipment (UE) over the 5G NR downlink.

4) External Attacker (adversarial xApp): To evaluate ro-
bustness, we introduce a virtual attacker, also hosted as an
xApp in the RIC. It injects disturbance signals over the air

interface to interfere with the control process. This models
real-world threats such as adversarial signal injection, policy
spoofing, or jamming.

B. Control and Communication Architecture

The control loop spans the RAN and UE layers, as follows:
Step 1: The Near-RT RIC receives periodic feedback from the
UE (e.g., CQI, or plant state estimates) via E2 interface; Step
2: The controller computes a robust control action based on
the current state and the target state, while the adversarial
xApp may generate a disturbance, intended to disrupt the
control process; Step 3: Both control and disturbance signals
are transmitted over the wireless MIMO fading channel to the
UE. Step 4: The UE-side actuator applies the noisy composite
signal to the plant in real time.

Denote the remote tracking controller and the external at-
tacker as Controller 1 and Controller 2, respectively. We model
the wireless network connecting the dynamic plant and the
remote controllers as an N, x Ny MIMO fading channel, where
N; € Z represents the number of transmission antennas at
the remote controllers. At each timeslot, the remote controllers
generate the signal u;; € R <1 and randomly access the
wireless network. The active signal u; j, is transmitted to the
actuator through the wireless communication channels. The
received signal 1, € R™V~*1 at the actuator is given by:

Uy, = 61 . Hy pus g + 02, Ho pug i + v, 2
where H; j, ~ N(On,x1,In,) is the wireless MIMO fading
realization between the dynamic plant and the remote con-
trollers. It remains constant within each timeslot and is inde-
pendently and identically distributed (i.i.d.) across controllers
and timeslots. d;; € {0,1} is used to model the random
access activity of the i-th remote controller. Moreover, §; j
is i.i.d. distributed across timeslots and the remote controllers
satisfies Pr(d1, = 1) = Pr(do, = 1) = p € [0,1]. We
assume i.i.d. Bernoulli channel access for both the tracking
controller and the attacker, justified by its analytical tractabil-
ity, the independence of their uncoordinated access decisions,
and its consistency with randomized scheduling in Medium
Access Control (MAC) protocols and energy-efficient access
of stealthy attackers.

C. Problem Formulation

In the presence of random wireless channels between the
remote controllers and the actuator, the system evolves as a
linear time-varying (LTV) system. By substituting Eq. (2) into
Eq. (1), the equivalent plant dynamics can be expressed as:

Xp+1 = Axy + 01 ,BH; puy ; + 02, . BHs pus 1 + Bvy + wy.
3)

Let r;, € RS*! denote the prior-known target state, evolving
according to ri+1 = Gryg, where G € RS*S represents the
reference dynamics. The goal of the remote tracking controller
is to generate the control action u;j so that the real-time
state xj, closely follows the target trajectory rg. In practice,
this objective is hindered by (i) worst-case disturbances us j
from an external attacker, and (ii) unreliable MIMO fading
channels causing stochastic and intermittent control delivery.
We address Challenge 1 via an H., zero-sum formulation



explicitly modeling the attacker, and Challenge 2 by embed-
ding channel state information (CSI) {01 xHi k, 02Hax}
into the control to adapt actions to real-time fading. The
tracking control problem is thus a stochastic zero-sum game
over Sy = {xp, rr, 01,k H1 x, 62 . Ho 1 }:

Problem 1 (Hoo Tracking Control over MIMO Channels):
s.t. (3), £€€(0,1), 4

min max J 72
™1 T2

where J™™ = lmsupg_, . %]E[Zf;ol EFr(Sk,uy k,
uy k)]. The control policy m; : S — U maps the aggregated
state S, € S to the control action u;; € U. The per-stage
cost function r(Sg, uy k, uz k) is formulated as:

