
THESE DE DOCTORAT DE

SORBONNE UNIVERSITE
préparée à EURECOM

École doctorale EDITE de Paris n◦ ED130
Spécialité: «Informatique, Télécommunications et Électronique»

Sujet de la thèse:

On Malware Diversity and Similarity:
Understanding Variability Across Malware

Families
Thèse présentée et soutenue à Biot, le 29/09/2025, par

Antonino Vitale

devant le jury composé de:
Examinateur &
President Prof. Melek Önen EURECOM

Rapporteur Prof. Valerie Viet Triem Tong CentraleSupelec/CNRS/INRIA

Rapporteur Prof. Juan Tapiador Universidad Carlos III de
Madrid

Examinateur Prof. Matteo Dell’Amico Università degli studi di
Genova

Co-Directeur de
thèse Prof. Simone Aonzo EURECOM

Directeur de thèse Prof. Davide Balzarotti EURECOM

Abstract

The growing volume of malware circulating daily, combined with its in-
creasing structural diversity, presents substantial challenges for automated
malware analysis. Machine-learning classifiers, widely adopted for malware
detection and family classification, often struggle to generalize when con-
fronted with new malware families or datasets affected by labeling inconsis-
tencies, class imbalance, and incomplete feature sets.

Beyond classification, the structural variability observed within malware
families complicates similarity measurement. Malware authors actively use
techniques such as packing and deliberate binary modifications to generate
diverse variants from the same code base. In addition to these challenges,
many malware datasets collected from live feeds contain truncated samples,
files that are incomplete due to errors during collection or transmission.
While truncation is not a source of meaningful diversity, it introduces noise
that pollutes datasets and wastes analysis resources when processed by tools
or sandboxes.

At the same time, unrelated malware samples often display misleading
structural similarities due to common build environments, shared packers,
and recurring compiler toolchains. These inter-family artifacts undermine
the precision of static similarity features, leading to clustering errors and
incorrect associations between distinct malware families.

This thesis addresses these challenges through a measurement-driven
investigation of malware diversity across three perspectives: the impact of
dataset composition and feature selection on machine-learning classifiers,
the extent and nature of intra-family polymorphism in malware binaries,
and the structural factors driving false similarities between unrelated fami-
lies. Together, these studies provide a comprehensive empirical foundation
for improving the design, evaluation, and reliability of malware classification
and similarity analysis techniques.

Résumé

Le volume croissant de programmes malveillants circulant quotidiennement,
combiné à leur diversité structurelle toujours plus grande, représente un
défi majeur pour l’analyse automatisée des malwares. Les classificateurs
basés sur l’apprentissage automatique, largement adoptés pour la détection
et la classification des familles de malwares, peinent souvent à généraliser
lorsqu’ils sont confrontés à de nouvelles familles ou à des jeux de données
affectés par des incohérences de labellisation, des déséquilibres de classes ou
des ensembles de caractéristiques incomplètes.

Au-delà de la classification, la variabilité structurelle observée au sein
des familles de malwares complique considérablement la mesure de similar-
ité. Les auteurs de malwares recourent activement à des techniques telles
que le packing et les modifications binaires intentionnelles pour générer des
variantes diverses issues d’une même base de code. À ces défis s’ajoute la
présence fréquente d’échantillons tronqués dans les jeux de données collec-
tés à partir de flux en temps réel. Bien que ces fichiers incomplets ne con-
stituent pas une source de diversité significative, ils introduisent du bruit et
gaspillent des ressources d’analyse lorsqu’ils sont traités par des outils ou
des sandboxes.

Parallèlement, des échantillons provenant de familles de malwares totale-
ment distinctes présentent souvent des similarités structurelles trompeuses,
résultant d’environnements de compilation communs, de packers partagés ou
de chaînes d’outils de compilation récurrentes. Ces artefacts inter-familles
compromettent la précision des caractéristiques de similarité statique, en-
traînant des erreurs de regroupement et des associations incorrectes entre
familles distinctes.

Cette thèse aborde ces défis à travers une étude empirique de la di-
versité des malwares selon trois perspectives : l’impact de la composition
des jeux de données et du choix des caractéristiques sur les performances
des classificateurs, l’ampleur et la nature du polymorphisme intra-famille
dans les binaires malveillants, et les facteurs structurels à l’origine des sim-

ilarités trompeuses entre familles non apparentées. Ensemble, ces travaux
offrent une base empirique solide pour améliorer la conception, l’évaluation
et la fiabilité des techniques de classification et d’analyse de similarité des
malwares.

Contents

1 Introduction 1

1.1 Context and Motivation . 1
1.2 Challenges . 3
1.3 Contributions . 4

2 Background and Related Works 7

2.1 Context and Motivation . 7
2.2 Malware Classification and Machine Learning Challenges . . . 7
2.3 Dataset Construction for Malware Classification 9
2.4 Polymorphism and Malware Diversity 10
2.5 Code and Binary Similarity 10
2.6 Static Features for Malware Clustering 10

3 Datasets 13

3.1 Balanced Dataset . 13
3.2 MOTIF Dataset . 13
3.3 Malicia Dataset . 14
3.4 Dataset Usage . 14

4 An Empirical Study of Malware Binary and Family Classi-

fication 17

4.1 Dataset Collection . 19
4.1.1 Malware Samples . 20
4.1.2 Testing Datasets . 23
4.1.3 Benign Samples . 24

4.2 Methodology . 24
4.2.1 Static Features . 24
4.2.2 Sandbox . 26
4.2.3 Dynamic Features . 27
4.2.4 Models . 29

ii ii

4.3 Experimental study . 30
4.3.1 Overall Classification Results 31
4.3.2 Hard-to-Detect Malware 33
4.3.3 Feature Class Importance 35
4.3.4 Impact of Packers and Protectors 39
4.3.5 Impact of Missing Dynamic Feature Values 42
4.3.6 Impact of Ground Truth Confidence 42
4.3.7 Impact of Training Dataset Construction 43
4.3.8 Model Generalization 48

4.4 Final Recommendations . 52

5 Understanding Intra-Family Diversity and Polymorphism 55

5.1 Datasets . 57
5.2 Structural Comparison . 58

5.2.1 PE Components . 58
5.2.2 Family Component Analysis 59

5.3 Cross-Component Analysis 62
5.3.1 Truncation . 63
5.3.2 Packing . 64

5.4 Component Analysis . 66
5.4.1 Component Presence 66
5.4.2 Similar and Different Components 67
5.4.3 Individual Component Polymorphism 67
5.4.4 File Infectors . 70

5.5 Final Remarks . 71

6 Structural Overlaps and the Precision Boundaries of Mal-

ware Clustering 75

6.1 Datasets . 78
6.2 Features . 79

6.2.1 Similarity Features . 80
6.2.2 Analysis Features . 82

6.3 Analysis Approach . 83
6.4 Analysis . 85

6.4.1 RQ1 – Similarity Feature Precision 86
6.4.2 RQ2 – Similarity Feature Limits 87

6.5 Discussion . 92
6.6 Conclusion . 94

Contents

7 Conclusion 95

7.1 Summary of Findings . 95
7.2 Future Work . 97

Appendices 99

List of Figures

4.1 Distribution of number of s-bytegrams and s-opcodegrams based
on their Information Gain value. 26

4.2 F1 score heatmap for binary classification using static model. 44
4.3 F1 score heatmap for binary classification using dynamic

model. 45
4.4 F1-score heatmap for binary classification with combined

model. 45
4.5 F1 score heatmap for family classification using Random

Forest on static analysis features. 46
4.6 F1 score heatmap for family classification using Random

Forest on dynamic analysis features 47
4.7 F1-score heatmap for family classification when combining

features derived from static and dynamic analysis 47
4.8 Binary classification accuracy on singletons and unseen fam-

ilies of the uniform dynamic and static models. (SS: Static
Singleton. SU: Static Unseen. D is for Dynamic) 49

4.9 Entropy distribution comparison 50

5.1 Number of families with none, 1-3 or more than 3 common
components by varying the threshold, and using SHA256 or
TLSH. 62

6.1 Icons responsible for the 9 largest MCs using icon_hash. . . . 91

Chapter 1

Introduction

1.1 Context and Motivation

The volume of malware circulating in the wild continues to grow at an
unprecedented rate. Security vendors, malware repositories, and threat-
intelligence platforms collectively collect and process millions of potentially
malicious samples every month. As of 2025, both the AV-TEST Institute
and Kaspersky report more than 450,000 new malicious programs appear-
ing daily [58, 20], with the extreme case of 11 millions of new samples in
April 2025 [48]. This relentless influx of binaries has made automation
essential at every stage of malware analysis, from detection and triage to
clustering and behavioral characterization [73, 43, 116].

However, the scale of the problem is not merely a matter of quantity.
The diversity and variability observed across malware samples present pro-
found challenges for automated analysis systems. This diversity manifests
at multiple levels: between families, within families, and even across the fea-
ture representations extracted for similarity measurement. Understanding
how this diversity affects analysis pipelines is essential for building reliable
and scalable malware-research tools.

At the structural level, malware authors have become adept at generat-
ing large numbers of polymorphic variants of the same malware strain [35,
78, 75]. Techniques like packing, code mutation, binary reordering, and
intentional structural manipulations ensure that even functionally identical
samples appear structurally distinct. This intra-family diversity severely
impacts the reliability of many static similarity features, which often as-
sume structural consistency within malware families. Features such as fuzzy
hashes [61, 86] or import-table signatures can vary dramatically between two
samples of the same family, making static feature-based classification and

1

2 2

clustering error-prone [134, 14].
Conversely, unrelated malware samples frequently exhibit misleading

structural similarities. The widespread adoption of common build envi-
ronments, off-the-shelf packers, and shared compiler toolchains introduces
recurring artifacts that transcend family boundaries [63, 59, 78]. Two bi-
naries from entirely different families may share identical resources, section
layouts, or other structural characteristics, not because of shared behavior,
but as a by-product of being processed through the same build environ-
ments. This inter-family similarity can lead to false positives in clustering
and distort feature-based analyses, especially when using coarse-grained or
syntactic similarity metrics.

