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Abstract— This paper studies a finite-horizon Markov deci-
sion problem with information-theoretic constraints, where the
goal is to minimize directed information from the controlled
source process to the control process, subject to stage-wise cost
constraints, aiming for an optimal control policy. We propose
a new way of approximating a solution for this problem,
which is known to be formulated as an unconstrained MDP
with a continuous information-state using Q-factors. To avoid
the computational complexity of discretizing the continuous
information-state space, we propose a truncated rollout-based
backward-forward approximate dynamic programming (ADP)
framework. Our approach consists of two phases: an offline
base policy approximation over a shorter time horizon, followed
by an online rollout lookahead minimization, both supported by
provable convergence guarantees. We supplement our theoret-
ical results with a numerical example where we demonstrate
the cost improvement of the rollout method compared to a
previously proposed policy approximation method, and the
computational complexity observed in executing the offline and
online phases for the two methods.

I. INTRODUCTION

Sequential decision-making under uncertainty is a fun-
damental problem that attracts extensive attention across
control and communication systems, paving the way for de-
veloping approximate dynamic programming (DP) or model-
based reinforcement learning methods [2]. Markov decision
processes (MDPs) provide a natural framework for modeling
and analyzing sequential decision-making problems through
the lens of approximate DP (ADP) problems [3].

Directed information (DI) is an information-theoretic mea-
sure that quantifies the causal information flow from one
process to another in the presence of feedback information
[4]. It has been widely used by control and communication
communities to quantify fundamental limits in feedback
control systems under information-theoretic constraints [5]–
[8]. By incorporating DI into the control objective, the
controller is encouraged to be “information-frugal”, making
decisions based on only the most relevant and necessary state
information, thus enabling real-time systems to balance the
performance tradeoffs between control and communication.
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DI and other causal information-theoretic measures (eg.
entropy, transfer-entropy [9]) have been efficiently combined
with MDPs to study sequential stochastic models using
DP. For instance, [10], [11] considered the entropy as the
reward in MDP and partially observable MDP (POMDP) to
synthesize the control policies by maximizing the entropy.
Other works integrate the information-theoretic quantities as
regularized terms. In [12], an entropy-regularized POMDP
is used for active state estimation. Perhaps the most relevant
work to ours is [13], which introduced the transfer-entropy-
regularized MDP (TERMDP) for feedback control problems.
Their approach seeks to minimize the control cost subject
to a soft constraint, expressed through transfer entropy, a
variant of DI, capturing the uncertainty between the state and
control processes. Unfortunately, constructing the transfer-
entropy regularizer with a standard state-dependent cost
results in a nonconvex optimization problem, which makes
the proposed dynamic forward–backward Blahut–Arimoto
algorithm (BAA) [14] challenging to converge even to a
local optimum, while incurring very high computational
complexity.

Recently, we proposed a DP approach based on the
information state, or belief, to study a lower bound for a zero-
delay lossy compression problem by minimizing DI subject
to a single-letter distortion function [15]. To address the well-
known “curse of dimensionality” arising in the resulting DP
recursion, we employed an ADP methodology grounded in
approximation in policy space [2]. This ADP framework
seeks suboptimal solutions by optimizing over a tractable,
parameterized subset of the policy space. Although [15] did
not explicitly involve control or MDPs, the DP techniques
applied therein constitute a principled and widely adopted
methodology for tackling information-theoretic MDPs and
POMDPs, also known as information-state MDPs [2].

Another major ADP approach, instead of directly targeting
policies, is approximation in value space, which focuses
on approximating the cost function. This strategy is partic-
ularly advantageous for MDPs with prohibitively large or
continuous state spaces, as it enables more scalable methods
that mitigate computational intractability (see, e.g., [2]). A
notable class of methods within this paradigm is the rollout,
which begins with an offline base-policy (heuristic) approx-
imation and then applies online cost improvement. Rollout
has demonstrated strong empirical effectiveness in reducing
complexity while preserving performance guarantees [2], and
can also be interpreted as a form of model predictive control
(MPC) that leverages a base policy [16].