7(Sk,ur Uz ) = (x — 1) Q(x — 1) + uf JRyuy

- ’quzT,kR2u2,k + 01 x(BH; puy )" M, (BH; puy ) —

v?02,0(BHy puz, ;)" My (BHz puy 1), &)
where Q € S, R; € Sﬁ”, R, € Sﬁ”, M, € Si and
M, € Si are weighting matrices. The positive constant
v > 0 serves as a penalty coefficient, accounting for
non-cooperation between controllers. £ € (0,1) is a
discounting factor. In Problem 1, E[-] is over plant noise
wy, channel noise vy, access indicators d;j, and MIMO
fading H; , ¢ € {1,2}. This expectation is not computed
explicitly; instead, optimal policies are learned via stochastic
approximation (SA) using real-time {dq Hj x,d2 xHo ]
In Problem 1, the optimization variables are the control
policies m; and o, generating the tracking control
{u1x} and attack {upj} sequences, respectively. The
objective i sup oo 2E[ 1y €57 (Sk, ur g, ua k)]
is the long-term average cost, where r(-) sums:
() tracking error (xx — ri) Q(xx — ri); (i)
communication cost quRluLk — 72u;kR2u27k; and
(iii) actuation cost &1 x(BHy pur ) Mi(BHy pug i) —
7202 x(BHg pus k) ' Ma(BHs pus i). Here, m minimizes
this cost to steer xj; toward rj efficiently, while 7o
maximizes it to drive x; away within its own resource limits.
The optimization is subject to (3), and £ € (0, 1) emphasizes
near-term performance. The optimal solution to Problem 1 is
referred to as the Nash equilibrium, defined as follows.

Definition 1 (Nash equilibrium): The control policies of the
remote controllers, {x}, 75}, constitute the Nash equilibrium
of Problem 1 if J™1:™ < J71:7 < J™072 ¥ {1, T} .

III. NASH EQUILIBRIUM IN H,, TRACKING CONTROL
A. Problem Reformulation

Problem 1 can be equivalently formulated as a virtual
ergodic stochastic game, defined as follows: Problem 2 (Re-

formulation of Problem 1):
K-1

1
min max lim sup —E[Z fkf(Sk, uy g, Uz k)]
m e Ke K
s.t. f(k+1 = Axy + Bl,kul,k + B2,ku2,k + Wy, (6)
where the equivalent per-stage reward function

7(Sk, W1 k, Uz ) is defined as:

P(Sk, U gy Ua) = X Qi + ul  Rouy i, — 72ud  Roua
+ 61,,(BHy puy ) "My (BH juy 1) —

72891 (BHy jus )" Mo (BHy jus 1), )

where %;, = [xF,rT]T € R?9%1, Q= [QQ _QQ} €SS, A =

Diag(A,G) € R?$*25 B, = [§,;HI, BT, 0n,xs]" €
R29XNe “and Wy, = [VIBT + wi,01xs]7 € R?°*! As a
result, the Nash equilibrium of Problem 1 can be obtained by
solving the equivalent Problem 2.

B. Structured Nash Equilibrium

Conventionally, the Nash equilibrium of Problem 1 can be
obtained by solving the coupled ergodic Bellman optimality
equation for Problem 2, as stated in the following theorem.

Theorem 1 (Coupled Bellman Optimality Equation for Prob-
lem 2): If a Nash equilibrium of Problem 1 exists, it can
be determined by solving the coupled Bellman optimality
equation:

p+ V(Sk) = min max[#(Sk, U1k, U2 k)
Uy,x U2k

+ EE[V (Sk+1)[Sk, ua k, ug k], (8)
where V' (Sy,) is the optimal value function over the state space
Sk = {xk,01,kHi k, 2 xHo 1 }. The Nash equilibrium poli-
cies {7}, 73} = Juj ;,u3, ¢ correspond to the minimizer and
maximizer of the right-hand side (R.H.S.) of (8), respectively.
p > 0 is a positive constant. Due to space constraints, we omit
the detailed proof, which is similar to Chapter 6.7 of [12].