Adding to the complexity, the way malware datasets are constructed,
labeled, and curated has a direct impact on the evaluation and develop-
ment of analysis techniques [66]. Public and private datasets differ in fam-
ily coverage, sample balance, collection time-frames, and labeling consis-
tency [16, 116, 90]. Antivirus-based labeling, still the de-facto standard for
most research datasets, suffers from inconsistencies and vendor-specific tax-
onomies [112, 43]. Even tools designed to reconcile these inconsistencies,
such as AVClass [112], operate on top of inherently noisy inputs. These
dataset-related issues become particularly important when evaluating classi-
fication techniques, where performance can be heavily influenced by dataset
composition and splitting strategies.

Feature design further amplifies the effect of malware diversity on anal-
ysis outcomes. Widely used static features, ranging from whole-binary
fuzzy hashes to PE-structure descriptors like PEHash [135], Imphash [1],
and RichPE [134], are highly sensitive both to intra-family polymorphism
and inter-family artifact sharing. Minor binary modifications can dramati-
cally change feature outputs, while unrelated samples processed through the
same build environments may produce artificially similar feature representa-
tions. This fragility undermines the reliability of similarity measurements,
clustering outcomes, and even machine-learning classifiers trained on such
features.

The combination of these factors creates a landscape where measuring
malware similarity, clustering samples, or training generalizable machine-
learning models becomes a non-trivial task. Without a systematic under-
standing of how diversity influences each step of the analysis pipeline, from
dataset construction to feature extraction to evaluation, the risk is high that
research conclusions will be biased, non-reproducible, or misrepresentative
of real-world conditions.

Addressing this challenge requires looking at malware diversity holisti-

1.2. Challenges 3

cally, considering how structural variability, feature fragility, dataset biases,
and evaluation inconsistencies collectively shape the strengths and limita-
tions of current malware analysis techniques.

1.2 Challenges

The structural diversity and variability found in modern malware introduce
a series of interrelated challenges that affect classification and clustering
tasks across the malware analysis pipeline. These challenges emerge at
multiple levels, spanning dataset composition, intra-family structural vari-
ability, and inter-family similarity. Understanding and characterizing these
challenges is essential for building a reliable foundation for malware analysis
research.

• Dataset Composition and Its Impact on Classification. The
first set of challenges concerns the role of dataset characteristics in
shaping classification outcomes. Existing malware datasets often dif-
fer significantly in terms of family coverage, number of samples per
family, and labeling consistency. Such discrepancies raise important
questions about how these factors influence the performance and gen-
eralization of machine-learning-based malware classifiers. Further un-
certainty comes from the presence of off-the-shelf packers and protec-
tors, missing or incomplete feature values, especially from dynamic
analyses, and the inherent inconsistencies in antivirus family labeling.
Different antivirus vendors often apply distinct naming conventions
and classification criteria, introducing ambiguity and noise into the
ground truth used for training and evaluating classifiers. A related is-
sue is the inclusion of truncated samples, executables that are partially
downloaded or corrupted during collection. Although not intention-
ally created by malware authors, these truncated files pollute mal-
ware feeds and waste storage and analysis resources when mistakenly
processed as valid samples. An additional open question relates to
classifier behavior when evaluated on families unseen during training,
reflecting real-world deployment scenarios.

• Structural Variability Within Malware Families. A second
challenge stems from the high degree of structural variability that can
exist among samples belonging to the same malware family. Tech-
niques such as packing and intentional binary modifications are com-
monly used by malware authors to produce polymorphic variants [35].
These transformations introduce variability across multiple binary

4 4

components, including PE headers, sections, and resources. Under-
standing how to systematically quantify these differences and deter-
mine their distribution across large malware collections remains an
open problem. Additionally, there is a need to identify which spe-
cific causes, whether related to packing, binary manipulation, or other
structural changes, are responsible for the observed polymorphism in
different families.

• Structural Similarities Across Different Families. Finally, a
third challenge arises from the unintended structural similarities that
can appear between samples from entirely different malware families.
Common build environments, widespread use of shared packers, and
recurring compiler toolchains introduce artifacts that make unrelated
samples appear structurally alike. This poses significant difficulties for
clustering approaches that rely on static similarity features, as these
artifacts can cause unrelated samples to be grouped together. The
extent to which different feature types, such as fuzzy hashes, section-
based metrics, or PE metadata descriptors, are vulnerable to such
confounding factors remains largely uncertain. Additionally, it is un-
clear which structural artifacts are most responsible for creating these
misleading inter-family similarities, making it difficult to anticipate or
mitigate their impact when analyzing large malware collections.

1.3 Contributions

This work offers a comprehensive, data-driven exploration of malware diver-
sity and similarity, examining its impact on key components of automated
malware analysis. The contributions span from dataset construction to
feature evaluation, with a strong emphasis on empirical measurement and
methodological rigor.

In this first chapter, we presented the context and motivations behind
this thesis, the key challenges in the field, and our contributions to address
them. Chapter 2 introduces the necessary background for this dissertation.
Chapter 3 provides a detailed description of the datasets used across the
thesis. The following three chapters each correspond to one of the individual
studies conducted. Finally, Chapter 7 summarizes the main findings and
discusses possible future research directions.

1.3. Contributions 5

Contribution I (Chapter 4)

The first study focuses on the design, construction, and analysis of a large-
scale malware dataset explicitly engineered to minimize common biases
found in existing public datasets. We collect and label 67,000 Windows
PE malware samples, evenly distributed across 670 families, ensuring bal-
anced class representation. This careful dataset construction allows for fair
and reproducible evaluation of machine-learning-based malware classifiers.
Using this dataset, we conduct an extensive evaluation of a wide range of
classification models, covering static, dynamic, and hybrid feature-based ap-
proaches. The study investigates how different types of features contribute
to classification accuracy, how the presence of off-the-shelf packers and pro-
tectors affects performance, and how missing values in dynamic features
influence the outcomes. It also explores how dataset splitting strategies and
family coverage affect classifier generalization, especially when encountering
families not seen during training. Particular attention is paid to understand-
ing how label inconsistencies and feature selection impact binary and family
classification tasks under realistic deployment conditions.
This study and its findings are published in:

• Savino Dambra, Yufei Han, Simone Aonzo, Platon Kotzias, Antonino
Vitale, Juan Caballero, Davide Balzarotti, and Leyla Bilge
“Decoding the Secrets of Machine Learning in Malware Clas-

sification: A Deep Dive into Datasets, Feature Extraction,

and Model Performance.”

In ACM Conference on Computer and Communications Security. ACM,

November 2023.[34]

Contribution II (Chapter 5)

Building on the curated dataset, the second study investigates the extent
and causes of structural polymorphism within malware families. To do
this, we develop a component-level structural analysis framework that de-
composes each malware sample into its distinct binary components (e.g.,
headers, sections, resources) and systematically analyzes their presence and
variability across samples of the same family. This is enabled by PEdiff [10],
a dedicated PE structural comparison tool developed as part of this study.

The study focuses on quantifying the structural differences observed
within families at a fine granularity and assessing the distribution of different
sources of polymorphism, such as packing, truncation, and targeted binary
modifications. It also examines how these structural changes manifest across
various PE components and how multiple factors may contribute to the

6 6

observed variability within the same family.
This study and its findings are published in:

• Antonino Vitale, Simone Aonzo, Savino Dambra, Nanda Rani, Lorenzo
Ippolito, Platon Kotzias, Juan Caballero, and Davide Balzarotti
“The Polymorphism Maze: Understanding Diversities and

Similarities in Malware Families.”

In European Symposium on Research in Computer Security (ESORICS)

2025.[130]

Contribution III (Chapter 6)

The third study turns attention to inter-family diversity and the risk of false
similarities across unrelated malware samples. Focusing on eleven widely
adopted static similarity features, including fuzzy hashes, section-based fea-
tures, and PE metadata descriptors, we conduct a large-scale precision-
oriented analysis to assess how these features behave in the presence of
inter-family structural similarities and shared build artifacts.

The study evaluates the precision of each feature in separating malware
families and examines the structural artifacts that most frequently lead to
clustering errors. It analyzes how common build environments, packers, and
compiler toolchains contribute to structural similarity between unrelated
samples and investigates the susceptibility of different feature types to such
confounding factors. The work provides detailed insights into the structural
characteristics most responsible for violating family boundaries during static
feature-based clustering.
This study and its findings are currently under submission for peer-review.

Chapter 2

Background and Related

Works

2.1 Context and Motivation

This chapter provides the necessary background for understanding the con-
tributions of this thesis, which focuses on exploring malware similarity and
diversity from different perspectives. Specifically, this dissertation examines
how malware diversity affects machine-learning-based classification, how
structural variability manifests within malware families, and how static fea-
tures capture or fail to capture similarities across different families. To
contextualize this research, we first review prior studies on ML-driven mal-
ware classification and dataset design. We then cover research on malware
polymorphism and structural variability, followed by works on code and
binary similarity. Finally, we discuss existing approaches that use static
features for malware clustering, highlighting their strengths and limitations
in handling malware diversity.

2.2 Malware Classification and Machine Learning

Challenges

Table 2.1 presents a categorization of previous works on Windows mal-
ware classification, according to their goal (binary detection or family clas-
sification), features (static or dynamic), and dataset size (both in terms
of malware executables and malware families). Among the approaches in
Table 2.1, the choice of classification models varies widely, including Sup-
port Vector Machines, GradientBoost, Random Forest, and neural networks.

