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Abstract—Speaker verification systems are increasingly de-
ployed in security-sensitive applications but remain highly vulner-
able to adversarial perturbations. In this work, we propose the
Mask Diffusion Detector (MDD), a novel adversarial detection
and purification framework based on a fext-conditioned masked
diffusion model. During training, MDD applies partial masking
to Mel-spectrograms and progressively adds noise through a
forward diffusion process, simulating the degradation of clean
speech features. A reverse process then reconstructs the clean
representation conditioned on the input transcription. Unlike
prior approaches, MDD does not require adversarial examples
or large-scale pretraining. Experimental results show that MDD
achieves strong adversarial detection performance and outper-
forms prior state-of-the-art methods, including both diffusion-
based and neural codec-based approaches. Furthermore, MDD
effectively purifies adversarially-manipulated speech, restoring
speaker verification performance to levels close to those observed
under clean conditions. These findings demonstrate the potential
of diffusion-based masking strategies for secure and reliable
speaker verification systems.

I. INTRODUCTION

Automatic Speaker Verification (ASV) plays a key role
in providing secure access control to services, smart phones
and devices. However, ASV systems are vulnerable to adver-
sarial attacks [1]-[3] whereby subtle and even imperceptible
perturbations are added to an acoustic input to manipulate
normal system behaviour, i.e. to obtain unauthorised access
to protected services or devices. Such vulnerabilities pose a
challenge to verification reliability [4]-[6]. There is hence an
interest to develop robust detection methods to protect against
the threat of adversarial attacks.

Current research in defences against adversarial attacks
falls into two categories [5], [6]. Proactive defences, such as
adversarial training, requires advance knowledge of specific
attacks and continual retraining/adaptation of the ASV model
to new attacks [5]. Passive defences, in contrast, can be
used to detect or eliminate adversarial perturbations without
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retraining. Among these, plug-in detection-based methods have
received considerable attention due to their convenience and
flexibility [5].

Various such detection schemes have been proposed re-
cently. These include methods which rely on statistical anal-
ysis [7], [8], auxiliary classifiers like learnable mask net-
works [9], approaches based on self-supervised learning [10],
and neural codec-based audio reconstruction [11]. However,
these approaches often face limitations. For instance, some
are too computationally intensive for real-time applications
or require large-scale pretraining, while others are dependent
on prior knowledge of specific attack types. This reliance can
leave such systems vulnerable to new, unknown attacks [12],
[13].

We propose a novel diffusion-based adversarial attack detec-
tor: the Mask Diffusion Detector (MDD). Our approach builds
upon prior work in diffusion-based audio processing [14]-[16].
However, whereas the forward process of traditional diffusion
models typically acts to progressively reduce the different
between the input and Gaussian noise [17], [18], that of
MDD is used to progressively produce a noised masked Mel-
spectrogram. An embedding of the transcription text is applied
during the conditional diffusion process to help preserve key
information in the reconstruction. In the reverse denoising
and reconstruction phase, the text-conditioned diffusion model
learns to recover an estimate of the original, clean spectrogram.
As a result, it can effectively identify and mitigate malicious,
adversarial perturbations. Notably, MDD can be trained on
bona fide data only, without any adversarial data. This attacker-
independent approach promotes generalisation. Compared to
existing works, the main contributions are as follows.

o We introduce MDD, a novel adversarial attack detection
framework built upon a text-conditioned masked diffusion
model. By applying spectral masking in both the forward
and reverse diffusion processes, MDD effectively adapts
diffusion-based generative modeling to the task of adver-
sarial detection in speaker verification.

o MDD requires neither adversarial training data nor large-
scale pretraining, yet it achieves strong detection per-
formance, demonstrating robustness and generalisation
across attack types.

« Beyond adversarial detection, MDD preserves the perfor-



mance of speaker verification (ASV) systems on clean
data, ensuring practical applicability in real-world sce-
narios without compromising verification accuracy.

