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Résumé

Cette thèse étudie de manière systématique des techniques de mesure de distance et
d’estimation de paramètres à haute précision dans des environnements radio riches en
trajets multiples, avec un accent sur la détection et la communication intégrées (ISAC)
pour les futurs réseaux 6G. Motivé par la demande croissante de connectivité ubiquitaire et
de perception fine de l’environnement, ce travail exploite le profil de retard de puissance
(PDP) extrait des informations d’état du canal (CSI) afin de relever les défis liés à la
multipathie, à la bande passante limitée et aux contraintes matérielles.

La recherche débute par une analyse approfondie de l’estimation du PDP et de la
récupération parcimonieuse, et propose un nouveau cadre d’estimation du PDP à haute
résolution. En s’appuyant sur l’apprentissage bayésien parcimonieux et des techniques «
off-grid », l’approche proposée améliore significativement la discrimination des retards et
la séparation des trajets, permettant une précision métrique de la mesure de distance dans
des environnements denses en trajets multiples. Cela établit une base théorique pour une
estimation robuste de la distance à partir d’ondes OFDM (Orthogonal Frequency Division
Multiplexing) standards, largement utilisées dans les systèmes sans fil modernes.

Sur cette base, la thèse développe un cadre de détection OFDM en domaine tem-
porel pour des scénarios à délai et Doppler doublement fractionnaires. Une grille de
retards suréchantillonnée est construite pour représenter les retards fractionnaires, et les
amplitudes multi-trajets sont modélisées par une enveloppe de Nakagami-m avec phase
uniformément distribuée. Un algorithme EM–EC (Expectation–Maximization / Expec-
tation Consistent) efficace est introduit pour estimer conjointement les hyperparamètres
d’atténuation de grande échelle, reconstruire la structure parcimonieuse des composantes
multi-trajets (MPC) en séparant LoS/NLoS, et extraire la distance et le Doppler de la
trajectoire LoS. Le cadre s’appuie sur une linéarisation Doppler du premier ordre et inclut
une caractérisation des points fixes clarifiant le comportement de convergence ; une borne
“Genie” est utilisée pour étalonner les performances atteignables en simulation.

De vastes simulations numériques évaluent la performance du cadre de récupération
parcimonieuse basé sur le PDP, des méthodes de mesure de distance basées sur l’OFDM
et de l’algorithme OFDM temporel d’estimation conjointe délai–Doppler. Les résultats
montrent des améliorations sensibles par rapport aux méthodes existantes en termes de
résolution de retard, de précision de mesure de distance et de robustesse en mobilité,
soulignant l’intérêt de combiner récupération parcimonieuse et modélisation statistique
rigoureuse pour l’ISAC.

Les contributions de cette thèse fournissent à la fois un cadre théorique et des solutions
algorithmiques pratiques pour une détection de haute précision dans les futurs systèmes
ISAC. Plusieurs pistes de recherche demeurent ouvertes : (i) validation expérimentale
en conditions réelles afin de confirmer la faisabilité face aux imperfections matérielles
et à la dynamique des environnements ; (ii) extension de l’unidimensionnel à la locali-
sation et au suivi complets, condition clé pour une position robuste dans des scénarios
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complexes ; (iii) étude des limites théoriques de performance en l’absence de bornes de
Cramér–Rao (CRB) directement calculables, afin de quantifier la précision fondamentale
des algorithmes développés ; (iv) raffinement du modèle Doppler au-delà de la linéarisa-
tion du premier ordre (p. ex., expansions d’ordre supérieur ou schémas de compensation
de biais) et mise à l’épreuve de la robustesse face à des perturbations non gaussiennes
pour renforcer encore la précision en conditions de propagation réalistes.
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Abstract

This dissertation systematically investigates high-precision ranging and parameter estima-
tion techniques in multipath-rich wireless environments, with an emphasis on integrated
sensing and communication (ISAC) for future 6G networks. Motivated by the increasing
demands for ubiquitous connectivity and accurate environmental awareness, this work
focuses on exploiting the Power Delay Profile (PDP) extracted from Channel State In-
formation (CSI) to address the challenges of multipath propagation, limited bandwidth,
and hardware constraints.

The research begins with an in-depth analysis of PDP estimation and sparse signal
recovery, proposing a novel high-resolution PDP estimation framework. By leveraging
sparse Bayesian learning and off-grid modeling techniques, the proposed approach signif-
icantly improves delay discrimination and path separation capabilities, enabling meter-
level ranging accuracy in dense multipath environments. This sets the theoretical foun-
dation for robust distance estimation based on standard OFDM (Orthogonal Frequency
Division Multiplexing) waveforms, which are widely adopted in modern wireless systems.

Building upon this foundation, the dissertation develops a time-domain OFDM sensing
framework for doubly fractional delay–Doppler scenarios. An oversampled delay grid is
constructed to represent fractional delays, and multipath amplitudes are modeled with
a Nakagami-m envelope and uniformly distributed phase. A computationally efficient
EM–EC algorithm is introduced to jointly estimate large-scale fading hyperparameters,
recover the sparse MPC structure (separating LoS/NLoS), and extract the LoS range
and Doppler. The framework employs a first-order Doppler linearization and includes a
fixed-point characterization that clarifies convergence behavior; a Genie Bound is used to
benchmark achievable performance in simulations.

Extensive numerical simulations are conducted to evaluate the performance of the
proposed PDP-based sparse recovery framework, the OFDM-based ranging methods, and
the time-domain OFDM joint delay–Doppler estimation algorithm. Results demonstrate
significant improvements over existing methods in terms of delay resolution, ranging accu-
racy, and robustness to mobility, highlighting the advantages of integrating sparse signal
recovery techniques with principled statistical modeling for ISAC.

The contributions of this dissertation provide not only a theoretical framework but
also practical algorithmic solutions for high-precision sensing in future ISAC systems.
Looking forward, several research directions remain to be explored. First, real-world im-
plementation and validation are necessary to confirm the proposed methods’ feasibility
under hardware impairments and environmental dynamics. Second, extending the frame-
work from one-dimensional ranging to full localization and tracking will be crucial for
enabling robust positioning in complex scenarios. Third, investigating theoretical per-
formance limits in the absence of directly computable Cramér–Rao Bounds (CRBs) will
help quantify the fundamental accuracy of the developed algorithms. Finally, refining the
Doppler modeling beyond first-order linearization (e.g., higher-order expansions or bias-
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compensation schemes) and stress-testing robustness under non-Gaussian disturbances
will further enhance estimation precision in realistic propagation conditions.
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Chapter 1

Introduction

1.1 Background and Motivation
Since the 1980s, modern mobile communication systems have undergone generational
upgrades approximately every decade [1]. Propelled by continuous technological advance-
ments, mobile communications have become deeply integrated into nearly every aspect of
human life [2]. This integration has not only transformed how people live and work but
has also driven global industrial optimization and high-quality economic development. In
recent years, the proliferation of mobile internet and the rapid adoption of the Internet of
Things (IoT) have triggered an exponential increase in the number of wireless terminals
and the volume of data traffic [3]. To meet the growing demands for massive connectivity
and high-throughput communication, the fifth generation (5G) of mobile communication
technology has emerged [4].

The International Telecommunication Union (ITU) has identified three primary use
cases for 5G: enhanced Mobile Broadband (eMBB), massive Machine-Type Communica-
tions (mMTC), and ultra-Reliable Low-Latency Communications (URLLC) [5]. These
pillars support the growth of services such as high-definition video streaming, the IoT,
smart manufacturing, and autonomous driving. By the end of 2024, global 5G subscrip-
tions surpassed 2 billion [6], with projections indicating that 5G connections will exceed
4G by 2028 [7]. Furthermore, 5G is expected to contribute nearly USD 1 trillion to the
global economy by 2030 [8], with a user coverage rate reaching 64% and mobile internet
penetration approaching 5.5 billion people. Alongside the commercial deployment of 5G,
major countries and regions worldwide have launched research initiatives for beyond 5G
(B5G) and the sixth generation (6G) of mobile communication technologies.

Europe, in particular, has demonstrated strong strategic foresight and technological
leadership in 6G research. In March 2019, the University of Oulu in Finland hosted
the world’s first 6G Wireless Summit, releasing the inaugural global 6G white paper [9].
In 2021, the European Union launched the Hexa-X project, led by Nokia, marking the
world’s first comprehensive 6G research initiative [10]. This flagship project, now in its
second phase—Hexa-X-II—focuses on developing 6G network architectures, key enabling
technologies, and sustainable development strategies, playing a central role in shaping
international standards [11].

Beyond Europe’s leadership, the ITU officially launched research efforts for the next-
generation International Mobile Telecommunications (IMT) systems in 2020, consolidat-
ing a global consensus on the vision and direction of 6G [12]. Meanwhile, the United States
established the Next G Alliance, and countries such as Japan, South Korea, and China
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have introduced national-level strategies. In particular, China formed the IMT-2030 (6G)
Promotion Group in 2019, actively participating in international standardization and
technical trials [13]. Nonetheless, in policy coordination, technological integration, and
cross-industry collaboration, Europe has secured a leading position in 6G, underpinned
by its strengths in fundamental research, sustainable strategies, and artificial intelligence
integration.

The 3rd Generation Partnership Project (3GPP) is currently finalizing Release 18, set
for completion in 2024, marking the transition to 5G-Advanced (5G-A) [14]. As a crucial
phase bridging 5G and 6G, 5G-A aims to enhance the performance and capabilities of all
three 5G use cases. In June 2023, the ITU released its “Framework and Overall Objectives
of the Future Development of IMT for 2030 and Beyond,” which outlines the overarching
goals and capability requirements of 6G systems [12].

Looking ahead to 2030 and beyond, 6G will address increasingly diverse and complex
service needs. Building upon the foundational 5G use cases, 6G is poised to expand in
three key directions: immersive communication, ultra-massive connectivity, and extremely
reliable low-latency communication [15, 16]. Immersive communication includes applica-
tions like extended reality (XR), holographic interaction, and sensory connectivity, all of
which demand significant improvements in transmission rates, spectral efficiency, and sys-
tem capacity [16, 17]. Ultra-massive connectivity will extend mMTC to domains such as
industrial automation, intelligent transportation, and digital twins, supporting hundreds
of millions of devices [18]. More stringent URLLC capabilities will be crucial for mission-
critical applications like remote surgery, autonomous driving, and smart manufacturing
[19].

Simultaneously, 6G is expected to integrate transformative capabilities such as ubiqui-
tous connectivity, integrated sensing and communication (ISAC), and deep fusion with ar-
tificial intelligence [20]. Ubiquitous connectivity will rely on the convergence of terrestrial
and non-terrestrial networks—including satellites and unmanned aerial vehicles—forming
a comprehensive, three-dimensional infrastructure [16]. The convergence of communi-
cation and sensing will enable high-resolution applications like environmental awareness
and centimeter-level positioning [17]. Crucially, 6G will feature native integration of arti-
ficial intelligence, leveraging edge intelligence, deep learning, and large-scale data mining
to enable autonomous network decisions and collaborative optimization [17, 20]. In this
context, the European Hexa-X initiative has explicitly identified “AI-native design” and
“sustainability” as foundational principles of 6G architecture [17].

To meet these demands, 6G is expected to achieve significant improvements across
nine key performance indicators, building upon the 5G foundation. Peak data rates will
reach the terabit-per-second (Tbps) scale, while user-experienced data rates will rise to
gigabit-per-second (Gbps) levels [21]. Spectral efficiency will increase by a factor of 1.5
to 3, and device connectivity density will exceed ten million devices per square kilome-
ter. Mobility support will extend to scenarios approaching 1000 km/h, with over-the-air
latency reduced to sub-millisecond levels. Furthermore, 6G will support centimeter-level
positioning and incorporate green, low-carbon system designs. The European Union has
launched initiatives such as Green6G [22] and RISE-6G [23] to advance these efforts.

ISAC technology unifies wireless communication and environmental sensing within a
single architecture [24]. By reusing communication signals for high-resolution sensing,
ISAC significantly improves spectral and energy efficiency. It enables accurate extrac-
tion of parameters like object position, velocity, size, and material properties—vital in
high-mobility, high-density environments [25]. ISAC also enhances intelligent tasks such
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as resource scheduling and beamforming, creating a cognitive wireless environment that
supports applications like autonomous driving, smart manufacturing, and digital twins
[26].

However, ISAC systems face significant technical challenges, particularly in achieving
high-precision localization and sensing in environments with severe multipath propagation
and low SNR [20, 27]. Constructing accurate environment models aided by communication
signals remains a research frontier. Channel State Information (CSI) contains rich spatial,
temporal, and frequency-domain features, making it a crucial passive sensing source [28].

Positioning methods based on the Power Delay Profile (PDP), a key technique within
CSI-based sensing, have attracted significant attention for their advantages in multipath
separation and path energy modeling [29, 30]. PDP-based techniques, particularly when
combined with high-bandwidth MIMO systems and large-scale antenna arrays, enable
precise estimation of propagation paths, facilitating centimeter-level localization in ISAC
applications.

Nonetheless, PDP-CSI-based localization faces challenges in complex environments,
where severe overlap among multipath components reduces accuracy. Frequency-selective
fading and temporal variations further complicate PDP estimation, demanding robust sys-
tem configurations and algorithms [31]. Moreover, the increased dimensionality of modern
wireless channels imposes significant computational burdens, limiting real-time perfor-
mance. These limitations highlight the urgent need for high-resolution, low-complexity,
and interference-resilient PDP extraction and target identification algorithms.

In response to these challenges, this dissertation focuses on leveraging the PDP de-
rived from CSI to infer target distance and motion characteristics in multipath-rich en-
vironments. The main contributions are: (1) a high-resolution PDP estimation method
incorporating sparse signal recovery and off-grid modeling [32]; (2) a statistical mapping
between PDP energy and physical distance, enabling joint communication-sensing dis-
tance estimation without additional overhead; and (3) a Doppler-delay joint estimation
algorithm under Affine Frequency Division Multiplexing (AFDM), which demonstrates
strong robustness in high-mobility scenarios [33].

1.2 Related Works

1.2.1 Channel State Information Based Sensing

Accurate distance estimation is a fundamental aspect of wireless localization systems, es-
pecially in diverse propagation environments. Various positioning techniques have been
developed to address this challenge, each with unique principles, advantages, and limi-
tations. This section provides a concise yet comprehensive review of these techniques,
focusing on their methodologies and key contributions.

Time-based ranging techniques, such as Time-of-Arrival (ToA) and Time-Difference-
of-Arrival (TDoA), infer distance by measuring signal propagation delays. ToA estimates
absolute travel time to determine range, while TDoA calculates relative delays between
receivers, reducing transmitter synchronization requirements.

These methods offer high accuracy in line-of-sight (LOS) scenarios. For instance, [34]
demonstrated the scalability and energy efficiency of TDoA in real-time location systems.
[35] analyzed the theoretical accuracy limits of ToA-based ranging in UWB systems,
accounting for clock drift. To address multipath challenges, [36] proposed a multipath-
assisted maximum likelihood estimator that exploits early multipath components to im-
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prove indoor positioning robustness. Comprehensive UWB TDoA datasets introduced by
[37] have further facilitated algorithm development. Additionally, [38] compared TDoA
with Two-Way Ranging (TWR), highlighting trade-offs in complexity and synchronization
requirements.

However, time-based techniques face performance degradation in non-line-of-sight
(NLOS) conditions and rely heavily on precise time synchronization, limiting their prac-
ticality in dynamic environments.

Angle-of-Arrival (AoA) techniques estimate the direction of incoming signals using
antenna arrays. By exploiting spatial diversity, AoA can complement or substitute time-
based methods, particularly in multipath-rich indoor environments.

AoA-based methods are typically low-cost and achieve high accuracy when sufficient
spatial diversity exists. [39] tackled the nonlinear challenges in indoor AoA positioning
by introducing a multi-anchor approach with outlier rejection. [40] provided an overview
of AoA principles in wireless sensor networks, emphasizing their simplicity and effective-
ness. The potential of Bluetooth 5.1 AoA for indoor applications was explored by [41]
and further detailed by [42], while [43] compared AoA with Bluetooth channel sounding,
discussing their complementary advantages.

Nevertheless, AoA methods require complex antenna array calibration and may strug-
gle in environments with severe reflections and limited angular resolution.

Received Signal Strength Indicator (RSSI)-based methods estimate distance by map-
ping received signal power to range, typically through empirical path loss models. While
inherently coarse-grained, RSSI-based ranging remains appealing for resource-constrained
and cost-sensitive scenarios.

[44] proposed the RADAR system, an early RSSI-based framework integrating em-
pirical fingerprinting for improved robustness. [45] explored relative location estimation
in wireless sensor networks, addressing challenges of environmental variability. Bluetooth
RSSI’s role in indoor positioning was examined by [46], while [47] investigated RSSI trian-
gulation with multiple gateways, highlighting limitations due to environmental dynamics.
To mitigate these issues, [48] combined RSSI with non-ranging techniques in the RSSI-
APIT algorithm to enhance indoor accuracy.

Despite these advances, RSSI-based approaches are susceptible to multipath fading,
shadowing, and environmental changes, typically achieving only meter-level accuracy in
cluttered indoor environments.

Multipath components (MPCs), once considered a source of error, are now increasingly
exploited as valuable geometric information for positioning. By leveraging MPCs, systems
can achieve robust localization even in challenging NLOS environments.

[49] analyzed the impact of multipath on ranging and introduced a multipath-mitigating
maximum likelihood estimator for UWB signals. Building on this, [50] proposed a ma-
chine learning approach to mitigate multipath effects and LOS obstructions in UWB
localization. Recent works, including [51, 52, 53], have further advanced MPC-based
positioning. Notably, [52, 53] developed graph-based Bayesian frameworks capable of
reconstructing LOS paths in fully obstructed scenarios by jointly estimating MPC pa-
rameters—eliminating the need for prior radio parameter knowledge.

Additionally, mirror-source modeling has been explored to directly exploit MPCs.
[54] quantified the positioning information content of MPCs, while [55] integrated SLAM
with MPC exploitation for improved robustness. [56, 57] extended these concepts with
belief propagation and SLAM algorithms to jointly estimate user positions and virtual
anchors. Most recently, [58] demonstrated the applicability of MPC-based methods in 5G
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millimeter-wave vehicular networks.
These studies collectively highlight that MPCs, rather than a hindrance, can be har-

nessed to achieve robust and precise positioning. However, MPC-based methods typically
require sophisticated signal processing and precise modeling, adding complexity to real-
world deployment.

In summary, each positioning technique offers unique strengths and faces inherent
limitations. Time-based methods excel in LOS scenarios but depend on precise syn-
chronization and degrade in NLOS environments. AoA approaches are cost-effective and
accurate in spatially diverse settings but require complex antenna arrays and are sensitive
to reflections. RSSI-based methods are simple and resource-efficient, though they offer
lower accuracy and are susceptible to environmental changes. Finally, MPC-based tech-
niques provide robust positioning in obstructed environments by leveraging multipath,
albeit with increased algorithmic complexity. These trade-offs underscore the need for
adaptive hybrid approaches or new paradigms like Integrated Sensing and Communica-
tion (ISAC) to overcome existing limitations and meet the demands of next-generation
wireless systems.

1.2.2 Sparse Signal Recovery

Sparse signal recovery (SSR) is fundamental in compressed sensing (CS), enabling the
reconstruction of signals from underdetermined linear measurements by exploiting the
inherent sparsity of many real-world signals. Over the years, a variety of methods have
been developed, each offering distinct advantages and facing inherent limitations.

Early SSR methods rely on convex relaxation and greedy algorithms. Basis Pursuit
(BP) [59] reformulates the recovery problem as an ℓ1-minimization task, offering theo-
retical guarantees under specific measurement conditions. Orthogonal Matching Pursuit
(OMP) [60] and iterative re-weighted ℓ1/ℓ2 minimization techniques [61] provide compu-
tationally efficient alternatives. However, these methods are typically sensitive to noise,
require restrictive measurement conditions, and can struggle with highly sparse signals.

Bayesian frameworks emerged to address these challenges by incorporating measure-
ment noise and prior sparsity knowledge. Sparse Bayesian Learning (SBL) [62], rooted in
the Relevance Vector Machine (RVM) [63], uses hierarchical Gaussian scale mixtures
as priors to automatically induce sparsity and achieve higher recovery accuracy [64].
Bayesian LASSO [65] further extended these ideas by introducing Laplace priors, allowing
for flexible sparsity control. While Bayesian methods improve accuracy and robustness,
they are generally more computationally demanding and require careful prior selection.

Empirical Bayes (EB) approaches stand out by estimating hyperparameters directly
from the data, reducing reliance on explicit prior knowledge. The Fast Marginalized
ML (FMML) algorithm [66] exemplifies this by combining EB estimation with efficient
greedy initialization to improve convergence. In parallel, Approximate Message Pass-
ing (AMP) [67] and its variants, including Generalized AMP (GAMP) [68, 69, 70] and
Vector AMP (VAMP), exploit central limit theorem-based approximations to achieve
low-complexity, Bayes-optimal recovery in large random matrix scenarios [71, 72]. While
these methods excel in large-scale systems, their performance can degrade in structured
or non-random measurement settings.

Variational Bayesian inference [73] and belief propagation (BP) techniques [74] of-
fer scalable alternatives to exact Bayesian inference by employing mean-field (MF) ap-
proximations to enhance computational efficiency [75]. Non-parametric methods such
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as NOPE [76] provide robust recovery by adapting to unknown signal and noise statis-
tics. Covariance-fitting approaches like SPICE [77] jointly estimate hyperparameters and
sparse coefficients, aiming to minimize fitting errors. These methods provide scalabil-
ity and adaptability, though they may have lower accuracy compared to exact Bayesian
approaches and require careful convergence handling.

At the core of many SSR advances lies Empirical Bayes learning guided by Stein’s
Unbiased Risk Estimator (SURE) [78, 79, 80], which directly targets the minimum mean
squared error (MSE) in recovery. These principles have been extended to kernel-based
system identification [81, 82], hyperparameter selection [83], posterior variance predic-
tion [84], and generalized SURE for exponential family models [85]. Adaptive algorithms
with component-wise updates [86] have emerged from SURE-driven optimization, en-
hancing robustness even in challenging scenarios. However, these methods require careful
implementation to balance computational cost with performance improvements.

In summary, convex and greedy methods offer simplicity and computational effi-
ciency, though they are limited by noise sensitivity and strict measurement require-
ments. Bayesian frameworks provide superior accuracy and robustness but at higher
computational cost. Empirical Bayes and message passing methods excel in large-scale
systems, while variational and non-parametric approaches offer scalable, adaptable solu-
tions. SURE-driven techniques unify these efforts, directly optimizing recovery error and
supporting robust and adaptive SSR. Together, these advances have established a solid
foundation for SSR in modern wireless communications, sensing, and signal processing.

1.2.3 Statistical Inference

Statistical inference forms a crucial foundation for parameter estimation and latent vari-
able modeling, particularly within probabilistic frameworks. A cornerstone in this do-
main is the Expectation-Maximization (EM) algorithm [87], which has been widely used
for maximum likelihood estimation in models involving hidden variables. However, the
E-step of EM often becomes computationally intractable, especially when dealing with
high-dimensional or complex posterior distributions. To address this challenge, a variety
of approximate inference techniques have been developed.

Early approaches focused on sampling-based and deterministic variational methods [88],
providing approximate solutions that balance accuracy with computational efficiency.
More recently, Approximate Message Passing (AMP) algorithms [89, 90, 91] have emerged
as powerful tools for scalable variational inference, particularly under large-scale ran-
dom matrix models. AMP offers precise state evolution characterizations in ideal con-
ditions [92], enabling efficient posterior approximations. Nonetheless, its convergence
deteriorates in ill-conditioned or structured measurement scenarios [93, 94].

To enhance robustness, the Vector AMP (VAMP) framework [70] was introduced,
leveraging a dual-variable splitting strategy to improve convergence for right-rotationally
invariant matrices. Extensions such as EM-VAMP [95] have demonstrated effectiveness
in high-dimensional Bayesian learning problems, offering flexible and accurate inference
capabilities.

Beyond AMP and VAMP, variational and message-passing frameworks have also been
explored in diverse applications. For instance, cooperative localization [96], compressive
video sampling [97], and approximate Bayesian computation [98] have benefited from ap-
proximate Bayesian inference methods. In addition, non-parametric variational Bayesian
approaches [99] have demonstrated flexibility in handling unknown noise models and com-
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plex priors, broadening the applicability of variational techniques.
Expectation Consistent (EC) inference [100, 101] represents another promising ap-

proach to approximating complex posterior distributions, especially when AMP-based
methods are less effective. EC achieves posterior approximations via moment-matching
with exponential family distributions and offers a variational energy interpretation [102].
However, convergence can remain a challenge with standard single-loop EC algorithms,
leading to the development of double-loop EC methods that provide guaranteed conver-
gence [100].