7

8 8

Goal Features Dataset
Work Year D C S D # Fam.
Rieck et al. [102] 2008 - ✓ - ✓ 10K 14
McBoost [91] 2008 ✓ - ✓ ✓* 5.5K -
PE-Miner [114] 2009 ✓ - ✓ - 16K -
Nataraj et al. [84] 2011 - ✓ ✓ ✓ 67K 561*
OPEM [109] 2012 ✓ - ✓ ✓ 1K -
Santos et al. [108] 2013 ✓ - ✓ - 1K -
Dahl et al. [33] 2013 ✓ - - ✓ 1.8M -
Kancherla et al. [56] 2013 ✓ - ✓ - 25K -
Saxxe et al. [110] 2015 ✓ - ✓ - 350K -
Miller et al. [77] 2016 ✓ - ✓ ✓ 1.1M -
MtNet [47] 2016 ✓ ✓ - ✓ 2.8M 98
MAAR [107] 2017 ✓ - - ✓ 3K -
MalConv [99] 2018 ✓ - ✓ - 284K -
EMBER [16] 2018 ✓ - ✓ - 400K -
Rhode et al. [101] 2018 ✓ - - ✓ 5.1K -
MalDy [57] 2019 ✓ ✓ - ✓ 20K 15
NeurLux [51] 2019 ✓ - - ✓ 34K -
MalInsight [43] 2019 ✓ ✓ ✓ ✓ 3.5K 5
MalDAE [42] 2019 ✓ - ✓ ✓ 5.5K -
MALDC [142] 2020 ✓ - - ✓ 54K -
IMCFN [127] 2020 ✓ - ✓ - 9.4K -
Zhang et al. [143] 2020 ✓ - - ✓ 27.7K -
Rabadi et al. [98] 2020 ✓ - - ✓ 7.1K -
Joyce et al. [53] 2022 - ✓ ✓ - 3K 454
This work 2023 ✓ ✓ ✓ ✓ 67K 670

Table 2.1: Related work on ML-based Detection and family Classification
of Windows malware (S=Static, D=Dynamic)

Most approaches rely on feature extraction, such as n-grams of bytes, op-
codes, or system calls, though some operate directly on raw bytes and API
sequences [99, 51].

MalInsight [43] is the only study to provide a comprehensive coverage
of both feature choice and classification tasks, though it includes only 5
families. On the other end of the spectrum, Nataraj et al. [84] studied
family classification on an unbalanced dataset with over 500 classes, but
their use of raw AV labels means that the number does not correspond
to real malware families. In contrast, this thesis investigates the factors
impacting ML classifier performance using a large-scale, balanced dataset
with 670 families.

Two main challenges have been identified in ML-driven cybersecurity
research. First, the problem of missing observations, which impacts predic-

2.3. Dataset Construction for Malware Classification 9

tion accuracy in fields like network intrusion detection [89, 119]. Second, the
I.I.D. assumption, where training and test data are expected to be drawn
from the same distribution, rarely holds in real-world malware classifica-
tion due to rapidly evolving malware behaviors [24]. The breakdown of this
assumption introduces significant performance degradation when classifiers
encounter out-of-distribution (OOD) samples.

Arp et al. [19] provide a broad review of ML-based cybersecurity re-
search, highlighting biases introduced by sampling errors, labeling noise,
and inappropriate evaluation metrics. Their work underscores the need for
evaluation methodologies that account for data imbalance and distributional
shifts. Building on these concerns, this thesis focuses on the bottlenecks
encountered when deploying ML-based malware classifiers in practice, in-
cluding the impact of malware family coverage during training and classifier
behavior under OOD conditions.

2.3 Dataset Construction for Malware Classifica-

tion

In 2015, the Microsoft Malware Classification Challenge [116] was launched
as a Kaggle competition to promote research on malware family classifica-
tion. This dataset consists of disassembly and byte data for 20K Windows
malware samples from 9 families and has been widely used in subsequent
studies.

Other works have addressed dataset scale and diversity in Android mal-
ware. For example, [90] evaluates spatial and temporal bias over 129,728
Android apps, while [66] examines the variance-bias trade-off in clustering
134,698 apps. In the Windows malware space, MOTIF [53] provides a man-
ually labeled dataset of 3,095 samples across 454 families, representing the
most diversified public dataset in terms of family coverage. However, the
dataset suffers from extreme imbalance, with more than half the families
containing fewer than five samples, creating a few-shot learning challenge
for ML-based classifiers.

This dissertation draws inspiration from these prior datasets while fo-
cusing on large-scale Windows malware collections with balanced family
distributions, enabling a controlled evaluation of how dataset characteris-
tics impact classification performance.

10 10

2.4 Polymorphism and Malware Diversity

Malware achieves polymorphism through a range of obfuscation techniques,
including dead-code insertion, register reassignment, and instruction sub-
stitution [141], making static detection increasingly ineffective [18]. As a
result, prior works have largely focused on behavioral analysis to detect
polymorphic malware. Techniques include behavior-aware hidden Markov
models [118], mixed static and dynamic analysis approaches [87], and flow-
graph matching using emulators [29].

This thesis departs from traditional detection efforts and instead fo-
cuses on quantitatively characterizing the structural causes of polymorphism
across malware families using a component-level analysis.

2.5 Code and Binary Similarity

Several approaches measure similarity between executables at the code level
by examining disassembled output [41, 45, 46, 71]. These techniques have
been used for binary diffing [41, 71], similarity search [45], and malware
clustering [46]. This study leverages BinDiff [41] as a representative tool for
identifying code similarity within malware families.

At the binary level, fuzzy hashing techniques such as SSDEEP [62],
TLSH [86], SDHASH [105], and MRSH-v2 [27] are widely used for foren-
sic analysis [106], malware detection [113, 79, 81], and clustering [21, 125,
115, 23]. Several studies have evaluated their effectiveness [88, 26]. This
research introduces a fine-grained structural comparison across 12 PE file
components to localize byte-level differences. As part of this, it uses TLSH
for pairwise comparison of component values across samples, observing that
aggregation over small components (such as PE headers) often produces
high volatility in family-wise similarity scores.

2.6 Static Features for Malware Clustering

Extensive research has addressed the problem of clustering malware samples
into families [25, 92, 50, 46, 100, 69, 85]. Table 2.2 summarizes prior works
that have employed at least one of the static similarity features analyzed in
this thesis.

Some studies have explored the use of certificates for grouping sam-
ples [63, 59], while others have evaluated Authentihash grouping indepen-
dently of signing status [139]. Feature-specific evaluations include work on

2.6. Static Features for Malware Clustering 11

Work Year Auth
en

tih
ash

Cer
t Subjec

t

Cer
t Thumbprin

t

Ic
on

DHash

Ic
on

Hash

Im
phash

PEHash

Rich
PE

ssd
ee

p

TLSH
vhash

PEHash [135] 2009 - - - - - - ✓ - - - -
French et al. [37] 2012 - - - - - - - - ✓ - -
TLSH [86] 2013 - - - - - - - - - ✓ -
Certified PUP [63] 2015 ✓ ✓ - - - - ✓ - - - -
Li et al. [69] 2015 - - - - - - - - ✓ - -
Webster et al. [134] 2017 - - - - - - - ✓ - - -
Certified Malware [59] 2017 - ✓ ✓ - - - - ✓ - - -
Chikapa et al. [30] 2018 - - - - - ✓ ✓ - - - -
Joyce et al. [54] 2019 - - - - - ✓ ✓ ✓ - - -
Posluvsny et al. [95] 2019 - - - - - - - ✓ - - -
Kim et al. [60] 2020 - - - ✓ - - - - - - -
Fuzzy-Import [81] 2020 - - - - - ✓ - - ✓ - -
Namanya et al. [82] 2020 - - - - - ✓ ✓ - ✓ - -
Ali et al. [15] 2020 - - - - - - - - - ✓ -
HAC-T [85] 2020 - - - - - - - - - ✓ -
Botacin et al. [26] 2021 - - - - - - - - ✓ - -
RecMaL [139] 2023 ✓ - - - - ✓ ✓ - - - ✓

VirusTotal [129] 2024 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓

Table 2.2: Related work on clustering using static features.

icon similarity using image comparison algorithms [60], as well as clustering
features such as Imphash [1], PEHash [135], RichPE [134], and vhash [131].

Existing literature can be broadly divided into two groups: studies eval-
uating the precision of individual features [30, 54, 95] and those combining
multiple features to improve clustering quality [139, 63, 59].

In the area of fuzzy hashes, most prior work has focused on evaluating
their precision across datasets [37, 86, 69, 15, 85, 26]. Some studies ex-
plored combining fuzzy hashes with other features, as in Naik et al. [81] and
Namanya et al. [82], who combined SSDeep, Import Hash, and PEHash for
improved detection and clustering.

To summarize, while some features such as PEHash [135, 63, 30, 54,
82, 139], Import Hash [30, 54, 81, 82, 139], and SSDeep [37, 69, 81, 82,
26] have been widely evaluated, other features such as certificate-based
grouping [63, 59, 139], Icon DHash [60], TLSH [86, 15, 85], and vhash [139]
remain underexplored. Notably, Icon Hash has not been studied at all.

This dissertation builds on these prior efforts by conducting a systematic,
cross-feature evaluation of static similarity features under conditions of high

12 12

malware diversity, with a particular focus on inter-family false similarities
caused by shared structural artifacts.

Chapter 3

Datasets

This chapter introduces the malware datasets referenced across the three
chapters of this thesis. Not all datasets are used in every chapter, and the
experiments in each chapter rely on different subsets or filtered versions of
these datasets. The goal of this chapter is to provide readers with a clear
overview of each dataset’s characteristics and origins, facilitating a better
understanding of their role in the subsequent studies.

3.1 Balanced Dataset

The Balanced Dataset [34] contains 67,000 hashes of 32-bit PE malware
samples collected from the VirusTotal (VT) feed between August 2021 and
March 2022. Samples are evenly distributed across 670 malware families,
with exactly 100 samples per family.

Family labels were assigned using the AVClass [112] tool, and sample
selection prioritized diversity and balance for large-scale classification tasks.
The full details of the dataset creation process are provided in Section 4.1.

3.2 MOTIF Dataset

The Malware Open-source Threat Intelligence Family (MOTIF) dataset [53]
contains 3,095 Windows PE malware samples drawn from 454 distinct fam-
ilies. Samples and family labels were derived from open-source threat in-
telligence reports published by 14 major cybersecurity organizations over a
five-year period (January 2016 to December 2020).

MOTIF emphasizes coverage diversity, focusing on long-tail, real-world
malware families from operational threat intelligence sources. Sample hashes

13

14 14

and family names were collected from these reports and mapped into family
aliases when applicable. Samples may be assigned a group of labels consid-
ered aliases. For each alias group, we select the name used by AVClass, or
the most popular one in case AVClass does not know any.

The dataset is imbalanced: 131 families (29%) contain only one sample,
232 families (51%) contain 2–9 samples, and 91 families (20%) have at
least 10 samples. Only one family (icedid) exceeds 100 samples. Samples
were retrieved from VirusTotal, using the public hash lists provided by the
MOTIF repository [9].