II. RELATED WORK

A. Automatic speaker verification

A typical ASV system consists of two stages: speaker
embedding extraction and speaker similarity computation. Em-
beddings are extracted from an enrolment utterance z. and a
test utterance x;. The similarity between the pair of embed-
dings is then computed to determine whether the speaker in
x. matches that in ;. Common speaker embedding extractors
include x-vector [19], ECAPA-TDNN [20] and self-supervised
learning-based models [21].

B. Adversarial attacks

Given a bona fide (clean) utterance x;, an attacker generates
an adversarially perturbed version .4, which causes the
ASV system to verify incorrectly the similarity between x.
and x,4,. The adversarial example x,q4, is constrained to be
perceptually similar to x; so that [[xqay — @[, < €, where
| - |p denotes the ¢,-norm and ¢ is a small positive constant.
Common attack methods include the basic iterative method
(BIM) [22], projected gradient descent (PGD) [23], and the
fast gradient sign method (FGSM) [24].

C. Diffusion models

Diffusion models have emerged recently as powerful gener-
ative frameworks in various domains. They operate by adding
noise gradually to input data and then by learning a de-noising
process so that they can generate high-quality, clean data
from pure noise inputs. By approximating source distributions
through such an iterative process, diffusion models have been
shown to perform well for generative tasks [25], [26] and
enhancement tasks [27], [28].

III. MASK DIFFUSION DETECTOR

In this section we describe the proposed Mask Diffusion
Detector (MDD), a novel framework designed for the detection
of adversarial perturbations aimed at deceiving ASV systems.
MDD consists of two main components: a diffusion model
adapted with a specific mask strategy and noise schedule, and
a back-end detector to distinguish bona fide from adversarially-
manipulated speech data.

A. Diffusion model with mask strategy

An illustration of the MDD is shown in Fig. 1. At the core
is a diffusion model which iteratively denoises the masked
Mel-spectrogram. The model encompasses a forward diffusion
process and a reverse reconstruction process.

1) Forward diffusion process: The forward diffusion pro-
cess, denoted by ¢(x1,...,xr|xo,c), takes an initial clean
Mel-spectrogram o and a text condition ¢, and progressively
adds noise and applies masking over a sequence of 7' steps to
produce x7.

First, a masked version of the input, denoted as x,,, is
generated from the original, clean spectrogram xg. This is
achieved through random masking of 16 x 16 patch regions.

Second, a composite noise target, Nig,qer, 1s formulated
according to:

Ntarget:mm+0-'€7 (D

where € is random noise sampled from a standard Gaussian
distribution (0, I) and with the same dimensions as z,,, and
o is a scalar coefficient used to control the signal-to-noise ratio
in V, target-

The noisy spectrogram z; for a given timestep ¢ is subse-
quently generated according to a pre-defined noise schedule.
It is generated from the initial clean spectrogram x, the new
noise target Nyq,qget, and a noise schedule parameter &, which
represents the cumulative product of noise variances up to
step t. In our modified framework, the standard Gaussian noise
term is replaced by our specifically formulated N;4,ge;. Thus,
x, can be expressed by the relation:

Ty = Vouxo + V1 — 0 Nygrget- 2)

The forward diffusion hence steers xg towards a state which is
a controlled combination of z itself and the composite noise
target Nyqpger. Consequently, the masked input x,, becomes
an integral part of the degradation process which the reverse
reconstruction process must learn to invert.

2) Reverse reconstruction process: The reverse process,
po(xs—1|xs,¢), aims to reconstruct the initial clean Mel-
spectrogram xg from corrupt version x;, with parameter 6 and
a text condition c. Given that the forward process uses Nyqrget
to noise and mask x, the model learns to denoise z; as well
as to fill the masked area in z,,. At each step, the training
objective is to minimise the reconstruction error between the
predicted noise and Nigrget. By learning the distribution of
clean data, MDD is able to remove adversarial perturbations
from masked inputs.