Contributions: In this work, we consider a discrete-time
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Fig. 1: Controlled discrete-time dynamic system formulated
as a finite-horizon MDP

finite-horizon directed information-constrained MDP (DI-
MDP) problem in a feedback-controlled system (see Fig. 1),
where the goal is to identify the optimal control policy that
minimizes DI payoff subject to stage-wise state-dependent
cost constraints. We first provide a new DP reformulation for
the studied problem using a Q-factor representation in terms
of state and control policy pair, which can facilitate offline
approximation for the base policy. We then propose a novel
truncated-rollout-based backward-forward ADP framework
that mitigates the computational burden of the studied prob-
lem by decoupling the offline and online phases. The offline
training phase involves backward functional base policy and
associated Q-factor approximation using a rolling or short
horizon (see Algorithm 1). The online phase conducts for-
ward rollout optimization with lookahead minimization fol-
lowed by instantaneous Q-factor evaluations, to realize policy
and cost improvement over any finite horizon (see Algorithm
2 and Theorem 4). Both phases admit stage-wise convergence
guarantees (see Lemmas 2, 3). We corroborate our theoretical
results with numerical simulations, demonstrating the cost
improvement of the rollout method compared to a previously
proposed policy approximation method [15] (see Fig. 2),
and the computational complexity observed in executing the
offline and online phases for the two methods (see Table II),
where the guaranteed performance shows the scalability with
increased computational resources.

Notation: We denote the set of real numbers by R. N ≜
{1, 2, . . .}, N0 ≜ {0, 1, . . .}, and NN

j ≜ {j, . . . , N}, j ≤
N, N ∈ N. We denote a sequence of random variables (RVs)
by Xt = {X0, X1, . . . , Xt}, t ∈ NN

0 and their real values by
xt ∈ X t = {X0, . . . ,Xt}, where Xt denotes the finite set and
hence X t the set sequence. A truncated sequence of RVs is
denoted by Xt

j = {Xj , . . . , Xt}, j ∈ Nt
0, t ≥ j, and its real-

izations by xt
j = {xj , . . . , xt} ∈ X t

j = {Xj , . . . ,Xt}, t ≥ j.
The distribution of a RV X on X is denoted by P (x) and
the conditional distribution of a RV U given X = x is
denoted by P (u|x). Functional dependencies are indicated
with square brackets, e.g. P [Q](x) and P [u](x) represent a
distribution P (x) that depends on another distribution Q or
another realization u, respectively. The expectation operator
is denoted by E{·}, and Eµ{·} denotes expectation with
respect to a given distribution µ(·).

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider the controlled discrete-time dynamic system
over any finite horizon, illustrated in Fig. 1.

A. System Model

First, we describe each component of the system model in
Fig. 1. Consider a controlled source process Xt ∈ X t defined
by a time index t ∈ NN

0 with given initial distribution X0 ∼

P0(x0) and a discrete control process U t ∈ U t in the system.
We assume that the elements of the sets X t and U t are finite.
At each time t, the controlled process {Xt : t = 0, . . . , N}
is Markov conditional on the past controlled object Xt−1

and the past control Ut−1 = ut−1. The controlled process
is defined by a transition kernel given by the conditional
probability distribution

Pt(xt|xt−1, ut−1). (1)

The control object or control process {Ut : t = 0, . . . , N}
is generated according to a randomized history-dependent
control policy, hereinafter denoted by µt, i.e.,

µt = Pt(ut|ut−1, xt), (2)

with the initial control policy µ0 to represent P0(u0|x0).
Note that (2) depends only on the current controlled object
Xt since such a structural property was identified in [17,
Section IV], [18, Theorem 4.1]. On the other hand, for
each t = 0, 1, . . . , N , the controlled object Xt is “partially
observed” through the control Ut after applying the policy
µt by the control object. The information of the controlled
object filtered from the control process is summarized via an
information state or belief given by the following recursion

