
1

DMO-GPT: An Intent-driven Framework for
Distributed 6G Management and Orchestration

Abdelkader Mekrache, Member, IEEE, Adlen Ksentini, Senior Member, IEEE. Christos Verikoukis, Senior
Member, IEEE.

Abstract—With the increasing demands for high quality of
service (QoS) in 6G networks, managing these complex systems
requires intelligent Operations Support Systems (OSSs). Stan-
dardization institutions such as ETSI and 3GPP mandate that
OSSs enable end-to-end, cross-domain management across all
6G components. To this end, ongoing initiatives within these
institutions are actively defining API frameworks to simplify
interactions with OSSs, focusing on Intent-Based Networking
(IBN) and Zero-touch network and Service Management (ZSM)
APIs. However, the diversity of API standards across different
OSSs presents significant challenges when managing 6G use
cases across multiple Mobile Network Operators (MNOs). To
this end, we propose in this paper a novel framework that
leverages Large Language Models (LLMs) to enable natural
language-based interactions with OSSs across multiple MNOs.
To address the complexity of fulfilling user intents, which may
involve multiple low-level API calls across heterogeneous OSSs,
the proposed solution integrates multi-agent LLMs with an
hierarchical planning mechanism. The framework offers two key
advantages: a simple natural language-based interaction; and
an adaptive system capable of autonomously accommodating
new OSS (API) features. Real-world experiments validate the
efficacy of the proposed framework, demonstrating its ability to
efficiently manage diverse 6G OSSs and enhance the accessibility,
interoperability, and automation of 6G network management.

Index Terms—6G, OSS, AI, IBN, ZSM, LLMs.

I. INTRODUCTION

The 6G era is expected to meet stringent Quality of Service
(QoS) and Quality of Experience (QoE) requirements for
advanced use cases such Augmented Reality (AR). These
applications drive the need for infrastructure sharing among
Mobile Network Operators (MNOs) to efficiently provide
networking services [1]. However, managing these complex,
multi-operator networks presents significant challenges. To
address this, Artificial Intelligence (AI)-driven automation is
being explored by standardization initiatives in institutions
like ETSI and 3GPP, with a focus on Intent-Based Network-
ing (IBN) and Zero-touch network and Service Management
(ZSM). These institutions are actively working to standardize
IBN and ZSM protocols and Application Programming In-
terfaces (APIs) within Operations Support Systems (OSS) to
enable seamless and autonomous network management.

The IBN concept [2] defines networking goals and con-
straints at a high level using declarative intent. For instance,

A. Mekrache is with EURECOM, France (e-mail: abdelka-
der.mekrache@eurecom.fr).

A.Ksentini is with EURECOM, France (e-mail:
adlen.ksentini@eurecom.fr).

C. Verikoukis is with ISI/ATH, University of Patras, Greece (e-mail:
chverik@gmail.com).

ETSI’s Network Service Descriptor (NSD), enables the speci-
fication of networking services in an abstract manner, which is
then implemented by the OSS [3]. Other MNOs may adopt dif-
ferent IBN standards (e.g., TMForum and 3GPP). Within OSS,
intent is translated into low-level configurations, deployed,
and continuously assured. This intent assurance mechanism
verifies the validity of the intent and autonomously resolves
anomalies without human intervention, enabling ZSM. How-
ever, in future 6G networks, where the infrastructure can
be shared across multiple MNOs (each potentially following
different IBN standards), learning all these different structures
is both challenging and time-consuming for OSS users (e.g.,
vertical users, infrastructure providers). Therefore, natural
language may be leveraged as the simplest form of intents,
i.e., users can define their goals and constraints using natural
language, and the IBN system will fulfill and ensure (ZSM)
these intents, regardless of the standards used by the MNOs.
This requires an AI approach that can understand human
language, such as Large Language Models (LLMs).

LLMs are AI models that can tackle a variety of generic
Natural Language Processing (NLP) tasks such as question
answering, sentiment analysis, and code completion. These
models are also increasingly used to build intelligent systems,
known as agents, that can make important decisions based
on natural language input (prompts), referred to as agentic
systems. Some research has explored using LLMs for IBN,
such as [4, 5, 6], but these typically address only one task
within a single management system of one MNO using a
simple intent, such as translation [4, 5] or assurance [6],
corresponding to a single API call. These works cannot meet
the demands of 6G management, where fully autonomous
networking across different MNOs is required. This highlights
the need for an intelligent system capable of performing all
IBN tasks, spanning multiple API calls across a set of MNOs
that follow different IBN standards.