Traditionally, one may consider employing iterative methods
such as value iteration or ()-learning to solve the Bellman op-
timality equations (8). However, these methods suffer from the
curse of dimensionality due to the continuous state space Sy,
which has a total dimension of 25 +2N; N, +2. A brute-force
approach necessitates prior knowledge of the optimal value
function V' (Sy) or the Q-function Q(Sy, uy k, uz ), requiring
the computation of up to 25 + 2N, N,. + 2 4+ 2N, parameters.
This results in excessive computational overhead, making
learning-based approaches impractical for large values of S,
Ny, or N,.. To achieve a low-complexity implementation, we
exploit the i.i.d. properties of the CSI, {01 xHi , 02 s Ha 1},
in Eq. (8) and derive an equivalent structured reduced-order
optimality equation, formulated as follows.

Theorem 2 (Structured Reduced-Order Optimality Equa-
tion): If the Nash equilibrium of Problem 1 exists, it can be
determined by solving the equivalent structured reduced-order
optimality equation, given by:

P+ V(f{k) =E[min max[#(Sk, u 5, ua i)
Ul r U2k

+ EB[V (Rp1) %k, 01 5 Hy g, 62,6 Ha ], (9)
where V(x;) = %} Pxj represents the structured reduced-
order value function with a kernel P € S?°. The notation
p=p=JV" = Tr(EPLsW + ¢EBTP1.sB), where
Pi.5 denotes the leading principal submatrix of order S in
P. The Nash equilibrium policies {r},7}} = {u’ik,u;k}
are obtained as the optimizers of Eq. (9), characterized by:

u; . = K, 1 (P)xy, (10)
where the gain matrix K; ; € RVt*9 is given by:
Ki:(P)=—(R; + H{ ,B{M;B H;
+¢B], PLBLy) BT PLA, (D)



K+ (P) = (v"HI ,B"M;BH, ), + v’R;
—¢B1,Py;Boy) 'BY PosA, (12)
where Py j, = (P~1—y 2By 3 (Ry+HE  BTM,BH, ;) ! x
B;k)_l and f’g’k = (P_l — 7_2]:))17k(R1 =+
HT,B"M,BH, ;) 'B],)"".

As shown in Theorem 2, uik and u;k scale with the
instantaneous CSI {91, ,Hj i, 02 xHo . } via the gains K; 1 (P)
and Koy ,(P). A better channel for the controller (larger
|01,5Hy |]) increases ||K; ||, prompting stronger control
(larger ||uy ||) to exploit the favorable link, while a better
channel for the attacker (larger ||02,Hz 1 ||) increases | Ko x|,
enabling more disruptive injection. Moreover, each side antic-
ipates that the other becomes more effective when its own
channel is good, and thus further amplifies its action in such
cases. This bidirectional adaptation to both links embodies the
non-cooperative game nature of the problem.

Unlike solving the Bellman optimality equations (8) by
learning the optimal value function V'(Sy), which involves in-
finitely many unknowns, the equivalent reduced-order Bellman
optimality equations (9) require learning only the structured
reduced-order value function V(Xk) with a single unknown, P.
This effectively mitigates the curse of dimensionality caused
by the uncountable space of the Sy, as learning a single un-
known for the Nash equilibrium is computationally feasible. In
the following section, we develop an online learning algorithm
to compute the Nash equilibrium of Problem 1 by learning

tpe structured kernel P for the reduced-order value function
V(xg)-

IV. ONLINE LEARNING ALGORITHM FOR NASH
EQUILIBRIUM
Leveraging the structured form of the reduced-order value
function V' (xy), the Nash equilibrium policies {7}, 73}, and
the bias term p from Theorem 2, the reduced-order optimality
equation (9) can be reformulated as a coupled nonlinear matrix
equation, given by:

P = E[g(P, 01 xHi , 02 Ha )], (13)
where the nonlinear operator g(P,d1 yH; 1, 62 1 Ha 1) is de-
fined as follows:

g(P, 01 s Hy g, 02.Ho i) = Q+ EATPA — AT

T -1
Mg N
Not e Nog

BT, P
B, P

Bka

B, P

A, (14)

and
Ny =Ry +61,H] BTMBH, , + ¢BT, PBy ;. (15)

Nig g = fB{kPBQ,k, (16)
Noge = My, (17)

Nag e = fBQkPBM — 7?62, H] . BTMy;BH; . — v°Ro.
(18)
Since Eq. (13) is a fixed-point equation with respect to
(w.r.t.) the unknown variable P, we can leverage SA theory
[13] to develop an online learning algorithm for estimating P
based on Eq. (13). The learned unknown variable P is then

used to derive the optimal reduced-order value function V (Xy)
and the optimal control solution u; j, enabling computation of
the Nash equilibrium for Problem 1.