Pt+1(xt|ut) =
Pt(xt, u

t)

Pt+1(ut)

=

∑
xt−1∈Xt−1

µtPt(xt|xt−1, ut−1)Pt(xt−1|ut−1)∑
xt
t−1∈X t

t−1
µtPt(xt|xt−1, ut−1)Pt(xt−1|ut−1)

, (3)

which is Markov, conditional on ut−1, Pt(xt−1|ut−1). Fi-
nally, the control process {Ut : t = 0, 1, . . . , N} induces the
conditional probability distribution Pt(ut|ut−1), ∀t, here-
after denoted by νt, which is specified by the control object
and information state via the following expression

νt = Pt(ut|ut−1) =
∑

xt
t−1∈X t

t−1

µtPt(xt|xt−1, ut−1)

× Pt(xt−1|ut−1). (4)

Here, by denoting the information state by bt and
Pt(xt|xt−1, ut−1) by wt, (3) can be expressed as a system
transition equation of the form bt+1 = ft(bt, µt, wt).

B. System Performance
We specify the system performance using an information-

theoretic cost as the objective function, subject to state-
dependent cost constraints. Define the decision policy π
over the finite horizon N as a sequence of control policies
π = {µ0, . . . , µN}, and let the set of all admissible decision
policies be Π such that π ∈ Π. At each time stage t ∈ NN

0 ,
the information-theoretic cost of the system incurred by the
control policy µt is quantified by the conditional mutual
information [19]

I(Xt;Ut|U t−1) ≜ Eµt

{
log

(µt

νt

)}
=

∑
xt
t−1∈X t

t−1

ut∈Ut

log
(µt

νt

)
µtwtbtPt(u

t−1). (5)



We define directed information [4] theoretic cost as the
additive cost functional

Cπ(XN , UN ) ≜
N∑
t=0

I(Xt;Ut|U t−1). (6)

Given a state-dependent cost function ρt(xt, ut) at each t, de-
fined over the state-control pair as ρt : Xt×Ut → R, and a se-
quence of nonnegative constraints thresholds {D0, . . . , DN},
the stage-wise state-dependent cost constraint associated with
a control policy µt is specified by Eµt{ρt(Xt, Ut)} ≤ Dt,
where

Eµt{ρt(Xt, Ut)} =
∑

xt
t−1∈X t

t−1

ut∈Ut

ρt(xt, ut)µtwtbtPt(u
t−1).

(7)

Our DI-MDP is formulated as a constrained optimization
problem, which seeks a decision policy π that solves the
following sequential stochastic optimization problem

inf
π∈Π

Cπ(XN , UN )

s.t. Eµt{ρt(Xt, Ut)} ≤ Dt,∀t ∈ NN
0 .

(8)

We state some noteworthy remarks related to (8).
Remark 1: (i) Solving (8) is equivalent to solving the

lower bound (nonanticipative rate-distortion function) of
the finite horizon sequential source coding problem with
stage-wise distortion constraints [18], where the information-
theoretic payoff (6) interprets the expected compression
rate, the control policy µt represents the test-channel (i.e.,
reconstruction probability distribution), and (7) as the stage-
wise fidelity constraint. (ii) In contrast, the TERMDP prob-
lem in [13] adopts a different formulation by reversing the
objective and the constraint in (8); the payoff is regularized
by transfer entropy. This leads to a nonconvex optimization
problem (as discussed in [13]), where the coupling between
the information-regularization and the standard cost terms
hinders the attainment of the global optimum.