In this paper, we present an intent-driven Distributed Man-
agement and Orchestration framework, DMO-GPT, the first
LLM-powered solution capable of: (i) take a high-level natural
language intent as input; (ii) select the MNOs required to
fulfill the intent; (iii) plan the set of API calls for each
MNO, (iv) execute them; and (v) report back to the users
using natural language. This transforms the complexities of
managing multiple MNO APIs into a single chatbot from the
users’ perspective, enabling them to request and interact using
either natural language or voice, which can be translated into
natural language using a Speech-to-Text (STT) model. The
main contributions of the paper are:

• We proposed DMO-GPT, a chatbot for cross-domain 6G

2

management across different MNOs (as illustrated in
Fig.1). Users can define intents using natural language,
and the system fulfills them across multiple MNOs.

• The system is designed to leverage multi-agent LLMs
that work collaboratively to: (i) accept natural language
intents; (ii) select the appropriate MNOs; (iii) plan all
necessary API calls for each MNO; (iv) execute these
API calls sequentially; and (v) report the results back to
the user using natural language.

• Most of the agents are designed to be trained using the
API specifications of different MNOs through In-Context
Learning (ICL). This also enables the system to adapt to
new API calls and new MNOs at inference time.

DMO-GPT

OSS (MNO 1) OSS (MNO j)

6G
Infra

6G
Infra

6G
Infra

6G
Infra

6G
Infra

6G
Infra

Fig. 1: Vision of DMO-GPT.

The remaining sections of this paper are structured as
follows: Section II describes related works. In Section III,
we illustrate the DMO-GPT design. Section IV showcases the
experimentation setup and results. Section V presents future
research directions. Finally, Section VI concludes the paper.

II. RELATED WORKS AND BACKGROUND

In this section, we provide an overview of related works on
API-driven network management and IBN. We also present
a brief overview of LLMs. Finally, we identify the existing
research gaps and position DMO-GPT within this context.

A. API-driven network management & IBN

Next-generation network management within the OSS layer
spans multiple technological domains, including Radio Access
Network (RAN), Transport Network (TN), Core Network
(CN), and Edge/Cloud. These functionalities are accessible
to various users, such as service owners and infrastructure
providers, enabling them to manage services and networking
resources efficiently. For instance, the Open RAN (O-RAN)
Service Management and Orchestration (SMO) oversees the
RAN domain, while the Network Function Virtualization Or-
chestrator (NFVO) handles the Edge/Cloud domain [5]. These
systems rely heavily on programmable interfaces through APIs
to communicate seamlessly with the infrastructure layer and
each other. Additionally, ZSM is integrated to autonomously
detect and resolve anomalies within services and infrastruc-
ture, eliminating the need for human intervention.

To simplify interactions with standardized APIs from or-
ganizations like ETSI, TMF, and 3GPP, IBN has emerged,

allowing users to define intents using declarative structures
like JSON or YAML. However, these formats are complex
to learn. Recent research emphasizes using natural language
for intent profiling, leveraging LLMs to translate intents into
deployable configurations such as NSDs. For instance, the
work in [4] proposed an LLM-based framework that translates
natural language intents into NSDs for deployment on the
Edge/Cloud domain. This approach was expanded in [5] to
handle both RAN and Edge/Cloud domains, while others, such
as [7], focused on generating TN configurations. Meanwhile,
[6] focused only on intent assurance, enabling ZSM. Although
promising, these approaches are limited to specific domains
or simple tasks, leaving a gap in addressing complex intents
across all 6G technological domains for multiple MNOs.

B. Large language models
LLMs are transformer-based models designed for general

NLP tasks like question answering, sentiment analysis, and
code completion. However, their effectiveness depends heavily
on their training data, making general-purpose LLMs struggle
with specialized tasks like network management. Adapting
LLMs to such domains is an active research area. While
supervised fine-tuning on domain-specific data is a common
approach, it is computationally expensive and inaccessible
to most users. To mitigate this, resource-efficient techniques
such as ICL and Parameter-Efficient Fine-Tuning (PEFT) have
emerged. ICL leverages context provided during inference
without modifying model weights, e.g., zero-shot and few-
shot learning, while PEFT adds small trainable parameters like
LoRA [8], reducing training costs.

