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SQL and LLMs Vows
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“I will help your users write SQL queries”  [Veltri et al, ICDE 2023]

“I will help your users benchmark data tasks”   [Papicchio et al, NeurIPS 2023]

“We will answer queries jointly”  [Saeed et al, EDBT 2024][Satriani et al, SIGMOD 2025]
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NL Prompt SQL Query
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Documents
Question answering 

(QA)

Query Execution

User Input:
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:

Fact Checking

Text2SQL

Table Retrieval

Table QA

[Badaro et al, 2023]



• A non-trivial instance of NL text to code

• LLMs do very well… according to results on public benchmarks 
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Please translate in SQL query:

“Give me all the employees with 

salary above 2k”

for the schema

Emp(name, age, salary)

“Select name

From Emp 

Where salary>2000”

Text2SQL



Spider: Text-to-SQL Challenge 

• Manually annotated corpus [EMNLP 2018]

5.7k (NL Question, SQL query) on 200 databases
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https://yale-lily.github.io/spider

https://yale-lily.github.io/spider


Can we adopt these models?

• Solutions are validated on public benchmark

• Risks:

• Overfit – systems optimized for queries in this dataset

• Contamination - examples are on the Web

• What if I need to pick a model for my proprietary data? 

Will it work? How well?
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Custom benchmark on user data

• Given proprietary table D

• Automatically rank existing LLMs on D for Text2SQL
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Problem for any tabular data task with (NL text, tabular data)

User data



• Text2SQL scales better - so why Table QA?

• “In the sales data, what are the key trends?”

"Which products were released during a global recession?”

“Who has a similar role and tenure to John, but in a different department?"
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Give me all the employees with 

salary above 2k sorted by name

for dataset:

Emp(name, age, salary)

(Mike, 33, 2900)

(Laure, 45, 3200)

(John, 21, 1900)

“Laure, Mike”

Table Question Answering



Custom benchmark on user data

• Given proprietary table D

• Automatically rank existing LLMs on T for data-task
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User data

Text2SQL

Table QA



QATCH: Query-Aided TRL Checklist

• Given proprietary data D and task T

• Create a set of tests QT on D (NL question, result Ground Truth data) 

• Measure the quality of LLMs’ output for QT and D
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Generate 

Tests QT

NL 

question Predict

Model Output

Ground Truth

Compute 

Metrics

QATCH LLM

Input data 

D

How to get ‘good’ 

tests?



SQL to the rescue 

• Query generation to create (NL question, result GT data) pairs

• Focus on query complexity: 1 to n attributes/conditions, …

• Simple text: no ambiguity, no failure, plain English
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Input 

data D NL question
Ground Truth = 

SQL (input data D)



QATCH: Query-Aided TRL Checklist

• Given proprietary data D and task T

• Create a set of tests QT on D (NL question, result Ground Truth data) 

• Measure the quality of LLMs’s output for QT and D
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Generate 

Tests QT

NL question
Predict

Model Output

Ground Truth

Compute 

Metrics

QATCH LLM

Input data 

D

Focus on data



Evaluate on output data

1. Benchmark multiple tasks: QA output is data

2. Data comparison enables accurate metrics for T2S: execute correct SQL and 

generated SQL on D, compare data outputs
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Sim(SQL script 1, SQL script 2)X



Results for TQA – avg over all tests, data

1. Synthetic examples 

effective for test on 

proprietary data 

2. Impact of fine tuning 
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Tapas, Tapex, 

OmniTab: TFMs with 

Fine-tuning paradigm
[Badaro et al, 2023]

TQA



Fine tuning would fix it?

• fine-tune GPT-3.5 and ChatGPT using 18 table-tasks

- 3.2M tables, 1k training examples per task

16Table-GPT [Li et al, 2023]

TQA

T2S



Results for SP   – avg over all tests, data

Promising results! 

With simple, clear NL 

questions 
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T2S



Player Team FG% 3FG% Apps

t1 Curry GSW 48.0 44.7 826

t2 Curry Nets 47.7 43.9 377

t3 Jordan 76ers 67.3 8.3 780

Data-Ambiguous Questions
“Is Curry the best shooter in NBA?”