Specifically, Eq. (9) can be rewritten in the standard form
f(P) =0g, where f(P) is expressed as follows:

f(P) =E[g(P,01 xHyk, 2 Ho )] — P. 19)

To find the root of f(P) = 0g, we employ the SA algorithm
outlined in Algorithm 1. Specifically, the estimated root Py, at
each k-th timeslot is updated as follows:

Py =Pi_1 + ap(9(Pr_1,01,sH1 1,02 . Ha ) — Py), (20)
Here, {ay} denotes the step-size sequence, satisfying
Sheoar = oo and Y o a? < oo. The term
g(Pr_1,61 xHy i, 02 xHg ;) serves as an unbiased estimator
of E[Q(P, 617kH1’k, 52,kH2,k)] in Eq. (19)

Algorithm 1 Online Learning for Nash Equilibrium
Initialization: Set P_; = [Pinn, —Pinit; —P,-.m,Pinit] e S* for

V_l(fc) = %xTP_1%, where X € R***! and P_; € Si. Initialize
the plant state xo ~ N (Osx1,1Is).
For k=0,1, ...
o Step 1: (Update at Tracking Controller)
— Py < based on Eq. (20);
- w g — Koy o (Pr)Xy;
- i(})) « xTPx.
o Step 2: (Update at Attacker)
— Py < based on Eq. (20);
- ugk — Kok (Pr)Xy;
- Vi(%) « %TPi%.

End

The per-step complexity of Algorithm 1 is dominated by
(1) the SA update of the kernel matrix Pj and (ii) the
computation of the control gains K, j(-), involving matrix
multiplications of size 25 x 2S5 or 25 x N; and inversions
of 25 x 25 and N; x N, matrices. Thus, the cost scales
as O(S3 + S?2N; + N?). In memory, only a single kernel
P is stored, independent of the CSI dimension. By contrast,
conventional value iteration for Theorem 1’s Bellman equation
must store and update V' (Sy) over the full CSI space. If each
channel coefficient [H; ;] n, ¢ € {1,2}, m = 1,...,N,,
n = 1,..., N, is quantized into ¢ levels, the CSI state
space has size ¢>~"V¢. Consequently, the computational and
memory complexities scale as O(¢g?V~™Vt), i.e., exponentially
with the antenna numbers (N,., N;). Leveraging the reduced-
state formulation and closed-form SA updates removes this
exponential dependence, ensuring scalability w.r.t. the antenna
dimension.

Remark 1 (Online Learning for Non-Cooperative Players):
Algorithm 1 provides an online procedure to learn the Nash
equilibrium of Problem 1, yielding the optimal tracking control
policy 77 = {uj,} and the worst-case disturbance policy
m = {uz, ). It supports two deployment modes: (i) single-
agent, where only the tracking controller (Step 1) or only the
attacker (Step 2) learns its own policy; and (ii) simultaneous,
where both agents run their respective steps in parallel. In the
simultaneous mode, each agent ¢ updates its kernel Py via
SA and computes its action u,j from the aggregated state
Sk (plant state and real-time CSI) fed back by the plant. The



agents observe the same Sj, but operate independently, without
sharing actions or policies.

Remark 2 (CSI Requirement): Note that Step 1 and Step
2 of Algorithm requires the CSI {61 xH; g, d2 xHa x }. This
can be acquired through standard channel estimation at the
dynamic plant, based on pilot signals transmitted by the remote
controllers, followed by channel feedback to them [14].

We conclude this section with a theorem on the convergence
of Algorithm 1, stated as follows.