3.3 Malicia Dataset

The Malicia dataset [83] contains 9,908 Windows PE malware samples
collected between March 2012 and February 2013 from drive-by download
campaigns. Collection was conducted using honeypots designed to attract
drive-by download traffic.

Family labeling was performed using clustering techniques that lever-
aged network behavior, execution screenshots, and embedded icon analysis,
followed by manual expert validation. The final dataset includes 53 family-
level clusters: 19 labeled with well-known malware family names and 34
labeled with generic cluster identifiers.

Similar to MOTIF, Malicia is heavily imbalanced: 23 families (43%)
contain only one sample, 17 families (32%) contain 2–9 samples, and 13
families (25%) contain at least 10 samples. Only 4 families include at least
100 samples. The largest family, winwebsec, accounts for 5,820 samples
(58.7% of the dataset).

Samples are distributed across common malware classes such as adware,
backdoors, downloaders, ransomware, rogueware, viruses, and worms, pro-
viding class diversity for malware analysis tasks.

The dataset was originally created by the authors for academic research
but has since been discontinued. However, we contacted the dataset authors,
who kindly agreed to share it with us for our studies.

3.4 Dataset Usage

The three datasets, Balanced Dataset, MOTIF, and Malicia, are used in
different ways across the next three chapters in this thesis. Table 3.1 sum-
marizes which datasets are used in each chapter, along with any filtering or
sampling applied.

3.4. Dataset Usage 15

Chapter Balanced Dataset MOTIF Malicia Other Samples/Families

Chapter 4 ✓ (created here) ~✓ (Motif-like) - ✓

Chapter 5 ✓† ✓† ✓† -
Chapter 6 ✓ ✓ ✓ -

Table 3.1: Summary of the datasets used in each chapter.
~✓ indicates that a MOTIF-like, unbalanced dataset (not the actual MO-
TIF dataset).
† indicates that only families with at least 10 non-truncated samples were
used.

Chapter 4. This chapter focuses on building and analyzing the Balanced

Dataset, whose collection process is described in detail in Section 4.1. All
experiments rely on this dataset and on other malware samples and families
collected during the same period that do not belong to any of the three
datasets described here.

Chapter 5. Experiments in this chapter leverage all three datasets intro-
duced in this chapter. Section 5.1 provides details about the selection and
filtering criteria applied to the datasets for this study.

Chapter 6. All three datasets (Balanced Dataset, MOTIF, and Malicia)
are used. Section 6.1 details the procedures followed to integrate and dedu-
plicate samples and families for clustering evaluation.

16 16

Chapter 4

An Empirical Study of

Malware Binary and Family

Classification

In the previous chapters, we introduced the challenges posed by malware
diversity and highlighted the crucial role that datasets play in shaping the
outcomes of malware analysis research. We also described the datasets that
will be used across this thesis. Building on this context, this chapter focuses
on the first step of our investigation: understanding how dataset composi-
tion, feature choice, and labeling inconsistencies affect the performance of
Machine Learning (ML) models for malware classification.

Malware classification remains one of the most widely adopted applica-
tions of Machine Learning in cybersecurity, driven by the need to process
vast volumes of incoming samples with limited human resources. As dis-
cussed in Chapter 1, the number of new malicious programs discovered daily
remains exceptionally high, exceeding 450,000 samples per day in 2025 ac-
cording to both the AV-TEST Institute and Kaspersky [58, 20].

To address this scale, both academia and industry have increasingly
turned to ML-driven malware classification models. These models offer flexi-
ble detection and labeling mechanisms that go beyond traditional signature-
based systems, but they also introduce new challenges. ML classifiers fun-
damentally rely on learning statistical correlations from historical training
data. As a result, their ability to generalize to novel, previously unseen
malware variants is inherently limited, particularly when adversaries delib-
erately craft evasive samples that differ from known patterns.

Another important aspect is the structure of the classification pipeline
itself. Most ML-based malware analysis workflows adopt a multi-stage pro-

17

18 18

cess [73, 137, 43], typically starting with a binary classification step (mali-
cious vs. benign) followed by a family classification phase (identifying the
malware family). Although high classification accuracy has been reported
in the literature [73, 137, 43], many existing studies have relied on overly
optimistic experimental assumptions, often due to issues in dataset design
and construction.

In addition, a ground-truth of malware families is hard to obtain. An-
tivirus companies will not likely use the same name for the same family.
Although the CARO (Computer Antivirus Research Organization) naming
convention has been proposed to mitigate this issue, it still faces usage ob-
stacles. Scientific research tackled this problem and produced AVClass [112]:
given a list of AV labels (e.g., from a VirusTotal JSON report), the tool re-
turns the single most likely family name. However, even if AVClass returns
a single family name according to a consensus algorithm by default, it can
also output a ranking of all alternative family names. Thus, the problem is
that AVClass is often used to carry out studies using its default output as
ground truth, even though it is probabilistic in nature.

Moreover, while it is straightforward to collect a high number of sam-
ples for popular families, collecting a large diverse malware dataset remains
difficult and time-consuming [16, 116, 90, 66]. In this chapter, we collect
PE malware executables from the VirusTotal (VT) feed [132], a real-time
stream of JSON-encoded reports of samples submitted to VirusTotal. De-
spite the appearance of more than 44M VT reports over a period of nearly
three months and the collection of 227k samples from 13.8k families, only
780 malware families of those contain at least 100 samples.

To further complicate the matter, malware authors often use off-the-
shelf packers and protectors [78, 75]. Both modify a program to hinder its
analysis while still preserving its original behavior. Based on their design,
different malware that undergo the packing or protection procedures may
generate executables that share a highly similar structure. This easily makes
a ML classifier trained over these malware samples overfit the packed or
protected file structure, rather than capturing its true malicious component.

Therefore, we put considerable effort to create four heterogeneous datasets
for a total of 118,111 samples to perform a large-scale measurement study.
Three of them are composed of malicious samples with varying numbers of
families, while the fourth contains benign samples. We devoted particular
attention during the construction of the datasets, trying both to repro-
duce the datasets usually used in research, but also considering real-world
scenarios typical of malware analysis. Such datasets allowed us to create
well-controlled experiments for studying how the effectiveness of ML-based

4.1. Dataset Collection 19

binary and family classification change under different testing scenarios.
Finally, there is also another crucial aspect that influences ML algo-

rithms that we further explored: feature extraction. The methods by which
one can analyze executable files fall into two main categories, depending
on what facets one wants to study, namely static properties and dynamic

behavior; nonetheless, the previous two can also be combined. Since we
wanted to study existing ML state-of-the-art solutions and not design new
ones, we build our static and dynamic feature extraction approaches on
what was described in recent papers [17, 14]. Therefore, this means that we
have statically analyzed and dynamically executed in a sandbox more than
a hundred thousand samples were used in this study.

The work in this chapter contributes by answering the following research
questions for both binary and family classification tasks:
⟨R1⟩ How do static, dynamic, and combined models perform on

different malware families/classes in binary and family classifica-

tion?

⟨R2⟩ On which families and classes of malware does each model

fail to produce accurate classification?

⟨R3⟩What is the contribution of static and dynamic feature classes

to the classification performance and does their contribution change

when joining the two sets?

⟨R4⟩ Does the presence of off-the-shelf packers and protectors

bring harm to classification accuracy?

⟨R5⟩Do missing feature values in the runtime behaviors negatively

impact the classification results?

⟨R6⟩ Is the AVClass2 confidence score correlated with ML-based

decisions?

⟨R7⟩ How does the training dataset construction strategy affect

the model performance?

⟨R8⟩ How does the ML-driven malware classifier perform over the

families unseen in the training data?

4.1 Dataset Collection

To conduct our experiments we collected 118,111 Windows PE32 executa-
bles, divided in four datasets, as summarized in Table 4.1. This section
describes the process for building those datasets.

20 20

Dataset Samples Families

Balanced Dataset (MB) 67,000 670
Benign (B) 16,611 -
Malware Unbalanced (MU) 18,000 1,500
Malware Generic (MG) 16,500 -
All 118,111 -

Table 4.1: Dataset summary

4.1.1 Malware Samples

We collect PE malware executables from the VirusTotal (VT) feed [132].
The VT feed is a real-time stream of JSON-encoded reports. Each report
contains the analysis results of a sample submitted to VirusTotal – including
file hashes, filetype, size, and the detection labels assigned by a large number
of antivirus (AV) engines. These reports are generated both by new samples
submitted by VT users, as well as by user-requested re-analysis of files
already known to VT. Samples in the feed can be of various file types (e.g.,
PE, APK, PDF), but our collection focuses on Windows PE executables.
Samples that appear in the feed can be downloaded within 7 days from the
moment they appear in the feed.

We want our dataset to be as diverse as possible in terms of the number
of families, but also to be balanced, so that no malware family is over-
represented or under-represented. Our initial target was to collect 1,000
malware families with a hundred samples each. The threshold of 100 sam-
ples per family was chosen to have enough samples per family to performing
multi-class classification experiments, taking into account that samples are
split into 60% training, 20% validation, and 20% testing. However, due
to the collection, filtering, and reclassification process described below, we
ended up with 670 families satisfying that threshold, as shown in Table 4.1.

To the best of our knowledge, this is the most diverse labeled malware
dataset in terms of families at the time of writing. The most recent dataset
was MOTIF [53] with 454 families. While the number of families in MOTIF
is also large, it is 21 times smaller than our balanced dataset with 3,095
samples, and is unbalanced with a median of three samples per family. Only
one family in MOTIF reaches 100 samples and 29% of the families have only
one sample. Such a small number of samples for most families does not allow
building an accurate multi-class classifier, as we will show in our evaluation.

4.1. Dataset Collection 21

Initial collection from VT feed. We collected reports and samples from
the VT feed for 82 non-consecutive days between August 2021 and March
2022. We only retained reports of samples detected by at least one AV
engine, and with a trID [94] filetype identification field (available in the
report) equal to ‘32-bit non-installer PE executable’. We excluded 64-bit
PE executables, dynamic-link libraries (DLLs), and executables generated
by popular installer software (e.g., NSIS, InnoSetup). These restrictions
are placed by our dynamic analysis sandbox, described in Section 4.2.2,
which currently does not support running 64-bit PE executables or DLLs,
and does not interact with GUIs in order to complete the installation of
other programs. However, an analysis of the whole VT feed during the 82
collection days shows that from all malicious PE samples in the feed, 87.6%
are 32-bit executables, 8.2% are DLLs (32-bit or 64-bit), 3.9% are 64-bit
executables, and the remaining 0.3% are other PE types (e.g., OCX, CPL,
SCR).