ICL is advantageous for creating agentic LLMs and multi-
agent systems by dynamically defining agents’ roles in context,
making it suitable for remote or closed-source LLMs like GPT-
4. These multi-agent LLMs have gained popularity in both
research and industry for their efficiency in tackling complex
tasks effectively [9]. However, they can increase inference
time due to long contexts. In contrast, PEFT techniques like
LoRA modify only a small portion of the model, offering
faster inference (since they do not require context training
and, hence, long contexts). In this paper, ICL is used for most
agents, but LoRA is applied to create an LLM that generates
the standardized structures, such as the NSDs from ETSI.
This choice avoids the inefficiency of extended context lengths
(when using ICL), as demonstrated in prior work [5].

C. Research gap
Existing solutions for natural language-based IBN typically

address only simple tasks within a single MNO environment.
As a result, they face significant limitations and challenges
when instantiated in multi-OSS environments, particularly
in addressing the interoperability required for diverse OSSs
adhering to different standards. While methods like ReAct
[10] and RestGPT [11] propose agentic LLMs for generating
API calls, they primarily focus on single API specifications or
isolated domains, making them insufficient for multi-domain
6G network management. A unified system capable of dynam-
ically adapting to various API standards and fulfilling high-
level intents across domains remains an unsolved challenge.

3

Our approach introduces a hierarchical planning and exe-
cution framework that leverages ICL to create LLM agents
capable of transforming high-level intents into API calls
spanning different MNOs. These agents handle planning, pa-
rameter preparation, API call execution, and natural language
reporting. Additionally, the framework can dynamically adapt
to new API specifications at inference time without requiring
retraining. This enables seamless cross-domain management
and fully automated network operations, effectively addressing
key limitations in existing IBN methodologies.

III. DMO-GPT

In this section, we first provide a detailed explanation of our
solution design, DMO-GPT. Next, we discuss how DMO-GPT
manages different standardized APIs through LLM agents.
Finally, we present several operational OSS-GPT use cases.

A. System design

The high-level architecture of DMO-GPT is illustrated in
Fig. 2, which oversees a set of MNOs. Users send natural
language intents to DMO-GPT, which consists of multiple
LLM agents working collaboratively to plan and execute the
appropriate API calls to the selected OSSs. These LLM agents
are trained using ICL with the API specifications of each
OSS. To manage context size limitations, all agents access
a shared memory in the form of a centralized knowledge base
storing API specifications for each OSS. During ICL, each
agent retrieves only the relevant subset of this shared memory,
enabling efficient prompt construction without overloading the
context window. ICL provides a lightweight training strategy,
allowing rapid adaptation to new API specifications or OSS
updates at inference without additional overhead, and facili-
tating modular training across heterogeneous systems. In the
following sections, we detail each agent’s role and how it is
trained using information from the shared knowledge base.

1) Assistant: The role of the Assistant is to maintain
a chatbot-like interaction with the user. It accepts natural
language input and responds with natural language output.
This agent is trained using ICL with predefined guidelines
and handles three key scenarios: (i) If the user asks general
questions unrelated to OSS functions, the Assistant replies
directly to the user’s query; (ii) If the user provides an
ambiguous or incomplete intent, the Assistant prompts the user
for clarification or additional details; (iii) If the user provides
a valid intent that can be executed by one or more OSSs,
the Assistant forwards the intent to the Router and awaits the
response from the Overall Reporter to deliver back to the
user. This design ensures both fault tolerance and seamless
interaction between users and DMO-GPT.

2) Router: The role of the Router is to determine the set
of MNOs whose OSSs will handle the intent and forward it to
the MNO-specific planning and execution LLMs, referred to as
OSS-GPT in Fig. 2. OSS-GPT represents a set of LLM agents
responsible for fulfilling an intent on the OSS associated with
each MNO. The Router selects the appropriate ICL APIs
specifications for training the OSS-GPT (during inference),
ensuring that the correct context and API specifications are

utilized. Since the Router operates with the descriptions of all
MNOs, this remains manageable at moderate scale but may
become a bottleneck in large-scale deployments. To address
this, the Router use a retriever-based mechanism during ICL
that filters relevant MNOs based on semantic similarity be-
tween the user intent and MNO descriptions. This reduces the
prompt’s context size and enhances system scalability.

