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Abstract—This study presents a novel machine learning-based
approach to mitigating digital replay attacks in face verification
systems by leveraging compression artifacts to differentiate
between compressed and uncompressed video frames. While
traditional methods rely on active liveness detection, which can
be inconvenient and negatively affect user experience, this work
addresses the lack of automated solutions for detecting replay
attacks. Using raw, uncompressed video datasets and widely-
used video compression algorithms, the proposed method trains
a classifier to identify compression artifacts as distinguishing
features. Experimental results validate the model’s effectiveness
in detecting injected content, highlighting the critical role of
compression artifacts in enhancing the robustness of video
authentication systems. This contribution represents a significant
step toward advancing anti-spoofing techniques by exploring a
previously underutilized aspect of video integrity.

Index Terms—digital replay attacks, video injection, video
compression, codecs

I. INTRODUCTION

Advancements in biometric techniques and the increasing
demand for seamless identity verification have led to the
widespread adoption of remote face verification systems. As
these systems become more popular, they also become increas-
ingly attractive targets for malicious actors attempting to spoof
the system and impersonate legitimate users. These attacks
can occur on both the client side, where users interact with
the system, and the server side, where data is processed and
validated. In this paper, we assume that both the application
running on the device and the server handling the data are
securely protected. Our focus is on addressing client-side
vulnerabilities, particularly injection attacks, where attackers
bypass the sensor and directly inject malicious digital content
into the data stream [2]. Injection attacks can be broadly
classified into deepfake attacks and digital replay attacks:

1) Deepfake Attacks: In this type of attack, the adversary
begins by obtaining images of the victim. Using a
deepfake algorithm, the attacker generates a manipulated
video in real time, replicating the facial expressions and
head movements required by an active liveness detection
system [25]. This deepfake video is then streamed to
the authentication system via virtual camera software
(e.g., OBS), which acts as an intermediary to bypass the
physical camera sensor. Figure 1 illustrates the process
of a deepfake injection attack.

2) Digital Replay Attacks: In these attacks, adversaries
leverage authentic video footage of the victim, often
sourced from publicly available platforms such as social
media, and inject it into the system using virtual camera
software. Since the video is genuine and lacks manip-
ulation artifacts, it poses significant challenges for the
system to distinguish between a live user and a replayed
video.

To mitigate deepfake attacks researchers have proposed vari-
ous detection methods, ranging from early handcrafted feature-
based techniques to modern deep learning-based approaches
[51, [9], [11], [12], [25]. These detection methods aim to iden-
tify subtle inconsistencies or artifacts introduced during video
synthesis and they often rely on supervised learning, where
models are trained to recognize known deepfake artifacts.

To address digital replay attacks, remote face authentication
systems commonly implement active liveness detection, which
requires users to perform specific actions such as nodding,
blinking, or opening their mouth to verify their physical
presence and confirm they are alive. While this approach is
effective in countering replayed videos, it is not always user-
friendly and may be perceived as inconvenient, potentially
impacting the overall usability of the system. Another method
for detecting replay injection attacks involves analyzing the
metadata of the user’s device and camera, flagging suspicious
camera names as potential indicators of an injection. However,
this method is highly vulnerable, as attackers can easily manip-
ulate the camera metadata to bypass detection algorithms. This
type of attack is the focus of our investigation in this paper.
To the best of our knowledge, no machine learning-based
approaches currently exist to mitigate digital replay attacks, as
the injected video is authentic and lacks detectable artifacts.