The retained reports are fed to the AVClass2 malware labeling tool [112],
which outputs the most likely family name for the sample as well as a
confidence factor that captures the number of AV engines assign that family
to the sample (after removing duplicates due to AV engines that copy each
other). For each family reported by AVClass2, our system downloaded
100 distinct samples. Each downloaded sample was then checked again to
exclude any remaining non-32-bit PE executables and installers that were
missed by trID. In particular, samples are removed if their PE header does
not indicate they are 32-bit executables, or if they are detected as installers
using public Yara rules by Avast [13]. As stated, our initial target was
to collect 1,000 malware families with 100 samples each. However, when
this target was reached, many other families had been collected with less
than 100 samples, resulting in an initial dataset of 239,417 PE32 malware
samples from 23,555 families.

Reclassification and family filtering. The AV labels of a sample may
change over time as AV vendors refine their detection rules. These label
changes may in turn change the family that AVClass2 outputs for a sam-
ple. To account for such changes, we re-collect the updated VT report for
our samples 54 days after the end of our collection process, and feed the
new reports to AVClass2 to obtain the (possibly) updated family. From the
239,417 samples, 9.7% (23,171) were at this point re-classified as a different
family. AVClass2 uses a taxonomy to identify a wide range of non-family to-
kens that may appear in the AV labels. These include file properties (e.g.,
FILE:packed:asprotect, FILE:exploit: gingerbreak), malware classes (e.g.,

22 22

CLASS:virus, CLASS:worm), behaviors (e.g., BEH:ddos, BEH:filedelete),
and generic tokens (e.g., GEN:malicious, GEN:behaveslike). However, the
AVClass2 taxonomy is assumed to be incomplete by design [112]. Thus, it
may output a label for a sample that does not correspond to a real fam-
ily, but rather to a previously unknown instance of the above categories.
To address this issue, we manually inspected the collected family labels
and conservatively filtered out any labels that may not correspond to real
family names. This step identified 86 likely non-family tokens not in the
AVClass2 taxonomy, such as gametool, testsample, nsismod, dllinject, and
processhijack. We also removed random-looking labels (e.g., 005376ae) that
AVClass2 failed to filter. As a byproduct of our effort, we will contribute
our extended AVClass2 taxonomy to the open-source AVClass2 project.

After reclassification and family filtering, the dataset contained 227,296
samples from 13,894 families, out of which 780 families had at least 100
samples. Thus, despite examining more than 44M VT reports over a period
of nearly 3 months, we were unable to reach our goal of 1,000 families with
100 samples. This illustrates the difficulty of building a diverse malware
dataset.

Feature filtering. We performed static and dynamic feature extraction
(as detailed in Section 4.2) for all samples of the 780 families with at least
100 samples. This required executing each sample in a sandbox to obtain
a behavioral report. We discarded 122 samples for which the static fea-
ture extraction pipeline failed. The failure reasons were corrupted headers
(26 binaries), empty output from the disassembler probably due to obfus-
cation techniques (95 samples), and the absence of the entry point in one
binary. We also discarded samples that did not exhibit any runtime behav-
ior, and sub-sampled families to keep only 100 samples each. The result is
a Balanced Dataset (hereinafter MB in this chapter) that contains 67,000
samples from 670 families. According to AVClass2, those families belong to
13 malware classes: 36% (282) of the families are classified as grayware (in-
cluding its adware subclass), 15% (120) as downloaders, 11% (87) as worms,
10% (78) as backdoors, 5% (41) as viruses, and the remaining 23% (62)
includes ransomware, rogueware, spyware, miners, hacking tools, clickers,
and dialers.

Dataset statistics. Over 93% of the samples in the MB dataset are de-
tected by at least 20 AV engines, while only 0.3% have a VT score less
or equal to 3. It is worth noting that the minimum number of detections
for samples in the dataset is two since AVClass2 requires at least two AV

4.1. Dataset Collection 23

engines to assign a label to a sample.
Samples on the VT feed can be new (i.e., collected and scanned for

the very first time by VT) or resubmitted (i.e., first submitted in the past
but re-scanned on the day they were collected). We compute the freshness
of samples in the MB dataset as the number of days between a sample’s
collection date and its VT first seen date. We observe that 53.4% of the
samples were collected within a day of being first observed by VT, 7.6%
within a year, and 37.8% are old samples first seen over one year before our
study.

Packer and protector detection. To hamper analysis, malware authors
may use packers that compress a sample and de-compress it at runtime, as
well as more sophisticated protectors that may combine different obfusca-
tions such as packing, encryption, and code virtualization. To evaluate the
impact of packers and other protectors on malware classification, we deter-
mine whether a sample uses an off-the-shelf packer or protector by using the
signature-based Detect It Easy (DIE) [5] tool, as well as the well-maintained
Yara rules of Avast RetDec [13]. Overall, 22% of the samples in MB use
a packer or protector. The most popular packer is upx detected on 14.0%
the samples, followed by aspack (3.2%) and pecompact (1.0%). The most
popular protectors are vmprotect (1.9%) and asprotect (0.4%).

4.1.2 Testing Datasets

We create two other disjoint malware datasets, which we use in Section 4.3
to test the ability of ML classifiers to generalize beyond the MB dataset
they were built upon. The first dataset, referred as Malware Unbalanced
(or MU) in Table 4.1, contains 18K samples from 1.5K families. These
samples were part of the initial VT feed collection, passed the filtering and
re-classification steps, but their families never reached the threshold of 100
samples and thus were excluded from MB. All samples are detected by at
least 20 AV engines and none of the samples nor their families are part of
MB.

The second dataset, Malware Generic (MG), contains 16.5K samples for
which AVClass2 was unable to output a family, due to AV engines using
only generic labels. These samples were separately collected from the VT
feed between June 23rd and July 6th 2022 and underwent the filtering steps
to keep only 32-bit non-installer PE executables. All samples are detected
by at least 20 AV engines and none of the samples are part of MB.

24 24

4.1.3 Benign Samples

Building a benign dataset by just relying on the number of AV detections in
the VT report is prone to errors due to the presence of malicious files that
are still unknown to AV engines. Therefore, we took a more conservative
strategy and decided to build a benign dataset by using a fresh installation
of all the community-maintained packages of Chocolatey [4] (which undergo
a rigorous moderation review process to avoid pollution) in a clean machine
running Windows 10. After each package was installed, we extracted all the
executable files present on the hard disk, which may correspond to Windows
system files or third-party publishers.

We exclude files that are not 32-bit PE executables and those with
more than three detections on VT. This allowed us to discard borderline
cases, i.e., benign files with characteristics very similar to malware, like
hacking and scanning tools. Using this procedure we collected a dataset B
of 16,611 benign samples. The code signatures of those samples indicate a
large diversity of publishers with over 1.4K different signers – including both
small companies and large software publishers such as Microsoft, Oracle, and
Google.

4.2 Methodology

We aim to answer the 8 research questions raised in the introduction of
Chapter 4. Notably, we aim to explore the performances of ML-driven
malware classifiers that use features extracted statically, dynamically, or a
combination of both with varied coverage of malware families and changed
volumes of training samples. Developing novel ML-based malware classifi-
cation models is beyond the scope of our study. Instead, we focus on dis-
cussing and evaluating the analysed issues using state-of-the-art ML models
for malware classification. As explained next, we use features presented in
previous works [14, 47, 43, 17]. This imposes a limitation as other features
could provide better results.

4.2.1 Static Features

Hojjat et al. [14] performed a literature review to identify the static fea-
tures that carry the most useful information for binary classification. We
implement their feature extraction methodology to extract the same classes
of static features. Similar to Hojjat et al. [14], we do not attempt to un-
pack the executables and perform the same feature extraction regardless of
whether the files are packed or not.

4.2. Methodology 25

ID Class Extraction Features

s-headers PE headers static 29
s-sections PE sections static 590
s-file File Generic static 2
s-dll DLL imports static 131
s-imports API imports static 3,732
s-strings Strings static 10,402
s-bytegrams Byte n-grams static 13,000
s-opcodegrams Opcodode n-grams static 2,500
d-network Network activity dynamic 438
d-file File activity dynamic 60,555
d-mutex Mutexes used dynamic 7
d-registry Registry operations dynamic 60
d-service Services activity dynamic 736
d-process Process activity dynamic 28,198
d-thread Thread actitivy dynamic 7

Table 4.2: Feature classes used in the classifiers.

The upper half of Table 4.2 summarizes the static feature classes (pre-
fixed by s-). The s-headers class captures 29 integer features (Table 1 in
the Appendix) from the Optional and COFF headers of the executable [31].
The s-sections class captures 590 Boolean features from each section in the
executable (Table 2 in the Appendix). The s-file features capture the file
size in bytes and the whole file Shannon entropy [74].

For the remaining 5 feature classes the exact number of features may
differ from those reported by [14] because they undergo a dataset-dependent
feature selection step that retains only the features that show variability or
that provide higher information gain (IG) [96]. For instance, in s-bytegrams

and s-opcodegrams, the selection process enumerates all values observed in
the validation set (20% of samples in MB), excludes rare values appearing
in less than 1% of the samples, computes IG, uses the elbow method to
identify a threshold value for IG, and only retains features with at least
that threshold IG. As in [14], for s-dll, s-imports, and s-strings, the selection
process only excludes rare values, but does not select an IG threshold.