3) Planner: The primary role of the Planner is to generate
a sequence of API calls that effectively fulfill the user intent
for a specific MNO. Upon receiving the intent from the
Assistant, the Planner analyzes the request and identifies the
necessary API calls to achieve the desired outcome. This pro-
cess leverages ICL and a knowledge base containing concise
descriptions of available API endpoints for the MNO. Due
to the limitations in context size, the full specification of
each endpoint is not included; instead, the Planner relies on
summarized descriptions to select the relevant API calls. The
Planner operates in an iterative manner, sending one API call
at a time to the Executor. After the execution, the Planner
adapts its approach based on the outcome: if successful, it
generates the next API call in the sequence; otherwise, the
Planner dynamically replans to adjust the sequence of API
calls, ensuring that the intent is ultimately fulfilled. Once the
objective is achieved, the Planner invokes the Reporter to
provide a natural language summary of the execution results.
This adaptive mechanism ensures the system remains robust,
even under unpredictable conditions or partial failures.

4) Executor: The Executor is responsible for executing API
calls provided by the Planner and returning their results for
a specific MNO. It is trained using ICL to utilize detailed
descriptions of the available endpoints for execution guidance.
Upon receiving an API call, the Executor plans the necessary
tools for execution. While additional tools may be utilized, it
primarily depends on four core tools:

• Blueprint Generator: An LLM specialized in generating
request bodies for POST operations, such as NSD, based
on natural language inputs. The design and training of
this LLM are detailed in section III-B.

• Blueprint Explorer: A program that retrieves existing data
for PUT requests by performing GET operations, ensur-
ing the inclusion of relevant context in PUT requests.

• API Caller: A program that executes API calls by sending
HTTP requests with the required parameters (headers,
body, query, etc.) to one OSS.

• Human Validation: A mechanism to obtain user approval
for critical operations (e.g., POST, PUT, and DELETE re-
quests). Users can enable or disable this feature, offering
a balance between autonomy and human oversight.

In the case of an intent to create a 6G service, such as a 6G CN,
and ensure a specific throughput, the Executor first utilizes
the Blueprint Generator to construct the request body. It then
invokes the API Caller to send the request to the endpoint for
creating the 6G CN. Upon receiving a response, the Executor
verifies that it adheres to the expected schema. If the response
is successful, the Executor requests again the API Caller to
send another request to the endpoint responsible for deploying
ZSM components, that will ensure the SLA. If this request is
successful, the Executor forwards the result to the Planner.

4

c

Assistant

Planner

Executor Reporter

Overall
Reporter

ToolsTools

APIs
descriptions

Chosen API
specifications

Chosen endpoint
info

OSS n (MNO n)OSS 1 (MNO 1)

DMO-GPT

DMO users

Router

Knowledge Base

OSSs APIs specs

Administrator

Push the
Open API specs

The set of endpoints and
their brief descriptions

The detailed documentation
of the chosen endpoint

The set of OSS/BSS APIs
descriptions

Human validation
for (POST, PUT,
DELETE)
operations

OSS-GPT

Fig. 2: System design.

5) Reporter: The Reporter agent is an LLM designed to
generate a natural language report based on the conversation
history between the Planner and Executor. Leveraging ICL,
it processes this input and provides the generated response to
the Overall Reporter agent.

6) Overall Reporter: The Overall Reporter agent aggre-
gates reports from individual Reporters, providing a unified
context. It then generates a comprehensive response, summa-
rizing the outcomes from all OSSs. To support auditability,
this agent logs each API request, along with the user identity,
timestamp, and response. This ensures full traceability and
allows integration with external monitoring tools.

B. Design and training of standard-specific tools

In the context of the Executor agent, the Blueprint Gener-
ator is an LLM-based tool that generates request structures
compliant with specific standards. This tool is standards-
specific, as each OSS may adhere to different specifications
such as ETSI, 3GPP, or TMF. For example, ETSI defines the
NSD structure to describe the services to be deployed and
managed. Similarly, 3GPP and TMF provide other specifi-
cations for service and resource modeling. To support this
process, the Blueprint Generator must be trained on datasets
that reflect the syntax, structure, and semantics of the relevant
standards. In our implementation, we focus on the ETSI NSD
standard, and we developed the NSD-expert, an LLM fine-
tuned using the LoRA technique [12], specifically designed
to generate NSDs from natural language inputs. When the
Executor agent invokes this tool, it processes natural language
intents and outputs the corresponding NSD.