TRUE
It depends

shooter

18 [Veltri et al, ICDE 2023]



Results for SP  - all tests, models
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Evaluating Ambiguous Questions in Semantic Parsing [Papicchio et al, 2024]

Qatch tests with 

simple NL text (no 

ambiguity) 

Qatch tests with data ambiguity

in the NL text, avg over 13 datasets 

T2S

[NeurIPS 2024]



SQL and LLMs Vows
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“I will help your users write SQL queries”  [Veltri et al, ICDE 2023]

“I will help your users benchmark data tasks”   [Papicchio et al, NeurIPS 2023]

“We will answer queries jointly”   [Saeed et al, EDBT 2024] [Satriani et al, SIGMOD 2025]



SQL

• Powers

- scalable and cheap → big data 

- declarative → expressive and precise

- logic and relational model 

→ exact relations

• Data Applications

- rich analytics

- data warehouse 

- data collection/preparation for ML on 

structured data (prediction)
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LLM

• Powers

- self supervised → pre-training

- transfer learning → easy to customize

- memorization → parametric knowledge 

• Text Applications

- text analysis/creation/processing (Question 

Answering)

- chatbots/virtual assistant/code

- … 
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• Data Applications

Text doc

Pre-training

What are the top 5 Indian cities 

with population higher than all 

other cities with bigger size? 

I don't have real-time access to the 

internet or databases to provide current 

data. However, you could obtain such data 

from a reliable source such as the World 

Factbook by the CIA, World Bank 

datasets, or WHO databases
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What if we could query this data 

with SQL?



Two Applications

SELECT c.researchTopic, AVG(e.salary)

FROM LLM.Employees c, DB.Employees e

WHERE c.eid = e.eid

GROUP BY c.researchTopic
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SQL𝑫𝑩𝒆 𝐿𝐿𝑀𝑒

Enterprise own resources

• Hybrid querying parametric knowledge



Two Applications

SELECT c.researchTopic, AVG(e.salary)

FROM LLM.Employees c, DB.Employees e

WHERE c.eid = e.eid

GROUP BY c.researchTopic
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SQL

LLM

Enterprise own resources

• Hybrid querying RAG

Papers

𝑫𝑩𝒆
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NL Prompt SQL Query
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Documents Question answering 

(QA)

Query Execution

User Input:
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Semantic Parsing
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Galois: SQL querying the LLM

• Input: SQL, 

arbitrary schema with key

• Storage: LLM (param. knowledge)

• Output: Relation
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Challenges

• LLMs store factual data, but

• Input: Not trained to execute SQL faithfully 

• Engine: Struggle with complex tasks

• Output: Not trained to (precisely) return relations
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Errors

LLM SQL



Query processing in 1 slide

SELECT S.name

FROM Reserves R, Sailors S

WHERE R.sid = S.sid

AND R.bid = 100 

AND S.rating > 5

SQL Query

Query Parser 𝜋S.name(𝜎bid=100⋀rating>5( 

Reserves⋈R.sid=S.sid Sailors))

Relational Algebra

𝜋S.name

𝜎R.bid=100 ⋀ S.rating > 5

⋈R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

On-the-fly

Select Iterator
will produce…

⋈R.sid=S.sid

𝜋S.name

𝜎R.bid=100

Reserves

Sailors

𝜎S.rating>5

(Physical) Query Plan: On-the-fly

Project Iterator

Indexed Nested 

Loop Join Iterator

Heap Scan 

IteratorB+-Tree

Indexed Scan 

Iterator

Operator Code 

tr
e
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t 

tables by construction 



SELECT S.name

FROM Reserves R, Sailors S

WHERE R.sid = S.sid

AND R.bid = 100 

AND S.rating > 5

SQL Query

Query Parser 𝜋S.name(𝜎bid=100⋀rating>5( 

Reserves⋈R.sid=S.sid Sailors))