Taken together, these algorithmic advances significantly enrich the toolbox of statisti-
cal inference, offering practical approximations in settings where exact posterior computa-
tions are infeasible. As modern applications increasingly demand sophisticated inference
in high-dimensional, noisy, and structured environments, these developments continue to
bridge the gap between theoretical models and practical implementations.

1.3 Main Contributions and Structure
This dissertation investigates the use of Power Delay Profile (PDP)-based localization
in multipath-rich environments, emphasizing Bayesian inference frameworks that exploit
underlying sparsity and physical propagation models. The main contributions of this work
can be summarized as follows.

First, we derive the fundamental performance limits for RSSI- and PDP-based rang-
ing methods by conducting a rigorous Cramér–Rao Bound (CRB) analysis. This the-
oretical foundation highlights the advantages of PDP-based techniques in challenging
propagation scenarios. Second, we propose a high-resolution PDP estimation framework
that integrates sparse signal recovery, off-grid modeling, and empirical Bayesian learning,
achieving super-resolved delay estimation even in the presence of dense multipath compo-
nents. Third, we develop a time-domain OFDM sensing framework for doubly fractional
delay–Doppler scenarios. By constructing an oversampled delay grid and modeling multi-
path amplitudes with a Nakagami-m envelope and uniform phase, we propose an EM–EC
algorithm that jointly estimates large-scale fading hyperparameters, recovers the sparse
MPC structure (separating LoS/NLoS), and extracts LoS Doppler and range for ISAC.

The remainder of this dissertation is organized as follows. Chapter 2 establishes the
theoretical performance limits of RSSI- and PDP-based ranging by deriving and compar-
ing the CRBs. It clarifies the conditions under which PDP-based approaches outperform
traditional RSSI-based methods. Chapter 3 introduces key tools from sparse signal re-
covery and Bayesian inference, reviewing classical and modern approaches for solving
underdetermined systems and highlighting their relevance for multipath delay estimation
tasks. Chapter 4 focuses on precise delay estimation under fractional delay scenarios, pre-
senting an oversampled parametric dictionary framework and novel algorithms that refine
delay estimates through iterative, off-grid sparse Bayesian learning techniques. Chapter 5
develops a multipath component power delay profile (MPCPDP)-based ranging approach,
proposing the EM-ReVAMP algorithm to tackle challenges in parameter estimation under
Nakagami-m fading, and validates its robustness through extensive simulations. Chapter 6
extends the PDP-based framework to joint delay–Doppler sensing under a time-domain
OFDM model with doubly fractional delays and Doppler shifts. It introduces an over-
sampled delay grid under Nakagami-m fading, and develops an EM–EC algorithm for
joint hyperparameter estimation, sparse delay–Doppler recovery, and LoS range/Doppler
extraction. Finally, Chapter 7 concludes the dissertation by summarizing the key find-
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ings, discussing practical implications, and outlining potential future research directions
in PDP-based sensing and positioning.

Furthermore, several key contributions of this dissertation have been published in
leading international journals and conferences. These publications are detailed in the
appendix A.2.
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Chapter 2

Fundamental Limits of RSS and
PDP-Based Ranging: A Cramér–Rao
Bound Perspective

2.1 Introduction
Accurate distance estimation, known as ranging, is crucial for many wireless localiza-
tion tasks. In emerging fifth-generation (5G) and beyond 5G (B5G) systems, ranging is
increasingly integrated into communication frameworks for applications such as location-
aware services, intelligent transportation, emergency response, and physical-layer sensing
[103]. While systems like GPS rely on global infrastructure, they often fail indoors or in
dense urban environments, making alternative ranging methods essential.

Traditionally, the Received Signal Strength Indicator (RSSI) has been popular for
ranging due to its simplicity and low hardware demands. However, RSSI suffers from
limited resolution and poor robustness in multipath fading environments. To achieve more
accurate ranging, time-based methods such as Time-of-Arrival (ToA) and Round-Trip-
Time (RTT) have been employed. Yet these methods demand precise synchronization
or high time resolution, which is challenging in bandwidth-constrained or cost-sensitive
scenarios.

Recent advancements in Orthogonal Frequency Division Multiplexing (OFDM) and
fine-grained channel estimation (e.g., Channel State Information, CSI) have enabled access
to richer representations of the radio channel, such as the Power Delay Profile (PDP).
The PDP captures the delay and amplitude of individual multipath components and is
particularly promising in multipath-rich indoor settings. This raises a key question: can
we improve ranging accuracy by leveraging the multipath structure in the PDP, rather
than collapsing it as in RSSI-based approaches?

This chapter investigates the theoretical performance limits of PDP-based and RSSI-
based ranging using Cramér–Rao Bound (CRB) analysis. Unlike heuristic or model-fitting
techniques, the CRB provides a fundamental lower bound on the variance of any unbiased
propagation distance estimator. With this approach, we address the following research
questions:

• What are the inherent limitations of RSSI-based ranging under a physically grounded
multipath propagation model?
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• Can detailed multipath information in the PDP be exploited to enhance ranging
accuracy?

• How do statistical modeling assumptions about multipath fading (e.g., Rayleigh
fading, distance-dependent path gain) impact the CRB?

• Under what conditions does PDP-based ranging outperform RSSI-based methods?

To explore these questions, we develop a unified OFDM-based signal model that in-
cludes both RSSI and PDP representations of the channel. Within this framework, we
derive the CRB for PDP-based ranging using joint parameter estimation and marginalized
estimation approaches. We then compare these bounds to the CRB for RSSI-based rang-
ing under the same statistical assumptions and validate the results through simulations.

The remainder of this chapter is organized as follows. Section 2.2 reviews classical
time-based and RSSI-based ranging approaches and motivates the use of PDP. Section 2.3
details the system model and key assumptions. Section 2.4 derives the CRBs for both
methods. Section 2.5 presents simulation results and concludes the analysis.

2.2 Conventional Ranging Approaches and the Case for
PDP

2.2.1 Time-Based Ranging Methods

Before discussing signal-strength or multipath-aware techniques, it is important to review
the traditional category of time-based ranging methods. These methods estimate distance
by measuring signal propagation delays, and include:

Time of Arrival (ToA)

ToA estimates distance by measuring the absolute time a signal takes to travel from
transmitter to receiver:

d = c · (trx − ttx), (2.1)

where c is the speed of light, and ttx, trx denote the transmission and reception times.
Limitation: ToA requires precise time synchronization between the transmitter and

receiver, which can be challenging in distributed systems.

Time Difference of Arrival (TDoA)

TDoA infers range differences by measuring the difference in arrival times at multiple
receivers:

∆d = c · (ti − tj), (2.2)

where ti and tj are the signal arrival times at receivers i and j, respectively.
Limitation: While it avoids the need for synchronization with the transmitter, TDoA

still requires precise inter-receiver synchronization and is sensitive to NLoS-induced biases.
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Round-Trip Time (RTT)

RTT determines distance by measuring the round-trip time between two devices:

d =
c

2
· (tround − tproc), (2.3)

where tround is the round-trip duration and tproc represents internal processing delays.
Advantage: RTT does not require synchronized clocks, making it suitable for systems

like Wi-Fi or UWB.
Limitation: Its accuracy depends on precise estimation and compensation of tproc.

Challenges of Time-Based Methods

While time-based methods can achieve high accuracy under LoS conditions, their perfor-
mance often degrades in practical scenarios. Key challenges include:

• Synchronization Overhead: Achieving tight synchronization typically requires
costly hardware or centralized control.

• Bandwidth Limitations: High-resolution delay estimation demands wide band-
widths, which are often unavailable in commercial systems.

• NLoS Bias: In blocked LoS scenarios, the first arriving path may not correspond
to the shortest distance, causing overestimated ranges.

• Hardware Delay Variability: Variability in RF and digital processing delays can
introduce persistent biases unless carefully calibrated.

2.2.2 RSSI-Based Ranging

RSSI-based ranging estimates distance by relating the received signal power to the transmitter-
receiver separation through a path loss model:

Pr(d) = Pt − 10n log10(d) +Xσ, (2.4)

where n is the path loss exponent and Xσ is a Gaussian random variable modeling shad-
owing effects. This method is appealing due to its simplicity and minimal infrastructure
requirements.

Limitations: Despite its practicality, RSSI-based ranging has several drawbacks:

• Low Resolution: It collapses the multipath-rich channel into a single scalar value,
discarding valuable structural information.

• High Sensitivity: Received power varies significantly due to environmental dy-
namics, obstacles, and interference, making the method unreliable in changing con-
ditions.

• Model Dependence: Accurate ranging relies heavily on the path loss model, which
must be empirically calibrated for each environment.
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2.2.3 Empirical CSI-Based Ranging

In recent years, Channel State Information (CSI) has emerged as a promising founda-
tion for fine-grained ranging and localization. CSI provides detailed frequency response
information of the wireless channel, capturing multipath propagation, fading, and delay
spread. Compared to coarse metrics like RSSI, CSI offers richer observability and finer
spatial resolution.

Empirical and Learning-Based Approaches

Early CSI-based ranging approaches are typically data-driven. Some methods use regres-
sion or polynomial curve fitting to map CSI amplitudes (e.g., Frobenius norm or average
subcarrier magnitude) to distance. Others leverage machine learning models—such as
support vector regression, random forests, or deep neural networks—to learn relation-
ships between CSI features and range or location labels. These approaches have shown
good empirical performance, particularly in line-of-sight or static environments.

Fingerprinting techniques, which match observed CSI to a pre-recorded database, are
also widely used in indoor localization. However, they require extensive training data and
frequent recalibration.

Limitations of Existing Methods

Although empirically effective, these methods face several challenges:

• Black-box nature: Model parameters often lack physical interpretability, making
generalization and debugging difficult.

• Environment dependence: Most methods require environment-specific training,
reducing portability and robustness.

• Absence of theoretical bounds: Performance is typically evaluated empirically,
with little understanding of fundamental estimation limits.

• Neglect of multipath structure: Many models treat CSI as a monolithic feature
vector, overlooking the rich temporal and spatial structure inherent in multipath
propagation.

2.2.4 PDP-Based Ranging

To address these shortcomings, an alternative approach is to decompose the CSI into its
constituent multipath components—capturing the delay, amplitude, and phase of each
propagation path—and build physically motivated statistical models around them. This
approach integrates propagation physics with statistical estimation theory, offering both
interpretability and theoretical guarantees.

In OFDM systems, the channel impulse response (CIR) can be extracted via frequency-
to-time transformation. The resulting Power Delay Profile (PDP) reveals the energy of
different multipath components across delays.

In this work, we propose a model-driven CSI-based ranging method that leverages the
structure of the PDP. The core idea is to:

• Identify and resolve individual paths from the PDP;
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• Assume each path undergoes statistical fading, with power dependent on propaga-
tion distance;

• Use known delay differences to relate NLoS paths to the LoS anchor path;

• Construct a statistical framework where path amplitudes serve as observations for
inferring the underlying LoS distance.

By adopting this decomposition, we bridge the gap between empirical CSI usage and
physically grounded modeling. Our formulation enables the derivation of Cramér–Rao
Bounds (CRBs) for both joint and marginal estimation scenarios, providing insights into
the fundamental performance limits of these methods in multipath-rich environments.

In the next section, we detail the system model and assumptions that support this
formulation.

2.3 System Model and Statistical Assumptions
To evaluate the fundamental performance limits of RSSI- and PDP-based ranging, we
establish a unified signal and propagation model that captures the essential characteristics
of multipath wireless channels. This model forms the analytical basis for the derivation
of Cramér–Rao Bounds (CRBs) in subsequent sections.

OFDM Model With Non-Fractional Delay

The OFDM model we are considering assumes an OFDM symbol length of L, consisting
of a Line-of-Sight (LoS) path and K Non-Line-of-Sight (NLoS) propagation paths. This
model operates with a sampling period of Ts and an OFDM symbol period of T0. One
advantage the OFDM model is the elimination of need for precise knowledge of the pulse
shape, as it makes use of pilot subcarriers within the pulse shape’s passband.

The received signal vector y in the OFDM system can be expressed as:

y = XTa+ v = Ha+ v, (2.5)

where the received signal vector y ∈ CL×1 is defined as:

y =

y[s1]...
y[sL]

 ; (2.6)

The matrix X ∈ CL×L is filled with pilots and given by:

X =

X[s1]e
j2πs1T0

LTs · · · 0
... . . . ...
0 · · · X[sL]e

j2πsLT0
LTs

 ; (2.7)

The matrix T ∈ C(L×(K+1)) includes pulse shape filtered delayed path responses and is
shown as:

T =

P [fs1 ]e
−j2πs1τ0

LTs · · · P [fs1 ]e
−j2πs1τK

LTs

... . . . ...
P [fsL ]e

−j2πsLτ0
LTs · · · P [fsL ]e

−j2πs1τK
LTs

 , (2.8)
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where τ and P represent the propagation delay and the pulse shape, respectively.
The vector a ∈ C(K+1)×1 indicates the complex attenuation coefficient (amplitude

m ∈ C(K+1) and phase ϕ ∈ C(K+1)) and is presented as:

a =

a0...
aK

 =

 m0e
jϕ0

...
mKe

jϕK

 = D(ejϕ)m = D(m)ejϕ, (2.9)

whereD(∗) represents an operation that converts a vector to a diagonal matrix. The vector
v ∈ CL×1 is a complex Gaussian noise vector, and each element vi follows a distribution
CN (0, σ2

v).
Firstly, we assume that each ϕi in ϕ is an independent and identically distributed

(i.i.d.) random variable drawn from a uniform distribution on the interval [0, 2π).
Secondly, we consider the matrix X to be known and T to have been estimated prior to

ranging estimation. Additionally, we presume that the estimation error of T is negligible,
as this chapter does not focus on examining its bias impact.

Furthermore, we assume that the multipath scenario includes distinguishable LoS
path and NLoS paths. In this context, each delay τi between the ith NLoS path and
the LoS path is measurable with negligible error. This assumption is grounded in the
understanding that the measurement of delays is considerably more accurate compared
to the estimation of path complex amplitudes.

Additionally, we assume that the majority of the system’s subcarriers are within the
pulse shape’s passband. In this region, the function P (f) representing the pulse shape is
approximately equal to 1. This assumption simplifies the model by considering that most
subcarriers experience minimal distortion or attenuation within the passband.

Rayleigh Fading Amplitudes

According to the Saleh-Valenzuela model [104], by identifying the first ray of each cluster
as the LoS path and the remaining rays as NLoS paths, the probability density function
of the fading amplitude mk for the k-th path can be described by a Rayleigh distribution:

f(mk|σ2
dk
) =

2mk

σ2
dk

e
− m2

k
σ2
dk , (2.10)

where σ2
dk

represents the average power gain of the k-th path. It is evident that σ2
dk

is
associated with the propagation distance dk of the k-th path.

LoS + Reverberating NLoS PDP Mode

According to the indoor model proposed by G. Steinböck et al. [105], the average power
gain can be decomposed into the primary LoS component and the NLoS reverberating
component. The gain of the LoS and NLoS paths at a distance d is given by:

G(d) =

{
G0

(
dref
d

)n
; LoS,

G0

(
dref
d

)n
+G0,revT e

−d
cT ; NLoS,

, (2.11)

where G0 represents the gain at an arbitrary reference distance dref, G0,rev is the reference
gain of the reverberant component, T is the reverberation time, c is the speed of light,
and n is the environment path gain exponent.
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For ranging estimation, we assume that the values of G0 and G0,rev at a reference
distance of 1 meter and the value of T are known prior information. Therefore, for each
path k with a distance dk, the average expected gain σ2

dk
can be expressed as:

σ2
dk

= G(dk) =

{
G0d

−n
0 ; k = 0,

G0d
−n
k +G1e

−dk
cT ; k ̸= 0,

(2.12)

where G1 represents G0,revT . Furthermore, σ2
dk

in (2.10) is a specific expression of G(dk).
Additionally, for each NLoS path distance dk, it can be represented as:

dk = d0 + cτk, (2.13)

where τk is the delay time from the LoS path to the k-th NLoS path, and it is measurable
with negligible error as previously hypothesized.

This formulation provides a realistic model for multipath power decay in indoor and
dense environments, where both direct and scattered components coexist. The next sec-
tion presents the derivation of the corresponding Cramér–Rao Bound under joint param-
eter estimation.

2.4 CRBs for RSS-based Ranging and PDP-based Rang-
ing

We assume that the path delays τk are precisely measurable using high-resolution OFDM
channel sounding. This assumption allows us to treat all τk as known parameters. Con-
sequently, the estimation objective reduces to inferring the LoS propagation distance d0,
which implicitly governs the power distribution across all resolved paths.

2.4.1 Joint Range Estimation CRB for PDP-Based Ranging

To model the LoS path distance d0, we apply a Markov chain, disregarding any information
about d0 in ϕ and T. This means that we consider d0 to be independent of the complex
attenuation coefficients and the pulse shape filtered delayed path response.

By ignoring the information about d0 in ϕ and T, we assume that the variations or
dynamics of d0 do not directly affect or depend on the complex attenuation coefficients
or the pulse shape filtered delayed path response. Instead, the evolution of d0 is modeled
using a Markov chain, where the future values of d0 only depend on its current state and
not on its past states.

For the joint parameters estimation of θ = [d0,m,ϕ], we can express the Fisher
Information Matrix (FIM) as below:

FIM = Ey,m,ϕ

[
−∂2 log f(y,m,ϕ|d0)

∂θ∂θ⊺

]
= Ey,m,ϕ

Jd0d0 Jd0m Jd0ϕ
Jmd0 Jmm Jmϕ

Jϕd0 Jϕm Jϕϕ

 , (2.14)

where ⊺ is matrix transpose operator and the probability density function (pdf) f(y,m,ϕ|d0)
can be expressed as follows:

f(y,m,ϕ|d0) = f(y|m,ϕ)f(m|d0)f(ϕ). (2.15)
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Within the context of (2.15), it is possible to represent each pdf as follows:

f(y|m,ϕ) =
1

πLσ2L
v

exp

(
−(y −HD(m)ejϕ)H(y −HD(m)ejϕ)

σ2
v

)
, (2.16)

f(m|d0) =
k=K∏
k=0

f(mk|σ2
dk
(d0)) =

k=K∏
k=0

2mk

σ2
dk
(d0)

e
− m2

k
σ2
dk

(d0) , (2.17)

f(ϕ) =
k=K∏
k=0

f(ϕk) =

(
1

2π

)K+1

. (2.18)

where ()H denotes the conjugate transpose. Upon logarithmically processing (2.15), we
obtain:

log f(y,m,ϕ|d0) = log f(y|m,ϕ) + log f(m|d0) + log f(ϕ). (2.19)

Through the process of derivation, we can express each element inside (2.14) as follows:

Jd0d0 = −
∂2 log f(m|d0)

∂d20
, (2.20)

Jd0m = J⊺
md0

= −∂
2 log f(m|d0)
∂d0∂m⊺

, (2.21)

Jd0ϕ = J⊺
ϕd0

= −∂
2 log f(y,m,ϕ|d0)

∂d0∂ϕ⊺
= 0, (2.22)

Jmm = −∂
2 log f(y|m,ϕ)

∂m∂m⊺
− ∂2 log f(m|d0)

∂m∂m⊺
, (2.23)

Jϕϕ = −∂
2 log f(y|m,ϕ)

∂ϕ∂ϕ⊺
− ∂2 log f(ϕ)

∂ϕ∂ϕ⊺
, (2.24)

Jmϕ = J⊺
ϕm = −∂

2 log f(y|m,ϕ)

∂m∂ϕ⊺
. (2.25)

Utilizing Equation (2.14), we can calculate the CRB of d0 when performing joint param-
eters estimation:

CRBd0 = {Ey,m,ϕ[Jd0d0 ]− Ey,m,ϕ[Jd0m][Ey,m,ϕ[Jmm]]−1Ey,m,ϕ[Jmd0 ]}−1. (2.26)

The expectations w.r.t. m, ϕ, and y inside (5.48) can be expressed as follows:

Ey,m,ϕJmm =
2

σ2
v

diag(HHH+
1

2
I), (2.27)

Ey,m,ϕJd0d0 = G0 n
2 d

−(n+2)
0 +

K∑
k=1

(
nG0d

−n−1
k + G1

cT
e

−dk
cT

G0d
−n
k +G1e

−dk
cT

)2

, (2.28)

Ey,m,ϕJd0m = Ey,m,ϕJ
⊺
md0

=

nπdn−2
2

0 G
− 1

2
0 , · · · ,

√
π

(
G0 n

dn+1
k

+ G1 e
− dk

T c

T c

)
(
G1 e

− dk
T c + G0

dnk

)3/2 , · · ·

 , (2.29)

where diag() is the operation of retaining the diagonal elements while setting all the
non-diagonal elements to 0 of the matrix and I represents the identity matrix.
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Having considered all the factors mentioned earlier, we can now proceed to calculate
the joint estimation CRB for the estimation of d0 w.r.t. PDP-based ranging:

CRBd0 =

[∑K
k=1

(
nG0d

−n−1
k +

G1
cT

e
−dk
cT

G0d
−n
k +G1e

−dk
cT

)2

+G0 n
2 d

−(n+2)
0 − σ2

vπn
2d

(n−2)
0

2G0

(∑L
l=1 |hl0|2 +

1
2

)−1

−σ2
vπ
2

∑K
k=1

 G0 n

dn+1
k

+
G1 e

− dk
T c

T c

2

(
G1 e

− dk
T c+

G0
dn
k

)3

(∑L
l=1 |hlk|2 +

1
2

)−1
]−1

.

(2.30)

2.4.2 Marginalized Range Estimation CRB for PDP-Based Rang-
ing

According to (2.10), the NLoS path complex attenuation coefficients a ∈ C(K+1)×1 that
each element ak is an i.i.d. complex zero-mean Gaussian random variable can be expressed
as follows:

a ∼ CN (0,Caa), Caa =

σ
2
d0
· · · 0

... . . . ...
0 · · · σ2

dK

 . (2.31)

To estimate d0 directly and solely based on y ∈ CL×1, we can estabilish the pdf of y given
σ2(d0) ∈ R(K+1)×1 as follows:

f(y|σ2(d0)) = π−L(det(Cyy))
−1e−yHC−1

yyy, (2.32)

where
Cyy = HCaaH

H + σ2
vI, σ2(d0) = [σ2

d0
· · · σ2

dK
]⊺. (2.33)

To compute the FIM from the pdf f(y|σ2(d0)), which is Gaussian with zero mean and
covariance Cyy, the FIM can be calculated as follows:

Jd0d0 = (
∂σ2(d0)

∂d0
)⊺Jσ2(d0)σ2(d0)(

∂σ2(d0)

∂d0
). (2.34)

For Jσ2(d0)σ2(d0), its element Jσ2(d0)σ2(d0)i,k can be derived as:

Jσ2(d0)σ2(d0)i,k = tr
{
Cyy

∂C−1
yy

∂σ2
di

Cyy

∂C−1
yy

∂σ2
dk

}
= |eiHHHC−1

yyHek|2. (2.35)

where ei ∈ R(K+1)×1 is a column vector with the i-th element being 1 and all other
elements being 0. The trace operation, denoted by tr(·), computes the sum of the diagonal
elements of a matrix. With these definitions, we can compute the FIM as follows:

Jσ2(d0)σ2(d0) = (HHC−1
yyH)⊙ (HHC−1

yyH)∗, (2.36)

where ⊙ represents the Hadamard product (element-wise multiplication) and ∗ denotes
the conjugate operation. And

∂σ2(d0)

∂d0
=

[
∂σ2

d0

∂d0
· · ·

∂σ2
dK

∂d0

]⊺
, (2.37)

32



where kth element can be presented as:

∂σ2
dk

∂d0
=

{
−nG0d

−n−1
0 , k = 0,

−nG0d
−n−1
k − G1

cT
e

−dk
cT , k ̸= 0.

(2.38)

In conclusion, with (2.35) (2.36) and (2.37), the marginalized CRB of d0 w.r.t. PDP-based
ranging can be calculated as follows:

CRBd0 =

[
(
∂σ2(d0)

∂d0
)⊺Jσ2(d0)σ2(d0)(

∂σ2(d0)

∂d0
)

]−1

. (2.39)

2.4.3 CRB For Classical RSSI-Based Ranging

In the case where all data subcarriers can be used and considering the channel model,
the RSSI can be measured from the squared Euclidean norm of the magnitude vector y.
Taking into account the law of large numbers, we can express ∥y∥2 as:

∥y∥2 = Ev∥y∥2, (2.40)

This expression represents the sum of squared magnitudes of the individual subcarriers.
Utilizing the squared Euclidean norm, the RSSI measurement provides an aggregate

measure of the received signal strength across all the subcarriers, enabling an overall
assessment of the signal power.