B. Waveform reconstruction

Following the reverse diffusion process, the denoised Mel-
spectrogram g is transformed back into a time-domain wave-
form using a pretrained HiFi-GAN vocoder [29]. HiFi-GAN
is a non-autoregressive, GAN-based neural vocoder that maps
Mel-spectrogram features to high-fidelity audio waveforms.
In our framework, the vocoder operates as a fixed post-
processing module, independent of the diffusion model train-
ing. Its purpose is to synthesise speech from the reconstructed
spectrogram Z( such that it can be evaluated by downstream
automatic speaker verification (ASV) systems.
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Fig. 1.

An illustration of the workflow of the proposed MDD method. Given an input Mel-spectrogram, MDD first generates a masked version of the feature

and mixes it with Gaussian noise. During the forward process, the mask diffusion model applies masking and noise to the input step by step. In the reverse
process, it performs unmasking and denoising operations conditioned with the transcription. A HiFi-GAN vocoder then reconstructs the waveform from the
processed feature. Finally, both the original and the regenerated waveforms are fed into the ASV system to compute the score difference.

C. Back-end adversarial detector

A straightforward back-end detector is used to determine
whether an input audio sample is clean or whether it contains
adversarial perturbations. The detector takes the form of a
conventional ASV system which is applied separately to input
signals z and diffusion-purified version z’, thereby producing
a pair of ASV scores s and s’ respectively. The absolute score
difference d = |s — &'| is then calculated and thresholded for
classification. For clean inputs, purification should produce
2 ~ x and s’ ~ s, hence lower values of d. In the
case of adversarial inputs, then purification should remove
the perturbations which would otherwise act to compromise
the ASV system. As a result, s’ (purified of perturbations)
should be lower than s (with perturbations) corresponding to
comparatively higher values of d.

An input sample is classified as adversarial if d exceeds an
empirically optimised detection threshold 7. We set 74.; from
experiments involving a set T of clean data only (no adversarial
examples) to achieve an arbitrarily-set target false positive rate
F'PRyyge; as follows:

i T i
|{.T S ‘d >T}| <FPRtarget}7 (3)

Tdet = Min - <
¢ ™ {number of samples in T

where 7 € R and d* denotes the score difference for the i-th
clean sample.

IV. EXPERIMENTS

A. Experimental setup

We used the PGD method [23] and a subset of 1,000
clean utterances extracted from the VoxCelebl test dataset
[30] to generate 1,000 adversarial examples with which to
test the reliability of ECAPA-TDNN ASV and MDD systems
in the white-box attack scenario. The input to the ECAPA-
TDNN system is 80-dimensional log filterbank (LogFBank)
components extracted with a 25 ms Hamming window and 10
ms frame shift. The model is trained using the VoxCelebl
development set with the standard 512-channel architecture
provided with the Wespeaker toolkit [31]. The PGD algorithm
is applied with 50 attack iterations and ¢s-norm.

We evaluate detection performance using the Detection Rate
(DR) metric, which quantifies the percentage of adversarial
examples correctly identified by the system. Specifically, DR is
measured at fixed false positive rate (FPR) thresholds, ensuring
a controlled trade-off between detecting attacks and minimis-
ing false alarms on bona fide inputs. A higher DR indicates a
stronger capability to detect adversarial perturbations without
significantly impacting clean audio samples.

We trained six MDD models with 0%, 10%, 25%, 50%, 75%
and 100% masked Mel-spectrograms. Each model is trained for
10,000 iterations with a batch size of 4 using the LibriSpeech
train-clean-100 subset. In MDD, the noise control factor o is
set to 0.1, which we found to provide a good balance between
mitigating adversarial effects and preserving the perceptual



fidelity of the output audio. Our implementation is based
on the audio-diffusion toolkit!, and follows a default 1000-
step DDPM noise schedule [17]. We use the whisper-small
Automatic Speech Recognition (ASR) model? for transcription
during conditional generation, and Stella® to encode the text as
conditional embeddings. A pretrained HiFi-GAN model [29]
from AudioLDM?* [26] serves as the vocoder in MDD.