Relational Algebra

𝜋S.name

𝜎R.bid=100 ⋀ S.rating > 5

⋈R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

Access LLM

will produce…

⋈R.sid=S.sid

𝜋S.name

𝜎R.bid=100

Reserves

Sailors

𝜎S.rating>5

(Physical) Query Plan:
DBMS

DBMS

Access 

LLM

Access LLM

NL prompts

Query processing in 1 slide
tr

e
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tables by construction 



Physical Query Plan
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Physical Query Plan
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Query optimization
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• Physical: reduce errors  

→ “get keys then values” vs “get 

tuples” scan operators

• Logical: Reduce LLM calls → push 

down selections (“get names of cities 

with > 1M population”)

• Optimize cost, quality.. building 

metadata/catalog from the LLM



Factuality

• Decoder returns next token based on training 

data

• Such token may be based on either reliable 

acquired knowledge, or it may be a guess

→ hallucinations

+ Models keep increasing the factuality of their 

answers*

+ We observed the same pattern in Galois
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*“GPT-4 scores 40% higher than GPT-3.5 on our factuality evaluations”

https://github.com/vectara/hallucination-leaderboard

https://openai.com/research/gpt-4
https://github.com/vectara/hallucination-leaderboard


Experiments Parametric Knowledge - Data

• Corpus of 92 SQL “reasonable” queries/questions from Spider (200 

datasets) 

• No: “How many heads of the departments are older than 56?”

• Yes: “What are the names of the countries that became independent 

after 1950?”
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Experiments – QA as “upper bound”
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SQL 

q1DB

RMLLM SQL 

q1

LLM QA

(q1)

Ground truth

TM

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

A B C D

a1 b1 c1 d5

a2 b2 c2 d2

a3 c3

A B C D E

a1 b4 c1 d1 e1

a3 c3 d3 e3

text

QA

QE



Results Llama 3.1 70B
• Matching in output results between ground truth and

• Galois - our method RM (SQL queries)

• traditional TM (NL questions)
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QE

QA

Metric NL Galois Galois Query Opt.

F1-cell 0.24 0.48 0.56      (2x)

Cardinality 0.46 0.66 0.84   (1.4x)

Tuple Constraint 0.07 0.45 0.47  (6.4x!)P
a

ra
m

e
tr

ic

K
n

o
w

le
d

g
e

• LLMs do well in factual question answering, why low F1? 

Approx match vs llm as a judge



Results Llama 3.1 70B
• Matching in output results between ground truth and

• Galois - our method RM (SQL queries)

• traditional TM (NL questions)
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QE

QA

Metric NL Galois Galois Query Opt.

F1-cell 0.24 0.48 0.56      (2x)

Cardinality 0.46 0.66 0.84   (1.4x)

Tuple Constraint 0.07 0.45 0.47  (6.4x!)P
a
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m
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K
n
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R
A

G

Metric NL Galois Query Opt. Palimpzest (ETL)

AVG-Score 0.39 0.72 0.72

# Tokens in M 1.4 1.4 13.8



Palimpzest

39
[Liu et al, 2025]



CAESURA

40[Urban et al, 2024]



Open Questions
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DB first 

use LLM in operators 

– Galois
[Jo and Trummer, 2023] 

[Urban et al, 2024]

[Liu et al, 2025]

LLM first 

structured data in pre-

training, extensions, 

fine tuning…. But fine 

tuned ChatGPT: 0.53 

accuracy for TQA
[Badaro et al, 2023] 

[Li et al, 2023]

LLMs + Agents

SP better results than 

TQA 

→ Use LM for NLU, 

SQL/code for data 

operations
[Arora et al, 2023] 

[Pourreza et al, 2024]

Logic controls 

LLM

LLM controls 

logic

LLM imitates

logic
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https://github.com/spapicchio/QATCHhttps://github.com/enzoveltri/pythia https://github.com/dbunibas/galois

https://github.com/spapicchio/QATCH
https://github.com/enzoveltri/pythia
https://github.com/dbunibas/galois


Size of the output matters

Longer output → tougher for all LLMs!
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RelationalFactQA: A Benchmark for Evaluating Tabular Fact Retrieval from Large Language Models – https://arxiv.org/abs/2505.21409

https://arxiv.org/abs/2505.21409