Since we assume that most of the subcarriers used for transmission are within the
passband of the pulse slope where P (f) ≈ 1, Ev∥y∥2 can be derived to:

EV ∥y∥2 = α∥a∥2 + β = (
∑L

i=1X
2
i )∥a∥2 + Lσ2

v , (2.41)

where
∥a∥2 =

∑K
k=0 |ak|2 =

∑K
k=0(a

re
k

2 + aimk
2
). (2.42)

Using pilots to estimate the channel and perform interference cancellation, the complex
attenuation coefficient ak = arek + jaimk can be decomposed into its real part arek and
imaginary part aimk , both of which are Gaussian random variables. Specifically, we have
arek ∼ N (0,

σ2
k

2
) and aimk ∼ N (0,

σ2
k

2
).

For the LoS path (k = 0) and NLoS paths (k ̸= 0), the variances σ2
k of the complex

attenuation coefficients can be given as follows:

• For the LoS path (k = 0):
σ2
0 = G0d

−n
0 , (2.43)

• For the NLoS paths (k ̸= 0):

σ2
k = G0d

−n
k +G1e

−dk
cT , (2.44)

where G0 is the gain at an arbitrary reference distance dref , G1 is the reference gain of
the reverberant component, n is the environment path gain exponent, c is the speed of
light, and T is the reverberation time. The variables d0 and dk represent the distances of
the LoS path and NLoS paths, respectively.

Therefore, the real part arek and imaginary part aimk of ak are Gaussian random variables
with variances σ2

k

2
, where σ2

k is given by the expressions mentioned above. If we assume
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Table 2.1: Parameters setting for CRB Comparisons

Parameter Value
Signal-to-Noise Ratio (SNR) range from 10 dB to 60 dB, default 20 dB.

L 30
n ranging from 2.0 to 2.5, default 2.0.
K random between 10 and 15.

d0 (m) 20
Propagation distance of NLoS path (m) random between 1.1d0 to 2.0d0.

G0 1
G1 1

T (ns) 20

that the real part arek and imaginary part aimk of ak have the same variance σ2
0 for all k,

then the magnitude squared ∥a∥2 follows a Chi-squared distribution with 2(K+1) degrees
of freedom. The probability density function (PDF) of the random variable z = |a|2 given
σ0 can be expressed as:

f(2K+2)(z|σ2
0) =

zKe
− z

σ2
0

σ
2(K+1)
0 Γ(K + 1)

. (2.45)

Replacing σ2
0 by a function of d0, we can rewrite the pdf of the random variable z = ∥a∥2

as:

f(2K+2)(z|d0) =
zKe

− z

G0(
1
d0

)n(
G0(

1
d0
)n
)(K+1)

Γ(K + 1)

, (2.46)

where Γ() is Gamma function and dref is chosen as 1 meter. It is easily to get:

EZ(z) = σ2
0(K + 1). (2.47)

Then we can calculate CRB of estimating d0 from ∥a∥2 w.r.t. classical RSSI-based ranging
as

CRBd0 =
d20

n2(K + 1)
. (2.48)

In the next section, we present numerical simulations comparing these CRBs under
various SNRs and propagation conditions to assess the practical gap between RSSI- and
PDP-based ranging.

2.5 Numerical Results and Analysis
In this section, we utilize MATLAB to compute the CRB for PDP-based ranging using
joint parameter estimation and marginalized range estimation, as well as classical RSSI-
based ranging. The key parameters employed in the simulations are outlined in Table
6.1.

To investigate the factors influencing ranging error, we focus on two primary factors:
the Signal-to-Noise Ratio (SNR) of the channel and the path gain exponent. For each
factor, we keep all other parameters at their default values and conduct the simulation to
observe the behavior of the CRB.
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The obtained performance results are presented in two figures. Figure 2.1 illustrates
the behavior of the square root of the CRB for PDP-based ranging as the SNR increases
from 10 dB to 60 dB. As expected, the root of the CRB decreases with higher SNR,
indicating improved ranging accuracy due to the higher quality of the received signal.
Notably, the performance of PDP-based ranging surpasses that of RSSI-based ranging.
Moreover, marginalized range estimation demonstrates superior performance compared
to joint estimation.

Figure 2.2 compares the CRBs of PDP-based ranging and RSSI-based ranging for
various path gain exponents. As the path gain exponent increases, indicating more com-
plex propagation environments, all CRBs decrease. However, PDP-based ranging exhibits
better theoretical performance than RSSI-based ranging across all path gain exponents.
This suggests that PDP-based ranging can deliver favorable performance even in complex
environments, making it a promising technique for ranging applications. Furthermore,
marginalized range estimation outperforms joint estimation in terms of ranging accuracy.
These findings highlight the advantages of PDP-based ranging and marginalized range
estimation, supporting their potential for accurate ranging in diverse scenarios.

2.6 Conclusions
In summary, this chapter presents a comprehensive analysis of the Cramér–Rao Bound
(CRB) for PDP-based positioning using both joint and marginalized range estimation,
alongside RSSI-based ranging. The derived CRB accounts for distance-dependent path
decay in both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) paths. We investigate
the impact of various factors, including the Signal-to-Noise Ratio (SNR) and the path gain
exponent across different environments. Simulation results demonstrate the superiority
of PDP-based ranging over RSSI-based methods, with PDP-based approaches achieving
better performance in diverse scenarios. Furthermore, the marginalized range estima-
tion approach yields improved accuracy compared to joint estimation. These findings
deepen the understanding of PDP-based ranging and highlight its potential for accurate
positioning in real-world environments.

36



Chapter 3

Estimation in Linear Systems: From
Sparse Recovery to Bayesian Inference

3.1 Introduction
In the context of modern signal processing and communication systems, recovering high-
dimensional structured signals from noisy or incomplete measurements has become a
critical and widespread challenge. This is especially true in the framework of PDP-based
sensing—the focus of this dissertation—where recovery tasks often involve estimating
sparse or structured signals while managing uncertainty and complex statistical depen-
dencies. Meeting these challenges demands a solid understanding of key signal estimation
and statistical inference tools, as well as their interplay with hyperparameter learning.
This motivates the comprehensive review and methodological derivations presented in
the following sections.

Section 3.2 introduces the fundamental problem of sparse estimation in underdeter-
mined linear systems, laying out the challenges inherent in such ill-posed scenarios. We
discuss how these challenges arise from the mismatch between the number of measure-
ments and the dimensionality of the signal, and highlight how classical and modern meth-
ods tackle these sparse recovery problems.

Section 3.3 presents a detailed treatment of linear MMSE estimation and its Gaussian
approximation. These approaches leverage second-order statistical information to provide
computationally efficient estimators and serve as an important baseline for sparse recovery.
We also discuss their limitations when the true signal priors deviate from Gaussianity,
motivating the need for more adaptive and robust inference strategies.

Section 3.4 shifts focus to the estimation of prior hyperparameters—an often over-
looked but essential part of practical inference tasks. Here, we adopt the Expectation-
Maximization (EM) framework to iteratively refine the hyperparameters of the prior dis-
tributions that govern the underlying signal structure. In this setting, the observation
model remains fixed, while the hyperparameters are adapted to best explain the observed
data. Recognizing that exact posterior inference is typically intractable, we emphasize
the use of moment-matching approximations within the EM algorithm, leading to ro-
bust and scalable hyperparameter learning. This interplay between approximate E-steps
and analytical or numerical M-steps ensures stable convergence while leveraging the rich
statistical structures inherent in the data.

Together, these three sections lay a comprehensive foundation for the advanced meth-
ods and algorithms developed in later chapters of this dissertation. By integrating classi-
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cal results, iterative inference refinements, and hyperparameter adaptation strategies, we
establish a coherent framework that directly addresses the challenges of PDP-based sens-
ing. In such scenarios, signals exhibit structured sparsity or other statistical priors that
must be exploited for accurate reconstruction and efficient computation. The subsequent
chapters build on these fundamental insights, presenting novel algorithms and theoretical
contributions tailored to PDP-based sensing applications, demonstrating both practical
relevance and theoretical rigor. Finally, Section 3.5 summarizes the key insights from
these sections and clarifies how they collectively establish a solid statistical foundation
for the advanced methods proposed in the remainder of this dissertation.

3.2 Sparse Estimation without Prior: Underdetermined
Linear Systems

In many signal processing and inference tasks, one frequently encounters the canonical
linear model:

y = Ax+ v, (3.1)

where y ∈ RM is the observed measurement vector, A ∈ RM×N is a known sensing or
projection matrix, x ∈ RN is the unknown signal to be recovered, and v ∼ N (0, σ2

vI)
represents additive white Gaussian noise.

When M < N , the system is underdetermined and generally has infinitely many
solutions. However, in many practical scenarios, the true signal x is sparse, meaning only
a few components are non-zero. This insight motivates the field of sparse estimation or
compressed sensing, which aims to recover sparse signals from incomplete or compressed
measurements.

This chapter introduces a family of sparse estimation methods that do not require
explicit prior distributions for x. Methods such as Orthogonal Matching Pursuit (OMP),
Approximate Message Passing (AMP), and Sparse Bayesian Learning (SBL) offer algo-
rithmic pathways for efficiently recovering sparse signals from underdetermined systems.

Relevance to this dissertation: In later chapters, we demonstrate how similar
estimation problems naturally arise in the recovery of channel impulse responses (CIR)
under bandwidth-limited conditions. In such settings, classical delay estimation meth-
ods often struggle due to coarse frequency-domain sampling. By exploiting the inherent
sparsity of CIRs—particularly in indoor or LoS-dominated channels—sparse estimation
techniques can super-resolve delay components beyond classical Fourier resolution limits.
Consequently, the methods presented here form a crucial algorithmic foundation for the
practical ranging and positioning strategies developed in this thesis.

3.2.1 Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP) is a widely used greedy algorithm for solving sparse
linear inverse problems. It is designed to recover a K-sparse signal x ∈ RN from an
underdetermined system y = Ax+ v, where A ∈ RM×N with M < N .

Algorithm Intuition: OMP iteratively selects the column (atom) of A most correlated
with the current residual, then projects the observation y onto the subspace spanned by
the selected atoms. This process continues until the desired number of atoms (sparsity
level K) is reached.
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Stopping Criteria: OMP typically terminates either after K iterations or when the
residual norm falls below a pre-defined threshold ε.

Algorithm 3.1 Orthogonal Matching Pursuit (OMP)

Require: Measurement vector y ∈ RM , dictionary matrix A ∈ RM×N , sparsity level K
Ensure: Estimated sparse signal x̂ ∈ RN

1: Initialize:
2: Residual r(0) ← y
3: Support set S(0) ← ∅
4: Iteration counter t← 0
5: Initial estimate x̂← 0

6: while t < K and ∥r(t)∥2 > ε do
7: t← t+ 1
8: Compute correlations: c← A⊤r(t−1)

9: Identify index: jt ← argmaxj |cj|
10: Update support: S(t) ← S(t−1) ∪ {jt}
11: Form submatrix: AS(t) ← columns of A indexed by S(t)

12: Solve LS problem: x̂S(t) ← argminz ∥y −AS(t)z∥22
13: Update residual: r(t) ← y −AS(t)x̂S(t)

14: end while
15: Set x̂ with non-zero entries at S(t) from x̂S(t)

16: return x̂

Discussion: OMP is simple and interpretable. At each iteration, it greedily selects
the atom most correlated with the residual and ensures orthogonality by solving a least
squares problem. It is particularly effective when the columns of A are nearly orthogonal
and the noise level is low.

However, OMP can suffer from suboptimal support recovery in the presence of high
noise or when the columns of A are highly correlated. Its performance also depends on
knowing the sparsity level K or threshold ε in advance.

Advantages: Simple, fast, and easy to implement.
Limitations: Suboptimal in high-noise environments; greedy selection may lead to

inaccurate support recovery.

3.2.2 Approximate Message Passing (AMP)

Approximate Message Passing (AMP) is an iterative algorithm designed for sparse sig-
nal recovery in large-scale underdetermined linear systems, particularly when the signal
x is sparse. AMP is derived from belief propagation and leverages statistical physics
techniques to efficiently estimate x under probabilistic models.

Core Principle: AMP assumes a probabilistic prior for x, often a Laplacian or Bernoulli-
Gaussian distribution, and iteratively refines its estimate using a residual-based correction
combined with a nonlinear denoising function. A key feature of AMP is the inclusion of
an Onsager correction term that improves convergence by accounting for statistical de-
pendencies introduced during the iterative updates.
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The algorithm alternates between a linear residual update and a nonlinear shrinkage
step:

r(t) = y −Ax(t) +
1

M
r(t−1) · div(η(t−1)), (3.2)

x(t+1) = η(t)
(
A⊤r(t) + x(t)

)
, (3.3)

where η(t) is a denoising function (e.g., soft thresholding) and div(η(t−1)) is its average
divergence, representing the average derivative across components.

Algorithm 3.2 Approximate Message Passing (AMP)

Require: Observation y ∈ RM , sensing matrix A ∈ RM×N , noise variance σ2
v , threshold

λ, max iterations T
Ensure: Estimated signal x̂ ∈ RN

1: Initialize: x(0) ← 0, r(0) ← y
2: for each iteration t = 1, . . . , T do
3: Compute pseudo-data: z(t) ← x(t−1) +A⊤r(t−1)

4: Apply soft-thresholding: x(t)i ← sign(z(t)i ) ·max(|z(t)i | − λ, 0) for all i
5: Compute divergence:
6: div(η)← 1

N

∑N
i=1 I(|z

(t)
i | > λ)

7: Update residual:
8: r(t) ← y −Ax(t) + r(t−1) · 1

M
· div(η)

9: end for
10: return x̂← x(T )

Advantages:

• Efficient for large-scale problems with i.i.d. Gaussian sensing matrices A;

• Fast convergence with low per-iteration computational complexity;

• Naturally incorporates statistical inference via the use of denoisers.

Limitations:

• Sensitive to the structure of A; performance can degrade for non-Gaussian or ill-
conditioned matrices;

• Requires careful design and tuning of the denoising function and threshold param-
eter λ;

• Theoretical guarantees are primarily valid in the large-system limit.

3.2.3 Sparse Bayesian Learning (SBL)

Sparse Bayesian Learning (SBL) formulates sparse signal recovery within a hierarchical
Bayesian framework. Each coefficient xi is modeled as a zero-mean Gaussian random vari-
able with its own precision parameter αi, enabling automatic sparsity through relevance
determination.
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Core Principle: SBL assigns the following prior to each element xi:

p(xi | αi) = N (xi | 0, α−1
i ), (3.4)

where αi is an unknown hyperparameter that controls the variance. While a Gamma prior
can be placed on αi, in practice, point estimates are often obtained via Type-II maximum
likelihood. The marginal likelihood of the data is then maximized with respect to α,
which automatically prunes irrelevant coefficients by pushing the corresponding αi →∞.

Posterior Distribution: Given the observation model y = Ax+v, where v ∼ N (0, σ2
vI),

the posterior over x is Gaussian:

Σ =

(
1

σ2
v

A⊤A+ diag(α)

)−1

, (3.5)

µ =
1

σ2
v

ΣA⊤y. (3.6)

Learning Strategy: The hyperparameters αi are updated iteratively through evidence
maximization:

αi ←
1

µ2
i + Σii

. (3.7)

Algorithm 3.3 Sparse Bayesian Learning (SBL)

Require: Observation y ∈ RM , dictionary A ∈ RM×N , noise variance σ2
v , tolerance ε

Ensure: Estimated signal x̂ ∈ RN

1: Initialize: α(0) ← α0 · 1, t← 0
2: repeat
3: t← t+ 1

4: Σ(t) ←
(

1
σ2
v
A⊤A+ diag(α(t−1))

)−1

5: µ(t) ← 1
σ2
v
Σ(t)A⊤y

6: for each i = 1, . . . , N do
7: α

(t)
i ← 1(

µ
(t)
i

)2
+Σ

(t)
ii

8: end for
9: until ∥α(t) −α(t−1)∥2 < ε

10: return x̂← µ(t)

Advantages:

• Promotes sparsity automatically through relevance determination;

• Often outperforms convex optimization methods in highly coherent dictionaries;

• Provides full posterior uncertainty quantification for x.

Limitations:

• Computationally intensive due to matrix inversions required at each iteration;

• Sensitive to initial values and to poorly scaled sensing matrices A;

• May converge slowly in practice, particularly in high-noise settings.
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Summary: In summary, we have explored three widely used sparse estimation algo-
rithms—OMP, AMP, and SBL—each offering unique strengths and facing specific chal-
lenges. OMP is simple and effective for highly sparse signals but struggles in noisy or
coherent environments. AMP leverages probabilistic insights and provides fast conver-
gence for large-scale problems, albeit with sensitivity to system structure. SBL incorpo-
rates Bayesian inference to adaptively promote sparsity and offers robustness to coherent
dictionaries, though at a higher computational cost.

To provide a clear comparison of these methods, Table 3.1 summarizes their core
principles, advantages, and limitations.
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Table 3.1: Comparison of Sparse Estimation Algorithms (No Prior on x)

Method Core Principle Advantages Limitations

Orthogonal
Matching Pur-
suit (OMP)

Greedily selects
atoms most cor-
related with the
residual; recon-
structs via least-
squares

• Simple and inter-
pretable

• Low complexity
per iteration

• Works well with
highly sparse sig-
nals

• Sensitive to
noise and
correlated
columns

• Suboptimal for
moderate spar-
sity

• Requires
knowledge of
sparsity level

Approximate
Message Pass-
ing (AMP)

Iterative refine-
ment with Onsager
correction; com-
bines linear resid-
ual update with
nonlinear denoising

• Scalable to large
systems

• Fast convergence
for Gaussian ma-
trices

• Integrates proba-
bilistic denoisers

• Performance
degrades with
non-i.i.d. ma-
trices

• Sensitive to
denoiser and
threshold

• Assumes large-
system regime

Sparse
Bayesian
Learning (SBL)

Places hierar-
chical prior on
coefficients; learns
hyperparameters
by maximizing
marginal likelihood

• Adaptive to un-
known sparsity

• Robust to corre-
lated dictionaries

• Theoretically
grounded in
Bayesian infer-
ence

•
Computationally
intensive (ma-
trix inversion)

• May converge
slowly

• Sensitive to hy-
perparameter
initialization
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3.3 Linear MMSE Estimation and Gaussian Approxi-
mation

We consider the standard linear observation model:

y = Ax+ v, (3.8)

where x ∈ Rn is the random vector to be estimated, A ∈ Rm×n is a known matrix, and
v ∼ N (0, σ2

vIn) is white Gaussian noise independent of x.

3.3.1 MMSE Estimation under Gaussian Prior

When x ∼ N (µx,Cxx) is Gaussian, the MMSE estimator is the conditional expectation,
which has a closed-form solution:

x̂MMSE = E[x|y] = µx +CxxA
⊤(ACxxA

⊤ + σ2
vIn)

−1(y −Aµx), (3.9)
Σxx = E

[
(x− E[x])(x− E[x])⊤

∣∣y] = (σ−2
v A⊤A+C−1

xx )
−1. (3.10)

3.3.2 LMMSE for Non-Gaussian Prior via Gaussian Approxima-
tion

When x is non-Gaussian, the true MMSE estimator becomes nonlinear and intractable
due to high-dimensional integration. In such scenarios, we approximate x by a Gaussian
random vector that matches its mean µx and covariance Cxx:

x ∼ p(x) ≈ q(x) = N (µx,Cxx). (3.11)

This approximation can be expressed as:

q(x) = argmin
q(x)

DKL(p(x)||q(x)) = argmin
q

∫
p(x) log

p(x)

q(x)
dx, (3.12)

whereDKL denotes the Kullback–Leibler divergence. The solution of (3.12) for a Gaussian
q(x) is obtained by matching the first and second moments:

Ep[x] = Eq[x], Ep[xx
⊤] = Eq[xx

⊤]. (3.13)

This leads directly to the LMMSE estimator, which is linear in y and depends only
on second-order statistics:

x̂LMMSE = µx +CxxA
⊤(ACxxA

⊤ + σ2
vIn)

−1(y −Aµx). (3.14)

Although this estimator is no longer the true MMSE solution, it is the optimal linear
estimator and often yields satisfactory results. This Gaussian approximation thus provides
a compelling justification for the use of LMMSE when the true distribution of x is non-
Gaussian.
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3.3.3 Scalar Observation Model with Extrinsic Gaussian Noise

While LMMSE leverages only second-order statistics of x, further improvements are pos-
sible by combining the true prior of each component xi with a Gaussian approximation of
the remaining components. This results in a scalar observation model for each variable,
enabling more accurate estimation.

We isolate xi in the measurement equation:

y = Aixi +
∑
j ̸=i

Ajxj + v = Aixi + ni, (3.15)

where Ai is the i-th column of A, and ni =
∑

j ̸=i Ajxj + v represents an effective noise
term. We approximate p(ni) ≈ N (µi,Ci) by approximating the distributions of all xj for
j ̸= i using:

p(xj) ≈ q(xj) = N (µxj
, σ2

xj
), (3.16)

where the first and second moments are matched. This yields:

µi =
∑
j ̸=i

Ajµxj
, Ci =

∑
j ̸=i

σ2
xj
AjA

⊤
j + σ2

vIn. (3.17)

Consequently, the observation can be approximated as:

y ≈ Aixi + zī. (3.18)

where zī ∈ Rm×1 is a Gaussian random vector with mean µi and covariance Ci.
By treating xi as deterministic, we obtain an equivalent scalar observation model:

ri = xi + wi, wi ∼ N (0, τi), (3.19)

where:

ri =
A⊤

i C
−1
i (y − µi)

A⊤
i C

−1
i Ai

, τi =
1

A⊤
i C

−1
i Ai

. (3.20)

Here, ri is a scalar observation, and τi quantifies the uncertainty due to all other xj (j ̸= i)
and the noise vector v. These terms, ri and τi, are also known as the Gaussian extrinsic
mean and variance.

Given the scalar model ri = xi + wi and the prior p(xi), the approximate posterior
mean and variance are:

x̂i = E[xi|ri] =
∫
xi p(xi)N (ri;xi, τi) dxi∫
p(xi)N (ri;xi, τi) dxi

, (3.21)

τ̂i = Var[xi|ri] =
∫
(xi − x̂i)2 p(xi)N (ri;xi, τi) dxi∫

p(xi)N (ri;xi, τi) dxi
. (3.22)

This approach preserves the true prior information of xi, unlike the LMMSE, which
relies only on its first and second moments. At the same time, it uses a Gaussian ap-
proximation for the remaining system, potentially achieving better performance than
LMMSE. Moreover, this method decomposes the high-dimensional integral into multiple
one-dimensional integrals, significantly reducing computational complexity compared to
MMSE.
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3.3.4 Iterative Gaussian Approximation from Posterior Beliefs

In the previous section, we used the scalar model:

ri = xi + wi, wi ∼ N (0, τi), (3.23)

to obtain the approximate posterior distribution p̃(xi|ri), given the true prior p(xi).
We now consider the following question: Can we find a Gaussian prior f(xi) =

N (xi;µi, σ
2
i ) such that the resulting approximate Gaussian posterior q̃(xi|ri) is as close as

possible to the non-Gaussian posterior p̃(xi|ri)?
Formally, we aim to minimize the Kullback–Leibler divergence:

DKL(p̃(xi|ri) || q̃(xi|ri)). (3.24)

By Bayes’ rule, the Gaussian posterior induced by the Gaussian prior is:

q̃(xi|ri) =
f(xi)N (ri;xi, τ

2
i )∫

f(xi)N (ri;xi, τi) dxi
. (3.25)

This suggests that the optimal Gaussian prior f(xi) = N (xi;µi, σi) is one for which the
resulting posterior matches the true posterior mean and variance. Since the likelihood is
Gaussian and we know the true posterior moments:

x̂i = E[xi|ri], τ̂i = Var[xi|ri], (3.26)

we can determine (µi, σ
2
i ) by enforcing that the Gaussian posterior q̃(xi|ri) has these same

moments.
For scalar Gaussian models with Gaussian prior and likelihood, the posterior is also

Gaussian, with:

x̂i =
σ2
i

σ2
i + τi

ri +
τi

σ2
i + τi

µi, (3.27)

τ̂ 2i =

(
1

σ2
i

+
1

τi

)−1

. (3.28)

Thus, solving for (µi, σ
2
i ) to match x̂i and τ̂ 2i yields:

σ2
i =

(
1

τ̂i
− 1

τi

)−1

, (3.29)

µi =
(σ2

i + τi) x̂i − σ2
i ri

τi
. (3.30)

This ensures that the resulting posterior q̃(xi|ri) exactly matches the true posterior in
mean and variance, thus minimizing the KL divergence.