Content captured by cameras in practical scenarios often
undergoes various digital image and video processing opera-
tions, including post-processing techniques such as stylization
filters and beautification [18], before being disseminated. Re-
cent studies have systematically evaluated the adverse effects
of these operations on the performance of biometric algo-
rithms [7], [13], [21]. Hence, in this work, we investigate
whether providing uncompressed video access to face anti-
spoofing service providers can improve the detection of in-
jected versus authentic video streams. Building on this, we
propose bypassing the compression step and directly captur-
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Fig. 1. Illustration of various input streams to a remote face authentication service. The input can originate from different scenarios. In the first scenario,
the face of a genuine user is provided to the service, granting access to the application upon successful authentication. In the second scenario, a deepfake
injection attack is performed. Here, the attacker generates a real-time video mimicking the victim’s expressions and head movements using a single image.
This video is streamed via virtual camera software to imitate a legitimate webcam feed, deceiving the authentication system. In the third scenario, the attacker
uses either a single image or a pre-recorded video of the victim. The virtual camera streams a genuine video of the victim that lacks visible artifacts. Our

main goal is to exploit compression artifacts for detecting digital replay attack.

ing uncompressed image data from the user’s device during
authentication, rather than relying on video content that has
passed through the complete post-processing stages of the
Image Signal Processing (ISP) pipeline [10]. This strategy
enables the detection system to better differentiate between
authentic and injected video streams, as injected videos are
often sourced from the internet and are typically compressed
using widely-used algorithms. By ensuring that the user’s
camera captures uncompressed images during authentication,
the detection model can focus on identifying compression
artifacts. The presence of such artifacts strongly indicates
that the image frame has been injected, thereby significantly
improving the system’s ability to detect and prevent injection
attacks.

For this purpose, we utilize raw video datasets in their
original, uncompressed form to simulate real-world scenarios.
To generate corresponding compressed versions, widely-used
video compression algorithms are applied. A ResNet-50 classi-
fier was then trained using both compressed and uncompressed
frames to enable discrimination between the two. Through this
process, we aim to evaluate the classifier’s ability to detect
compression artifacts and assess its effectiveness in accu-
rately distinguishing between compressed and uncompressed
frames. This analysis provides valuable insights into the role
of compression artifacts as distinguishing features in video
authentication tasks.

II. RELATED WORK
A. Deepfakes Attack Detection

In response to the challenges posed by deepfakes, re-
searchers have explored enhancing deepfake detectors from
various perspectives. Some detection methods operate at the
image level, identifying fake images by recognizing spa-
tial artifacts within individual frames [4], [18], while others

focus on the video level, leveraging temporal information
by analyzing multiple frames to detect deepfake videos [8],
[20]. Furthermore, certain detection methods utilize frequency
information, which proves particularly effective on highly
compressed videos. The LRL [3] and FRDM [22] combine
representations from both RGB and frequency domains to
learn inconsistencies in the video frames. Another direc-
tion in deepfake detection involves the use of training data
synthesis, generating synthetic data that includes common
deepfake artifacts. These techniques do not rely on existing
fake data but generate their own. For instance, DSPFWA
[16] focuses on identifying artifacts that arise during face
warping, where a source face undergoes transformations such
as scaling, rotation, and shearing to match the pose of target
face it aims to replace. These transformations create artifacts
and resolution inconsistencies between the warped face area
and the surrounding context. During training, the algorithm
generates synthetic data containing these affine face warping
artifacts to improve detection accuracy.

While many current methods perform well in detecting
known manipulations, certain studies [5], [27] have identified
limitations in their ability to generalize to fake faces forged
by unknown manipulations. This is often due to overfitting to
method-specific artifacts observed during training.

B. Digital Replay Attack Detection

Digital replay attacks involve injecting a genuine video
stream of the victim into a facial recognition system, often
using webcam simulation tools like OBS Studio on computers.
On mobile devices, more sophisticated software solutions
are required to achieve similar results [1], [2]. Detecting
these attacks is challenging, as the biometric data used is
authentic and lacks detectable anomalies. As a result, defense
strategies against digital replay attacks remain underexplored,



with limited research addressing this issue within the biometric
community. Some studies have proposed methods to counter
digital replay attacks by leveraging external signals to verify
the presence of a live user in front of the camera. The authors
of [28] and [6] suggest using a smartphone screen to emit
randomly flashing colors onto the user’s face. These flashes
serve as a dynamic watermark within the video sequence, as
the light is reflected off the user’s face and captured by the
camera. By analyzing the reflected light colors, these methods
aim to distinguish between a live face and a replayed video
or image. Similarly, [32] and [19] propose utilizing specific
light patterns as an authentication mechanism for the captured
content. However, the effectiveness of these approaches is
limited due to their reliance on external signals, which are
often too weak to detect, especially under strong ambient
lighting conditions or on individuals with low skin reflectance.
These constraints highlight the need for more robust and
practical solutions to combat digital replay attacks.