The s-dll and s-imports class contain Boolean features extracted from
the import table (imported libraries in case of s-dll and imported functions
for s-imports). We extracted 637 unique libraries and 28,667 functions and
retained only those that appear in at least 1% of the files in the validation set,

26 26

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Information Gain

0

5

10

15

20

25

30

35

Fil
es

(a) s-bytegrams

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Information Gain

0

1

2

3

4

5

6

7

Fil
es

(b) s-opcodegrams

Figure 4.1: Distribution of number of s-bytegrams and s-opcodegrams based
on their Information Gain value.

reducing the number to 131 DLLs and 3,732 library functions. Similarly, for
the s-strings class, we extracted 106,352,885 strings of at least 4 characters,
filter those that appear in over 1% of the files, and kept 10,402 Boolean
features capturing whether the string appears or not in the binary. The
s-bytegrams class captures the presence of selected 4-grams, 5-grams, and 6-
grams. As proposed in [14], to keep memory usage manageable, the selection
process for this feature class is performed on 1,000 randomly chosen files
from MB, instead of the full validation dataset. From the 1,363,150,788
s-bytegrams extracted, the selection retained the 13,000 features with the
highest IG (Figure 4.1a). The s-opcodegrams class captures 1-gram, 2-grams
and 3-grams from the sequence of opcodes disassembled using Capstone [28].
Given an initial set of 255,812 opcode n-grams, we computed the TF-IDF
and used the elbow method on the IG distribution to retain the top 2,500
float features (Figure 4.1b).

4.2.2 Sandbox

We have built a sandbox for executing malware using the best practices pro-
posed by previous works [104, 78, 75, 140]. We configured a Windows 10
Pro 32-bit virtual machine (VM) with 2 CPUs (Intel Xeon Platinum 8160 @
2.10GHz) and 2 GiB of RAM. We installed popular apps and populated the
file system with common file types to resemble a legitimate desktop work-
station as suggested by Miramirkhani et al. [78]. Malware runs on clones
of this VM orchestrated using Proxmox VE [12]. To improve performance,
we stored all virtual disk images and VM snapshots in a RAM disk. As

4.2. Methodology 27

recommended by Rossow et al. [104], each machine runs on its isolated local
network with full Internet access through an ADSL line of our institution
dedicated to this purpose. Recent works have measured that 40%–80%
of modern malware use at least one evasive technique [75, 38]. To limit
the impact of such evasions, we base our analysis on the Intel PIN-based
JuanLesPIN tool [7, 75], which handles common evasive techniques, thereby
increasing the likelihood that malware detonates. Unfortunately, it does not
support 64-bit Windows executables, so we focus on 32-bit malware. We
modified JuanLesPIN to monitor Windows APIs responsible for network,
processes, services, registry, mutexes, file system, and DLL loading. Finally,
we tested our analysis environment with the Al-Khaser [8] tool to confirm
that our sandbox could not be identified. To measure the overhead intro-
duced by our analysis system we executed 1,000 malware samples randomly
chosen among those that: (i) terminate the execution, (ii) use at least one
evasive technique, and (iii) detonates according to the threshold proposed
in [65], i.e., the sample calls at least 50 Windows APIs. We measured their
execution time with and without instrumentation by observing a percent-
age increase of µ = 125, σ = 31, min = 26, med = 106, max = 206. This
overhead is in line with that in [75]. Kuechler et al. [65] recently showed
that the amount of code executed by malware samples plateaus after two
minutes, and little additional information can be obtained thereafter. Thus
considering the overhead mentioned above, we took a conservative approach
and ran each sample for up to five minutes.

4.2.3 Dynamic Features

We extract 7 classes of dynamic features from the API calls (including
their arguments) invoked by the malware during execution in the sandbox.
The features were chosen to cover those used in previous works that built
classifiers from malware executions (e.g., [47, 43, 17]).

The lower half of Table 4.2 summarizes the 7 dynamic feature classes
(prefixed by d-). Categorical features such as filenames and domains are
one-hot encoded to Boolean features. To encode each feature, we count all
its possible values and exclude those appearing less than five times in the
training set. The d-network class (438 features) captures the HTTP, TCP,
and UDP traffic. Of those, 430 features capture unique domains contacted
by the malware and HTTP User-Agent strings used; three count the num-
ber of HTTP requests, TCP connections, and UDP pseudo-sessions; and 5
randomness-related features capture the mean/median/min/max/std like-
lihood of domain names and URLs contacted according to a recently pro-
posed Markov Chain model [17]. The d-file class features (60,555) capture

28 28

the name and extension of 60,547 files created or accessed by the malware,
the number of files read, written, and deleted; and 5 capture the random-
ness of the filenames. The d-mutex class features (7) capture the number
of mutex objects created and the randomness of the mutex names. The
d-registry class features (60) capture 55 unique registry keys written, and
the count of registry keys created, opened, read, written, and deleted. The
d-service class features (736) capture the count, randomness, and names of
services and service managers created, started, and halted. The d-process

class features (28,198) capture the count of processes created, processes
terminated, and shell commands invoked, as well as 28,195 unique process
names. The d-thread class features (7) capture the number of the threads
opened, created, resumed, terminated, and suspended, as well as the num-
ber of the interactions with the context of a given thread and the number
of asynchronous procedure calls (APC) queued to a thread. The last two
features help capture suspicious behaviors.

Missing features. When a dynamic feature cannot be computed (e.g.,due
to lack of activity), we assign them default place-holder values that do not
belong to the domain of the features. We refer to such features as missing

features. For example, if a sample has no file system activity, we cannot
compute the d-file filename randomness features. As a result, the 5 sta-
tistical features related to the randomness of the file names are thus not
available. We perform dynamic feature extraction only over detonated mal-
ware samples (i.e., those that called at least 50 APIs as defined in 4.2.2),
but even for detonated samples, there are still missing observations of fea-
ture values. To facilitate the analysis of the impact of the missing features,
we define the feature missing rate (FMR) of a malware family as the frac-
tion of family samples that have missing values in the file, registry, service,
and process features (which, among the seven dynamic features classes we
consider, are the most relevant for classification according to Table 4.10).
Missing values over all these four feature classes considerably degrades both
the amount and quality of useful information available to the classifier. Ac-
cording to our analysis, over 54% of the malware families studied in chapter
contain on average 77% of the malware samples per family with missing fea-
ture values in these four dynamic feature classes. Missing observations can
negatively impact ML classifiers by overfitting the data and reducing the
model’s accuracy. Recently, Aonzo et al. [17] showed that classifier models
tend to focus on static features, rather than dynamic ones, precisely because
static features are rarely missing. In Section 4.3.2 we analyze the impact
of missing features in the classification results.

4.2. Methodology 29

4.2.4 Models

We train multiple models to capture different axis: classification task (i.e.,
binary or family classification), features (i.e., static, dynamic, combined),
classifiers (i.e., Random Forest, XGBoost), dataset construction (i.e., dis-
tribution of families in training dataset), and a different number of families
and samples.

Classification task. We build models for binary and family classification
tasks. The binary classification models detect whether a given sample is ma-
licious (positive class) or benign (negative class). The family classification
models identify the family of a given malicious sample, that is, there is one
class per malware family and no goodware class. We prefix the name of a
model with binary- or family- to indicate the classification task.

Features. We build models that use all static features, all dynamic fea-
tures, and all combined features (i.e., all static and all dynamic). The name
of a model includes -static-, -dynamic-, or -combined- to indicate the fea-
tures used.

Classifiers. Given a large number of ML classifiers, it is not possible for
us to systematically evaluate all of them. In our experiments we selected
Random Forest and XGBoost because they are consistently among the best-
performing classifiers evaluated in previous works (summarized in Table 2.1
and Section 2.2). Moreover, being tree-based, they are easier to interpret,
they allow direct analysis of feature importance, and they are also intrin-
sically capable of handling both categorical features (e.g., unique filenames
accessed during execution) and continuous features (e.g., filename mean
randomness). We also considered neural networks, but discarded them be-
cause to achieve good performance they require larger training datasets (e.g.,
≥ 400k samples in [99]). It was not clear whether we could build a balanced
family dataset of the required size. In addition, there exist many potential
neural architectures to evaluate and their training times are longer, which
is critical given the large number of models we evaluate.

Dataset construction. For the binary classification task, we experiment
with two ways of building our dataset, namely uniform and not nonUni-

form. The uniform approach builds datasets that balance the number of
goodware and malware, using a sampling-with-replacement approach, as
follows. We uniformly select from each family in MB a number of samples

30 30

so that the total number of malicious samples matches the size of the be-
nign dataset (i.e., each family in MB provides 24–25 samples for a total of
16,611 malware samples). We repeat the process five times avoiding rep-
etitions (i.e., each time selecting a different set of malware samples from
each family in MB), to completely cover all the malicious samples in each
family. These steps produce 5 balanced datasets. Each dataset is split into
60% of samples for training, 20% for validation (i.e., selecting the classifier
hyper-parameters), and 20% for testing. To evaluate a model, for each of
the five datasets, we perform a 10-fold cross validation to ensure that all
the samples equally contribute to the training and testing datasets. We re-
port average results across the five rounds and their respective folds. Thus,
obtaining the accuracy results from one model requires us to train and test
50 times.

The nonUniform approach replicates the unbalanced distribution of
samples per family in the MOTIF dataset [53]. The motivation for this
dataset is to study whether the family distribution in the training set of
a binary classification task (where family labels are not used) affects the
detection accuracy. In MOTIF, 29% of families have only one sample, 41%
have 2-5 samples, 12% 6-10, 10% 11-20, 4% 21-30, 2% 31-40, 1% 41-50,
and 1% has over 142 samples. We replicate this distribution on the 670
families in MB. For example, we select one sample from 29% (randomly-
chosen without replacement) of the 670 MB families and 142 samples from
one randomly-chosen family. The resulting dataset comprises all 16,611 be-
nign samples and 4,821 samples from 670 families that follow the per-family
sample distribution in MOTIF.

Number of families and samples. To measure the impact that the
number of families to classify and the available samples for each family
have on the results, we build multiple ML-based classifiers for the family
classification task by uniformly sampling 70, 170, 270, 370, 470 and 570
families from the total 670 families. For each of them, we also experiment
with a version trained and tested on 50, 60, 70, and 80 malware samples
for each family. As indicated above, we have 20% samples used as the
validation data. Therefore, at maximum, there are 80 malware samples for
training and testing use.

4.3 Experimental study

This section presents the results of the experiments we conducted to answer
the research questions presented in the introduction. We have adopted the

4.3. Experimental study 31

Task Features Precision Recall F1-score
Families with

100% accuracy

Binary Static 0.956 0.957 0.957 242 (36.12%)
Binary Dynamic 0.945 0.892 0.926 465 (69.40%)
Binary Combined 0.963 0.934 0.948 450 (67.16%)

Family Static 0.856 0.850 0.848 68 (10.15%)
Family Dynamic 0.734 0.708 0.704 114 (17.17%)
Family Combined 0.874 0.867 0.865 138 (20.60%)

Table 4.3: Overall classification results using Random Forest.

following structure for ease of reading: the reader will find the discussion to
⟨Rx⟩ in Section 4.3.x and a summary with the answer ⟨Ax⟩ at the end of
each subsection.