The training process began with dataset generation using
an ICL approach. We leveraged existing examples from [4],
where the evaluation involved applying the proposed ICL

technique to generate NSDs from natural language intents.
The experimenters manually scored the results and selected
the correct NSDs, which were then stored to form the base
dataset, consisting of 100 intent–NSD pairs. To augment this
dataset, we used GPT-4 with few-shot prompting to generate
an additional 400 entries. Specifically, we provided the model
with a few representative examples (i.e., intents paired with
their corresponding NSDs) from the initial dataset, which it
used to generate new samples. All generated entries were
validated by domain experts before being added to the dataset,
resulting in a final training set of 500 examples. For fine-
tuning, we employed a PEFT technique known as LoRA [8].
LoRA introduces trainable low-rank matrices into a frozen pre-
trained language model, allowing it to adapt to the task of NSD
generation while preserving its general language capabilities.
This method enabled us to specialize the model in generating
valid NSD structures based on natural language intents without
retraining the full model from scratch.

Our approach is generalizable and can be extended to other
standards beyond ETSI, such as TMF and 3GPP specifications,
by training new domain-specific experts on datasets derived
from those standards. This would enable the Blueprint Gen-
erator to support a broader range of OSSs and reinforce its
adaptability across heterogeneous management systems.

C. Operational DMO-GPT Use Cases

OSS-GPT is designed to support a wide range of operational
scenarios in production environments by enabling users to
express high-level intents in natural language. These intents are
translated into appropriate API calls exposed by the underlying
OSSs. Before executing any action, OSS-GPT enforces strict
access control through token-based authorization. Each API
request is validated by the OSS-level authorization service,

5

which verifies whether the user is permitted to perform the
action. These permissions are configured by internal MNO
administrators who act as governance controllers. This mech-
anism ensures that users can only perform operations for
which they are explicitly authorized. In addition, all inter-
actions are audited by the Overall Reporter agent, which
logs every request along with user identity and timestamp.
This enables full traceability and facilitates integration with
external auditing tools. Beyond access control and auditability,
DMO-GPT integrates failure recovery and trust management
mechanisms to ensure safe autonomous infrastructure changes.
The Planner monitors the outcome of each API call and
dynamically replans in response to errors. If repeated attempts
fail, execution is halted and the user is notified with a detailed
diagnostic report. To minimize risk, all LLM agents operate
in a controlled runtime environment with safeguards such
as schema validation, rate limiting, and request verification.
Below, we outline representative use cases illustrating how
OSS-GPT assists operators in managing service lifecycles,
monitoring system health, and handling faults:

• (i) An operator may request, “Update the service tem-
plate to version 2.3,” and OSS-GPT translates this into
a version-aware API call (e.g., PUT /service/id),
ensuring that versioning constraints, and rollback policies
are respected via the OSS APIs.

• (ii) A domain expert may ask, “Is the edge cluster deploy-
ment running normally?” OSS-GPT queries monitoring
endpoints to retrieve health status and operational KPIs,
then provides a natural language summary of results.

• (iii) In the event of service degradation, a user may
state, “Ensure the latency constraint for service X to be
Y ms.” OSS-GPT calls the relevant OSS endpoint that
triggers deployment of ZSM components [6], leveraging
AI techniques for root cause analysis and recommending
corrective actions such as resource scaling.

IV. PERFORMANCE EVALUATION

In this section, we first present the evaluation setup, fol-
lowed by the results. These results include: the evaluation
of the NSD-expert, the quality assessment of DMO-GPT, and
finally, the cost assessment of DMO-GPT.

A. Evaluation setup

Our experimental setup, illustrated in Fig. 3, involves three
machines hosting the Kubernetes-based clusters and the OSS-
GPT framework. Two machine, equipped with an Intel(R)
Xeon(R) Silver 4314 CPU (2.40GHz), manages two single-
node Kubernetes clusters that hosts the virtualized 6G ser-
vices and infrastructure components. The second machine, a
MacBook with M1 Pro chip, hosts the infrastructures manage-
ment components, including the two OSSs and DMO-GPT,
running on Docker and bare-metal, respectively. The DMO-
GPT is implemented using Langgraph1, and interacts with
two LLMs: OpenAI’s GPT-42, accessed remotely, and NSD-
expert, a locally deployed model with 8B parameters running

1https://www.langchain.com/langgraph
2gpt-4o-2024-08-06

on the Ollama framework3. This NSD-expert was fine-tuned on
a third machine equipped with an NVIDIA A100 GPU, using
Llama3.2-3B4 as the base model with LoRA. For training, we
employed the Unsloth framework5 with a training setup that
included 120 steps, and learning rate of 2e-4

MacOS Machine

management microservices

MNO 1 OSS

MNO 1 infrastructure

Infrastructure microservices

NSD-expertOSS-GPT

Configure

OpenAI
GPT-4o

Remote
Access

management microservices

MNO 2 OSS

MNO 2 infrastructure

Infrastructure microservices

Configure

Fig. 3: Evaluation setup.