C. Compression Detection in Digital Video Forensics

A significant area of research in digital video forensics
involves the detection and analysis of compression artifacts,
which provide valuable insights into the editing history of
videos. These artifacts are typically examined through spa-
tial statistics within individual frames and temporal statistics
embedded in the Group of Pictures (GOP) structure. The
GOP defines the types and sequence of frames in a video,
establishing the foundation for compression analysis.

Video manipulation often involves decompression, editing,
and recompression, making the detection of double compres-
sion artifacts particularly important. These artifacts serve as
crucial evidence for identifying the sequence of edits and de-
termining the presence of tampering in the video. Techniques
such as the analysis of quantization artifacts or blockiness
patterns have been developed to detect traces of recompression
in both images and videos. For example, the authors of [24]
propose a Support Vector Machine (SVM)-based classifier to
determine the number of compression steps applied to a video
sequence. Their method relies on Benford’s law, analyzing the
statistics of the most significant digit in quantized transform
coefficients. Similarly, Jiang et al. [14] apply Markov statistics
to identify double quantization artifacts in MPEG-4 videos.
Other studies, such as [15] and [34], focus on periodicity
analysis and the GOP structure to detect double compression
in videos.

Despite the significant body of research on detecting double
or multiple compressions, most existing methods are limited
to identifying double-compressed videos for specific codecs or
compression parameters. Moreover, these methods typically
rely on processed RGB image or video data. However, in
authentication systems where the data is directly captured
by the service provider, the input data can be more tightly
controlled.

Both replay and deepfake injection attacks remain unre-
solved challenges. The ideal solution to this challenge is to
cryptographically sign biometric data at the hardware level, en-

abling hardware manufacturers to verify the authenticity of the
captured content [37]. However, implementing this approach
requires seamless collaboration among hardware manufactur-
ers, operating system developers, software providers, and face
anti-spoofing service providers, a level of coordination that has
not yet been achieved.

III. PROPOSED METHOD

This work investigates whether providing uncompressed
video access to face anti-spoofing service providers can im-
prove the detection of injected versus authentic video streams.
We hypothesize that uncompressed video frames from a user’s
device would lack compression artifacts, while injected videos,
such as deepfakes or replays, would show detectable artifacts
due to compression during their creation or transmission. The
aim of this study is to analyze these compression artifacts for
effective differentiation.

To achieve this, we propose a machine learning-based
model trained on both compressed and uncompressed video
frames. Videos are compressed using four widely used al-
gorithms—H.264, H.265, VP8, and VP9—chosen for their
popularity. Both compressed and uncompressed video versions
are converted into individual frames.

For training, random patches of size 224 x 224 are extracted
from the frames, ensuring balanced representation from both
compressed and uncompressed frames. By focusing on image
patches rather than full frames, the model captures localized
compression artifacts, which are key for accurate detection.
These patches are then used to train a binary classifier. The
model is optimized using cross-entropy loss, L, defined as:

L= —% Z_ {tilog F(x;) + (1 — t;)log(1 — F(x;))}
=0

where F'(x) represents the probability of classifying a patch
x as compressed, and t; is the binary label associated with
the input patch, where ¢; = 1 for compressed and ¢; = 0 for
uncompressed.