4.3.1 Overall Classification Results

In this section, we examine how static, dynamic, and combined features
impact binary and family classification. We first discuss the results using
Random Forest and then discuss the XGBoost results. Table 4.3 summarizes
the accuracy results using Random Forest. The results correspond to the
uniform dataset construction approach. Each line in the table reports the
averaged precision, recall, and F1 score of 10-fold cross validation. It also
reports the fraction of malware families with 100% family-wise accuracy.
In binary classification, 100% family-wise accuracy for a family denotes
that the family can be perfectly differentiated from goodware. In family
classification, 100% family-wise accuracy instead means that samples from
a malware family are not misclassified as another malware family.

The static features achieve a higher F1 score than the dynamic features
in both binary and family classification. However, the fraction of perfectly
classified malware families is higher for dynamic features, suggesting that
dynamic features work very well for some malware families, but poorly on
others. The combination of static and dynamic features brings marginal
improvements in F1 score over static-only features. It improves it by 1% for
family classification, but decreases it by 2% for binary classification. On the
other hand, adding dynamic features increases the percentage of perfectly
classified families over the static case, although for binary classification the
fraction reduces compared to dynamic-only features. The accuracy reduc-
tion with more features might seem counter-intuitive, but it can happen

32 32

Task Features Precision Recall F1-score

Binary Static 0.907 0.902 0.904
Binary Dynamic 0.978 0.820 0.892

Family Static 0.705 0.690 0.697
Family Dynamic 0.720 0.689 0.691

Table 4.4: Overall classification results for XGBoost. We failed to run
XGBoost on the combined features due to its higher memory consumption.

when the two feature sets are not independent and bring different strengths
and weaknesses that lead to mistakes on different parts of the input space.
It is well known as the curse-of-dimensionality in machine learning [120].
Adding more features does not necessarily improve the overall accuracy,
more features may bring unexpected variance and noise into the classifica-
tion module [70].

Our results may raise concerns about the value of dynamic analysis. On
the one hand, dynamic features outperform static features for a fraction
of families, significantly raising the number of perfectly classified families
(e.g., nearly doubling it for binary classification). This confirms the value
of dynamic analysis, for example when researchers are interested to build
behavioral signatures for specific malware families. On the other hand, the
overall impact of adding dynamic features to static features is unclear. This
might be the consequence of malware families for which dynamic features
do not work well, because of intrinsic properties of the malware family (or
malware class), but also because the sandbox might fail to stimulate sam-
ples adequately (e.g., due to evasion techniques or to the lack of a live
command-and-control server). Adding dynamic features to the models may
still provide other benefits. For example, recent work has shown that dy-
namic features are preferred by humans for interpretability [17]. Further-
more, dynamic features can increase the robustness of the model, making it
more resilient to obfuscations designed to hamper static analysis.

XGBoost. Table 4.4 shows the classification results using XGBoost for
static and dynamic features. We failed to run XGBoost on the combined
features due to XGBoost’s higher memory consumption, which becomes a
bottleneck given the large number of features (roughly 100k) in the com-
bined model. The results correspond to the uniform dataset construction
approach and 10-fold cross validation. Similar to Random Forest, the static
features achieve higher F1 score than the dynamic features in both binary

4.3. Experimental study 33

and family classification, although the advantage of static over dynamic is
smaller in this case. Compared to Random Forest classifiers, XGBoost clas-
sifiers have lower F1-score for both binary classification (4.4% lower) and
family classification (8.2% lower). Since Random Forest classifiers have
higher accuracy, and they also run faster than XGBoost classifiers while
consuming less memory, we use Random Forest classifiers in the rest of our
evaluation.

Time-aware experiments. To avoid the temporal bias that cross-validation
may introduce, Pendlebury et al. [90] suggested to split training samples
into temporal bins. However, since our dataset only contains 100 samples
per family, the individual bins would be too small and thus we decided
to not perform temporal binning. Instead, in Section 4.3.8 we perform a
separate out-of-distribution (OOD) evaluation with unseen families and sin-
gletons not present in the training dataset, which addresses the main bias
that cross-validation introduces.
⟨A1⟩ For both binary and family classification tasks, models trained on
static features alone provide higher accuracy than the models trained
only on dynamic features. The latter is able to perfectly classify more
families, but perform poorly on others, producing an overall lower clas-
sification accuracy.
Adding dynamic features on top of the static features brings marginal
accuracy improvement for family classification and even negatively affects
binary classification. On the other hand, dynamic features may offer
benefits for model robustness and interpretability.

4.3.2 Hard-to-Detect Malware

This section analyzes which malware classes and families pose a greater
challenge for classifiers based on static and dynamic features. Note that
our multi-class classification models are for families. We only use here the
coarser malware class (e.g., virus, worm) to draw conclusions on similar
families.

Table 4.5 shows Recall and F1-scores for each malware class in binary
and family classification respectively. In binary classification, the recall
value is defined as the number of correctly classified samples in the class over
the total number of samples in the class. The numbers differ from those
in Table 4.3 because Table 4.5 only considers the classification results of
malware samples, while Table 4.3 covers the classification of both goodware
and malware samples (thus taking also false positives into account).

34 34

Class
Binary class. Recall Family class. F1 score

Static Dyn. Comb. Static Dyn. Com.

Adware 0.905 0.915 0.981 0.926 0.761 0.925
Backdoor 0.966 0.943 0.996 0.830 0.730 0.838
Clicker 0.971 0.929 1.000 0.817 0.692 0.821
Dialer 0.994 0.875 1.000 0.988 0.888 0.984
Downloader 0.974 0.899 0.996 0.864 0.695 0.874
Grayware 0.932 0.895 0.986 0.832 0.675 0.852
Miner 0.989 0.972 0.999 0.927 0.807 0.962
Ransomware 0.967 0.945 0.997 0.839 0.580 0.853
Rogueware 0.984 1.000 0.992 0.616 0.401 0.663
Spyware 0.972 0.829 0.998 0.869 0.704 0.879
Tool 0.992 0.929 1.000 0.864 0.778 0.830
Virus 0.885 0.939 0.971 0.819 0.719 0.809
Worm 0.978 0.899 0.996 0.922 0.721 0.921

Average 0.967 0.920 0.9907 0.848 0.704 0.865

Table 4.5: Classification accuracy for malware classes.

As we can see, the recall and F1 score are not uniform across all classes
and can widely vary depending on the task and the features used. Static fea-
tures are considerably better at detecting downloaders, dialers, and worms.
In contrast, dynamic features perform better on rogueware, miner, and ran-
somware.

These results are confirmed also if we look at individual families. We
provide Table 4.6, Table 4.7, Table.4.8 and Table.4.9 to show the 10 fam-
ilies with the lowest accuracy in both classification tasks using static and
dynamic features. For instance, among the 10 malware families for which
the static classifier makes more mistakes, we count four viruses (i.e., file
infectors) and six grayware. This is even more remarkable if we consider
the fact that there are only 40 families of Viruses in our entire dataset. The
fact that viruses typically append their code to benign files results in a wide
variation in terms of static features among samples of the same family, and
this can explain why it is hard for a static classifier to differentiate them
from goodware and from other families. Similarly, grayware is defined as
undesirable code, which is not outright malicious per se, therefore making
it difficult to find a clear boundary to isolate these families. In the worst 10
families using dynamic features, we can observe a similar pattern: grayware
and viruses dominate the list. Besides, adware and spyware are also among

4.3. Experimental study 35

Static binary classification

Family Class Avg Recall % packed

pioneer virus 0.401 6%
asparnet grayware 0.410 5%
systweak grayware 0.458 19%
shopper grayware 0.500 1%
sality virus 0.516 4%
vitro virus 0.553 3%
installcore grayware 0.596 10%
slugin virus 0.598 4%
elex adware 0.603 9%
passview grayware 0.617 35%

Table 4.6: Top-10 malware families with the lowest binary classification
accuracy using the static features (i.e., highest mispredictions as goodware).

the worst families. Malware samples in each of the classes have similar
behaviors.

⟨A2⟩ Models employing static features find it more difficult to classify
grayware and viruses. Dynamic features can identify ransomware, spy-
ware, and adware as malware, but they have great difficulty in properly
identifying their families, probably due to very similar runtime behaviors
of different families in these classes.

4.3.3 Feature Class Importance

This section examines the importance of the static and dynamic features for
binary and family classification using a Random Forest classifier. We mea-
sure feature importance using the average Mean Decrease Impurity (MDI)
score. In a tree-based classifier, the MDI score of a feature captures how
often the feature was used in the tree. The more a feature is used, the
more important it is to distinguish different classes. For feature classes, we
average the MDI Score across all the features belonging to the same feature
class and over all the trees in the Random Forest model.

Feature classes. Table 4.10 summarizes the feature class importance.
Overall, static features are ranked higher than dynamic features, especially
for family classification. This matches results in Section 4.3.1 where dy-

36 36

Static family classification

Family Class Avg F1 % packed

zpevdo grayware 0.150 15%
vitro virus 0.240 3%
uwamson grayware 0.252 15%
gendal grayware 0.280 62%
dumpex grayware 0.290 40%
alman virus 0.293 11%
sality virus 0.328 4%
pasta grayware 0.346 28%
cobra grayware 0.381 60%
copidmbe virus 0.387 9%

Table 4.7: Top-10 families with the lowest family classification accuracy
using static features (i.e., highest mispredictions to other families)

namic features provide marginal improvements over static features. This
observation is in line with recent findings that although humans prefer dy-
namic features, ML algorithms rely more on the always present static fea-
tures [17].

The most contributing static feature classes for both classification tasks
are s-bytegrams, s-opcodegrams, and s-strings. This confirms what was pre-
viously observed in the literature, with raw and opcode ngrams dominating
over other static features [14]. On the other hand, the most contributing
dynamic feature classes for both classification tasks are d-file and d-process.
It is interesting to note that even expert human analysts used widely file
and process operations to identify malicious behaviours [17].