B. Evaluation results

To evaluate the quality of the NSD-expert, we conducted an
extensive benchmark using a test set of 100 natural language
intents, and reference NSDs. We evaluated model outputs
using four key metrics: (i) Perplexity, which measures the
model’s confidence in predicting the next token in a sequence
(lower values indicate higher confidence); (ii) BERTScore,
which assesses semantic similarity between the generated and
reference texts (higher scores indicate greater similarity); (iii)
Cosine Similarity, computed using Sentence-BERT6, quanti-
fies similarity between vector representations of texts; and
(iv) Exact Match (EM), which computes the percentage of
outputs that exactly match the reference, particularly suitable
for structured data like JSON. As shown in Fig. 4, the NSD-
expert achieves a low perplexity, reflecting confident token
generation. While general-purpose models like Llama3.2 and
GPT-4 also exhibit low perplexity, this does not necessarily
correlate with structurally valid output. Indeed, the structure-
aware metrics (Cosine Similarity, BERTScore, and EM) offer
a more reliable evaluation of NSD correctness. Llama3.2 and
GPT-4 scored poorly on these metrics: their outputs had low
Cosine Similarity and BERTScore (typically below 0.80) and
failed to generate valid NSDs, resulting in a 0% EM score.
In contrast, the NSD-expert achieved high semantic similarity

3https://ollama.com
4https://ollama.com/library/llama3.2
5https://unsloth.ai
6all-MiniLM-L6-v2

6

(Cosine ≈ 0.98, BERTScore ≈ 0.99) and a substantially better
EM score of 60%, indicating correct structure in a majority of
cases. These results highlight the effectiveness of our domain-
specific fine-tuning in producing a reliable model that can
generate syntactically and semantically accurate NSDs. The
NSD-expert can thus be reliably used by the Executor agent
to autonomously generate NSDs in response to user intents.

Perplexity BERTScore Cosine EM
Metrics

100

101

Sc
or
es
 (
lo
g
sc
al
e)

1.89

8.38
11.03

0.790.990.78
0.52

0.98

0.45 0

60.00

0

Llama-3.2
NSD-expert
GPT-4

Fig. 4: Quality assessment of the NSD-expert.

To evaluate DMO-GPT’s performance, we created a dataset
of intents ranging from simple to complex, requiring up to 7
API calls (golden path). A golden path of i = 0 corresponds to
cases where DMO-GPT can generate a response directly using
its internal knowledge without invoking any API. Figure 5
presents two evaluation metrics: (i) Deviation (orange), which
measures the number of redundant API calls made beyond
the golden path; and (ii) Accuracy (blue), defined as the
percentage of intents that are ultimately fulfilled correctly.
For intents requiring fewer than 4 API calls (i < 4), DMO-
GPT achieves near-perfect accuracy (close to 1.0). As the
complexity of the intent increases (i > 4), accuracy decreases
slightly, primarily due to occasional errors in selecting the
correct API endpoints. This is reflected in the deviation metric,
which shows that DMO-GPT sometimes performs more API
calls than necessary before reaching the correct execution path.
Nevertheless, DMO-GPT’s replanning mechanism enables it to
recover from such errors, maintaining a strong performance
with an accuracy exceeding 0.80 even for intents with a
golden path length of 7. This behavior highlights DMO-
GPT’s robustness and reliability in fulfilling complex, multi-
step intents in cross-domain network management scenarios.

0 1 2 3 4 5 6 7
Golden path

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
vi
at
io
n

Accuracy Deviation

Fig. 5: Quality assessment of DMO-GPT.

The cost evaluation of DMO-GPT highlights its affordability
for both training and inference: (i) Training: Training the
NSD-expert was required only 3.07 minutes and 4.006 GB of
vRAM on a single NVIDIA A100 GPU with 40 GB of vRAM;
(ii) Inference: The cost was measured by execution time and
OpenAI’s GPT-4 pricing. As illustrated in Fig. 6, for golden
paths up to 7, response times remained under 80 seconds,
while costs were $0.175 per request, making it affordable
even for complex intents requiring multiple API calls. Notably,
OpenAI’s pricing is decreasing, and advancements in open-
source models are rapidly narrowing the performance gap with
closed-source alternatives, paving the way for cost-effective
open-source solutions in the near future. However, both latency
and cost increase exponentially beyond a golden path length of
5, confirming that DMO-GPT performs more API calls than
necessary. This leads to more errors and triggers additional
replanning. These results indicate the existence of a gap of
improvement in terms of the planning abilities of LLMs.