IV. EXPERIMENT
A. Experimental Setup

To train and test a classifier for compression detection, we
utilize six well-established video datasets that are commonly
employed in video quality assessment and coding algorithm
evaluation.

o Xiph.org Video Test Media Dataset [36]: contains a
diverse collection of video clips with varying resolutions
(240 to 2160), frame rates (25-60 fps). A subset of
47 videos, featuring resolutions of CIF (352x288), HD
(1280x720), and Full HD (1920x1080), is selected from
this dataset.

o SJTU-4K Video Sequence Dataset [30]: contains 15 4K
(3840%x2160) sequences captured with a Sony F65 camera
at 30 fps. For our experiments, we utilize the 8-bit YUV
4:2:0 format videos.



TABLE I
MODEL PERFORMANCE ON TRAINED (H.264, H.265, VP8, VP9) AND
UNSEEN (MPEG-4) CODECS ON THE MCL-JCV CROSS-TEST DATASET.

Codec ‘ AUC Precision  Recall F1

H.264 0.979 0.868 0.970 0.916
H.265 0.986 0.870 0.986 0.924
VP8 0.993 0.871 0.998 0.930
VP9 0.988 0.869 0.982 0.922
Mpeg4 0.965 0.864 0.939 0.900

ROC Curves for Selected Codecs
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Fig. 2. ROC curves for different codecs

o SJTU-HDR Video Sequence Dataset [29]: contains 16
High Dynamic Range video sequences, captured at 60 fps
using Sony F65 and F55 cameras. The sequences, orig-
inally provided in 16-bit OpenEXR format. We convert
videos to 8-bit YUV 4:2:0 for our experiments.

o UVG-Dataset [23]: comprises 16 4K video sequences
captured at 50 or 120 fps in raw 8-bit and 10-bit YUV
4:2:0 formats. We utilize the 4:2:0 YUV format for this
study.

e USTC-TD Video Dataset [17]: This dataset contains 10
video sequences, captured at 30 fps using Nikon D3200
and Nikon Z-fc cameras. The videos are provided in Full
HD and were converted to the YUV 4:2:0 format using
FFmpeg library [33].

e MCL-JCV [35]: Comprises 30 HD/Full HD uncom-
pressed video sequences. Additionally, it includes en-
coded videos produced using the H.264/AVC codec, with
their quality determined by the quantization parameter
(QP), which varies from 1 to 51. For this study we utilize
HD videos.

We use the videos from the first five datasets for training.
The data is split into 70% for training, 20% for evaluation, and
10% for testing. To assess the model’s ability to generalize to
datasets beyond the training set, we use the MCL-JCV [35]
dataset as a cross-test set. We leverage both compressed and
uncompressed video frames to train our classifier. Uncom-
pressed frames are generated by converting raw videos into
.png format without any compression. Compressed frames are

obtained by applying compression algorithms (H.264, H.265,
VPS8, and VP9) to the raw videos, followed by saving the
resulting frames in .png format. The default compression
parameters of FFmpeg for each algorithm are used to simulate
typical compression scenarios. We ensure an equal number
of uncompressed and compressed frames for training. To
introduce greater variability during training, we randomly crop
image patches of size 224x224 and apply both horizontal and
vertical flipping as augmentations. The ResNet-50 architecture,
pretrained on ImageNet, is employed and fine-tuned for 20
epochs using the Adam optimizer. A batch size of 128 is used,
with an initial learning rate of 0.001, decayed by a factor of 0.1
every 10 epochs to ensure stable convergence. ResNet-50 is
chosen for its deep residual structure, which enables effective
learning of subtle compression artifacts present in the data.

B. Experimental Results

In our experiment, the MCL-JCV dataset is employed
as a cross-test dataset to evaluate the model’s performance
on previously unseen data. Table I highlights the model’s
performance on the codecs it was trained on, using the default
parameters of the FFmpeg library. Furthermore, the table
evaluates the model’s generalization capability by testing its
performance on an unseen codec, specifically the MPEG-4
compression method.