C. Reformulation of (8)

We now present the reformulation of problem (8). We
first leverage the key convexity properties of DI and Π
from [15, Theorem 2, 3] with given bt obtained for fixed
U t−1 = ut−1 for any t ∈ NN

0 . This allows to apply the
Lagrange duality theorem [20] with Lagrange multipliers
{st ≤ 0, t ∈ NN

0 }, converting (8) into an unconstrained
convex optimization problem. We then reformulate it as
a finite-horizon information-state MDP [2], where for any
t ∈ NN

0 , each element of information state bt takes values
in the continuous interval (0, 1), resulting in a continuous
information-state space encompassing an infinite number of
possible distributions representing bt. The control policy
(action) µt, the random disturbance wt, and the stage-wise
cost function gt(bt, µt) = log

(
µt

νt

)
− st(ρt(xt, ut)−Dt) are

defined accordingly. Table I summarizes the correspondence
between the components of this information-state MDP and
those of the original problem (8).

TABLE I: Information-State MDP Corresponds to (8)
Information-state MDP Connection to (8)
information state bt = Pt(xt−1|Ut−1 = ut−1)
control policy (action) µt = Pt(ut|Ut−1 = ut−1, xt)
transition Pt(bt+1|bt, µt)
cost function
(in contrast of reward)

gt(bt, µt)
= log

(µt
νt

)
− st(ρt(xt, ut)−Dt)

By invoking the principle of optimality [2], we obtain
the following finite horizon stochastic DP recursion in Q-
factor form, expressed explicitly in terms of any given
information state bt and corresponding control policy µt pair,
and computed backward in time t = N, . . . , 0

Q∗
t (bt, µt) =

∑
xt
t−1∈X t

t−1,ut∈Ut

{(
log

(µt

νt

)
− stρt(xt, ut)

+ min
µt+1

Q∗
t+1(bt+1, µt+1)

)
wtµtbt

}
+ stDt, (9)

with the terminal condition Q∗
t+1(bN+1, µN+1) = 0 for all

bN+1 and µN+1. Note that the given information state bt for
fixed U t−1 = ut−1 appearing in (9) can be determined at
each time-stage t through the recursion update (3), and this
update is Markovian conditioned on the current U t−1 and
bt. Furthermore, at t = 0, we adopt the initial assumptions
of our system model by setting the initial control policy and
marginal distribution as µ0 = P0(u0|x0) and P0(u0|u−1) =
P0(u0) respectively. Hence, the recursion at the initial time
stage in (9) is adjusted accordingly.

The stochastic DP recursion given by (9) can be solved
using the backward-forward method from [15], which relies
heavily on finely discretizing the continuous information-
state space into a large finite information-state space Bt
per stage during the offline training phase. The offline
computational complexity due to the curse of dimensionality
of solving (9) motivates the usage of a novel, efficient ADP
method introduced in the next section to obtain reachable
results.

III. MAIN RESULTS

In this section, we present our main results. We propose a
truncated rollout-based ADP Framework that admits approx-
imation in value space to find the optimal solution.

The rollout approach is a sample-based heuristic method
where an offline-approximated base policy is further im-
proved in an online mechanism [2]. To obtain the offline-
approximated base policy via sampling, we avoid computing
Qt(bt, µt) backward over the entire horizon N . Instead, we
operate over a truncated horizon, which naturally leads to a
corresponding truncated rollout approach. We first introduce
the approximate Q-factor Q̃t(bt, µt) at any t ∈ NN

0

Q̃t(bt, µt) = Q̃t[gt, Q̃t+1](bt, µt) =
∑

xt
t−1∈X t

t−1

ut∈Ut

{(
log

(µt

νt

)

− stρt(xt, ut) + Q̃t+1(bt+1, µt+1)
)
wtµtbt

}
+ stDt.