0 1 2 3 4 5 6 7
Golden path

0

20

40

60

80
Ex
ec
ut
io
n
ti
me
 (
s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Co
st
 (
$)

Execution time Cost

Fig. 6: Cost assessment of DMO-GPT.

V. LIMITATIONS AND FUTURE DIRECTIONS

Our work demonstrates the potential of multi-agent LLMs
for real-world planning and execution, enabling IBN in 6G
network management. However, several challenges arise: (i)
LLMs are time-consuming and energy-intensive, emphasizing
the need for faster, more energy-efficient solutions; (ii) re-
liance on OpenAI’s closed-source LLMs for structured output
highlights the necessity for powerful open-source alternatives
to reduce the inference costs; and (iii) planning errors reveal
the need for more advanced models that move closer to the
capabilities of Artificial General Intelligence (AGI).

A. Fast and green intelligence with SLMs

While our work employed a large LLM, i.e., GPT-4, such
models are computationally intensive. Smaller Language Mod-
els (SLMs), with fewer parameters (e.g., 1B-4B), offer a
more energy-efficient and environmentally friendly alternative,
though they currently fall short in handling complex tasks.
To evaluate this trade-off, we tested two open-source SLMs:
Llama3.2-3B7, a general-purpose model, and Qwen3-4B8,

7https://ollama.com/library/llama3.2
8https://ollama.com/library/qwen3:4b

7

optimized for reasoning. Both struggled with multi-step intent
fulfillment. Llama3.2 achieved 0.82 accuracy for golden path
length 0, 0.11 for length 1, and 0 beyond that, often producing
incorrect structured outputs. Qwen3 performed slightly better,
1.0 for path 0, 0.857 for path 1, 0.12 for path 2, but also
dropped to 0 beyond that. While Qwen3 generated more
structured outputs, it suffered from indecisiveness in endpoint
selection. These results confirm that current SLMs, though
promising for low-power scenarios, still lack the reasoning
capabilities needed for multi-step intent fulfillment in IBN
compared to GPT-4 (see Fig. 5). Further research is required to
improve their accuracy and reduce generation time, especially
for applications demanding fast responses like URLLC [13].

B. LLMs structured outputs
ICL enables training LLMs during inference, as demon-

strated in DMO-GPT agents. In agentic frameworks, LLMs
must generate outputs in a structured format that is under-
standable by other LLMs, a concept referred to as “structured
output,” as discussed in [14]. This concept is critical, as any
error in the structure generated by an LLM can cause the
entire multi-agent process to fail. According to [14], GPT-
4 is recognized as the leading model in structured output
generation. However, it is a closed-source model and not freely
accessible, which limit its adoption for some users. There-
fore, the community should focus on developing customized
telecom-aware alternatives that are capable of producing high-
quality structured outputs to close the gap with GPT-4.

C. Artificial general intelligence
In modern 6G networks, intents are anticipated to become

more complex, as autonomous management needs to be as
abstracted as possible. As shown in Fig. 5, as the complexity of
intents increases, represented by the growing size of the golden
path, the deviation from the optimal path tends to increase.
This observation suggests that as tasks become more complex,
the planner and executor LLMs exhibit a higher frequency of
planning errors. These results indicate that the current capa-
bilities of LLM-based planning systems need enhancement,
especially for complex and multi-step tasks. Ongoing research
is focused on addressing these challenges, with the ultimate
goal of advancing toward AGI, where systems can effectively
handle a broader spectrum of tasks with minimal errors [15].

VI. CONCLUSION

This paper presented a multi-agent LLM-based framework
to simplify 6G network management by enabling natural lan-
guage, intent-driven interactions with diverse OSSs. Through
hierarchical planning and execution, the proposed solution
efficiently manages cross-domain API calls, enabling an ad-
vanced, fully natural language-driven IBN and ZSM in 6G.
Real-world experiments validated the approach, demonstrating
enhanced accessibility and automation in managing multiple
6G OSSs. Future work should address key challenges, in-
cluding improving LLM efficiency, enhancing structured out-
put generation in open-source models, and refining planning
accuracy, paving the way for more intelligent, scalable, and
autonomous 6G management systems powered by AGI.