Theorem 3 (Convergence of Algorithm 1): Under the step-
size condition Yy, oy = 0o and Y_po, & < oo, the control
policy u; in Algorithm 1 converges almost surely to the
optimal solution of Problem 1. That is, Pr(lim sup;,_, ., u; x =
u; x) = 1, where u; ;. is the optimal solution given in Theorem
2.

Proof: Note that the evolution of Eq. (20) wrt. P
can be approximated by the ordinary differential equation
(ODE) trajectory P = f(P). The almost-sure convergence
of Algorithm 1 is ensured by proving the convergence of
P = f(P), as detailed in Chapter 2 of [13]. Due to space
constraints, we omit the detailed proof. [ |

V. NUMERICAL RESULTS
A. Experiment Setup & Baselines

We consider a dynamic plant with 12 states, i.e., X €
R12X1 The system dynamics A € R'2*!2 js randomly gener-
ated, with each element independently drawn from a Gaussian
distribution with zero mean and unit variance. The matrices
aresetas B=G =W =R, = M; = M, = Q = 1,.
p = 5 = 07. v =10. vy = 50I19x1 € R12X1, while
xg ~ N(10I12x1,10I;5) is randomly generated. Ijox; is a
12 x 1 vector with all elements to be 1.

o Baseline 1 (Prior-Known Nash Equilibrium): The opti-
mal solution uj , from Theorem 2 is known and imple-
mented at the remote tracking controller.

o Baseline 2 ( PID-based Tracking Control): The control
input is given by u; = Kp(x; —rg) + K; Zf:o(xt -
ri) + Kg[(xx — rg) — (Xg—1 — rg—1)], where the gain
matrices K, K;, K, € R'?*12 are tuned offline using
pole placement, and x_1 =r_1 = 012x1.

e Baseline 3 (LQT-based Tracking Control over Fading
Channels): uy ), = Ky (x, — ry), where the time-varying
gain K; € R12X12 j5 obtained by solving the Riccati
equation over the fading channels in an online manner.

o Baseline 4 (H ., Tracking Control by Brute-force Value
Iteration): uy j, is obtained by solving the Bellman equa-
tion in (8) using a brute-force approach.

o Baseline 5 (Distributionally Robust Reinforcement Learn-
ing (RL)): m is trained offline under parameter uncer-
tainty (controller channel access probability and plant
noise covariance) using the EPOpt-¢ framework. The
policy is updated via Soft Actor-Critic (SAC) using
only the worst |eN | trajectories. In simulations, we set
N =100, € = 0.3, and training horizon K = 1000. The
policy/value networks have three fully connected layers
[128,128, 64] with ReLU activations.

o Baseline 6 (Adversarial RL): 7 is trained offline together
with an auxiliary disturbance generator in a minimax

=-Proposed Scheme
“Baseline 1
Baseline 2
¢-Baseline 3
Baseline 4
Baseline 5
©-Baseline 6

Total Computational Time/s

Number of Receiving Antennas

Fig. 2: CPU runtime vs. number of receiving antennas in Scenario 1.

Fig. 3: Convergence behavior in Scenario 1.

game using Proximal Policy Optimization (PPO) with
Gaussian policies. The training horizon and the pol-
icy/value network architecture are the same as in Base-
line 5.

The considered communication models and corresponding

attacker actions uy j are summarized as follows.

o Scenario 1 (Default): The wireless fading gain H; j, ~
N(012x12,112) is i.i.d. across controllers ¢ € {1,2}
and timeslots k. The attacker applies the worst-case
disturbance in Theorem 2.

o Scenario 2 (Markovian Channels): H; j, is i.i.d. across
controllers but evolves over time via H; 41 = oH,; , +
V1—a?V,, where « € [0,1] is the correlation
coefficient set to be 0.3 in the simulation. V;; ~
N(Olgxlg, 112). The initial state Hi,O ~ N(Olgxlg, 112).
The attacker uses the same worst-case disturbance as in
Scenario 1.

o Scenario 3 (Spoofing Attacker): Same channel model as
Scenario 1. At each timeslot, the attacker estimates uj ,
via Algorithm 1, denoted 0 1, and sets ug j, = U1 k+Ap,
where Ay = 10sin(6k) ¢, and ¢p, ~ N (0121, I12).