In practice, computing σ2
i using (3.29) can result in negative or numerically unstable

values, especially when the estimated posterior variance τ̂ 2i is close to the extrinsic noise
variance τ 2i . This can yield an ill-defined Gaussian prior and destabilize the iterative
process. To address this, we employ one or both of the following strategies:

• Clipping: Enforce a lower bound ϵ > 0 on the prior variance:

σ2
i ← max(σ2

i , ϵ), (3.31)

where ϵ is typically set to a small value such as 10−6.
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• Damping: To improve numerical stability and mitigate oscillations, we apply
damping to the updates of the Gaussian prior parameters. For a damping factor
λ ∈ (0, 1], the updates are:

σ
2(t)
i ← (1− λ)σ2(t−1)

i + λσ
2(t)
i , (3.32)

µ
(t)
i ← (1− λ)µ(t−1)

i + λµ
(t)
i , (3.33)

where λ is typically set to 0.1 or 0.5.

These techniques help ensure numerical stability and robustness, particularly in early
iterations when the posterior estimates may deviate significantly from the true marginals.

This Gaussian prior is not assumed a priori; rather, it is derived directly from the
posterior. Specifically, it represents a local Gaussian approximation to the true prior that
best aligns with the observed data by matching the posterior moments. Importantly,
this approximation is adapted individually for each variable and updated iteratively, al-
lowing it to capture the true underlying distribution more accurately than static, global
approximations like LMMSE.

By minimizing the Kullback–Leibler divergence between the true posterior and the
Gaussian-induced posterior, this procedure yields the optimal Gaussian approximation
(in the KL sense) for the current observation. When this process is applied to all variables
and repeated iteratively, it forms a globally refined inference scheme that can significantly
outperform both LMMSE and naive scalar estimators based on fixed priors.

Algorithm 3.4 Iterative Posterior-Matching Gaussian Approximation
1: Input: A, y, noise variance σ2, prior p(xi)
2: Output: Posterior means x̂, variances τ̂
3: Initialize: µ(0)

i , σ2(0)
i for all i (e.g., 0 and 1)

4: while stopping criterion not met do
5: for each i = 1 to n do
6: Compute scalar observation ri from y and current {µj, σ

2
j}j ̸=i

7: Compute posterior: x̂i = E[xi|ri], τ̂i = Var[xi|ri]
8: Update prior variance: σ2

i =
(

1
τ̂i
− 1

τi

)−1

9: If σ2
i < ϵ, set σ2

i ← ϵ // clipping (optional)
10: Update prior mean: µi =

(σ2
i +τi)x̂i−σ2

i ri
τi

11: Damping (optional): µi ← (1− λ)µold
i + λµi, and similarly for σ2

i

12: end for
13: end while

The proposed algorithm, summarized in Algorithm 3.4, shares strong conceptual foun-
dations with several existing approximate inference frameworks, including Expectation
Propagation (EP), Expectation Consistency (EC), Vector Approximate Message Passing
(VAMP), and its variants such as ReVAMP. All these methods iteratively refine Gaus-
sian approximations to the true posterior, typically through moment matching or local
updates based on factorized models.

It is important to emphasize that, despite the differences in naming and algorithmic
presentation, these methods are fundamentally related. In particular, VAMP can be seen
as a special case of the proposed framework, where the variances of the approximate
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Gaussian priors are constrained to be equal across all components, i.e., σ2
i = σ2 for all

i. This simplification reduces computational complexity and often improves convergence
behavior, albeit at the cost of some flexibility.

In subsequent chapters, we may refer to various algorithmic variants or present the
same core ideas under different formulations. This is not due to substantive algorith-
mic differences, but rather to highlight how similar approximate inference schemes can
arise from diverse perspectives—such as message passing, variational inference, or statis-
tical linearization. Presenting these viewpoints enriches the reader’s understanding and
illustrates the broad applicability and interpretability of the underlying principles.

3.4 Expectation-Maximization with Prior Hyperparam-
eter Estimation

In many latent-variable estimation problems, the unknown signal x ∈ RN is modeled as
a random vector with a parametric prior distribution p(x | θ), where θ denotes the set
of hyperparameters (e.g., prior variances or scale parameters). The observation model
p(y | x) is assumed to be known and fixed, typically Gaussian. Our goal is to estimate θ
from observations y ∈ RM using the Expectation-Maximization (EM) algorithm.

3.4.1 Marginal Likelihood and Variational Lower Bound

The marginal likelihood of the observed data is:

log p(y | θ) = log

∫
p(y | x) p(x | θ) dx. (3.34)

Direct maximization of this expression is typically intractable due to the integral over
the latent variable x. To address this, we introduce an auxiliary distribution q(x) and
apply Jensen’s inequality:

log p(y | θ) = log

∫
q(x)

p(y,x | θ)
q(x)

dx

≥
∫
q(x) log

p(y,x | θ)
q(x)

dx ≜ L(q,θ), (3.35)

with equality when q(x) = p(x | y,θ).

3.4.2 EM Algorithm for Prior Hyperparameter Learning

The EM algorithm maximizes the lower bound (3.35) through alternating steps. Given
the current hyperparameter estimate θ(t), the steps are:

E-Step: Compute the expected log-prior under the current posterior:

Q(θ | θ(t)) = Ex∼p(x|y,θ(t)) [log p(x | θ)] . (3.36)

M-Step: Update the hyperparameters by maximizing this expected log-prior:

θ(t+1) = argmax
θ

Q(θ | θ(t)). (3.37)

This iterative procedure guarantees non-decreasing marginal likelihood and typically
converges to a local maximum under mild regularity conditions.
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3.4.3 Approximate E-Step via Moment Matching

In practice, the exact posterior p(x | y,θ(t)) is often intractable due to non-conjugate
priors or complex likelihoods. To overcome this, we approximate it with a tractable
distribution:

q(x) ≈ p(x | y,θ(t)), (3.38)

chosen to match the first and second moments:

q(x) =
N∏
i=1

N (xi | x̂i, τ̂i), (3.39)

where x̂i = E[xi | y] and τ̂i = Var[xi | y] are estimated using iterative inference techniques
such as scalar message passing, expectation consistency (EC), or expectation propagation
(EP).

Substituting this approximation into (3.36) yields:

Q(θ | θ(t)) ≈
N∑
i=1

Eq(xi) [log p(xi | θ)] , (3.40)

which enables analytical or numerical optimization in the M-step. The full iterative
procedure is summarized in Algorithm 3.5, where the E-step uses approximate posterior
moments, and the M-step performs analytic or numerical maximization.

Algorithm 3.5 EM with Approximate Posterior Moment Matching

Require: Observation y, prior p(x | θ), likelihood p(y | x), init θ(0), tolerance ε
Ensure: Estimated parameter θ∗

1: t← 0
2: repeat
3: E-step: Approximate p(x | y,θ(t)) ≈

∏
iN (xi | x̂(t)i , τ̂

(t)
i )

4: M-step: θ(t+1) ← argmaxθ
∑

i Eq(t)(xi)[log p(xi | θ)]
5: t← t+ 1
6: until ∥θ(t) − θ(t−1)∥ < ε
7: return θ∗ = θ(t)

3.5 Conclusions
In this chapter, we focused on a simplified yet practically significant EM framework in
which the model parameters θ appear exclusively in the prior p(x | θ), while the obser-
vation model p(y | x) remains known and fixed. This setting not only streamlines the
derivation but also captures a broad range of real-world applications, including sparse
signal recovery, variational Bayesian learning, and automatic relevance determination.

To address the intractability of exact posterior inference, we introduced a moment-
matching approach that replaces the true posterior with a tractable Gaussian approxi-
mation. This enables the computation of approximate posterior moments in the E-step,
providing a practical means to estimate hyperparameters iteratively. Crucially, these
moment-based approximations preserve key features of the underlying distribution while
greatly simplifying the computational burden.
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The resulting EM algorithm, combining approximate E-steps with analytic or numer-
ical M-steps, ensures a non-decreasing marginal likelihood and offers robustness in high-
dimensional and complex inference tasks. By balancing computational tractability and
statistical fidelity, this approach offers a powerful framework for learning hyperparameters
in challenging latent-variable models.
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Chapter 4

High-Resolution Power Delay Profile
Estimation with Sparse Bayesian
Inference

4.1 Introduction
Accurate estimation of channel delays is essential for understanding multipath character-
istics in wireless propagation environments. In practice, received signal delays rarely align
precisely with integer multiples of the sampling period. These non-integer, or off-grid de-
lays significantly impact the shape and resolution of the Power Delay Profile (PDP), a
key metric for characterizing multipath channels.

The PDP captures the arrival times and power levels of multipath components, serving
as the foundation for many positioning and ranging applications. Specifically, PDP-
based ranging methods rely heavily on accurate delay estimation to determine distances
to scatterers or reflectors. Therefore, precise estimation of off-grid delays is critical for
reliable PDP extraction, which directly enhances the accuracy of ranging and localization
systems.

Traditional delay estimation methods typically assume delays aligned to integer mul-
tiples of the sampling grid, introducing substantial modeling errors, particularly in high-
resolution scenarios. These inaccuracies obscure the true PDP structure, leading to biased
distance estimates and degraded performance. To address these limitations, advanced es-
timation algorithms explicitly designed for off-grid delays are essential.

This chapter focuses on estimating off-grid channel delays and determining the number
of paths in multipath environments. Leveraging recent developments in sparse signal
reconstruction and off-grid parameter refinement, we propose a robust approach for jointly
estimating multipath components and their fractional delays. The proposed methods
integrate grid-based sparse Bayesian learning (SBL) with iterative off-grid refinements
utilizing first- and second-order Taylor expansions, ensuring high precision even under
low-SNR conditions.

By enhancing the accuracy of off-grid delay estimation, our techniques facilitate precise
PDP reconstruction, significantly benefiting subsequent ranging and distance estimation
algorithms. This research establishes a solid foundation for future investigations extending
off-grid estimation frameworks to more complex scenarios, such as joint delay and Doppler
estimation, where simultaneous temporal and frequency resolutions are required.
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4.2 System Model
We consider an OFDM system comprising K subcarriers and a cyclic prefix (CP) suf-
ficiently long to transform linear convolution between the transmitted signal and the
channel into a circular convolution. The wireless channel is characterized by L propa-
gation paths, each with complex gain αl ∈ C and non-integer delay τl ∈ [0, T ), where
T = KTs is the OFDM symbol duration and Ts is the sampling interval.

To model fractional delays accurately, we employ sinc interpolation. Thus, the discrete-
time approximation of the continuous-time channel impulse response is:

h[n] =
L∑
l=1

αl · sinc
(
n− τl

Ts

)
, (4.1)

where sinc(x) = sin(πx)
πx

. Practically, although the sinc function extends infinitely, we
consider a finite set of samples for each OFDM symbol:

h[n], n = 0, . . . , K − 1. (4.2)

This truncation ensures compatibility with the K-point discrete Fourier transform
(DFT) at the receiver.

The CP facilitates circular convolution, allowing frequency-domain channel responses
through the DFT of the truncated impulse response:

H[k] =
K−1∑
n=0

h[n] · e−j 2πkn
K . (4.3)

Substituting h[n], we have:

H[k] =
L∑
l=1

αl

K−1∑
n=0

sinc
(
n− τl

Ts

)
e−j 2πkn

K . (4.4)

This expression indicates that each frequency-domain channel coefficient is composed
of superimposed sinc-shaped frequency responses, each weighted by path gain and shifted
by fractional delays.

In practice, the frequency-domain channel coefficients H[k] are estimated using pilot
symbols embedded within the OFDM symbols. Let P ⊆ {0, . . . , K − 1} denote the set of
pilot subcarrier indices.

At each pilot subcarrier k ∈ P , the received signal is expressed as:

y[k] = H[k] · x[k] + w[k], (4.5)

where x[k] is the known pilot symbol, and w[k] is additive noise. Normalizing by x[k],
the channel response becomes:

ỹ[k] =
y[k]

x[k]
= H[k] + w̃[k], (4.6)

where w̃[k] = w[k]
x[k]

is the scaled noise. Stacking these normalized observations yields:

y = [ỹ[k1], . . . , ỹ[k|P|]]
T , (4.7)

with noise vector:
v = [w̃[k1], . . . , w̃[k|P|]]

T . (4.8)
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Sparse Representation and Delay Dictionary Model

Each frequency-domain channel coefficient H[k] can be represented as a sum of contri-
butions from propagation paths. Define the frequency response contribution of path l at
subcarrier k as:

ϕk(τl) =
K−1∑
n=0

sinc
(
n− τl

Ts

)
e−j 2πkn

K . (4.9)

Combining observations across all pilot subcarriers, the model becomes:

y = Φ(τ )h+ v, (4.10)

where:

• h = [α1, . . . , αL]
T ∈ CL is the vector of path gains,

• τ = [τ1, . . . , τL]
T is the vector of path delays,

• v represents the normalized noise vector,

• Φ(τ ) ∈ C|P|×L is the delay-dependent dictionary matrix with entries:

Φk,l(τ ) =
K−1∑
n=0

sinc
(
n− τl

Ts

)
e−j 2πkn

K , k ∈ P . (4.11)

This formulation clearly links pilot-normalized observations to channel parameters,
laying a solid foundation for accurate channel estimation and sparse recovery methods.

Grid-based Approximation and Off-grid Modeling

Let τ̃ = {τ̃1, . . . , τ̃N} be a uniform delay grid spanning the interval [0, τmax), with grid
spacing ∆ = τmax/N . Typically, we have K < Np ≪ N where Np is the length of Cycle
Prefix (CP). Each true delay τk is assumed close to some grid point τ̃nk

. We define the
offset as:

βn = τk − τ̃nk
, βn ∈

(
−∆

2
,
∆

2

)
, (4.12)

where n = nk indicates the nearest grid index to τk.
To capture off-grid effects, we apply a second-order Taylor expansion to the k-th delay

steering vector of matrix Φ(τ ):

ϕ(τk) ≈ a(τ̃nk
) + b(τ̃nk

)βn +
1

2
c(τ̃nk

)β2
n, (4.13)

with:
a(τ̃nk

) = ϕ(τ̃nk
),

b(τ̃nk
) =

∂ϕ(τ)

∂τ

∣∣∣
τ=τ̃nk

,

c(τ̃nk
) =

∂2ϕ(τ)

∂τ 2

∣∣∣
τ=τ̃nk

.

(4.14)

We define dictionary matrices for convenience:

A = [a(τ̃1), . . . , a(τ̃N)], B = [b(τ̃1), . . . ,b(τ̃N)], C = [c(τ̃1), . . . , c(τ̃N)]. (4.15)
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Let x ∈ CN be a sparse vector such that:

xn = hk, if n = nk; xn = 0, otherwise. (4.16)

Absorbing approximation errors into the noise term, the measurement model becomes:

y =

[
A+B diag(β) +

1

2
C diag(β)2

]
x+ v. (4.17)

This formulation facilitates simultaneous recovery of the sparse coefficient vector x,
indicating active delay bins, and the off-grid deviations β, thereby refining delay estimates
beyond the grid resolution. Setting C to zero simplifies (4.17) to a first-order off-grid
approximation.

Estimating continuous delays τ requires determining both the sparse support in x
and the corresponding offsets β. This paper employs a Bayesian inference framework and
proposes an iterative algorithm for jointly estimating these parameters, as detailed in the
subsequent section.

4.3 Off-Grid Sparse Bayesian Inference

4.3.1 Sparse Bayesian Formulation

Under the assumption of white (circular symmetric) complex Gaussian noise, we have

p(v|λ) = CN (v|0, λINp), (4.18)

where λ denotes the noise variance. Then the likelihood becomes

p(y|x,β) = CN (y|[A+Bdiag(β) +
1

2
Cdiag(β)2]x, λINp). (4.19)

We assume that the noise variance λ is unknown and will be estimated during inference.
In Sparse Bayesian Learning (SBL), the unknown coefficients x ∈ CN are modeled as

decorrelated zero-mean complex Gaussian variables:

p(x|γ) =
N∏

n=1

CN (xn|0, γn), (4.20)

where γ = [γ1, · · · , γN ]T contains the nonnegative hyperparameters that control the spar-
sity of x. When γn = 0, the corresponding xn is forced to zero. Due to automatic
relevance determination (ARD), many γn naturally converge to zero. Here, we treat γ as
deterministic but unknown and impose a non-informative prior on it.

The off-grid delay biases β are assumed to follow a uniform prior:

p(β) =
N∏

n=1

p(βn) = U

((
−∆

2
,
∆

2

)N
)
, (4.21)

where ∆ is the uniform grid spacing in the delay domain. This reflects the assumption
that the true delays lie near the grid, but not exactly on it.

The joint posterior distribution over the unknowns is therefore:

p(x,y,β|γ) = p(x|γ) · p(y|x,β) · p(β), (4.22)

with each term defined in (4.19), (4.20), and (4.21). This captures the hierarchical
Bayesian formulation for off-grid delay estimation.
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4.3.2 Stein’s Unbiased Risk Estimator for Estimating γ

We estimate γ and β in an alternating fashion. Assuming a current estimate β̂, we define:

H(β̂) = A+B diag(β̂) +
1

2
C diag(β̂)2, (4.23)

and rewrite the model as:
y = H(β̂)x+ v. (4.24)

The posterior of x is Gaussian:

p(x|y) = CN (x|µ,Σ) , (4.25)

with:
Γ = diag(γ),

R = H(β̂)ΓH(β̂)H + λINp ,

µ = ΓH(β̂)HR−1y,

Σ = Γ− ΓH(β̂)HR−1H(β̂)Γ.

(4.26)

Following the Component-Wise Conditionally Unbiased Linear Minimum Mean-Square
Error (CWCU-LMMSE) estimator [106] framework, the instantaneous estimate of xn is:

x̂n(0) = xn + x̃n(0), (4.27)

where x̃n(0) has variance σ2
x̃n(0)

.
The CWCU-LMMSE estimate of xn is:

x̂n(0) =
HH

n

(∑
j ̸=n γ̂jHjH

H
j + λI

)−1

y

HH
n

(∑
j ̸=n γ̂jHjHH

j + λI
)−1

Hn

, (4.28a)

σ2
x̃n(0) =

HH
n

(∑
j ̸=n

γ̂jHjH
H
j + λI

)−1

Hn

−1

. (4.28b)

The posterior mean in SBL is:

x̂n =
γn

γn + σ2
x̃n(0)

x̂n(0). (4.29)

Applying Stein’s unbiased risk estimation (SURE), we obtain:

SURExn(γn) =

(
σ2
x̃n(0)

γn + σ2
x̃n(0)

)2

|x̂n(0)|2 + 2
σ2
x̃n(0)

γn

γn + σ2
x̃n(0)

, (4.30)

which is minimized when:

γ̂n = max
(
|x̂n(0)|2 − σ2

x̃n(0), 0
)
. (4.31)
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4.3.3 Expectation Propagation for Estimating β

To estimate β, we consider the posterior:

p(β|y, γ̂) = p(y|β, γ̂)p(β)∫
p(y|β, γ̂)p(β)dβ

, (4.32)

where
p(y|β, γ̂) = CN (y|0,R(β)), (4.33)

R(β) = H(β)diag(γ̂)HH(β) + λI. (4.34)

This posterior is intractable due to the high-dimensional integral. Thus, we propose
an EP-like approximation:

p(β|y) ≈ q(β) =
p(y|β)

∏N
n=1 δ(βn − β̂n)∫

p(y|β)
∏N

n=1 δ(βn − β̂n)dβ
. (4.35)

To update β̂n, we define:

ψ(y|βn) =
∫
p(y|β)

∏
i ̸=n

δ(βi − β̂i)dβn̄, (4.36)

where, dβn̄ denotes integration with respect to all components of β except βn, i.e., dβn̄ =∏
i ̸=n dβi. The Dirac factors

∏
i ̸=n δ(βi − β̂i) fix all coordinates βi (i ̸= n) to their current

estimates β̂i, so that ψ(y|βn) can be interpreted as the likelihood function of βn when the
remaining coordinates are held constant.

Then compute:

β̂n =

∫
βnψ(y|βn)p(βn)dβn∫
ψ(y|βn)p(βn)dβn

. (4.37)

For a Gaussian likelihood,

ψ(y|βn) =
1

πNp det(Ξn̄)
exp

(
−yHΞ−1

n̄ y
)
, (4.38)

with:
Ξn̄ = H(β̂n̄) + βnBn +

1

2
β2
nCn. (4.39)

Finally, the update is:

β̂n =

∫ ∆/2

−∆/2
βn · 1

det(Ξn̄)
e−yHΞ−1

n̄ ydβn∫ ∆/2

−∆/2
1

det(Ξn̄)
e−yHΞ−1

n̄ ydβn
. (4.40)

Even though (4.40) lacks an analytic form, it can be computed numerically as a one
dimension integration using appropriate numerical tools.
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4.3.4 Noise Variance λ Estimation

Once β̂ and γ̂ have been estimated, we construct the matrix H(β̂) by selecting the columns
corresponding to the nonzero entries in γ̂, and form a reduced sensing matrix Φ̂. The
sparse vector x is then estimated using the least squares estimator (LSE):

x̂ = (Φ̂HΦ̂)−1Φ̂Hy. (4.41)

The noise variance hyperparameter λ is updated via:

λ̂ =
∥y − Φ̂x̂∥22

Np

. (4.42)

As previously discussed, we treat x as deterministic apart from its sparsity structure.
Estimating λ while simultaneously learning γ may introduce statistical bias. Therefore,
further investigation is warranted to analyze the robustness and impact of this estimation,
particularly in the context of sparse Bayesian learning applied to delay estimation.

4.3.5 SURE-SBL-EP Delay Estimation Algorithm

The complete iterative procedure for estimating delay components via the SURE-SBL-EP
framework is summarized in Algorithm 4.1. The initialization of hyperparameters used
in the simulations is provided in Section 4.4.

4.4 Numerical Simulation
To evaluate the performance of the proposed delay estimation algorithms, extensive sim-
ulations were conducted under various signal-to-noise ratio (SNR) conditions. In each
Monte Carlo (MC) trial, a random multipath channel was generated using the following
parameters:

Parameter Value

Number of subcarriers, K 64
Cyclic prefix (CP) ratio 0.25 (Ncp = 16)
Sampling period, Ts 1

0.960MHz

CP duration, Tcp NcpTs
Number of pilots 16 (uniform comb pattern)
Number of paths, L 3 (with minimum delay spacing 0.1Tcp)
Pilots BPSK

Table 4.1: Fractional Delay Recovery Simulation Parameters

For each Monte Carlo realization, path delays and complex gains were generated ran-
domly. The path delays were intentionally set as non-integer multiples of the sampling
period to emphasize the challenge of off-grid delay estimation. The complex gains were
independently drawn from a circularly symmetric complex Gaussian distribution to reflect
realistic fading characteristics.

The simulations compared five different delay estimation algorithms. First, the Sparse
Bayesian Learning (SBL) algorithm was tested using a fixed delay grid with N = 640. To
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Algorithm 4.1 Delay Estimation via SURE-SBL-EP
1: Input: Normalized received vector y, dictionary size N , sparsity level K, thresholds
ϵ1, ϵ2, ϵ3

2: Output: Estimated delays {τ̂k}Kk=1

3: Initialize: γ(1) ← 1N , β(1) ← 0N , ζ ← 1, delay grid τ̃ , noise level estimate λ̂(1) ← 0.1
4: Compute dictionary matrices A, B, and C based on τ̃
5: repeat
6: ζ ← ζ + 1
7: repeat ▷ Update γ
8: for n = 1 to N do
9: Update x̂n(0) and σ2

x̃n(0)
using CWCU-LMMSE

10: Update γ(ζ)n using SURE rule in Eq. (4.31)
11: end for
12: until ∥γ(ζ)−γ(ζ−1)∥2

∥γ(ζ)∥2 < ϵ1

13: Retain top-K entries in γ(ζ), zero out the rest
14: repeat ▷ Update β
15: for n = 1 to N do
16: if γ(ζ)n ̸= 0 then
17: Update β̂(ζ)

n using Eq. (4.40)
18: else
19: Set β̂(ζ)

n ← 0
20: end if
21: end for
22: until ∥β(ζ)−β(ζ−1)∥2

∥β(ζ)∥2 < ϵ2

23: Update noise variance λ̂(ζ) via Eq. (4.42)
24: until ∥λ̂(ζ)−λ̂(ζ−1)∥

∥λ̂(ζ)∥2 < ϵ3

25: Return: Estimated delays {τ̂k}Kk=1 corresponding to non-zero entries in β(ζ)

address off-grid effects, two refinement approaches based on Taylor expansions were also
evaluated: the first-order Taylor refinement, which iteratively improves the delay esti-
mates, and the second-order Taylor refinement, which further enhances the off-grid delay
resolution. For comparison, the classical Orthogonal Matching Pursuit (OMP) method,
also using a fixed delay grid, was included. Additionally, the Approximate Message Pass-
ing (AMP) algorithm was incorporated, which adaptively solves the LASSO problem for
delay estimation.