(10)

Herein, we adopt a receding control approach by approxi-
mating the future Q̃t+1 over a much shorter rolling horizon



Ns (also as known as a sampling or receding horizon [2])
compared with N (Ns ≪ N ). Thus, Q̃t is rewritten as

Q̃t(bt, µt) = Q̃t[gt, Q̃
π̄
Ns

](bt, µt) =
∑

xt
t−1∈X t

t−1

ut∈Ut

{(
log

(µt

νt

)

− stρt(xt, ut) +Qπ̄
Ns

(bt+1, µt+1)
)
wtµtbt

}
+ stDt, (11)

where Qπ̄
Ns

is estimated backward over Ns, and π̄ is the
obtained base policy defined on a discretized information-
state space denoted by B̄t such that bt ∈ B̄t with its
values selected from the interval (0, 1). Thus, the backward
computation admits an offline training procedure with ana-
lytical recursions of the base control policy. To facilitate the
backward approximation of Qπ̄

Ns
, we employ the following

lemmas adapted from [15].
Lemma 1: (Double minimization) For any t ∈ NN

0 , let
st ≤ 0 and Dt > 0, then for a fixed wt, and a given
information state {bt ∈ B̄t} obtained for a fixed U t−1 =
ut−1, minimizing (9) admits a double minimum as

Q∗
t (bt, µ

∗
t ) = min

µt

min
νt

∑
xt
t−1∈X t

t−1

ut∈Ut

{(
log

(µt

νt

)
− stρt(xt, ut)

+Q∗
t+1(bt+1, µt+1)

)
µtwtbt

}
+ stDt, t = N, . . . , 0.

(12)

Moreover, for a fixed µt, the right hand side (RHS) of (12)
is minimized by (4), whereas for fixed νt, the RHS of (12)
is minimized by

µt =
νtAt[bt](xt, ut, st)∑

ut∈Ut
νtAt[bt](xt, ut, st)

, (13)

where At[bt](xt, ut, st) = estρt(xt,ut)−Q∗
t+1(bt+1,µt+1).

Lemma 2: (Base policy approximation algorithm) For
each t ∈ NN

0 , consider a fixed wt, and a given bt obtained for
a fixed U t−1 = ut−1. Moreover, for any t, let st ≤ 0 and ν

(0)
t

be the initial output distribution with non-zero components,
and let ν(k+1)

t = µt[ν
(k)
t ] and µ

(k+1)
t = νt[ν

(k)
t ] be expressed

wrt the previous kth iteration as follows

µ
(k+1)
t =

ν
(k)
t At[bt](xt, ut, st)∑

ut∈Ut
ν
(k)
t At[bt](xt, ut, st)

, (14)

ν
(k+1)
t = ν

(k)
t

∑
xt∈Xt

btwtAt[bt](xt, ut, st)∑
ut∈Ut

ν
(k)
t At[bt](xt, ut, st)

. (15)

Then as k →∞, we obtain for any t that

Qt(bt, µ
(k)
t )→ Q∗

t (bt, µ
∗
t ),

whereas Qt(bt, µ
(k)
t ) is expressed as

Qt(bt, µ
(k)
t ) =

∑
xt∈Xt,ut∈Ut

btwtµ
(k)
t

(
log

(µ(k)
t

ν
(k)
t

)
+Q∗

t+1(bt+1, µt+1)
)
. (16)

Therefore, to approximate Qπ̄
Ns

over the rolling horizon
Ns, the results provided by Lemma 2 can be implemented

Algorithm 1 Offline Base Control Policy Approximation

Input: given {wt : t ∈ NN
N−Ns+1},

given base information state bt ∈ B̄t, Lagrange multipli-
ers {st ≤ 0 : t ∈ NN

Ns
}, error tolerance ϵ > 0

1: Initialize {ν(0)t : t ∈ NN
N−Ns+1}

2: for t = N : N −Ns + 1 do
3: k ← 0
4: while TUt

[ut−1, bt]− TLt
[ut−1, bt] > ϵ do

5: µ
(k)
t ← (14)

6: ν
(k+1)
t ← (15)

7: Qt(bt, µ
(k)
t )← (16)

8: k ← k + 1
9: end while

10: end for
11: Qπ̄

Ns
(bt, µt)← Q∗

N−Ns+1[gt, Q
∗
N−Ns+2](bt, µ

∗
t )