The results in Table I and AUC curves in Figure 2 reveal
outstanding performance for the H.265, VP8, and VP9 codecs,
with AUC values near or equal to 0.99. Among these, the VP8
codec achieves the best results across all metrics, suggesting
that its compression artifacts are the most distinguishable
by the detector. In contrast, the H.264 codec demonstrates
slightly lower performance across all metrics, indicating that
its compression artifacts are less prominent and harder for the
model to detect. For the unseen MPEG-4 codec, the results
show a decline in performance compared to the seen codecs.
Nevertheless, the model maintains a reasonably high level of
accuracy, showcasing its adaptability to compression methods
it was not explicitly trained on.

Table II and Figure 3 showcase the model’s capacity to
generalize to compressed frames across a range of quantization
parameters, despite being trained with FFmpeg’s default quan-
tization values. The H.264 codec is tested with Quantization
Parameters (QP) ranging from 1 to 50. A QP value of 1
represents the highest image quality, while 50 corresponds
to the lowest. The results in Table II reveal that at QP=I,
the model struggles to distinguish between compressed and
uncompressed frames, as the quality is nearly indistinguishable
from uncompressed images. From QP=20 onward, the model’s
performance improves significantly, with metrics approaching
near-perfect values. This trend indicates that higher compres-
sion levels introduce more noticeable artifacts, making them
easier for the model to detect.

To gain qualitative insights, Figure 4 visualizes the results of
guided backpropagation [31], which highlights all contributing
features that influence the prediction. Additionally, we use
Grad-CAM [26] to visualize the regions where the model’s



TABLE II
PERFORMANCE METRICS OF THE MODEL FOR H.264 COMPRESSION
ACROSS VARYING QUANTIZATION PARAMETERS (QP) ON THE MCL-JCV
CROSS-TEST DATASET.

Codec-QP | AUC  Precision Recall Fl

H.264-Q01 0498 0492  0.143 0221
H.264-Q20 0948 0859 0903  0.881
H.264-Q30 0984  0.869 0981 0.922
H.264-Q45 0994 0871 0997  0.930
H.264-Q50 0995 0871 0999  0.931

ROC Curves for Selected QP Levels
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Fig. 3. ROC curves for H.264 codec with different QP levels

attention is concentrated, specifically for the compressed cat-
egory. As seen in the visualizations, the model’s attention is
more sparse when analyzing uncompressed frames, whereas on
compressed frames (e.i. H.264, H.265, VP8, VP9 and Mpeg4)
the attention is more concentrated and coarser, focusing on
areas where compression artifacts are most prominent.

Based on the quantitative and qualitative results, we can
conclude that all compression methods introduce artifacts that
are distinguishable from uncompressed frames. Notably, even
under moderate compression with a quantization parameter
(QP) of 20—where image quality remains nearly flawless—the
model reliably detects compression artifacts.

If the authentication service can access uncompressed
frames directly from the device, it can focus exclusively
on identifying compression artifacts. The presence of such
artifacts would indicate that the frame is injected, simplifying
the detection process. This approach eliminates the need for
the algorithm to recognize specific artifacts left behind by
various deepfake generators. Furthermore, in digital replay
attacks, where virtual cameras often apply video compression,
injected videos should be distinguishable from genuine videos
due to the compression artifacts they inevitably contain. This
distinction significantly facilitates the task of detecting injected
content.

V. CONCLUSION

This study introduces a novel approach for mitigating
replay attacks by utilizing compression artifacts to differen-

tiate between compressed and uncompressed video frames.
These artifacts act as reliable indicators of injected content,
thereby facilitating the detection process. In the context of
digital replay attacks, where virtual cameras typically apply
video compression, injected videos can be distinguished from
genuine ones based on the inherent compression artifacts.
By using raw video datasets and applying common video
compression algorithms, a classifier was trained to differentiate
between compressed and uncompressed frames. Experimental
results demonstrate that the model effectively performs this
distinction, highlighting the significance of compression arti-
facts in video authentication.
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