To visualize the off-grid delay estimation capabilities, a single MC realization was
performed at two representative SNR levels: 0 dB and 20 dB. For each SNR, the estimated
delay impulses were compared to the true impulses to highlight how well each method
captures the true (non-integer) delays. Once the delay support was identified, the complex
gains were refined using least-squares fitting for all methods.

Figures 4.1a and 4.1b illustrate the reconstructed sparse delay impulses at SNR levels
of 0 dB and 20 dB, respectively. These results demonstrate that the refinement-based
methods, particularly the second-order Taylor refinement, accurately capture the off-grid
delays even in low-SNR scenarios.

To assess the average performance of each algorithm, extensive MC simulations were
conducted. For each SNR level from 0dB to 20 dB in 5 dB increments, 104 independent
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Figure 4.1: Reconstructed delay impulses for different SNRs in a single MC realization.

MC realizations were performed. The root mean square error (RMSE) of the estimated
delays was computed and averaged across all trials.

Figure 4.2 shows the RMSE versus SNR for all methods. The second-order Taylor
refinement method (EP-SURE-SBL-2nd) consistently achieves the lowest RMSE, high-
lighting its superior delay estimation accuracy across the entire SNR range. Notably, the
performance gap between the methods widens at higher SNRs, underscoring the benefits
of the proposed refined off-grid delay estimation techniques. These findings confirm the
effectiveness of the proposed second-order Taylor refinement method for robust off-grid
delay estimation in noisy environments.

4.5 Conclusions
In this chapter, we proposed the EP-SURE-SBL algorithm for estimating the delay and the
number of paths in multipath channels. The algorithm divides the estimation problem into
two key components: grid-on delay estimation and off-grid error correction. The grid-on
estimation leverages sparse Bayesian learning to capture the sparse multipath structure,
while the variance hyperparameter is estimated using Stein’s Unbiased Risk Estimate
(SURE), avoiding reliance on traditional Expectation-Maximization (EM) methods. For
the off-grid error correction, we approximate the Minimum Mean Square Error (MMSE)
bias through Expectation Propagation (EP), enabling refined delay estimation beyond
the grid resolution. Extensive simulations have confirmed the feasibility and accuracy of
the proposed approach, showing that it can reliably estimate the true delays and path
gains, even in the presence of noise. Future work will focus on extending the approach to
jointly estimate delay and Doppler shift, addressing scenarios with doubly off-grid effects.
Additionally, this chapter lays the foundation for subsequent distance estimation tasks
by introducing a robust framework for estimating the path number and delays, which are
critical for reconstructing the power delay profile (PDP).
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Figure 4.2: RMSE of estimated delays versus SNR, averaged over 104 MC realizations.
The second-order Taylor refinement method achieves the best performance across all
SNRs.
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Chapter 5

Multipath Component Power Delay
Profile Based Ranging

5.1 Introduction
In our work, we propose a novel multipath component power delay profile (MPCPDP)-
based ranging method that exploits the rich multipath structure of the wireless chan-
nel. Unlike RSS-based methods that summarize the power delay profile (PDP) into a
single metric, our approach leverages the evolution of attenuation across the entire delay
spread. Specifically, we model the attenuation of each multipath component (MPC) using
a Nakagami-m fading model and establish a relationship between the model parameters
and the propagation distance. This formulation allows for a more robust and accurate
ranging estimation.

Nevertheless, the Nakagami-m fading model complicates the estimation process due to
intractable integrals in the likelihood function. To address this challenge, we introduce the
EM-ReVAMP algorithm, which combines the Expectation-Maximization (EM) framework
with the Revisited Vector Approximate Message Passing (ReVAMP) algorithm. While the
EM algorithm is well-suited for problems with latent variables, it often requires approx-
imations of intractable posterior distributions. The ReVAMP algorithm fulfills this need
by efficiently approximating the posterior distribution of the complex attenuation coeffi-
cients through approximate belief propagation, thus enabling practical implementation of
the EM algorithm in our context [107]. Compared to the original VAMP algorithm [108],
ReVAMP offers enhanced flexibility by providing individual variance estimates for each
MPC, resulting in improved accuracy.

Our comprehensive simulations confirm the theoretical feasibility and effectiveness of
the proposed MPCPDP-based ranging method and the EM-ReVAMP algorithm. How-
ever, it is important to note that experimental validation in real-world environments
remains a future step. This raises potential concerns regarding the generalizability of
the Nakagami-m model in diverse scenarios. Fortunately, the EM-ReVAMP algorithm’s
inherent versatility allows it to adapt to other statistical fading models with minor mod-
ifications [107], broadening its applicability.

Although our method may not match the precision of some state-of-the-art techniques
that rely on additional measurements or specialized hardware, it significantly outperforms
RSS-based ranging methods in terms of accuracy while maintaining a low implementa-
tion cost. This makes our approach a practical alternative when additional hardware is
unavailable.
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The key contributions of this work are summarized as follows:

• We propose a novel MPCPDP-based ranging method that requires only the channel
impulse response and models the statistical attenuation of each MPC.

• We introduce the EM-ReVAMP algorithm, a practical and robust approach for max-
imum likelihood estimation with hidden random variables and intractable posteriors.

• We validate the superior accuracy and robustness of our proposed method and
algorithm through comprehensive simulations employing the Nakagami-m fading
model.

The remainder of this chapter is organized as follows: Section 5.2 presents the system
model, including the OFDM model, the Nakagami-m amplitude fading of MPCs, and the
MPCPDP-based ranging estimation. Sections 5.3 and 5.4 detail the EM and ReVAMP
algorithms, respectively. Section 5.5 describes the procedure for estimating the line-
of-sight (LoS) distance using the EM-ReVAMP algorithm and derives the Cramér-Rao
bound (CRB) for the special case where the Nakagami-m model reduces to Rayleigh
fading. Section 5.6 showcases the simulation results, and Section 5.7 concludes with a
discussion of our findings and directions for future research.

5.2 System model

OFDM model

The widely preferred modulation technique in communication networks is OFDM, which
finds extensive application in 5G-NR [109]. In the OFDM model, the received baseband
signal can be mathematically expressed as the convolution of the transmitted OFDM
signal, denoted as s(t), and the channel impulse response, denoted as g(t). Additionally,
complex additive white Gaussian noise, represented as v(t), is added to the received signal.
This relationship can be represented as:

r(t) = s(t) ∗ g(t) + v(t), (5.1)

where * denotes the convolution operation. After the received signal, r(t), is sampled at
a rate of Ts, time and frequency synchronizations are performed prior to the N -point fast
Fourier transform (FFT) operation. The output of the FFT, denoted as y, can be written
as:

y = Xh+ v ∈ CN×1, (5.2)

where X is an N×N diagonal matrix containing the transmitted symbols on its diagonal,
h represents the channel frequency response (CFR) as a vector, and v is a vector of inde-
pendently and identically distributed (i.i.d.) complex zero-mean Gaussian noise samples
with equal variance σ2

v .
In the case of a block fading channel that remains constant over the duration of a

packet, the channel impulse response (CIR) can be described as follows: [110]

g(t) =
L−1∑
l=0

alδ(t− κlTs), (5.3)
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where al ∈ C and κlTs(κ0 < κ1 < ... < κL−1 and κl ∈ Z+) represent the gain and delay
of the lth path, respectively, and δ(t) denotes the Kronecker delta function. Let

h = [h0, h1, ... , hN−1]
T , (5.4)

be the discrete CFR. Under the assumption that the sampling starts at t = 0, the n th
element of h can be written as [111]:

hn =
L−1∑
l=0

ale
−jκlω|

ω=
2π[n]N

N

, (5.5)

where

[n]N =

{
n, n ≤ N/2− 1,

n−N, n ≥ N/2 + 1.
(5.6)

Therefore, we can present (5.5) as

h = Ta ∈ CN×1 (5.7)

where a ∈ CL×1 is a vector filled with fading gains and T ∈ CN×L is a transformation
matrix that Tkl = e−jκlω|

ω=
2π[k]N

N

.

Nakagami-m amplitude fading of MPCs

As discussed in the previous subsection, the received signal in OFDM can be represented
as follows:

y = XTa+ v = ha+ v; v ∼ CN (0, σ2
vI), (5.8)

where a ∈ CL×1 denotes the complex attenuation coefficients (amplitude m and phase
ϕ). For each individual element ai = mie

jϕi of a, we assume its magnitude mi with a
Nakagami-m distribution and phase ϕi with a uniform distribution. Therefore, the pdf of
magnitude and phase can be expressed as follows:

p(mi|Ωi) =
2mmm2m−1

i

Γ(m) Ωm
i

exp

[
−mm2

i

Ωi

]
,mi > 0,m ≥ 0.5; (5.9a)

p(ϕi) =
1

2π
, ϕi ∈ [0, 2π), (5.9b)

where Γ(·) denotes the gamma function m is the shape parameter of the Nakagami-m
distribution and Ωi is the average power intensity of path i. The shape parameter m con-
trols the fading characteristics of the distribution. For lower values of m, the distribution
resembles a Rayleigh distribution with a more rapid decay. As m increases, the distribu-
tion becomes more concentrated around its mean, resembling a more concentrated fading
behavior. In practice, m is often estimated from channel measurements to accurately
model the fading characteristics of the specific wireless channel. Referring to [112], the
parameter Ωi can be defined as:

Ωi(d0) = PtGtGr

[
λ

4π(d0 + cτi)

]n
= G0(d0 + cτi)

−n, (5.10)
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in the given equation, several variables are defined as follows: Pt represents the trans-
mitting power, Gt denotes the transmitting antenna amplification, λ is the wavelength of
the electromagnetic wave, c is the velocity of light, n represents the propagation fading
factor influenced by the environment, d0 indicates the LoS distance, and τi indicates the
propagation delay between the i-th path and the LoS path.

In (5.10), the term PtGtGr

(
λ
4π

)n can be considered as a constant, denoted as G0, which
combines the effects of transmit power, antenna gains, wavelength, and path loss exponent.
The propagation fading factor n plays a crucial role in determining the rate of signal
attenuation with distance and can vary depending on the characteristics of the wireless
channel and the environment in which the signals propagate. As the propagation distance
d0 + cτi increases, Ωi decreases following an inverse power-law relationship (d0 + cτi)

−n.
This allows us to estimate the specific range d0 based on Ωi when τi is known in a given
environment.

Using the Jacobi determinant [113], we can obtain the pdf of complex fading coefficient
ai as follows:

pai(ai|Ωi(d0)) =
mm|ai|2m−2

π Γ(m) Ωm
i

exp

[
−m |ai|

2

Ωi

]
. (5.11)

For simplicity, we denote pai(ai|Ωi(d0)) by pai(ai|d0). Thus, the pdf of the collection a
can be given as:

pa(a|d0) =
L−1∏
i=0

pai(ai|d0). (5.12)

Before presenting the specific ranging estimation process, we assume the presence of a LoS
path with an unknown distance d0, as well as measurable time delays between NLoS paths
and the LoS path. While acknowledging the possibility of measurement and calibration
biases, this paper does not focus on their effects. Consequently, we disregard these biases
in the subsequent estimation process.

MPCPDP-based Ranging Estimation

Our objective is to estimate d0 directly from y. To achieve this, we will employ the
maximum likelihood estimation (MLE) method, which transforms the problem into the
following equation:

d̂0 = argmax
d0

ℓ(d0;y) = argmax
d0

lnL(d0;y), (5.13)

where L(·) and ℓ(·) represent the likelihood function and log-likelihood function, respec-
tively.

Regarding the optimization problem (5.13), the likelihood function can be expressed
as:

L(d0;y)=p(y|d0)=
∫
p(a,y|d0)da=

∫
py(y|a)pa(a|d0)da. (5.14)

The pdf p(y|d0) is crucial for estimating the LoS range d0 based on the received signal y
in (5.13). However, solving the integral problem directly to acquire p(y|d0) proves to be
intractable, as finding an analytical form poses significant challenges. Furthermore, the
latent variable a is unobserved, and its distribution is unknown before reaching d0. To
tackle these challenges, the EM-ReVAMP algorithm is introduced in Sections 5.3 and 5.4.
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5.3 Review of Expectation Maximization (EM)
As we discussed before, in the linear mixing data model described by (5.8), we have
a known measurement matrix h ∈ CM×L and an non-identically and independent dis-
tributed (n.i.i.d.) prior pa(a|d0) =

∏L−1
i=0 pai(ai|d0) for the vector a. Additionally, we

consider a zero-mean Gaussian measurement noise p(v) = CN (v;0M ,Cvv) with covari-
ance matrix Cvv ∈ RM×M .

To address the optimization problem (5.13), the Expectation-Maximization (EM) al-
gorithm [114] proves to be a suitable solution. This algorithm is effective for estimation
problems involving latent variables, such as a, which are unobserved.

Using minorization maximization (MM) [115], we construct a more easily optimized
lower bound of the log-likelihood function and iteratively approximate the optimal pa-
rameters by continuously optimizing this lower bound. Assuming at t th iteration that
we have the estimated d0(t), which allows us to write

ℓ(d0)− ℓ(d0(t)) = ln

∫
py(y|a)pa(a|d0)da− ln p(y|d(t)0 )

= ln

∫
py(y|a)pa(a|d0)
p(a|y, d(t)0 )

p(a|y, d(t)0 )da

−
∫
p(a|y, d(t)0 ) ln p(y|d(t)0 )da,

(5.15)

where p(a|y, d0) is the posterior distribution of a as which can be expressed by Bayes’
rule as

p(a|y, d0) =
py(y|a)pa(a|d0)

p(y|d0)
=

py(y|a)pa(a|d0)∫
py(y|a)pa(a|d0)da

. (5.16)

By using the concavity of ln(·) and Jensen’s inequality, (5.15) becomes

ℓ(d0)− ℓ(d0(t)) ≥
∫
p(a|y, d(t)0 ) ln

py(y|a)pa(a|d0)
p(a|y, d(t)0 )

da

−
∫
p(a|y, d(t)0 ) ln p(y|d(t)0 )da

=

∫
p(a|y, d(t)0 ) ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

da

= E
p(a|y,d(t)0 )

[
ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

]
.

(5.17)

The lower bound B(d0, d(t)0 ) can be obtained as

B(d0, d(t)0 ) = ℓ(d0
(t)) + E

p(a|y,d(t)0 )

[
ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

]
. (5.18)

The updated d(t+1)
0 can be obtained from

d
(t+1)
0 = argmax

d0
B(d0, d(t)0 )

= argmax
d0

{
ℓ(d0

(t)) + E
p(a|y,d(t)0 )

[
ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

]}
= argmax

d0
E

p(a|y,d(t)0 )
[ln p(y, a|d0)] .

(5.19)
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At convergence we get d(t)0 = d
(t+1)
0 which leads to the inequality becoming an equality:

ln

∫
py(y|a)pa(a|d(t+1)

0 )

p(a|y, d(t)0 )
p(a|y, d(t)0 )da = ln p(y|d(t+1)

0 )

=

∫
p(a|y, d(t)0 ) ln

py(y|a)pa(a|d(t+1)
0 )

p(a|y, d(t)0 )
da

⇐⇒ ℓ(d
(t+1)
0 )− ℓ(d0(t)) = 0.

(5.20)

This proves that the EM algorithm can converge to the (local) optimal point. Moreover,
the EM iteration can be specified as:

d
(t+1)
0 = argmax

d0
E
p(a|y,d(t)0 )

[ln p(a,y|d0)]

= argmax
d0

E
p(a|y,d(t)0 )

[ln pa(a|d0) + ln py(y|a)]

= argmax
d0

E
p(a|y,d(t)0 )

[ln pa(a|d0)] .

(5.21)

When considering the pdf of a as described in (5.11) and (5.12), the EM iteration in (5.21)
can be transformed as follows:

d
(t+1)
0 = argmax

d0
E

p(a|y,d(t)0 )

[
L−1∑
i=0

(− lnΩi(d0)−
|ai|2

Ωi(d0)
)

]

= argmin
d0

L−1∑
i=0

[
lnΩi(d0) +

E
p(a|y,d(t)0 )

[|ai|2]
Ωi(d0)

)

]
,

(5.22)

where Ωi(d0) was defined in (5.10). Here, as it is easy to find that both lnΩi(d0) and 1
Ωi(d0)

are convex functions w.r.t. d0. This characteristic ensures that the entire optimization
function is convex, with only one global minimum point for d0.

However, in this scenario, the EM algorithm remains intractable because obtaining the
posterior distribution p(a|y, d(t)0 ) is challenging due to the integration involved in (5.16).
Therefore, it becomes crucial to develop an algorithm that approximates this posterior
distribution with another tractable distribution. To achieve this goal, we propose an
algorithm called Revisited Vector Approximate Message Passing (ReVAMP).

5.4 Revisited Vector Approximate Message Passing (Re-
VAMP)

Our objective is to find a distribution q(a) that approximates the posterior distribution
p(a|y, d(t)0 ) with minimal Kullback-Leibler divergence (KLD) between p(a|y, d(t)0 ) and q(a),
where d(t)0 is given. Mathematically, we have:

q̂(a) = argmin
q(a)

DKL [p(a|y, d0)∥q(a)] . (5.23)

As seen in (5.22), the posterior distribution p(a|y, d(t)0 ) is used to get second order mo-
ment of each ai. To accomplish this, we choose q(a) as complex Gaussian distribution
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CN (a;m,Cm), which turns to match the first-order and second-order moments of q(a)
and p(a|y, d(t)0 ) [116] if (5.23) is satisfied as follows:

Eq(a)[a] = E
p(a|y,d(t)0 )

[a], (5.24a)

Eq(a)[aa
H ] = E

p(a|y,d(t)0 )
[aaH ]. (5.24b)

It ensures that even with an approximate distribution q(a), the updated estimation value
of d(t+1)

0 in (5.22) will be the same as if it were calculated using the true posterior distribu-
tion p(a|y, d(t)0 ). However, solving equation (5.23) directly is computationally intractable.
Therefore, we introduce the ReVAMP algorithm [107] as a solution.

To begin, we consider the factorization of the joint distribution as follows:

p(a,y|d0) = py(y|a)
L−1∏
i=0

pai(ai|d0). (5.25)

This factorization can be represented as a factor graph, as shown in Fig. 5.1. In this
graph, the variable nodes ai, where i = 0, . . . , L − 1, are connected to the factor nodes
py(y|a) and pai(ai).

py(y|a)

aL−1

· · ·

a0

paL−1
(aL−1)

· · ·

pa0(a0)

Figure 5.1: Factor graph of ReVAMP

Applying the sum-product rule [108], the message µpy→ai(ai) passed from left factor
node py(y|a) to variable node ai can be expressed as:

µpy→ai(ai) ∝
∫
py(y|a)

∏
j ̸=i

µaj→py(aj)daj, (5.26)

where µaj→py(aj) represents the message passed from variable node aj to left factor node
py(y|a). In addition, the message µpai→ai(ai) passed from right factor node pai to variable
node ai can be represented as:

µpai→ai(ai) = pai(ai). (5.27)

At variable node ai, the received messages bsp(ai) ∝ µpy→ai(ai)µpai→ai(ai) are ap-
proximated with a complex Gaussian belief (approximated posterior) bapp(ai) = q(ai) =
CN (ai; âi, τai) by minimizing the KLD. This approximation is formulated as:

b̂app = argmin
bapp

DKL(bsp(ai)||bapp(ai)). (5.28)
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Analogous to the sum-product rule, the messages µai→py(ai) shown in (5.26) can be cal-
culated by:

µai→py(ai) =
bapp(ai)

µpy→ai(ai)
. (5.29)

In the following, we will provide a detailed derivation of ReVAMP for the case where the
measurement noise is assumed to be complex Gaussian.

5.4.1 Extrinsic to variable nodes

Assuming that at each iteration, the message µai→py(ai) passed from each variable node
ai to left factor node py(y|a) is redefined as assumed prior qi(ai) for all i = 0, . . . , L− 1,
where qi(ai) is supposed to be a complex Gaussian distribution. In this case, we can prove
by induction that they will remain complex Gaussian. Without loss of generality, let us
define qi(ai) = CN (ai; pi, τpi), where pi and τpi are the mean and variance of assumed
prior of each ai, respectively.

In this case, the joint distribution
∏L−1

i=0 qi(ai) is equal to CN (a;p,Dp), where p =[
p0 . . . pL−1

]T and Dp is a diagonal matrix whose ith entry is τpi . The real posterior p(a|y)
is approximated as q(a) = CN (a;m,Cm) ∝ p(y|a)

∏L−1
i=0 qi(ai).

In addition, the message µpy→ai(ai) is recalled as the extrinsic message qy(ai) for all
i = 0, . . . , L − 1, where qy(ai) is supposed to be a complex Gaussian distribution with
mean ri and variance τri . The extrinsic message for any variable node ai is obtained by:

qy(ai) ∝

∫
a/i
p(y|a)CN (a;p,Dp)da/i

qi(ai)

∝

∫
a/i
CN (a;m,Cm)da/i

CN (ai; pi, τpi)
,

(5.30)

where a/i represents a vector that is the same as a except that it excludes the i-th entry,
with

Cm =
(
hHC−1

vv h+D−1
p

)−1
, (5.31a)

m = Cm

(
hHC−1

vv y +D−1
p p
)
. (5.31b)

By following these steps, we can derive the extrinsic messages for the variable nodes,
which play a crucial role in the algorithm for handling the complex Gaussian measure-
ment noise. Additionally, we define τm =

[
τm0 . . . τmL−1

]T
= diag(Cm). Exploiting the

properties of multivariate complex Gaussian distribution and (5.30), the extrinsic message
qy(ai) is represented by the complex Gaussian distribution CN (ai; ri, τri) with

ri =
τpimi − τmi

pi
τpi − τmi

, (5.32a)

τri =
τmi

τpi
τpi − τmi

. (5.32b)

To approximate the belief q(ai) = CN (ai; âi, τai) at variable node ai as a complex
Gaussian distribution, we minimize the KLD as

argmin
q(ai)

DKL [p(ai)CN (ai; ri, τri)||q(ai)]

⇔ arg min
âi,τai

DKL [p(ai)CN (ai; ri, τri)||CN (ai; âi, τai)] .
(5.33)

68



Define the normalization factor as

Zi(ri, τi) =

∫
p(ai)CN (ai; ri, τri)dai, (5.34)

then we obtain

âi =

∫
aipai(ai)CN (ai; ri, τri)dai

Zi(ri, τi)
, (5.35a)

τai =

∫
|ai − âi|2pai(ai)CN (ai; ri, τri)dai

Zi(ri, τi)
. (5.35b)

It’s worth noting that pai(ai) in (5.35) is not restricted to the Nakagami-m propagation
model prior of (5.11); it can accommodate other priors as well. When transitioning to
a different statistical propagation model, minor adjustments of prior should be made to
ensure the continued functionality of the ReVAMP algorithm.

5.4.2 Passing the Approximation to the Factor Node

The assumed prior qi(ai) can be expressed as the quotient of two complex Gaussian pdfs
w.r.t. q(ai) and qy(ai). This ensures that the resulting message distribution qi(ai) remains
complex Gaussian. Specifically, it is defined as:

qi(ai) = CN (ai; pi, τpi) ∝
CN (ai; âi, τai)

CN (ai; ri, τri)
. (5.36)

From (5.36), we can determine pi and τpi as follows:

pi =
τri âi − τairi

τaiτri
, (5.37a)

τpi =
τriτai
τri − τai

. (5.37b)

It is worth noting that when using the sequential updating method, the complexity
of the matrix inverse operation in (5.31) can be reduced by employing matrix inverse
lemma. Let us denote the result of τnewpi

during the update messages of the ai and define
∆pi =

τpi−τnew
pi

τpiτ
new
pi

. Moreover, we define hC(·) as the updating of the Cm with the new value
of τnewpi

as follows:

Cnew
m = hC(Cm, ei,∆pi) =

[
C−1

m +∆pieie
T
i

]−1

= Cm −Cmei
(
1/∆pi + eTi Cmei

)−1
eTi Cm, (5.38)

where ei is a unit vector with only the i-th entry set to 1. To handle the cycles, we define
e0 = eN .