Output: {µ∗
t (bt) : t ∈ NN

N−Ns+1, bt ∈ B̄t},
{ν∗t [bt] : t ∈ NN

N−Ns+1, bt ∈ B̄t},
{Qπ̄

Ns
(bt, µt) : bt ∈ B̄t, µt ∈ µ∗

t (bt)}.

via backward computation from the terminal stage t = N
to stage t = N − Ns + 1, as detailed in Algorithm 1. The
following lemma complements Algorithm 1 by providing a
stopping criterion to terminate the procedure after a finite
number of iterations.

Lemma 3: (Stopping criterion of Algorithm 1) For each
t ∈ NN

0 , the quantity Dst given by

Dst =
∑

xt∈Xtut∈Ut

µ∗
twtbtρt(xt, ut), (17)

admits the following bounds

Q∗
t (bt, µt) ≤ −

∑
xt∈Xt

(
btwt log(

∑
ut∈Ut

νtAt[bt](xt, ut, st))
)

−
∑

ut∈Ut

νtct[u
t−1](ut) log ct[u

t−1](ut) + stDst , (18)

Q∗
t (bt, µt) ≥ −

∑
xt∈Xt

(
btwt log(

∑
ut∈Ut

νtAt[bt](xt, ut, st))
)

− max
ut∈Ut

log ct[u
t−1](ut) + stDst , (19)

where ct[u
t−1](ut) is expressed as a function of fixed ut−1

ct[u
t−1](ut) =

∑
xt∈Xt

btwtAt[bt](xt, ut, st)∑
ut∈Ut

νtAt[bt](xt, ut, st)
.

Lemma 3 generates a stopping criterion for Algorithm 1
at the k-th iteration by setting the estimation error ϵ per time
stage, i.e., TUt [u

t−1, bt]− TLt [u
t−1, bt], where

TUt [u
t−1, bt] = −

∑
ut∈Ut

νtct[u
t−1](ut) log ct[u

t−1](ut),

TLt
[ut−1, bt] = − max

ut∈Ut

log ct[u
t−1](ut).

Comments on Algorithms 1: The control policy
{µ∗

t (bt) : t ∈ NN
N−Ns+1, bt ∈ B̄t}, the output distribution

{ν∗t [bt] : t ∈ NN
N−Ns+1, bt ∈ B̄t}, and the cost-to-go

functions {Q∗
t : t ∈ NN

N−Ns+1} are aprroximated over the
base information-state space B̄t discretized under the fixed
U t−1 = ut−1. After computing these quantities backward



over the rolling horizon Ns, we obtain Qπ̄
Ns

(bt, µt) and
proceed with online one-step truncated-rollout lookahead
minimization starting from the initial information state b̃1 =
P0(x0|u0) and initial output distribution ν0 = P0(u0). The
online procedure is detailed in Algorithm 2.

Comments on Algorithms 2: In the online truncated-
rollout approximation, for each t with an associated infor-
mation state bt, the rollout control policy µ̃t is determined
by minimizing the approximate Q-factor Q̃π̄

t (bt, µt) averaged
over Pt(u

t−1)

µ̃t = arg min
µt∈π̄

∑
ut−1∈Ut−1

Q̃π̄
t (bt, µt)Pt(u

t−1), (20)

where Q̃π̄
t (bt, µt) is obtained by one-step truncated-rollout

lookahead minimizing approximate Q-factor (11), expressed
as

Q̃π̄
t (bt, µt) = min

µt

Q̃t[gt, Q
π̄
Ns

](bt, µt). (21)

Hence, the online rollout procedure at each t involves first a
functional minimization followed by an instantaneous policy
evaluation. Specifically, the minimization in (21) corresponds
to steps 3–9 of Algorithm 1, with Qt and Qt+1 replaced
by Q̃t and Qπ̄

Ns
respectively, where convergence is guar-

anteed by Lemma 2. After determining the rollout policy
µ̃t, the subsequent information state b̃t+1 is updated via
recursion in (3). Consequently, our rollout approach yields
an approximate solution to (8), generating an information-
state trajectory {b̃t, t ∈ NN

1 }. The resulting rollout policy
sequence, π̂ = {µ0, µ̃1, . . . , µ̃N}, achieves the minimum
defined by (20) for each t ∈ NN

1 . We next show that the
proposed rollout policy performs no worse than the base
policy.