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon
Program under the Sunrise-6G project (Grant No. 101139257).

REFERENCES

[1] Wei Jiang et al. “The road towards 6G: A comprehensive survey”. In:
IEEE Open Journal of the Communications Society 2 (2021), pp. 334–
366.

[2] Aris Leivadeas and Matthias Falkner. “A survey on intent-based
networking”. In: IEEE Communications Surveys & Tutorials 25.1
(2022), pp. 625–655.

[3] Sagar Arora, Adlen Ksentini, and Christian Bonnet. “Lightweight
edge slice orchestration framework”. In: ICC 2022-IEEE International
Conference on Communications. IEEE. 2022, pp. 865–870.

[4] Abdelkader Mekrache, Adlen Ksentini, and Christos Verikoukis.
“Intent-based management of next-generation networks: An LLM-
centric approach”. In: Ieee Network (2024).

[5] Abdelkader Mekrache and Adlen Ksentini. “LLM-enabled intent-
driven service configuration for next generation networks”. In: 2024
IEEE 10th International Conference on Network Softwarization (Net-
Soft). IEEE. 2024, pp. 253–257.

[6] Abdelkader Mekrache et al. “On Combining XAI and LLMs for
Trustworthy Zero-Touch Network and Service Management in 6G”.
In: IEEE Communications Magazine (2024).

[7] Ahlam Fuad et al. “An intent-based networks framework based on
large language models”. In: 2024 IEEE 10th International Conference
on Network Softwarization (NetSoft). IEEE. 2024, pp. 7–12.

[8] Edward J Hu et al. “Lora: Low-rank adaptation of large language
models”. In: arXiv preprint arXiv:2106.09685 (2021).

[9] Junyou Li et al. “More agents is all you need”. In: arXiv preprint
arXiv:2402.05120 (2024).

[10] Shunyu Yao et al. “React: Synergizing reasoning and acting in language
models”. In: arXiv preprint arXiv:2210.03629 (2022).

[11] Yifan Song et al. “RestGPT: Connecting Large Language Models
with Real-World RESTful APIs”. In: arXiv preprint arXiv:2306.06624
(2023).

[12] Yuren Mao et al. “A survey on lora of large language models”. In:
arXiv preprint arXiv:2407.11046 (2024).

[13] Piotr Nawrot et al. “Dynamic memory compression: Retrofitting llms
for accelerated inference”. In: arXiv preprint arXiv:2403.09636 (2024).

[14] Yu Liu et al. “Are LLMs good at structured outputs? A benchmark
for evaluating structured output capabilities in LLMs”. In: Information
Processing & Management 61.5 (2024), p. 103809.

[15] Fabrizio Davide, Pietro Torre, and Andrea Gaggioli. “AI Predicts AGI:
Leveraging AGI Forecasting and Peer Review to Explore LLMs’ Com-
plex Reasoning Capabilities”. In: arXiv preprint arXiv:2412.09385
(2024).

BIOGRAPHIES
Abdelkader Mekrache (Member, IEEE) is a PhD candidate at EU-

RECOM’s Communication Systems Department. His primary focus is on
advanced network management frameworks in next-generation wireless net-
works under the supervision of Prof. Adlen Ksentini. He is an active par-
ticipant in collaborative research and notably contributes to the OAI project,
as well as multiple European projects, including 6G-Bricks, 6G-Intense, and
Sunrise-6G.

Adlen Ksentini (Senior Member, IEEE) is a professor at EURECOM in
the Communication Systems Department, leading the Network Softwarization
group. His research focuses on network virtualization, SDN, and edge
computing for 5G/6G networks. He has participated in several H2020 and
Horizon Europe projects and is the technical manager for 6G-Intense and
AC3. Adlen has given tutorials at major IEEE conferences and is a member
of the OAI board of directors.

Christos Verikoukis (Senior Member, IEEE) received his Ph.D. degree
from the Technical University of Catalonia (UPC), Barcelona, Spain, in
2000. He is currently a Professor with the University of Patras and a
Collaborating Faculty member with ISI/ATH, Patras . He has authored 170
journal articles and over 250 conference papers. He has participated in more
than 60 competitive projects and he has coordinated 15 of them. He is
currently the IEEE ComSoc GITC member and the Editor-in-Chief of the
IEEE NETWORKING LETTERS.