The computation for updating m in (5.31) can also be simplified with the same tech-
nique. We define Ψpi =

pnew
i

τnew
pi

− pi
τpi

and denote hm(·) as its update equation as follows:

mnew = hm(m,Cm, ei,∆pi ,Ψpi)

= Cnew
m (hTC−1

vv y +Dpp+Ψpiei)

= m+
Ψpi −∆pie

T
i m

1 + ∆pie
T
i Cmei

Cmei. (5.39)
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In summary, our algorithm iteratively computes messages from factor nodes to variable
nodes and subsequently calculates messages from variable nodes back to factor nodes until
convergence is achieved. The final approximation for p(a|y) is represented by q(a) =
CN (a;m,Cm). Importantly, these update steps can be performed in parallel, yielding
a similar algorithm to VAMP but with individual variance updates. By leveraging the
matrix inverse lemma, the sequential update method maintains the same complexity as
the parallel update method. Algorithm 5.1 delineates the detailed steps of this process.

5.4.3 Relation to Expectation Propagation (EP)

Algorithm 5.1 can be regarded as an EP algorithm by approximating the factorization in
Equation (5.25) as follows:

p(a|y) ≃ q(a) ∝ p(a,y) ≃ py(y|a)
L−1∏
i=0

qi(ai), (5.40)

where each qi(ai) is a Gaussian distribution with mean pi and variance τpi . To further
explore the EP connection, let us consider the optimization problem:

argmin
qnew

DKL

[
q(a)

qi(ai)
p(ai)||qnew(a)

]
= argmin

qnew

∫
ai

∫
a/i

q(a)da/i
p(ai)

qi(ai)
ln

[
p(ai)

qnew(ai)

]
dai.

(5.41)

Let us continue by introducing h(ai) =
∫
a/i

[q(a)da/i]/qi(ai) and then we can rewrite
the optimization problem (5.41) as follows:

argmin
qnew

∫
ai

h(ai)pai(ai) ln

[
h(ai)pai(ai)

h(ai)qnew(ai)

]
dai

= argmin
qnew

DKL [h(ai)pai(ai)||h(ai)qnew(ai)] .
(5.42)

In Algorithm 5.1, this marginal extrinsic is represented as a complex Gaussian distribu-
tion with mean ri and variance τri . Lastly, the first equality in (5.41) holds because during
the update for the i-th entry, for all k ̸= i, the minimum is achieved when qnew(ak) = q(ak).

5.4.4 Implementation Details

For the practical implementation with finite-dimensional h, we suggest incorporating small
enhancements to reVAMP, as discussed in Algorithm 5.1.

Firstly, it is advisable to clip the variances τri and τnewpi
within a positive interval

[γmin, γmax]. Occasionally, the ReVAMP algorithm may yield negative values for τri and
τnewpi

if not addressed. In our numerical results presented in Section 5.6, we utilized
γmin = 10−10 and γmax = 1010.

Secondly, rather than mandating ReVAMP to complete several iterations, we propose
stopping the iterations when the normalized difference ∥mnew −m∥/∥mnew∥ falls below
a tolerance threshold ε. In Section 5.6, our numerical results employed ε = 10−4.

Lastly, it’s important to note that the ReVAMP algorithm requires the user to initialize
p, τp, m and Cm. Generally, all elements of τp and all diagonal elements of Cm must be
positive; other initializations do not significantly affect the final result. In our experiments
in Section 5.6, we set all elements in m, p, and τp to be 1, and Cm to be an identity
matrix.
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Algorithm 5.1 ReVAMP (Complex Gaussian measurement noise via sequential updat-
ing)
Ensure: m,Cm

Require: y, h, pa(a), p(v)
1: Initialize: m,Cm,p, τp
2: repeat
3: repeat [For each i = 0 . . . L− 1]
4: [Update the extrinsic]
5: τm = diag(Cm)
6: ri =

τpimi−τmipi
τpi−τmi

7: τri =
τmiτpi
τpi−τmi

8: [Approximate the marginal posterior]
9: Update âi with (5.35a)

10: Update τai with (5.35b)
11: [Propagate the approximation back]
12: pnewi =

τri âi−τairi
τri−τai

13: τnewpi
=

τriτai
τri−τai

14: ∆pi =
1

τpnew
i

− 1
τpi

15: Ψpi =
pnew
i

τnew
pi

− pi
τpi

16: [Update the posterior approximation]
17: Cm = hC(Cm, ei,∆pi)
18: m = hm(m,Cm, ei,∆pi ,Ψpi)
19: until All i-s have been updated
20: p = pnew

21: τp = τ new
p

22: until Convergence

5.5 Ranging estimation with Nakagami-m prior distri-
bution

5.5.1 MPCPDP-based Ranging Method

We propose the EM-ReVAMP algorithm, outlined in Algorithm 5.2, for estimating d0.
This algorithm utilizes ReVAMP sequentially at each step of the EM algorithm to obtain
approximate second-order moments. Specifically, within the ReVAMP part, with given Ωi

in (5.10) w.r.t. d̂0 and prior distribution in (5.11), the marginal posterior approximation
involves the calculation of âi and τai in (5.35a) and (5.35b) can be computed as follows:

âi =
mΩiri

mτri + Ωi

1F1(m+ 1; 2; Ωi|ri|2
mτ2ri+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2ri+τriΩi

)
; (5.43a)

τai =
mΩiτri
mτri + Ωi

1F1(m+ 1; 1; Ωi|ri|2
mτ2ri+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2ri+τriΩi

)
− âiâ∗i , (5.43b)
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where 1F1(a; b; z) represents the confluent hypergeometric function [117], defined by the
hypergeometric series:

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
. (5.44)

The detailed derivation is provided in Appendix.
In Algorithm 5.2, for accelerating convergence, we typically recommend users to ini-

tialize d̂0 based on the actual characteristics of the environment, such as the maximum
range or distance resolution. In our subsequent experiments, we initialized it to 0.1 meter.
Additionally, we set the EM-loop to terminate when the difference of d0 before and after
the iteration is less than 0.1 meters for greater precision and maximum iteration times
to be 20. When transitioning from the Nakagami-m fading model to another statistical
model, the EM-ReVAMP algorithm can be adapted by primarily modifying (5.22), (5.35a),
and (5.35b). These adjustments will enable the algorithm to effectively accommodate the
characteristics of the new statistical model while maintaining its functionality.

5.5.2 Theoretical Cramer-Rao Bound (CRB) For m = 1

When m = 1, the path complex attenuation coefficients a ∈ CL×1 that each element
ai (i = 0, · · · , L − 1) is an i.i.d. complex zero-mean Gaussian random variable, can be
expressed as follows:

a ∼ CN (0,Caa), Caa =

Ω0(d0) · · · 0
... . . . ...
0 · · · ΩL−1(dK)

 . (5.45)

To estimate d0 directly and solely based on y using the maximum likelihood estimator
(MLE) of the pdf of y given Ω(d0), we proceed as follows:

p(y|Ω(d0)) = π−N(det(Cyy))
−1 exp (−yHC−1

yyy) (5.46)

where
Cyy = hCaah

H + σ2
vI. (5.47)

To compute the Fisher Information Matrix (FIM) from the pdf p(y|Ω(d0)), the FIM can
be represented as follows:

Jd0d0 = tr
[
C−1

yy

∂Cyy

∂d0
C−1

yy

∂Cyy

∂d0

]
, (5.48)

where tr denotes the trace operator. After some algebraic computations, we obtain the
expression in (5.48)

∂Cyy

∂d0
= h

∂Caa

∂d0
hH , (5.49a)

∂Caa

∂d0
= −nG0

(d0 + cτ0)
−n−1 · · · 0

... . . . ...
0 · · · d0 + cτK−1)

−n−1

 . (5.49b)

In conclusion, using (5.48) and (5.49), the CRB of d0 w.r.t. MPCPDP-based ranging can
be calculated as follows:

CRBd0 = J−1
d0d0

. (5.50)
Unfortunately, ifm ̸= 1, the high-dimensional integration required to obtain the likelihood
p(y|d0) is intractable, making it impossible to calculate its CRB.
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Algorithm 5.2 EM-ReVAMP

Ensure: d̂0
Require: y, h, pv(v), m, [τ0, · · · , τL−1], G0, n
1: Initialize: d̂0
2: repeat [For t = 0 . . . L− 1]
3: Initialize: m,Cm,p, τp
4: Update Ω(d̂0) w.r.t. G0, n, τi and d̂0 with (5.10)
5: repeat
6: repeat [For each i = 0 . . . L− 1]
7: [Update the extrinsic]
8: τm = diag(Cm)
9: ri =

τpimi−τmipi
τpi−τmi

10: τri =
τmiτpi
τpi−τmi

11: [Approximate the marginal posterior]
12: Update âi with (5.43a)
13: Update τai with (5.43b)
14: [Propagate the approximation back]
15: pnewi =

τri âi−τairi
τri−τai

16: τnewpi
=

τriτai
τri−τai

17: ∆pi =
1

τpnew
i

− 1
τpi

18: Ψpi =
pnew
i

τnew
pi

− pi
τpi

19: [Update the posterior approximation]
20: Cm = hC(Cm, ei,∆pi)
21: m = hm(m,Cm, ei,∆pi ,Ψpi)
22: until All i-s have been updated
23: p = pnew

24: τp = τ new
p

25: until Convergence
26: d̂0 = argmin

d0

∑L−1
i=0

[
lnΩi(d0) +

τmi+|mi|2
Ωi(d0)

)
]

27: until Convergence

5.6 Simulation Results
This section presents the simulation verification using MATLAB to assess the impact of
different parameters. Table 6.1 lists the main parameters involved. In general, the primary
environmental factors influencing our MPCPDP-based ranging method are the number
of distinguishable MPCs, the magnitude of Signal-to-Noise Ratio (SNR), the propagation
attenuation factor n, and the shape parameter of Nakagami-m distribution m. In the
following subsections, we analyze the effects of these factors on ranging accuracy through
simulations. We conducte 10000 times for each scenario and calculate the Root Mean
Square Error (RMSE). For m = 1, we calculate the square root of CRB (SR-CRB) for
our MPCPDP-based ranging method. Moreover, we compare with the SoTA RSS-based
ranging method in [118]. In the simulation result figures, we use a solid line to denote
the RMSE of the RSS-based ranging method, a dashed line to denote the RMSE of the
MPCPDP-based ranging method, and a dotted line to denote the SR-CRB.
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Table 5.1: Parameters setting for MPCPDP-Based Ranging

Parameter Value
G0 1.

SNR (dB) Range from 0 to 20, default 10.
N 20.
L Ranging from 2 to 8.
n Ranging from 2 to 4, default 3.
m Ranging from 1 to 10, default 5.

d0 (meter) 20.
Distance of NLOS path (m) Random between 1.1d0 to 2.0d0.

Test repetitions 50.

5.6.1 Impact of SNR and Number of NLoS Paths

In this set of experiments, we set n = 3 and examine the influence of SNR and the number
of NLoS paths on the estimation bias. Figs. 5.2 and 5.3 illustrate the simulation results
for m = 1 and m = 5, respectively. We observe that varying the SNR from 15dB to 40dB
does not significantly affect our performance. Moreover, the estimation accuracy of our
method gradually improves with an increasing number of NLoS paths which act better
than the RSS-based ranging method under the same conditions. Even for m ̸= 1, it is
hard to get its theoretic CRB, comparison to RSS-based ranging method can show our
method’s high precision.
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Figure 5.2: The impact of SNR and the number of NLoS paths on d0 estimation with
m = 1
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Figure 5.3: The impact of SNR and the number of NLoS paths on d0 estimation with
m = 5

5.6.2 Impact of the propagation fading factor n and Number of
NLoS Paths

This set of experiments investigates the effects of the environmental propagation fading
factor n and the number of NLoS paths on the estimation bias. The simulation results,
depicted in Figs. 5.4 and 5.5 for m = 1 and m = 5, respectively, indicate that the
variation of n within the range of 2 to 4 has a obvious impact on our performance. As
n increases, the variance of Nakagami-m actually decreases, thus leading to an increase
in estimation accuracy for both the RSS-based ranging method and our method. This
is theoretically verified by the SR-CRB when m = 1. It is clear to see that our method
consistently performs better than the RSS-based ranging method for different n.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Propagation Factor of Environment: n

2

3

4

5

6

7

8

9

10

11

R
o

o
t 

M
e

a
n

 S
q

u
a

re
 E

rr
o

r 
(m

)

MPCPDP, 1 LoS + 2 NLoS

MPCPDP, 1 LoS + 4 NLoS

MPCPDP, 1 LoS + 9 NLoS

SR-CRB, 1 LoS + 2 NLoS

SR-CRB, 1 LoS + 4 NLoS

SR-CRB, 1 LoS + 9 NLoS

RSS, 1 LoS + 2 NLoS

RSS, 1 LoS + 4 NLoS

RSS, 1 LoS + 9 NLoS

Figure 5.4: The impact of the environment propagation fading factor n and the number
of NLoS paths on d0 estimation with m = 1
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Figure 5.5: The impact of the environment propagation fading factor n and the number
of NLoS paths on d0 estimation with m = 5

5.6.3 Impact of the shape parameter m and Number of NLoS
Paths

In this simulation, we set n as 3, SNR as 10 dB, d0 as 20 meters, and we examine the
influence of the shape parameter of the Nakagami-m distribution, denoted as m, and the
number of NLoS paths on the estimation bias. Fig. 5.6 presents the simulation results,
indicating that varying m from 1 to 10 significantly affects the performance of MPCPDP-
based ranging method. As m increases, the variance of Nakagami-m distribution decreases
and the accuracy of estimation method gets higher. Moreover, with the number of NLoS
paths increase, the performance of our method also increases but RSS-based ranging
generally decreases. Obviously, under the same condition, the method proposed in this
paper has the small range error compared to the RSS-based range method. In addition, the
range error of the new method decreases along with the number of NLoS paths increases.

5.6.4 Impart of number of NLoS and the mismatched shape pa-
rameter m

We investigate the impact of a mismatched shape parameter m in the Nakagami-m distri-
bution, where we set a true value of m = 5, SNR = 10 and n = 3. Our simulations reveal
that the estimation error is relatively small when the deviation of m is not substantial.
This observation underscores the robustness of our algorithm under theoretical conditions.
However, achieving accurate parameter initialization in practical scenarios is challenging,
and significant errors in initialization may lead to substantial estimation deviations. One
approach to address this challenge is to jointly estimate all parameters using the EM algo-
rithm, which remains a topic for our future research. While theoretically effective of the
EM algorithm, this method encounters difficulties due to the complex nonlinear relation-
ships among parameters and non-convex optimization problems. Moreover, increasing the
number of parameters to estimate can degrade performance due to constraints imposed
by available observed data. Another promising approach that warrants further research
attention is minimizing errors resulting from model mismatches.
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Figure 5.6: The impact of the Nakagami-m distribution’s shape parameter m and the
number of NLoS paths on d0 estimation with n = 3
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Figure 5.7: The impact of the mismatched Nakagami-m distribution’s shape parameter
m and the number of NLoS paths on d0 estimation with true m = 5
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5.6.5 Simulation Conclusions

Based on experimental simulations with varying SNR values, n and m, and the number
of NLoS paths, our method has demonstrated strong performance in diverse and complex
environments. Notably, the number of NLoS paths has emerged as a crucial parameter,
significantly influencing estimation accuracy. As the number of NLoS paths increases,
our algorithm’s accuracy improves, whereas the performance of the RSS-based method
declines. Furthermore, as m or n increases, the variance of the fading channel decreases,
thereby enhancing our method’s performance. Consequently, in complex environments
characterized by significant fading with large m and n and multiple NLoS paths, the
MPCPDP-based ranging algorithm proves to be a more effective solution than the RSS-
based method for estimating the LoS distance.

5.7 Conclusions
In conclusion, we propose a novel MPCPDP-based ranging method, aimed at exploit
multipath effect. To theoretically validate the feasibility of our approach, we selected
the widely adopted Nakagami-m statistical model and established a relationship between
distribution parameters and propagation distance. On one hand, this model ensures its
applicability across the majority of cases; on the other hand, it exemplifies many other
statistical models that traditional estimation tools cannot approach. To address the
challenges of ranging estimation, which involve hidden random variables and intractable
posterior distributions due to complex statistical models such as the Nakagami-m model,
we introduce the EM-ReVAMP algorithm. The simulation results convincingly demon-
strate the effectiveness of our approach than the RSS-based ranging method, providing
substantial evidence to support the accuracy and robustness of our approach. Moreover,
the EM-ReVAMP algorithm can be adapted for other statistical fading models with minor
modifications, assuming that the statistical models and their parameter initializations are
sufficiently accurate. To further validate the practicality and effectiveness of our method,
our next objective is to collect measurement data from diverse environments and conduct
comprehensive experimental analysis. This pivotal step will enable us to assess the perfor-
mance of our method in real-world scenarios. Additionally, exploring further application
scenarios of EM-ReVAMP and investigating its theoretical performance are essential as-
pects that warrant attention. Finally, the robustness and accuracy of this algorithm need
to undergo further testing.
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Chapter 6

Multipath Component Power Delay
Profile Based Sensing

6.1 Introduction
Our earlier chapter 5 proposed a multipath component power delay profile (MPCPDP)-
based ranging approach in orthogonal frequency-division multiplexing (OFDM) systems.
By modeling the power delay profile (PDP) using a Nakagami-m distribution, we estab-
lished a relationship between the distribution parameters and the propagation distance,
achieving more robust ranging than conventional RSS-based methods. However, while our
approach reduced hardware requirements and susceptibility to multipath interference, it
was originally limited to static environments and integer-delay assumptions, without ac-
counting for Doppler effects caused by relative motion.

In this chapter, we focus on the more challenging case where both delays and Doppler
shifts are non-integer (fractional). We formulate a time-domain estimation model that
jointly enables communication channel estimation and sensing parameter recovery, thereby
supporting integrated sensing and communication. For the delay domain, we construct
an oversampled delay grid to represent fractional delays, which naturally leads to a sparse
representation of the multipath channel. For the Doppler domain, we model the frequency
shifts induced by relative motion, enabling the estimation of both the line-of-sight (LoS)
distance and velocity.

To solve the resulting high-dimensional estimation problem, we propose an Expec-
tation Maximization–Expectation Consistent (EM-EC) algorithm under the assumption
that MPC amplitudes follow a Nakagami-m distribution and phases are uniformly dis-
tributed over [0, 2π). The EM-EC framework jointly: 1) Identifies LoS and NLoS com-
ponents in the oversampled delay grid; 2) Estimates Doppler shifts and the LoS path
distance; and 3) Recovers the sparse scattering profile without prior knowledge of the
number of paths.

In addition, we analyze the fixed points of the EM-EC algorithm, providing theoretical
insights into its convergence behavior and estimation accuracy. Extensive simulations
confirm the effectiveness of the proposed method in dynamic multipath environments,
demonstrating accurate joint delay–Doppler estimation and robust sensing performance
under different conditions.

The primary contributions of this chapter are:

• Fractional delay–Doppler modeling and time-domain estimation: We for-
mulate a joint estimation model that explicitly accounts for non-integer delays and
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Doppler shifts, which allows accurate communication channel estimation while si-
multaneously providing range–Doppler sensing capability in ISAC systems.

• EM-EC algorithm for sparse sensing and parameter estimation: We de-
sign an EM-EC framework that operates on an oversampled delay grid, capable of
identifying LoS/NLoS components, estimating Doppler shifts, and determining the
LoS distance under Nakagami-m amplitude and uniform phase assumptions.

• Fixed-point analysis of the EM-EC algorithm: We derive and study the fixed-
point equations of the proposed algorithm, offering theoretical understanding of its
convergence and accuracy.

The remainder of this chapter is organized as follows: Section 6.2 introduces the
system model and time-domain signal representation. Section 6.3 describes the MPCPDP-
based sensing formulation with fractional delay–Doppler grids. Section 6.4 presents the
EM-EC algorithm for joint parameter and sparse component estimation. Section 6.5
analyzes the convergence and fixed points of the proposed method. Section 6.6 presents
simulation results, and Section 6.7 concludes the chapter with a summary and future
research directions.

6.2 Doubly Fractional System Model

6.2.1 Transmitter Structures

We consider a unified representation for different modulation schemes. Let x ∈ CN denote
the modulation-domain symbol vector, and let s ∈ CN denote the corresponding time-
domain transmit block after CP removal. The mapping between x and s can be expressed
as

s = UHx, (6.1)

where U ∈ CN×N is a unitary transformation matrix determined by the modulation
scheme.

In orthogonal frequency-division multiplexing (OFDM), the modulation domain is
the frequency domain. Let F ∈ CN×N denote the normalized N -point discrete Fourier
transform (DFT) matrix, given by

[F]k,n =
1√
N
e−j 2π

N
kn, k, n = 0, . . . , N − 1. (6.2)

The transformation matrix is
U = F, s = FHx, (6.3)

where x contains the complex symbols mapped to subcarriers. OFDM simplifies equaliza-
tion in frequency-selective channels, but suffers from high PAPR and sensitivity to carrier
frequency offset.

6.2.2 Time-Domain Equivalent Channel Representation After CP
Removal

We consider the baseband discrete-time model after CP removal at the receiver. Let
s ∈ CN denote the N useful time-domain samples in a transmit block, and y ∈ CN
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the corresponding received block. The propagation channel is assumed to consist of L
propagation paths. The ℓ-th path is characterized by the complex gain αℓ ∈ C, delay τℓ
(possibly fractional), and Normalized Doppler shift νℓ. The sampling period is Ts and the
sampling rate Fs = 1/Ts.

We assume:

• The transmit waveform is bandlimited and sampled at the Nyquist rate.

• The CP length Ncp satisfies maxℓ τℓ < NcpTs, ensuring that inter-block interference
is avoided and the useful part of the block undergoes circular convolution.

1) Circular fractional-delay operator

For a bandlimited sequence, a delay of τ seconds corresponds in discrete time to a frac-
tional shift implemented by the N -periodic Dirichlet kernel

sincN(∆) ≜
sin(π∆)

N sin
(
π
N
∆
) , ∆ ∈ R, (6.4)

which reduces to a circular shift when ∆ is an integer. The associated circular fractional-
delay matrix C(τ) ∈ CN×N is[

C(τ)
]
n,m

= sincN

(
n−m− τ

Ts

)
, n,m = 0, . . . , N − 1. (6.5)

This circulant Toeplitz matrix implements a delay of τ seconds modulo the block length
NTs.

2) Doppler modulation operator

A Normalized Doppler shift ν induces a per-sample phase rotation ej2πνn/N in discrete
time. This is represented by the diagonal matrix[

D(ν)
]
n,m

= ej2πνn/N δn,m, n,m = 0, . . . , N − 1. (6.6)

The normalized Doppler shift ν can be expressed as:

ν =
v cos(θ)fc
c∆f

(6.7)

where fc is the carrier frequency, v is the velocity of the terminal, c is the speed of light, θ
is the moving angle and uniformly distributed in the interval [−π, π], and ∆f is the chirp
subcarrier spacing.

3) Per-path channel contribution

For a single path (α, τ, ν), the received samples after CP removal and without noise can
be written as

y[n] = α ej2πνn/N
N−1∑
m=0

sincN

(
n−m− τ

Ts

)
s[m]. (6.8)

In matrix form, (6.8) becomes
y = αD(ν)C(τ) s, (6.9)

which shows that the per-path channel matrix factorizes into a Doppler operator and a
delay operator.