Theorem 4: For any t ∈ NN
1 , denote the by J̃ π̂

t (bt) and
J̃ π̄
t (bt) the cost-to-go averaged over Pt(u

t−1) corresponding
to the rollout policy π̂ and base policy π̄, respectively,
starting at information state bt, which are expressed as

J̃ π̂
t (bt) =

∑
ut−1∈Ut−1

Q̃π̂
t [gt, Q

π̄
Ns

](bt, µ̃t)Pt(u
t−1), (22)

J̃ π̄
t (bt) =

∑
ut−1∈Ut−1

Q̃π̄
t [gt, Q

π̄
Ns

](bt, µt)Pt(u
t−1). (23)

Then J̃ π̂
t (bt) ≤ J̃ π̄

t (bt) for all bt.
Proof: We prove this by induction backward in time.

Clearly it holds for t = N since J̃ π̂
N = J̃ π̄

N according to (9).
Assuming it holds for time stage t+ 1, we have for all bt

J̃ π̂
t (bt)

(a)
=

∑
ut−1∈Ut−1

Q̃π̂
t [gt(bt, µ̃t), Q

π̄
Ns

(b̃t+1)](bt, µ̃t)Pt(u
t−1)

(b)

≤
∑

ut−1∈Ut−1

Q̃π̄
t [gt(bt, µ̃t), Q

π̄
Ns

(b̃t+1)](bt, µ̃t)Pt(u
t−1)

(c)
= min

µt∈π̄∑
ut−1∈Ut−1

Q̃π̄
t [gt(bt, µt), Q

π̄
Ns

(bt+1)](bt, µt)Pt(u
t−1)

Algorithm 2 Online Rollout Evaluation

Input: {B̄t : t ∈ NN
N−Ns+1} of given {bt : t ∈ NN

N−Ns+1},
{µ∗

t (bt) : t ∈ NN
N−Ns+1, bt ∈ B̄t},

{ν∗t [bt] : t ∈ NN
N−Ns+1, bt ∈ B̄t},

{Qπ̄
Ns

: bt ∈ B̄t}.
1: Initialize µ0 = P0(u0|x0), P1(u

0), b̃1 = P (x0|u0)
2: for t = 1 : N do
3: Q̃π̄

t (b̃t, µt)← step 3-9 in Algorithm 1
4: µ̃t ← (20)
5: b̃t+1 ← (3)
6: end for
Output: π̂ = {µ0, µ̃1, . . . , µ̃N}, {b̃t, t ∈ NN

1 },
{ν̃t : t ∈ NN

0 }, C π̃(XN , UN ).
(d)

≤
∑

ut−1∈Ut−1

Q̃π̄
t [gt(bt, µt), Q

π̄
Ns

(bt+1)](bt, µt)Pt(u
t−1)

= J̃ π̄
t (bt),

where
(a)
= is the DP equation for rollout policy (22),

(b)

≤
holds because of the inductive assumption,

(c)
= holds by the

definition of the online rollout minimization according to

(20), and
(d)

≤ holds by the DP equation for the base policy
(23). This completes the proof.

Theorem 4 shows the cost improvement property and
guarantees that the rollout policy does not degrade the
performance compared with the base policy. Furthermore,
repeated rollout can be performed by constructing an im-
proved discretized information-state space B̃t based on em-
pirical observations from the previous rollout trajectory. The
updated base policy π̃ is re-approximated via Algorithm 1
and subsequently enhanced via Algorithm 2. Hence, repeated
rollout can progressively refine the approximate optimal
solution to problem (8).