B. Performance Comparison & Analysis

1) CPU Computational Time v.s. Number of Receiving
Antennas: We adopt CPU execution time as the primary effi-
ciency metric, as it reflects scalability w.r.t. antenna dimension
and enables fair comparison with existing methods. By solving
a structured reduced-state optimality equation over the plant
state only, the proposed scheme avoids high-dimensional CSI
dependence and achieves much lower CPU time than value-
iteration- and RL-based algorithms (Baselines 4-6), which
require optimization over a black-box Bellman equation (Fig.
2). It also stores only the reduced-order kernel matrix Py,
making memory usage independent of antenna dimension
and suitable for resource-constrained RIC xApps. Reduced
memory access, together with CPU time savings, further im-
plies lower overall energy consumption than computationally
intensive Baselines 4-6. While Baselines 2 and 3 have slightly
lower runtime by using overly simplified control algorithms
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Fig. 4: Tracking performance in different scenarios.

that ignore both the attacker and channel randomness, they
suffer poor tracking performance in dynamic and adversarial
environments. Baseline 1 has lower complexity as it assumes
prior knowledge of the Nash equilibrium, whereas our method
learns it online via SA.

2) NMSE between Applied and Optimal Control Actions:

Fig. 3 plots the normalized MSE W
ation number. In all cases, the iteration rllﬁmber corresponds
to online execution timeslots for all schemes. The expectation
is approximated by averaging over 200 runs with randomly
initialized seeds. For RL-based baselines (Baselines 5 and 6),
it denotes offline training iterations of the policy/value net-
work before deployment. The proposed scheme converges
asymptotically to the optimal solution, while the baselines
deviate due to ignoring CSI (Baseline 2), neglecting distur-
bances (Baseline 3), or suffering from dimensionality issues
(Baseline 4). Baseline 5 (EPOpt-¢) inherently departs from the
equilibrium, and Baseline 6 (adversarial RL) converges more
slowly owing to deep network training, whereas our method
exploits structured closed-form updates.

3) Plant State vs. Iteration Number: Figs. 4 plot the
averaged plant state E[[xx]1] under three scenarios. In all
cases, the iteration number corresponds to online execution
timeslots for all schemes. The expectation is approximated by
averaging over 200 runs with randomly initialized seeds. In
Scenario 1, the proposed scheme, Baseline 1, and Baseline 6
track the target, while Baselines 2—4 fail due to ignoring
CSI, neglecting the attacker, or suffering from dimensionality.
Among the convergent schemes, the proposed method is
faster and more stable than Baseline 6, which is affected
by approximation errors and variance from finite-time RL
training, while Baseline 1 is slightly faster thanks to prior
knowledge of the Nash equilibrium. In Scenario 2, the relative
performance is unchanged as convergent schemes adapt to CSI
and non-convergent ones remain ineffective. In Scenario 3, all
schemes improve under weaker attacks, while their relative
convergence behavior remains unchanged.

versus iter-

VI. CONCLUSION

This work investigated H., tracking control for linear
systems over random wireless MIMO fading channels within
the AI-RAN framework. We first formulated the problem
as a stochastic zero-sum game over the plant state, channel
state, and target state. By leveraging the structure of the
reduced-order optimality condition, we developed a structured
online learning algorithm that asymptotically attains the Nash
equilibrium of the stochastic game using SA. Numerical results

validate the superiority of the proposed scheme over baseline
methods in terms of tracking performance, computational
efficiency, and convergence behavior. Future work includes
extending the framework to handle temporally correlated or
adaptive attacks (e.g., correlated jamming, channel access
spoofing), integrating precoding and detection to enhance con-
trol signal fidelity under severe channels or stringent accuracy
requirements, and incorporating practical uncertainties such as
E2 interface delays, CSI estimation errors, and multi-user con-
tention as bounded or stochastic variations. These extensions
will be validated through hardware-in-the-loop experiments on
real RIC platforms to assess memory, energy efficiency, and
overall system performance under realistic conditions.
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