81



4) Multi-path equivalent channel matrix

By linear superposition over all L paths, the equivalent N ×N channel matrix is

Ht =
L∑

ℓ=1

αℓ D(νℓ)C(τℓ) (6.10)

with the (n,m)-th entry of Ht is

[Ht]n,m =
L∑

ℓ=1

αℓ e
j2πνℓn/N sincN

(
n−m− τℓ

Ts

)
, n,m = 0, . . . , N − 1, (6.11)

and the block input–output relation reads

yt = Ht s+ v, v ∼ CN (0, σ2
nIN). (6.12)

6.3 MPCPDP-Based Sensing Problem Formulation
Based on (6.12), from the noisy block observation (6.12). Recalling the equivalent channel
decomposition in (6.10), we have

yt =
L∑

ℓ=1

αℓD(νℓ)C(τℓ)s+ v. (6.13)

As in channel estimation phase, the block pilot s is assumed to be known while {αℓ, νℓ, τℓ}Lℓ=1

are unknown. Moreover, in practical wideband systems, the normalized Doppler shifts
satisfy

|νℓ| ≪ 1, ∀ℓ, (6.14)

which allows the first-order Taylor expansion around νℓ = 0

D(νℓ) ≈ IN + νℓT, (6.15)

where T = diag(0, j2π/N, . . . , j2π(N − 1)/N). Substituting into (6.13) yields

yt ≈
L∑

ℓ=1

αℓC(τℓ)s︸ ︷︷ ︸
zero-Doppler term

+
L∑

ℓ=1

νℓ αℓTC(τℓ)s︸ ︷︷ ︸
Doppler correction

+v. (6.16)

Define

A ≜
[
C(τ1)s, . . . , C(τL)s

]
, (6.17)

B ≜
[
TC(τ1)s, . . . , TC(τL)s

]
, (6.18)

α ≜ [α1, . . . , αL]
⊤, ν ≜ [ν1, . . . , νL]

⊤. (6.19)

Then (6.16) can be written compactly as

yt ≈
(
A+B diag(ν)

)
α+ v. (6.20)
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For each individual element αℓ = |αℓ|ejϕℓ of α, the magnitude |αℓ| is modeled by a
Nakagami-m distribution, while the phase ϕℓ follows a uniform distribution between
[−π, π]. Consequently, the probability density functions (pdfs) of the magnitude and
phase of αℓ are expressed as follows:

p(|αℓ|; Ωℓ) =
2mm|αℓ|2m−1

Γ(m)Ωm
ℓ

exp

[
−m|αℓ|2

Ωℓ

]
,m ≥ 0.5; (6.21a)

p(ϕℓ) =
1

2π
, ϕℓ ∈ [0, 2π), (6.21b)

where Γ(·) denotes the gamma function, Ωℓ is the average power intensity of the path i
and m is the shape parameter of the Nakagami-m distribution. The shape parameter m
governs the fading characteristics of the distribution. For lower values of m, the distribu-
tion approximates a Rayleigh distribution with a faster decay, while higher values of m
result in a more concentrated distribution around its mean, indicating less severe fading.
In practice, m is typically estimated from channel measurements to accurately capture
the fading characteristics of the specific wireless channel. Moreover, the parameter Ωℓ is
defined in a similar way as in Chapter 5 and can be expressed as

Ωℓ(d0) = PtGtGr

[
λ

4π(d0 + cτℓ)

]nℓ

= G0(d0 + cτℓ)
−nℓ , (6.22)

where the involved variables are given as follows: Pt is the transmitted power, Gt denotes
the transmitting antenna gain, λ is the wavelength of the electromagnetic wave, c is the
speed of light, d0 represents the LoS distance, τℓ denotes the excess delay of the ℓ-th
path relative to the LoS path, and nℓ is the propagation loss exponent of the ℓ-th path
determined by the surrounding environment. Different from the previous formulation,
here we allow nℓ to take different values for the LoS and NLoS components, so that
heterogeneous path-loss behaviors can be captured. We assume that the LoS path always
exists.

6.3.1 Delay dictionary construction

Since the true delays {τℓ} are continuous, we approximate them using a delay grid

T = {τ̂1, . . . , τ̂Gτ}, (6.23)

with grid size Gτ . For each τ̂g ∈ T , define

ag = C(τ̂g)s, (6.24a)
bg = TC(τ̂g)s. (6.24b)

The corresponding delay dictionaries are

Ã = [a1, . . . , aGτ ], (6.25a)

B̃ = [b1, . . . ,bGτ ]. (6.25b)

By replacing (A,B) in (6.20) with (Ã, B̃), we obtain a parametric model

yt ≈ (Ã+ B̃diag(ν̃))h+ v, (6.26)

where h ∈ CGτ stacks the grid gains, and ν ∈ RGτ stacks the (small) Doppler shifts per
grid atom. Moreover, h is sparse with non-zero entries corresponding to the actual path
delays.
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Statistical prior on path gains

We impose the following prior model for each coefficient hi: The amplitude |hi| follows a
Nakagami-m distribution with shape parameter m > 0 and spread parameter Ωi:

p(|hi|) =
2mm|hi|2m−1

Γ(m) Ωm
i

e
− m

Ωi
|hi|2 , |hi| ≥ 0.

The phase arg(hi) is uniformly distributed over [0, 2π), reflecting the lack of prior knowl-
edge about phase.

Applying the Jacobi determinant [113], the pdf of the complex fading coefficient hi
(circularly symmetric with Nakagami-m envelope and uniform phase) is

phi
(hi; Ωi) =

mm

π Γ(m) Ωm
i

|hi|2m−2 exp
(
− m

Ωi
|hi|2

)
. (6.27)

In our framework, m will be set from a calibration stage, while Ωi is treated as a learnable
large–scale parameter. Note that as Ωi→ 0+, (6.27) collapses to a Dirac measure at the
origin, implying hi=0 (sparsity on the delay grid).

For atoms that correspond to physical paths, we couple the spread parameter to a
path-loss model,

Ωi = Ω(d0, di) = G0 (d0 + di)
−ni , (6.28)

with unknown offset d0 (e.g., reference distance), known geometric increments di, reference
gain G0, and exponent ni. For atoms outside the support, we set Ωi = 0, which is
consistent with hi = 0 by (6.27).

Building on (6.23)–(6.28), we proceed as follows:

1. Using the known s and a delay grid T , form Ã and B̃ as defined earlier.

2. On the full grid, jointly estimate (h, ν̃) from (6.26) under the circular Nakagami-m
prior (6.27) for hi (with learnable Ωi). This step yields dense preliminary estimates
in which most hi are driven close to zero by the prior.

3. Apply a decision rule to declare the support Ŝ = { i : ĥi ̸= 0 }, e.g., via magnitude
thresholding or a posterior-odds criterion consistent with the degeneracy Ω̂i→0⇒
hi =0. Retain {ĥi, ν̂i}i∈Ŝ and set ĥi = 0 for i /∈ Ŝ. Moreover, based on Ŝ, we can
get estimated d̂i as {d̂i = cτ̂i}i∈S .

4. With {Ω̂i}i∈Ŝ and the coupling Ωi = Ω(d0, di) = G0(d0 + di)
−ni in (6.28), estimate

d0 in a subsequent large-scale fitting stage.

This staged program keeps the modeling consistent with (6.27) and (6.26): s is ab-
sorbed into the dictionary, sparsity is enforced through Ωi ↓0, and Doppler enters linearly
via the first-order expansion, enabling a clean separation between small-scale (h,ν) and
LoS distance (d0) inference. The concrete algorithmic choices and optimizers are deferred
to the next section.
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6.3.2 MPCPDP-based Ranging and Doppler Shift Estimation

Our objectives are twofold: first, to estimate Ω̃ = {Ωi}Gτ
i=1 and ν̃, and second, to derive

d0 from the estimated Ω̃. To achieve the first objective, we employ the joint maximum
likelihood estimation (MLE) method, which reformulates the problem as follows:

[ ̂̃Ω, ̂̃ν] = argmax
Ω̃,ν̃

ℓ(Ω̃, ν̃;yt) = argmax
Ω̃,ν̃

ln p(yt; Ω̃, ν̃), (6.29)

where ℓ(·) denotes the log-likelihood function. Regarding the optimization problem, the
likelihood function in (6.29) can be expressed as:

p(yt; Ω̃, ν̃) =

∫
pyt(yt;h, ν̃)ph(h; Ω̃)dh. (6.30)

The pdf p(yt; Ω̃, ν̃) is crucial for estimating Ω̃ and ν̃ based on received signal yt. How-
ever, solving the integral problem directly to acquire p(yt; Ω̃, ν̃) is intractable, as finding
an analytical form poses significant challenges. Furthermore, the latent variable h is un-
observed, and its distribution is unknown before reaching Ω̃. To tackle these challenges,
the EM-EC algorithm is introduced later on. Moreover, The parameter di = cτi repre-
senting the distance difference between the LoS path and the i-th path, also needs to be
estimated.

6.4 Expectation Maximization (EM) - Expectation Con-
sistant (EC) Algorithm

6.4.1 Review of Expectation Maximization

Since direct optimization of (6.29) is infeasible, we reformulate it into an iterative update
process, laying the foundation for employing the EM algorithm. Using the MM framework,
we construct a more tractable lower bound for the log-likelihood function in (6.29). Based
on Bayes rules, we define the posterior pdf p(h|yt, Ω̃, ν̃) as follows:

p(h|yt, Ω̃, ν̃) =
pyt(yt;h, ν̃)ph(h; Ω̃)∫
pyt(yt;h, ν̃)ph(h; Ω̃)dh

. (6.31)
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At the t-th iteration, given the current estimates Ω̃(t), we can express the problem as
follows:

ℓ(Ω̃, ν̃)− ℓ(Ω̃(t), ν̃(t)) (6.32a)

= ln

∫
pyt(yt;h, ν̃)ph(h; Ω̃)dh− ln p(y; ν̃(t), Ω̃(t)) (6.32b)

= ln

∫
pyt(yt;h, ν̃)ph(h; Ω̃)

p(h|yt, Ω̃(t), ν̃(t))
p(h|yt, Ω̃

(t), ν̃(t))dh

−
∫
p(h|yt, Ω̃

(t), ν̃(t)) ln p(yt; ν̃
(t), Ω̃(t))dh (6.32c)

≥
∫
p(h|yt, Ω̃

(t), ν̃(t))

× ln
pyt(yt;h, ν̃)ph(h; Ω̃)

p(yt; ν̃(t), Ω̃(t))p(h|yt, Ω̃(t), ν̃(t))
dh (6.32d)

= Ep(h|y,Ω̃(t),ν̃(t))

[
ln

pyt(yt;h, ν̃)ph(h; Ω̃)

p(yt; ν̃(t), Ω̃(t))p(h|yt, Ω̃(t), ν̃(t))

]
. (6.32e)

From (6.32e), it follows that the updates for the update Ω̃(t+1) and ν̃(t+1) can be derived
as:

[Ω̃(t+1), ν̃(t+1)] = argmax
Ω̃,ν̃

Ep(h|yt,Ω̃(t),ν̃(t))

[
ln p(yt,h; Ω̃, ν̃)

]
. (6.33)

It is worth noting that the EM algorithm is guaranteed to converge to a (local) optimal
point. Since Ω̃ and ν̃ are embedded within ph(h; Ω̃) and pyt(yt;h, ν̃), respectively, a
straightforward reorganization leads to the specific EM iteration expressed in (6.33) as:

Ω̃(t+1) = argmax
Ω̃

Ep(h|yt,Ω̃(t),ν̃(t))[ln ph(h; Ω̃)]; (6.34a)

ν̃(t+1) = argmax
ν̃

Ep(h|yt,Ω̃(t),ν̃(t))[ln pyt(yt;h, ν̃)]. (6.34b)

For simplicity, we define the posterior mean and covariance of h under the pdf p(h|yt, Ω̃
(t), ν̃(t))

as follows:

µt = Ep(h|yt,Ω̃(t),ν̃(t))[h]; (6.35a)

Σt = Ep(h|yt,Ω̃(t),ν̃(t))[(h− µt)(h− µt)
H ]. (6.35b)

It is worth noting that for the shape parameter m ̸= 1 in the Nakagami-m distribution,
solving (6.35) becomes intractable. Therefore, the EC algorithm [119] is employed to
address this challenge later on. Before proceeding, let us outline the optimization process
for Ω̃ and ν̃ given the approximated µt and Σt.

Optimize Ω̃

As optimizing Ω̃ can be decoupled to optimize each element Ω̃i separately. Considering
the pdf of hi, the EM iteration for each Ω̃i in (6.34a) can be reformulated as follows:

Ω̃
(t+1)
i = argmin

Ωi

[
lnΩi +

Ep(hi|yt,Ω̃(t),ν̃(t))[|hi|2]
Ωi

]
, (6.36a)

= Ep(hi|yt,Ω̃(t),ν̃(t))[|hi|
2] (6.36b)

= |[µt]i|2 + [Σt]ii. (6.36c)
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In (6.36), the entire optimization function is convex, guaranteeing a unique global mini-
mum point for Ω̃ at each time.

Optimize ν̃

When considering the likelihood pyt(yt;h, ν̃), the EM iteration in (6.34b) can be trans-
formed as follows:

ν̃(t+1) = argmin
ν̃

Ep(h|y,Ω̃(t),ν̃(t))

[
∥yt − [Ã+ B̃diag(ν̃)]h∥2

]
(6.37a)

= argmin
ν̃
∥yt − [Ã+ B̃diag(ν̃)]µt∥2

+ tr
{
(Ã+ B̃diag(ν̃))Σt(Ã+ B̃diag(ν̃))H

}
. (6.37b)

After straightforward algebraic manipulation, we obtain the first part in (6.37b):

∥yt − [Ã+ B̃diag(ν̃)]µt∥2 = ∥(yt − Ãµt)− B̃diag(µt)ν̃∥2 (6.38a)

= ν̃T (µtµ
H
t ⊙ B̃T B̃∗)µ

− 2R
{

diag(µt)B̃
H(yt − Ãµt)

}T

ν̃ + C1, (6.38b)

and the second part in (6.37b):

tr
{
(Ã+ B̃diag(ν̃))Σt(Ã+ B̃diag(ν̃))H

}
(6.39a)

= 2R
{

diag(B̃HÃΣt)
}T

ν̃ + ν̃T (Σt ⊙ B̃T B̃∗)ν̃ + C2, (6.39b)

where C1 and C2 are constants independents of ν̃.
For the sake of simplicity, we define P and γ as follows:

P = R
{
(µtµ

H
t +Σt)⊙ B̃T B̃∗

}
, (6.40a)

γ = R
{

diag(µ∗
t )B̃

H(yt − Ãµt)− diag(B̃HÃΣt)
}
. (6.40b)

By combining (6.38), (6.39), and (6.40) into (6.37b), we can optimize ν̃ as follows:

ν̃(t+1) = argmin
ν̃

ν̃TPν̃ − 2γT ν̃ = P−1γ, (6.41)

Moreover, as P in (6.40a) is a positive semi-definite matrix, ν̃(t+1) = P−1γ is a unique
global optimal point.

6.4.2 Expectation Consistent Approach

As previously noted, the EM algorithm becomes intractable for a Nakagami-m prior (the
shape parameter m ̸= 1) due to the difficulty of obtaining the posterior mean and co-
variance in (6.35), which involves complex integration. Consequently, it is essential to
develop an alternative algorithm that approximates the posterior distribution with a more
tractable one. To address this challenge, we employ the EC algorithm.
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Before describing the EC method, we introduce additional notation. Our goal is to
approximate p(h|yt, Ω̃, ν̃) with q(h), which is chosen from an exponential family. The
distribution q(h) can be expressed as:

q(h;λq) =
1

Zq

exp(λT
q g(h)), (6.42)

where the partition function Zq is obtained by integration as:

Zq =

∫
exp(λT

q g(h))dh, (6.43)

With either initialized or optimized [Ω̃, ν̃], the EC algorithm attempts to calculate an
estimated belief of the posterior pdf p(h;yt, Ω̃, ν̃) of the form of r(h) and s(h) as follows:

r(h) =
1

Zr

pyt(yt|h, ν̃) exp(λT
r g(h)), (6.44a)

Zr =

∫
pyt(yt|h, ν̃) exp(λT

r g(h))dh (6.44b)

s(h) =
1

Zs

ph(h; Ω̃) exp(λT
s g(h)) (6.44c)

Zs =

∫
ph(h; Ω̃) exp(λT

s g(h))dh (6.44d)

where the function vector g(h) is chosen to enable efficient and tractable computation
of the required integrals (Zq, Zr and Zs), with the parameters λ adjusted to optimize
specific criteria. In this context, the terms "efficient" and "tractable" refer to a specific
set of approximating functions g(h). Typically, the i.i.d. complex Gaussian component
remains effective and computationally feasible as long as g(h) includes the first and sec-
ond moments of h. Furthermore, optimizing Ω̃ (6.36) and ν̃ in (6.41) require only the
posterior first-order and second-order moments, reinforcing the suitability of the Gaussian
assumption. Under this framework, λ and g(h) can be expressed as:

g(h) = (2h1, · · · , 2hL,−|h1|2, · · · ,−|hL|2)T , (6.45a)
λ = (η1, · · · , ηL,Λ1, · · · ,ΛL)

T . (6.45b)

The detailed steps of the EC algorithm are outlined in Algorithm 6.1. In lines 6.46
and 6.47, these steps are commonly referred to as moment matching between q(h) and
s(h) and r(h), respectively, as detailed below:

Er[g(h)|yt,λr, ν̃] =

∫
g(h)p(y|h, ν̃) exp(λT

r g(h))dh∫
p(yt|h, ν̃) exp(λT

r g(h))dh
, (6.48a)

Es[g(h)|λs, Ω̃] =

∫
g(h)p(h|Ω̃) exp(λT

s g(h))dh∫
p(h|Ω̃) exp(λT

s g(h))dh
. (6.48b)

In (6.48a), since py(y|h, ν̃) follows a complex Gaussian distribution, we can express it as:

Er[h] = (diag(λr) + σ−2
n ∆H∆)−1(σ−2

n ∆Hy + ηr); (6.49a)
Er[hh

H ] = Er[h]Er[h]
H + (diag(λr) + σ−2

n ∆H∆)−1, (6.49b)
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Algorithm 6.1 Expectation Consistent Algorithm

1: Input: Ã, B̃, yt, g(λ), Ω̃, ν̃
2: Output: λq

3: Initialize: λr, λq, λs

4: while stopping criterion not fulfilled do
5: // Message: r to s
6: Solve λq by:

Eq[g(h) | λq] = Er[g(h) | yaf,λr, ν̃] (6.46)

7: Update: λs ← λq − λr

8: // Message: s to r
9: Solve λq by

Eq[g(h) | λq] = Es[g(h) | λs, Ω̃] (6.47)

10: Update: λr ← λq − λs.
11: end while

where
∆ = Ã+ B̃diag(ν̃); (6.50)

therefore, the λq = [ηT
q ,λ

T
q ]

T in line 6.46 can be calculated as:

λq = (Er[hh
H ]− Er[h]Er[h]

H)−1; (6.51a)
ηq = λq ⊙ Er[h]. (6.51b)

Moreover, in (6.48b), as ph(h; Ω̃) is given in (6.27), we can have

Es[hℓ] =
mΩℓηs,l

m+ Λs,lΩℓ

1F1(m+ 1; 2;
Ωℓ|η2s,l|

m+Λs,lΩℓ
)

1F1(m; 1;
Ωℓ|η2s,l|

m+Λs,lΩℓ
)

, (6.52a)

Es[|hℓ|2] =
mΩℓηs,l

m+ Λs,lΩℓ

1F1(m+ 1; 1;
Ωℓ|η2s,l|

m+Λs,lΩℓ
)

1F1(m; 1;
Ωℓ|η2s,l|

m+Λs,lΩℓ
)

, (6.52b)

where 1F1(a; b; z) represents the confluent hypergeometric function, defined by the hy-
pergeometric series:

1F1(a; b; z) =
+∞∑
k=0

(a)kz
k

(b)kk!
; (6.53)

where
(a)0 = 1, (a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1), (6.54)

is the rising factorial. Similar to the approach used previously, the λq = [ηT
q ,λ

T
q ]

T in line
6.47 can be computed as:

λq = (Es[hh
H ]− Es[h]Es[h]

H)−1; (6.55a)
ηq = λq ⊙ Es[h]. (6.55b)
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In addition, it can also be represented as the solution of minimum KL-divergence as
bellow:

qr(h) = argmin
q(h)

DKL[r(h; ν̃)∥q(h)], (6.56)

qs(h) = argmin
q(h)

DKL[s(h; Ω̃)∥q(h)]. (6.57)

The fixed point utilized in the EC algorithm can be expressed as:

Er[g(h); ν̃] = Es[g(h); Ω̃] = Eq[g(h)]. (6.58)

6.4.3 Estimate LoS range d0 and related velocity v cos(θ1) in LoS
direction

Given the estimated PDP ̂̃Ω from the previous step, we first detect significant components:

S = {i | ̂̃Ωi > ϵth}, (6.59)

where ϵth is a predefined threshold (e.g., 1% of the maximum estimated ̂̃Ωi).
Here, the index i refers to a delay grid point in the dictionary used for sparse recovery,

rather than the actual physical delay sample of the system. The delay grid is intentionally
designed with a resolution finer than the system’s nominal delay resolution 1/B (where
B is the system bandwidth), so that fractional delays—which are difficult to estimate
directly—can be approximated by the nearest grid point. Specifically, the grid spacing is
given by

∆τ =
1

ηB
, η ≥ 1, (6.60)

where η is the oversampling factor (η > 1 corresponds to a finer-than-system grid).
After sparse recovery, each detected grid index i ∈ S is mapped to its nominal delay

τi = i ·∆τ , (6.61)

and the corresponding excess path length is

di = c · τi, (6.62)

with c denoting the propagation speed.
We then optimize the LoS range d0 by solving the EM update:

d
(t+1)
0 = argmin

d0

∑
i∈S

[
lnΩi(d0, di) +

Ep(hi|yt,Ω̃(t),ν̃(t))[|hi|2]
Ωi(d0, di)

]
, (6.63a)

= argmin
d0

∑
i∈S

[
lnΩi(d0, di) +

̂̃Ωi

Ωi(d0, di)

]
, (6.63b)

where Ωi(d0, di) denotes the path power model parameterized by the LoS range d0 and
the excess delay di. In the second line, the posterior expectation E[|hi|2] is replaced
by the corresponding estimated variance ̂̃Ωi obtained from the previous inference stage.
Moreover, both lnΩi(d0, di) and 1

Ωi(d0,di)
are convex function w.r.t. d0. This property
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Algorithm 6.2 MPCPDP-based Sensing Algorithm
1: Input: yt, Pn, m, nℓ, σ2

n

2: Output: d0, ν
3: Initialize ν̃ and Ω̃
4: Set Ã and B̃ based on ν̃ using Eq. (6.25)
5: while EM stopping criterion not fulfilled do
6: // EC algorithm to update Ω̃
7: Initialize λr, λs

8: while EC stopping criterion not fulfilled do
9: Solve λq using Eq. (6.51)

10: Update λr using Eq. (6.49)
11: Solve λq using Eq. (6.55)
12: Update λs using Eq. (6.52)
13: end while
14: // EM algorithm to update Ω̃ and ν̃
15: Optimize Ω̃ using Eq. (6.36)
16: Optimize ν̃ using Eq. (6.41)
17: end while
18: Determine the active set Ω̃S by detecting non-zero components of Ω̃.
19: Optimize d0 using active set of Ω̃S via Eq. (6.63)

ensures that the entire optimization function is convex, guaranteeing a unique global
minimum point for d0.

After detecting the LoS path from the estimated power delay profile ̂̃Ω, the correspond-
ing Doppler shift ν1 can be extracted from ˆ̃ν. This allows us to compute the LoS-direction
velocity component v cos(θ1) directly from (6.6). Such an estimate provides valuable kine-
matic information for tracking, as it captures the relative motion along the direct path
and can be fused with range estimates to enhance trajectory prediction.