IV. NUMERICAL EXAMPLE

This section provides numerical simulations to support our
theoretical findings that led to Algorithms 1, 2. We consider
binary alphabets, i.e., {Xt = Ut = {0, 1} : t ∈ NN

0 }, with
Hamming distance function given by

ρt(xt, ut) ≡ ρ(xt, ut) =

{
0, if xt = ut

1, if xt ̸= ut
, ∀t. (24)

We consider finite previous control memory (memory-
1 ut−1 ≈ ut−1) applied for information state bt =
Pt(xt−1|ut−1), control policy µt = Pt(ut|ut−1, xt), and
output distribution νt = Pt(ut|ut−1). Under this assumption,
we consider the base information-state space B̄t, which
consists of a matrix comprising two “quantized” binary
probability distributions drawn from the original continuous
state space. We denote with nt each quantization level per
t, which results in an information-state space B̄t with size
|B̄t| = n

|Ut−1|
t = n2

t , representing combinations of 2 out of
nt quantized binary distributions.

Example 1: (Time-invariant binary symmetric controlled
Markov chain) The source distribution wt at each t ∈ NN

1
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Fig. 2: Illustration of the stage-wise information-theoretic
cost and time consumption comparison

Offline Phase Online Phase
Proposed scheme O(Nsn2 1

ϵ
) O(Nn 1

ϵ
)

[15] O(Nn2 1
ϵ
) O(Nn)

TABLE II: Computation Complexity

is chosen such that for each t, we have

wt =

(
1− α0 α0 1− α1 α1

α0 1− α0 α1 1− α1

)
, (25)

where the first two columns are under the condition of
ut−1 = 0 and the rest for ut−1 = 1, where α0, α1 ∈ (0, 1).
Moreover, we choose the quantization levels {nt = n : t ∈
NN

1 } and the stage-wise Lagrangian {st = s : t ∈ NN
0 }.

We demonstrate some results applying the proposed rollout
with Algorithms 1, 2 by multi-core processing in Fig. 2a for
n = 20, α0 = 0.4, α1 = 0.8, s = −2, N = 100, NS = 5.

We then illustrate the computational complexity of our
proposed scheme compared with the policy approximation
approach in [15]. As shown in Table II, the proposed rollout-
based method significantly reduces offline computation time
by operating over a much shorter rolling horizon (Ns ≪ N ).
Although the online rollout lookahead minimization of our
proposed approach is a bit time-consuming, it offers a clear
cost improvement over the prior approach in [15] under
the same information-state space discretization level (See
Fig. 2a, 2b). We also demonstrate the cost performance of
repeated rollout in Fig. 2a where the updated information-
state space B̃t with |B̃t| = n2

t , is constructed based on the
empirical value range. Using this refined B̃t for a new round
of offline base policy approximation, we observe a further
cost improvement after the online rollout evaluation.

We also observe that, with the comparable computational
time, the proposed method requires indeed less random
access memory (RAM) to realize approximation compared
to the prior approach in [15]. This memory efficiency en-
ables the offline base policy approximation to explore a
larger discretized information-state space, thereby leading
to improved online performance. Moreover, this efficiency
enhances the proposed method’s scalability, making it well-
suited for extension to more complex settings as additional
computational resources become available.

V. CONCLUSION

We proposed a DI-MDP problem over a finite horizon,
aiming to derive the optimal control policy by minimizing
the DI subject to stage-wise state-dependent cost constraints.

We first reformulated the problem as an unconstrained
information-state MDP and derived DP recursion in Q-factor
form. To address the intractability caused by the continuous
information-state space in the offline training phase, we
proposed a new rollout-based ADP framework that involves
offline base policy approximation followed by online ap-
proximate policy improvement. Our theoretical results are
supplemented with simulation studies that showed the cost
performance improvement and demonstrated the scalability.
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