B. Experimental results

The DR results reported in Table I show that the 10%
masking configuration achieves the best detection performance
across both FPR thresholds. Interestingly, the 0% masking case
(i.e., unmasked input) performs slightly worse, highlighting
the effectiveness of introducing partial spectral masking dur-
ing diffusion. As the masking ratio increases beyond 10%,
detection performance progressively declines due to greater
information loss. These results suggest that moderate masking
encourages the model to focus on key spectral regions rel-
evant for detecting adversarial perturbations, while excessive
masking degrades the model’s ability to reconstruct meaningful
features.

TABLE I
DR (%) RESULTS FOR THE MDD DEFENCE METHOD AT DIFFERENT MASK

RATIOS.

Mask ratio FPR=0.1 FPR=0.05

0% (unmasked) 96.2 95.0

10% 98.0 96.9

25% 96.0 94.0

50% 80.4 76.3

75% 60.6 57.3

100% (fully masked) 554 47.6

C. Comparison with other defence methods

We compare the adversarial detection performance of the
proposed MDD with 10% masking against several existing
defence methods, including the DAP diffusion model [15]
and three neural codec-based approaches: AcademiCodec [32],
SpeechTokenizer [33], and DAC [34]. The corresponding
Detection Rate (DR) results under fixed false positive rate
thresholds (FPR = 0.1 and 0.05) are reported in Table II.

The DAP method is based on a waveform-level diffusion
model trained on unmasked audio using LibriSpeech, and
fine-tuned on adversarial examples from the VoxCelebl de-
velopment set. Although DAP achieves moderate DR values
(78.0% and 71.7%), it falls short of the performance achieved
by MDD, which attains 98.0% and 96.9% at the same FPR
levels. Their score-difference distributions on bona fide and
PGD adversarial data are shown in Fig. 2. This highlights
the benefit of applying masking in the spectral domain and
conditioning the reverse process with transcription in MDD.

Uhttps://github.com/teticio/audio-diffusion
Zhttps://huggingface.co/openai/whisper-small
3https://huggingface.co/NovaSearch/stella_en_400M_v5
“https://huggingface.co/cvssp/audioldm/tree/main/vocoder
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Fig. 2. The distributions of score differences when applying 10% MDD and
DAP on bona fide (BF) and PGD adversarial data. A larger gap between the
two lines of the same colour indicates that the PGD adversarial examples are
more easily to be detected.

In contrast, the neural codec-based methods show sub-
stantially lower detection performance. While prior work has
reported strong results using these codecs [11], they typi-
cally rely on large-scale pretraining, and their performance
drops significantly when retrained under the same conditions
as MDD. Specifically, AcademiCodec, SpeechTokenizer, and
DAC achieve DRs of 58.0%, 65.7%, and 74.7% respectively
at FPR=0.1, and even lower scores at FPR=0.05. These results
suggest that neural codec-based detectors may lack general-
izability and robustness when applied under constrained or
mismatched training conditions.

Overall, the 10% masked MDD demonstrates state-of-the-art
performance among all compared methods, benefiting from its
text-conditioned reconstruction and partial masking strategy,
which collectively enhance its ability to suppress adversarial
perturbations while maintaining the fidelity of clean speech.

TABLE II
DR (%) COMPARISON BETWEEN THE 10% MASK MDD, DAP AND
NEURAL CODEC-BASED METHODS UNDER FPR=0.1 AND FPR=0.05.

Configuration | FPR=0.1 ~ FPR=0.05
MDD 10% Mask 98.0 96.9
DAP [14] - 78.0 71.7
AcademiCodec [32] 16k-320d-1-uni 58.0 454
SpeechTokenizer [33]  hubert_avg 65.7 59.9
DAC [34] 16k 74.7 65.8

V. PURIFICATION IMPACT ON ASV PERFORMANCE

While detection accuracy is a critical metric for evaluating
adversarial defences, the ultimate objective of any defence
method is to protect the downstream application, which is
ASV in our case. A truly effective purification system must
not only detect and counteract adversarial perturbations, but
also preserve ASV performance under real-world conditions.