6.4.4 MPCPDP-based Sensing Algorithm

The algorithm for MPCPDP-based sensing is outlined in Algorithm 6.2. Initially, vector
ν̃ is set to zero, and Ω̃ is initialized based on the LoS distance d0, which is set to 10
meters. The vectors λr and λq are initialized to all ones. Instead of requiring the EC
step to undergo a fixed number of iterations, the process is halted when the normalized
difference |λnew

q −λold
q |2/|λnew

q |2 falls below a tolerance threshold ϵ1. Similarly, in the EM
algorithm, iterations cease when the normalized difference |Ω̃new − Ω̃old|2/|Ω̃new|2 is less
than another tolerance threshold ϵ2. The parameter ϵth is set to be one percent of the
maximum estimated value of ̂̃Ω, i.e., ϵth = 0.01 ·max | ̂̃Ω|.
6.5 Theoretical Performance for the MPCPDP-based

Sensing Method
We now demonstrate that the parameter updates in the EM-EC algorithm for the MPCPDP-
based sensing method can be interpreted as an approximation of the EM algorithm [120].
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The optimization function for EM-EC [121] is defined as:

F (q, r, s,θ) ≜ −DKL[r∥p(yt|h, ν̃)]−DKL[s∥p(h; Ω̃)]−H(q), (6.64)

where θ = [Ω̃, ν̃T ]T and H(q) denotes the entropy of the pdf q. It’s also worth noting that
−F is commonly referred to as the energy equation in the EM-EC algorithm. However, by
incorporating the constraint conditions derived from (6.58), commonly known as moment
matching constraints, the optimization problem can be formulated as follows:

θ̂ = argmax
θ

max
r,s

min
q
F (q, r, s,θ) (6.65a)

such to Er[g(h); ν̃] = Eq[g(h)]

Es[g(h); Ω̃] = Eq[g(h)]. (6.65b)

It is important to note that the fixed points of the EM-EC algorithm align with the
stationary points of the optimization problem defined in (6.65). The Lagrangian for this
constrained optimization in (6.65) is given by:

L(θ, q, r, s,λ1,λ2) ≜ F (q, r, s,θ) + λ1(Er[g(h)|ν̃]
−Eq[g(h)]) + λ2(Es[g(h); Ω̃]− Eq[g(h)]). (6.66)

In order, we first solve for q(h;λq) in (6.66) as

λ̂q = argmin
λq

L(θ, λ̂s, λ̂r,λq,λ1,λ2)

= argmin
λq

[λT
q − (λ1 + λ2)]Eq[g(h)|λq]. (6.67a)

By performing the first-order and second-order derivatives with respect to λq, we obtain:

∂L(θ, λ̂s, λ̂r,λq,λ1,λ2)

∂λq

= [λT
q −(λ1 + λ2)

T ]
{
Eq[g(h)g(h)

H ]− Eq[g(h)]Eq[g(h)]
H
}
, (6.68)

∂2L(θ, λ̂s, λ̂r,λq,λ1,λ2)

∂λq∂λT
q

=
{
Eq[g(h)g(h)

H ]− Eq[g(h)]Eq[g(h)]
H
}T ≥ 0, (6.69)

therefore (6.67) is a convex function with only one minimum point λ̂q as:

λ̂q = λ1 + λ2. (6.70)

Next, we turn to solving for s(h;λs) and r(h;λr),

[λ̂s, λ̂r] = argmax
λs,λr

L(θ,λs,λr, λ̂q,λ1,λ2) (6.71a)

= argmax
λs,λr

(λT
1 − λT

r )Er[g(h)|λr] + (λT
2 − λT

s )Es[g(h)|λs]. (6.71b)

Through simple algebraic analysis w.r.t. (6.71), it becomes evident that this function is
concave and possesses fixed points as follows:

λ̂r = λ1, λ̂s = λ2. (6.72)
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Table 6.1: Parameters setting for MPCPDP-based Sensing

Parameter Value
G0 1.
N 128
fc 90 GHz
∆f 60 kHz
L 3, 7, 11
v Ranging from 120 km/h to 360 km/h

SNR (dB) Range from 0 to 30
n1 (LoS) 2.19

ni ̸=1 (NLoS) 3.19
m Ranging from 1 to 10

d0 (m) 100.
τi (m) Random between 3/B to 30 B, minimum gap is 3/B
θi Random between 0 to 2π
α 10

Finally, θ = [Ω̃, ν̃T ]T can be optimized as:

θ̂ = [d̂0, ˆ̃ν] = argmax
θ

L(θ, λ̂s, λ̂r, λ̂q,λ1,λ2)

= argmax
ν̃

Er[ln p(yt|h, ν̃)] + argmax
Ω̃

Es[ln p(h; Ω̃)]. (6.73)

We then have the following theorem:
Theorem 1: At any fixed points of the EM-EC algorithm, we have:

λ1 = λ̂r, λ2 = λ̂s, λ̂q = λ1 + λ2; (6.74)

q̂(h) =
exp(λ̂T

q g(h))∫
exp(λ̂T

q g(h))dh
; (6.75)

r̂(h) =
p(yt|h, ˆ̃ν) exp(λ̂T

r g(h))∫
p(yt|h, ˆ̃ν) exp(λ̂T

r g(h))dh
; (6.76)

ŝ(h) =
p(h| ˆ̃Ω) exp(λ̂T

s g(h))∫
p(h|d̂0) exp(λ̂T

s g(h))dh
, (6.77)

where q̂, r̂, and ŝ denote the critical points of the Lagrangian in (6.66) that satisfy the
moment matching constraints in (6.58). If the EM-EC algorithm converges, its limit
points correspond to the local optima of the EM-EC auxiliary function.

6.6 Simulation Results
In this section, we present simulation results to evaluate the performance of our proposed
algorithm in estimating range and Doppler shift. Table 6.1 summarizes the key simula-
tion parameters, which are set based on [122]. The effectiveness of our MPCPDP-based
sensing method is influenced by several environmental factors, including the number of
distinguishable MPCs, signal-to-noise ratio (SNR), Nakagami-m distribution shape pa-
rameter m, and target velocity v. The following subsections analyze the impact of these

93



factors on ranging accuracy. For each scenario, we conducted 1,000 Monte Carlo sim-
ulations, computing the root mean square error (RMSE) for range estimation and the
normalized RMSE (NRMSE) for the Doppler shift ν1 of the LoS path. Additionally, we
benchmark our results against the state-of-the-art RSS-based ranging method (referred
to as RSS-Nakagami in this paper) described in [118]. The thresholds ϵ1 and ϵ2 are set to
10−3, and the maximum number of iterations for both the Expectation-Maximization and
Expectation-Consistent algorithms is 1000. To further assess the performance, we also
include the Genie Bound as a reference. For the ranging task, the Genie Bound assumes
perfect knowledge of the channel attenuation and path delays, allowing the range to be
estimated under ideal conditions. For Doppler estimation, the perfectly estimated range
is substituted into the first-order Taylor expansion model to obtain an idealized Doppler
frequency estimate. This bound serves as a theoretical performance limit for our proposed
method under the given channel conditions.

6.6.1 Impact of SNR

We fix the target velocity at 240 km/h and examine how SNR affects the LoS range
and Doppler estimation of the proposed MPCPDP method. Figs. 6.1 and 6.2 report
the range RMSE for m = 1 and m = 5, respectively, over L = 3, 7, 11 paths. Across
all SNRs, MPCPDP consistently outperforms the RSS-Nakagami baseline, and its error
monotonically decreases with SNR. The gap between MPCPDP and the Genie Bound
shrinks as SNR grows, especially when the number of paths is larger (e.g., L = 11),
indicating that MPCPDP benefits from richer resolvable multipath in the PDP. Moreover,
weaker fading (larger m) further improves performance: under m = 5, the MPCPDP
curves as a whole shift downward relative to m = 1, and at moderate-to-high SNR they
closely track the Genie Bound.

Figs. 6.3 and 6.4 show the Doppler NRMSE for m = 1 and m = 5. The MPCPDP
method exhibits a clear SNR-driven improvement: NRMSE steadily reduces from low to
high SNR and approaches the Genie Bound in the high-SNR regime. Compared with the
range task, the influence of L on Doppler accuracy is much milder—the curves for different
L are closely spaced—while the fading severity remains a primary factor: under m = 5,
MPCPDP achieves uniformly lower NRMSE (on the order of 10−2) across SNRs than
under m = 1. These observations confirm that the proposed EM–EC-based MPCPDP
estimator effectively exploits the PDP structure for both range and Doppler: increasing
SNR tightens its performance toward the Genie Bound, larger L chiefly helps range via
multipath diversity, and milder fading (larger m) benefits both tasks.

6.6.2 Impact of the Nakagami-m Shape Parameter

We fix the SNR at 10 dB and the target velocity at 240 km/h to examine how the fading
shape parameter m affects the estimation accuracy of the proposed MPCPDP method.
Fig. 6.5 reports the LoS range RMSE versus m for L ∈ {3, 7, 11}, together with the Genie
Bound and the RSS-Nakagami baseline. The MPCPDP curves decrease monotonically
with m: milder randomness (larger m) concentrates energy, thus lowering the ranging
error. For any fixed m, increasing L further reduces the RMSE, indicating that richer
resolvable multipath is beneficial for range estimation under the MPCPDP model. Across
the entire m-range, MPCPDP consistently outperforms RSS-Nakagami.

Fig. 6.6 shows the Doppler NRMSE versus m under the same settings. In contrast
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Figure 6.1: m = 1: RMSE of Range Estimation vs. SNR for Different Numbers of Paths
and Methods
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Figure 6.2: m = 5: RMSE of Range Estimation vs. SNR for Different Numbers of Paths
and Methods
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Figure 6.3: m = 1: NRMSE of LoS Doppler Shift Estimation vs. SNR for Different
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Figure 6.5: RMSE of Range Estimation Across Different Number of Paths and Methods
vs. m

to range, the Doppler curves (both MPCPDP and Genie Bound) exhibit only a weak
dependence on m, and the performance difference across L = 3, 7, 11 is negligibly small.
Moreover, unlike the range results, MPCPDP does not approach the Genie Bound closely
at this SNR; a non-trivial gap persists across the tested m values. Overall, while larger
m yields a mild improvement in Doppler accuracy, the influence of m and L on Doppler
is much smaller than on range. The Genie Bound curves display the same weak sensi-
tivity to m and L, indicating that the observed behavior is an inherent property of the
signal/measurement model (finite observation length and phase noise at 10 dB) rather
than a deficiency of the proposed EM-EC estimator.

6.6.3 Impact of Absolute Velocity (v)

We fix the SNR at 10 dB and investigate how the absolute velocity of the target influences
the LoS range and Doppler estimation performance of the proposed MPCPDP method.
Fig. 6.7 presents the RMSE of range estimation versus v for m ∈ {1, 5} and L ∈ {3, 7, 11}.
For all settings, range RMSE increases gradually as velocity grows. This degradation is
attributed to the reduced accuracy of the first-order Taylor approximation used in the
Doppler model: at higher Doppler shifts, the linearization around zero introduces non-
negligible modeling error, which propagates into the joint delay–Doppler estimation and
slightly degrades the recovered LoS delay.

Fig. 6.8 shows that the NRMSE of LoS Doppler estimation first decreases with veloc-
ity and then increases for all tested m and L, with only minor differences across these
parameters. The initial drop occurs because the normalized error is dominated by noise
at low velocities; as the true Doppler shift ν increases, the same absolute estimation
variance translates into a smaller relative (normalized) error, and the first-order Taylor
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Figure 6.6: NRMSE of LoS Doppler Shift Estimation Across Different Number of Paths
of Paths vs. m.

approximation remains sufficiently accurate. At higher velocities, however, the neglected
higher-order terms in the Doppler phase model grow quadratically with ν, reducing the
validity of the linearization and introducing model bias. This bias eventually dominates,
causing the NRMSE to rise again. The minimal impact of L arises because Doppler es-
timation relies primarily on the phase evolution of the dominant LoS path, while m has
limited influence since it affects amplitude fading rather than the phase dynamics that
govern Doppler estimation.

6.6.4 Simulation Conclusions

Based on experimental simulations varying SNR values, velocity v, shape parameter m,
and the number of NLoS paths, our method has shown strong performance across diverse
and complex environments. Notably, the number of NLoS paths and the shape param-
eter m are critical factors, significantly influencing ranging estimation accuracy. As the
number of NLoS paths increases, our MPCPDP-based sensing method improves in rang-
ing accuracy, while Doppler shift estimation almost remains consistent. Additionally, an
increase in m reduces the variance of the fading channel, which enhances our method’s
performance. Although higher velocities slightly reduce the performance of our sensing
method, the overall impact is minimal. These results underscore the effectiveness of our
MPCPDP-based sensing in numerical simulations under the OFDM system, particularly
when considering Doppler shifts.
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6.7 Conclusions
This chapter addressed joint range and Doppler sensing in OFDM systems under dou-
bly fractional delay–Doppler conditions. We formulated a time-domain MPCPDP-based
model with an oversampled delay grid and a circular Nakagami-m envelope plus uniform
phase prior, and proposed an EM–EC algorithm that simultaneously estimates large-
scale fading hyperparameters, recovers the sparse delay–Doppler structure (separating
LoS/NLoS), and extracts the LoS Doppler for velocity inference; we further established
the algorithm’s fixed-point conditions to clarify its convergence behavior. Simulations
demonstrated that, across a wide range of SNRs, path counts, fading severities, and tar-
get speeds, the proposed method achieves accurate ranging and Doppler estimation and
generally outperforms an RSS–Nakagami baseline; in particular, ranging error decreases
markedly with SNR and larger L, and approaches a Genie Bound in favorable conditions,
while Doppler NRMSE exhibits weak dependence on L and m and follows a characteris-
tic decrease–then–increase trend versus speed due to the transition from noise-dominated
to model-mismatch-dominated regimes under first-order Doppler linearization. Overall,
these results confirm the practicality of MPCPDP-based sensing for integrated sensing
and communication with low hardware complexity. Future work will incorporate higher-
order Doppler modeling to mitigate high-speed bias, consider non-Gaussian disturbances
and model uncertainties, and validate the approach on real measurements and prototype
ISAC platforms.
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Chapter 7

Conclusion and Future Work

In this dissertation, we have systematically explored high-precision ranging techniques in
multipath-rich wireless communication environments, leveraging the Power Delay Profile
(PDP) derived from Channel State Information (CSI). The work focused on addressing
key challenges in accurate distance estimation under complex channel conditions, partic-
ularly in the context of next-generation integrated sensing and communication (ISAC)
systems. Through theoretical modeling, algorithm development, and comprehensive sim-
ulation studies, several important contributions have been made.

First, we proposed a high-resolution PDP estimation framework that combines sparse
recovery methods with off-grid modeling techniques. This approach enables more accurate
delay discrimination and path separation, effectively overcoming limitations of conven-
tional PDP estimation in low signal-to-noise ratio (SNR) scenarios and dense multipath
propagation environments. Second, we established a statistical mapping between PDP
energy and physical distance, allowing for robust and efficient ranging without requiring
additional sensing overhead. This approach extends the applicability of communication-
centric signals to environmental sensing tasks, laying the groundwork for future ISAC
deployment.

Furthermore, recognizing the need to operate reliably under mobility, we developed
a time-domain OFDM sensing framework for doubly fractional delay–Doppler scenarios.
We constructed an oversampled delay grid to represent fractional delays and modeled
multipath amplitudes with a Nakagami-m envelope and uniformly distributed phase. A
computationally efficient EM–EC algorithm was introduced to jointly estimate large-scale
fading hyperparameters, recover the sparse multipath structure (separating LoS/NLoS),
and extract the LoS range and Doppler from a single pilot block under a first-order Doppler
linearization. We also characterized the algorithm’s fixed points to clarify convergence
behavior and employed a Genie Bound to benchmark achievable performance. Extensive
numerical simulations validate the effectiveness of these methods, showing significant im-
provements over existing state-of-the-art approaches in terms of delay resolution, ranging
accuracy, and robustness to mobility.

Despite these promising contributions, several challenges and open questions remain.
The proposed algorithms have been validated in simulation environments that approxi-
mate real-world conditions, but practical implementation in hardware is an essential next
step. Future work will focus on experimental verification, including the impact of hard-
ware impairments, synchronization offsets, and environmental uncertainties. Addition-
ally, while this dissertation has primarily addressed one-dimensional ranging, extending
the framework to three-dimensional localization and tracking—via multi-receiver/sensor
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fusion—will be crucial for robust positioning in dense multipath and non-line-of-sight
(NLoS) conditions. Another important direction is the theoretical characterization of per-
formance limits for the proposed framework when classical Cramér–Rao Bounds (CRBs)
are not directly applicable; alternative bounds or approximate analyses will help quan-
tify fundamental accuracy and guide algorithmic design. Finally, refining Doppler mod-
eling beyond first-order linearization (e.g., higher-order expansions or bias-compensation
schemes), stress-testing robustness under non-Gaussian disturbances, and developing real-
time implementations will further enhance estimation precision in realistic propagation
conditions.
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Appendix A

A.1 Derivation of Nakagami-m Posterior Mean and Vari-
ance

In this appendix, we will derive the expressions for âi and τai in (5.35a) and (5.35b) based
on the pdf pai(ai|Ωi). In the EM-ReVAMP algorithm presented in Algorithm 5.2, we have
the following expressions:

âi =

∫
aipai(ai|Ωi)CN (ai; ri, τri)dai∫
pai(ai|Ωi)CN (ai; ri, τri)dai

; (A.1a)

τai =

∫
|ai − âi|2pai(ai|Ωi)CN (ai; ri, τri)dai∫

pai(ai|Ωi)CN (ai; ri, τri)dai
, (A.1b)

where Zi is defined as:

Zi =

∫
pai(ai|Ωi)CN (ai; ri, τri)dai. (A.2)

For calculating Zi, we have the integral:

Zi =

∫
mm|ai|2m−2

π Γ(m) Ωm
i

exp

[
−m |ai|

2

Ωi

]
× 1

πτri
exp

(
−(ai − ri)∗(ai − ri)

τri

)
dai.

(A.3)

Inside the integral, we have:∫ 2π

0

exp

(
2

τri
(|ri|r cos(ϕ− ϕri))

)
dϕ = 2πJ0

(
j
2

τri
r|ri|

)
, (A.4)

where J0(x) is the Bessel function of the first kind. By incorporating the equations and
clarifying the expressions, the derivation of Zi becomes more comprehensible. Moreover,
we can simplify the remaining integral using the confluent hypergeometric function:∫ +∞

0

xµ exp(−αx2)Jv(βx)dx

=
βvΓ(0.5(v + µ+ 1))

2v+1α0.5(v+µ+1)Γ(v + 1)
1F1

(
0.5(v + µ+ 1);v + 1;−β

2

4α

)
,

(A.5)
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where 1F1(a; b; z) is the confluent hypergeometric function. By utilizing these results, we
can evaluate Zi and proceed with the derivation of âi and τai . Simplifying the integral
and applying the properties of the confluent hypergeometric function, we obtain:∫ +∞

0

r2m−1 exp

(
−
(
m

Ωi

+
1

τri

)
r2
)
J0

(
j
2

τri
r|ri|

)
dr

=
Γ(m)

2
(

m
Ωi

+ 1
τri

)m 1F1(m; 1;
Ωi|ri|2

mτ 2ri + τriΩi

).
(A.6)

Based on the previous results, we can express the Zi as follows:

Zi =
mm

πΩm
i τri(

m
Ωi

+ 1
τri

)m
1F1(m; 1;

Ωi|ri|2

mτ 2ri + τriΩi

). (A.7)

Then for
∫
aipi(ai)CN (ai; ri, τri)dai, it can be written as:∫

aipi(ai)CN (ai; ri, τri)dai =
mm

π2 Γ(m) Ωm
i τri

∫ +∞

0

∫ 2π

0

(cosϕ+ j sinϕ)

exp

{
2

τri
[|ri|r cos(ϕ−ϕri)]

}
dϕr2m−1exp

[
−(m

Ωi

+
1

τri
)r2
]
rdr.

(A.8)
Inside this expression, we have the following intermediate results:∫ 2π

0

(cosϕ+ j sinϕ) exp(
2

τri
(|ri|r cos(ϕ− ϕri)))dϕ

= −j2π exp(jϕri)J1(j
2r|ri|
τri

),

(A.9)

and∫ +∞

0

r2m exp(−(m
Ωi

+
1

τri
)r2)J1(j

2

τri
r|ri|)dr

=
j|ri|Γ(m+ 1)

2τri(
m
Ωi

+ 1
τri

)(m+1) 1F1(m+ 1; 2;
Ωi|ri|2

mτ 2ri + τriΩi

).

(A.10)
Thus,

∫
aipi(ai)CN (ai; ri, τri)dai can be expressed as follows:∫
aipi(ai)CN (ai; ri, τri)dai =

mm+1|ri|
πΩm

i τ
2
ri
(m
Ωi

+ 1
τri

)(m+1)

× exp(jϕri)1F1(m+ 1; 2;
Ωi|ri|2

mτ 2ri + τriΩi

).

(A.11)

For
∫
a∗i aipi(ai)CN (ai; ri, τri)dai, we can compute it as follows:∫

a∗i aipi(ai)CN (ai; ri, τri)dai =
mm

π2 Γ(m) Ωm
i τri

∫ +∞

0

∫ 2π

0

exp

{
2

τri
[|ri|r cos(ϕ−ϕri)]

}
dϕ r2mexp

[
−(m

Ωi

+
1

τri
)r2
]
rdr.

(A.12)

104



Inside this expression, we have the following intermediate results:∫ 2π

0

exp(
2

τri
(|ri|r cos(ϕ− ϕri)))dϕ = 2πJ0(j

2

τri
r|ri|), (A.13)

and ∫ +∞

0

r2m+1 exp(−(m
Ωi

+
1

τri
)r2)J0(j

2

τri
r|ri|)dr =

Γ(m+ 1)

2(m
Ωi

+ 1
τri

)(m+1) 1F1(m+ 1; 1;
Ωi|ri|2

mτ 2ri + τriΩi

).
(A.14)

Therefore,
∫
aia

∗
i pi(ai)CN (ai; ri, τri)dai can be given as :∫
aia

∗
i pi(ai)CN (ai; ri, τri)dai

=
m(m+1)

πΩm
i τri(

m
Ωi

+ 1
τri

)(m+1) 1F1(m+ 1; 1;
Ωi|ri|2

mτ 2ri + τriΩi

).
(A.15)

Thus, we can obtain the expressions for E[ai] and E[aia∗i ] as follows:

E[ai] =
mΩiri

mτri + Ωi

1F1(m+ 1; 2; Ωi|ri|2
mτ2ri+τrid0

)

1F1(m; 1; Ωi|ri|2
mτ2ri+τriΩi

)
; (A.16a)

E[aia∗i ] =
mΩiτri
mτri + Ωi

1F1(m+ 1; 1; Ωi|ri|2
mτ2ri+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2ri+τriΩi

)
. (A.16b)

Finally, we obtain the expressions for âi and τai as follows:

âi =
mΩiri

mτri + Ωi

1F1(m+ 1; 2; Ωi|ri|2
mτ2ri+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2ri+τriΩi

)
; (A.17a)

τai =
mΩiτri
mτri + Ωi

1F1(m+ 1; 1; Ωi|ri|2
mτ2ri+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2ri+τriΩi

)
− âiâ∗i . (A.17b)

A.2 List of Publications
The following publications have resulted from the research conducted in this dissertation:

Journal Articles

1. Fangqing Xiao and Dirk Slock, “Multipath Component Power Delay Profile Based
Ranging,” IEEE Journal on Selected Topics in Signal Processing, DOI: 10.1109
JSTSP.2024.3491580.
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Conference Papers

1. Fangqing Xiao and Dirk Slock, “Multipath Component Power Delay Profile Based
Ranging,” IEEE Journal on Selected Topics in Signal Processing, DOI: 10.1109/JSTSP.2024.3491580.

2. Fangqing Xiao and Dirk Slock, “Performance analysis of hyperparameter optimiza-
tion in sparse Bayesian learning via Stein’s unbiased risk estimator,” EUSIPCO
2025, Palermo, Italy, Sept. 2025.

3. Fangqing Xiao, Xiyao Zhou, Zunqi Li, Hongwei Hou and Dirk Slock, “High-Precision
LoS Localization Using Composite Nakagami-m Log-Normal Model,” IEEE Mediter-
ranean Conference on Communications and Networking (Meditcom), July 2025,
Nice, France.

4. Fangqing Xiao and Dirk Slock, “Single Snapshot Direction of Arrival Estimation
Using the EP-SURE-SBL Algorithm,” IEEE ICASSP, 2025, Hyderabad, India.

5. Fangqing Xiao and Dirk Slock, “Breaking the Gaussian Barrier: Leveraging ReG-
VAMP to Extend EKF, SOEKF, and IEKF,” Asilomar Conference on Signals, Sys-
tems, and Computers, Oct. 2024, Pacific Grove, USA.

6. Zilu Zhao, Fangqing Xiao and Dirk Slock, “Extrinsics and Linearized CWCU MMSE
Estimation as in GAMP,” Asilomar Conference on Signals, Systems, and Comput-
ers, Oct. 2024, Pacific Grove, USA.

7. Mehdi Ashury et al., “Joint Estimation of Channel, Range, and Doppler for FMCW
Radar with Sparse Bayesian Learning,” IEEE SPAWC, Sept. 2024, Lucca, Italy.

8. Fangqing Xiao and Dirk Slock, “Fast Expectation Propagation for Sparse Signal
Reconstruction with a Fourier Dictionary,” IEEE PIMRC, Sept. 2024, Valencia,
Spain.

9. Fangqing Xiao and Dirk Slock, “Towards Hyperparameter Optimizing of Sparse
Bayesian Learning Based on Stein’s Unbiased Risk Estimator,” IEEE ISIT, Learn
to Compress Workshop, July 2024, Athens, Greece.

10. Fangqing Xiao and Dirk Slock, “Parameter Estimation via Expectation Maximiza-
tion - Expectation Consistent Algorithm,” IEEE ICASSP, Apr. 2024, Seoul, Korea.

11. Zilu Zhao, Fangqing Xiao and Dirk Slock, “Vector Approximate Message Passing for
Not So Large n.i.i.d. Generalized I/O Linear Models,” IEEE ICASSP, Apr. 2024,
Seoul, Korea.

12. Fangqing Xiao, Zilu Zhao and Dirk Slock, “Power Delay Profile Based Ranging via
Approximate EM-reVAMP,” IEEE CAMAD, Nov. 2023, Edinburgh, UK.

13. Zilu Zhao, Fangqing Xiao and Dirk Slock, “Approximate Message Passing for Not
So Large NIID Generalized Linear Models,” IEEE SPAWC, Sept. 2023, Shanghai,
China.

14. Fangqing Xiao and Dirk Slock, “A Cramér–Rao Bound for Indoor Power Delay
Profile Based Ranging,” IPIN-WiP, Sept. 2023, Nuremberg, Germany.
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