To evaluate this, we assess the impact of different purifica-
tion methods on ASV performance using the Equal Error Rate
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(EER) metric. Table III reports EERs for both bona fide and
PGD adversarial trials. We distinguish between two types of
trials: (i) target vs. non-target, which reflects performance for
clean data, and (ii) rarget vs. adversarial non-target, which
evaluates robustness under attack. Without purification, the
ASV system achieves an EER of 1.4% for bona fide trials
but fails dramatically under adversarial conditions, reaching
73.2%. This result highlights the vulnerability of unprotected
ASYV pipelines.

In contrast, MDD significantly reduces the EER for ad-
versarial inputs, especially for masking ratios of 10% and
25%, which achieve 18.0% and 17.6% respectively, more than
a fourfold reduction compared to the unprotected baseline.
Importantly, the 10% MDD model also maintains a low EER
(4.0%) for clean data, striking the best balance between
robustness and reliability. Higher masking ratios (50% and
above) lead to performance degradation for bona fide data
due to excessive information loss during reconstruction. This
underscores the importance of using a moderate masking strat-
egy to retain speaker-discriminative features while suppressing
adversarial noise.

Compared to other approaches, including the diffusion-
based DAP model and several neural codec-based methods
(AcademiCodec, SpeechTokenizer, DAC), MDD consistently
achieves superior EERs across both clean and adversarial
conditions. These alternative methods suffer from poorer
generalisation and higher EERs, even when retrained under
the same conditions. In summary, MDD provides not only
strong adversarial detection, but also practical and effective
purification for robust ASV, demonstrating its potential as a
viable defence mechanism for real-world speaker verification
systems.

TABLE III
PURIFIED ASV EER (%) RESULTS ON BONA FIDE DATA AND PGD
ADVERSARIAL DATA WITH DIFFERENT METHODS. "TAR” REFERS TO
TARGET SPEAKER TRIALS, "NON-TAR” REFERS TO NON-TARGET SPEAKER
TRIALS, AND "ADV” REFERS TO ADVERSARIAL NON-TARGET TRIALS.

Purification method Bona Fide EER (%) PGD EER (%)

tar vs. non-tar tar vs. adv
No Purification 14 73.2
0% MDD (unmasked) 6.0 19.2
10% MDD 4.0 18.0
25% MDD 6.2 17.6
50% MDD 18.8 27.6
75% MDD 40.6 434
100% MDD (fully masked) 49.4 50.0
DAP [14] 31.2 314
AcademiCodec [32] 514 514
SpeechTokenizer [33] 40.6 40.8
DAC [34] 33.0 35.0

VI. CONCLUSIONS

In this work, we introduced MDD, a novel adversarial
defense framework designed to protect automatic speaker ver-
ification (ASV) systems against imperceptible perturbations.
MDD leverages a text-conditioned masked diffusion model,
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which progressively denoises masked Mel-spectrograms while
preserving essential speaker information through transcription-
based conditioning.

Unlike many existing approaches, MDD does not rely on
adversarial training or large-scale pretraining, yet it achieves
strong performance in both detection and purification tasks.
Our experiments demonstrate that a moderate masking ratio
(specifically 10%) yields the best trade-off, allowing MDD
to effectively identify adversarial examples while maintaining
high verification accuracy on clean speech.

We performed comprehensive comparisons with state-of-
the-art diffusion-based and neural codec-based purification
methods. MDD consistently outperforms these baselines in
terms of detection rate and purified ASV equal error rate
(EER), confirming its robustness and practical applicability.

Importantly, we emphasise that the ultimate goal of adver-
sarial defence is not only to detect attacks, but to ensure the
reliability of ASV systems in real-world deployment scenarios.
Our results show that MDD meets this goal, providing a
lightweight, effective, and generalisable solution for securing
voice-based authentication systems.
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