In our dataset, over 50% of the malware samples contain missing fea-
tures values in the d-network and d-service feature classes, thus missing
feature values is likely the reason for their low importance. We evaluate
this in Section 4.3.5. It is interesting that d-registry ranks second for bi-
nary classification, but only 10th for family classification. This means that
registry operations are useful to differentiate malware from goodware, but
they do not provide enough diversity to separate different malware families.
This likely happens because multiple malware families operate on the same
registry keys such as those related to achieving persistence (e.g., auto-start)
and those that disable OS security features. In contrast, goodware does not
need to operate on those keys.

4.3. Experimental study 37

Dynamic binary classification

Family Class Avg Recall Packed FMR

tasker grayware 0.0 11% 0.77
malex downloader 0.0 1% 0.77
rostpay grayware 0.0 96% 0.76
constructor grayware 0.0 13% 0.78
atcpa virus 0.0 0% 0.78
mocrt spyware 0.0 73% 0.80
mokes backdoor 0.0 1% 0.65
bingoml grayware 0.0 22% 0.72
safebytes grayware 0.0 99% 0.81
trymedia adware 0.0 73% 0.70

Table 4.8: Top-10 malware families with the lowest binary classification
accuracy using dynamic features (i.e., highest mispredictions as goodware).

Individual features. The most contributing static feature classes are
s-bytegrams and s-opcodegrams, but their individual features are hard to
interpret. For binary classification, the top 10 s-strings features capture
5 API names (exit, CreateThread, cexit, CopyFileA, WinExec), one section
name (.idata), one module name (MSVCRT.dll), a string possibly related to
the .NET runtime (<assemblyIdentity), and two short strings with unclear
meaning (:0806, L$ H). The top s-sections features capture section entropy
and bit 31 in the section characteristics field, which states if the section can
be written to. These features are likely related to packing. We further exam-
ine which static features allow to detect packed malware in Section 4.3.4.
The top s-imports features have some overlap with the top strings (e.g.,
exit, cexit), but also contain APIs possibly used for evasion (e.g., queryper-

formancecounter, getsystemtimeasfiletime) and popular C runtime functions
(e.g., free, calloc, malloc, fprintf). For family classification, the top static
individual features differ from those for binary classification with no in-
tersection between the top 10 s-strings and s-imports for binary and family
classification. For example, the top strings contain 6 API names (WNetOpe-

nEnumA, WNetEnumResourceA, WNetCloseEnum, RegisterServiceProcess,
PathFileExistsA, UpdateResourceA), a third-party library name (StringX),
and some short strings (QQQQS3, l l l l l, 3.91). These strings are not highly
ranked for binary classification and are possibly associated with specific
families.

38 38

Dynamic family classification

Family Class Avg F1 % packed FMR

bancos spyware 0.0 44% 0.76
kovter grayware 0.0 0% 0.78
safebytes grayware 0.0 99% 0.80
winner grayware 0.0 0% 0.80
umbra downloader 0.0 0% 0.80
ulise grayware 0.0 2% 0.80
contenedor virus 0.0 0% 0.80
cobra grayware 0.0 60% 0.79
kuaizip adware 0.0 1% 0.80
zpevdo grayware 0.0 15% 0.77

Table 4.9: Top-10 families with the lowest family classification accuracy
using dynamic features (i.e., highest mispredictions to other families)

Among the dynamic features, the most contributing classes are d-file and
d-process. In contrast to the static features, the top contributing dynamic
features largely overlap between binary and family classification. The top
process features are the number of processes invoking shell commands, and
the number of terminated, opened, and created processes. The top file
features capture the entropy of the files accessed, as well as the name of some
specific files, such as appdata\local\temp\ 7zipsfx.000, which likely indicates
the executable is an SFX installer. One difference between binary and
family classification is that for family classification the number of mutexes
created is a top contributor. Mutexes are often used by malware creators to
avoid re-infecting the same host and their number and values are intuitively
family-specific.

Overall, the interpretability of individual features can be hard, especially
for n-grams. In fact, we argue that one benefit of ML classifiers is that they
can select the features they consider most useful, which a human may not be
able to identify based on domain knowledge. Our data release [2] includes
the top individual features for the different models.

4.3. Experimental study 39

Feature Class
Binary classification Family classification

Comb. Static Dyn. Comb. Static Dyn.

s-bytegrams 40.88 51.38 - 38.60 41.67 -
d-registry 17.19 - 25.00 0.51 - 0.60
s-opcodegrams 13.44 21.08 - 23.48 20.87 -
s-strings 9.09 15.27 - 17.62 19.27 -
d-file 7.74 - 29.70 3.16 - 56.20
s-sections 3.05 6.73 - 5.62 6.48 -
s-imports 2.48 4.17 - 7.87 9.30 -
d-thread 2.06 - 7.34 0.16 - 5.26
d-network 1.51 - 3.50 0.35 - 3.70
d-process 1.47 - 32.90 0.87 - 30.70
s-headers 0.34 0.72 - 0.73 0.96 -
d-mutex 0.25 - 0.16 0.03 - 1.19
d-service 0.19 - 1.40 0.07 - 2.39
s-dll 0.17 0.28 - 0.52 0.57 -
s-file 0.13 0.35 - 0.39 0.87 -

Table 4.10: Feature class importance using MDI score.

⟨A3⟩ Static features are more important than dynamic features for both
classification tasks, but especially for family classification. Raw and op-
code n-grams are the most important feature classes in both classification
tasks. The importance of a feature class may depend on the classification
task. For example, d-registry is important to distinguish malware from
goodware, but is not relevant for family classification.

4.3.4 Impact of Packers and Protectors

This section evaluates whether the presence of off-the-shelf packers and pro-
tectors harms the classification accuracy when considering static features.
Our dataset comprises real malware collected from a commercial feed, so
we expect the fraction of packed samples to approximate that in the wild.
Overall, we identified 119 unique known packers, including highly sophisti-
cated ones like VMProtect and Themida, covering 22% of the samples in
our dataset. However, this ratio is certainly a lower bound as packer de-
tection tools may not identify custom packers. Tables 4.6–4.9 show that
the packing rate largely varies per family: some have 99% of their samples
packed while others have none. As explained in Section 4.2.1, we did not
attempt to unpack samples, but follow prior work in extracting static fea-

40 40

tures regardless of whether a file is packed or not. The packer information
is only used for the analysis of the results.

We first investigate whether the models overfit the packers or instead
can capture data that allows them to classify samples correctly. To answer
this question, we first compute the family-wise classification accuracy for
both binary and family classification using static features. We then com-
pute the Pearson correlation scores between the family-wise accuracy scores
and the rate of packed samples in each family. If packing negatively affects
the ability to classify a sample, we would expect lower accuracy for families
where packing is more prevalent. However, the correlation scores are 0.015
and 0.0001 respectively for binary and family classification. To statisti-
cally support these results, we run a T-test with the null hypothesis being
that there is not a significant correlation between classification accuracy
and packing presence. We respectively obtain 0.51 and 0.98 as p-values
that do not allow us to reject the null hypothesis. Thus, we conclude that
there is not a statistically significant correlation between the two variables.
This might seem surprising, as one might expect a high correlation between
packing and misclassification rate at least for models that rely only on static
features. After all, packing was one of the main reasons that led researchers
to introduce malware analysis sandboxes and dynamic analysis. However,
this is a common misconception. In fact, while packing is very effective at
impeding static analysis (i.e., the ability to examine a sample and statically
derive its behavior), other works [14] have shown that common packers leave
certain areas of the binary untouched, thus having a limited effect on the
ability of a ML classifier to identify a sample. While our static models
seem capable to detect samples protected with off-the-shelf packers, newer
protectors can be designed to specifically target static models. Also, it is
possible that some of the hard-to-detect families use (undetected) custom
packers that indeed hamper the detection.

To understand which static features are more effective at identifying
packed malware, we compute the importance of the feature classes sepa-
rately for two sets: packed samples on one side and unprotected (i.e., not
packed) samples on the other. Table 4.11 summarizes the results for both
binary and family classification. The All column captures the feature im-
portance for all samples (regardless of packing) and thus matches the val-
ues already reported in Table 4.10. The results show that for both binary
and family classification of packed samples, the relative importance of s-

bytegrams increases significantly (compared to all samples) and there are
also relevant increases in the importance of s-sections, s-headers, and s-dll.
On the other hand, the relative importance of s-opcodegrams and s-imports

4.3. Experimental study 41

Feature Class
Binary classification Family classification

All Packed Not-Packed All Packed Not-Packed

s-bytegrams 51.38 62.22 49.30 41.67 53.66 38.59
s-opcodegrams 21.08 8.30 22.69 20.87 9.95 25.02
s-strings 15.27 16.80 16.16 19.27 18.17 17.80
s-sections 6.73 7.50 6.29 6.48 9.39 10.17
s-imports 4.17 2.29 4.35 9.30 5.32 6.09
s-headers 0.72 1.42 0.63 0.96 1.30 1.17
s-dll 0.28 1.06 0.21 0.57 0.91 0.78
s-file 0.35 0.40 0.36 0.87 1.29 0.36

Table 4.11: Feature class importance using MDI score when considering all
samples, packed samples only, and not-packed samples only.

is greatly reduced.

This is likely due to the fact that much of the code in packed samples
is compressed or encrypted, reducing the amount of useful opcodes that
can be extracted statically to those in the unpacking routine. On the other
hand, raw bytegrams are still able to capture distinctive sequences of bytes,
which may act like signatures for the packed samples. Those sequences can
be extracted from parts of the executable that are not code (e.g., PE header
and data sections). The classifier focusing on those parts for packed samples
would also explain the increased importance of s-sections, s-headers, and s-

strings. In addition, some packers use weak encryption schemes based on
XOR operations with a fixed key, which may make distinctive byte sequences
in the unpacked code to still be distinctive (in their encrypted form) in the
packed executable. The decrease in importance for s-imports is likely linked
to packers obfuscating the import table. Finally, most packers leave a very
reduced import table that tends to use the same Windows libraries, which
could explain the slight increase for s-dll.

⟨A4⟩ Packed or protected samples (with off-the-shelf tools) do not signif-
icantly correlate with their classification accuracy using static features.
This means that although these technologies function well to deter static
analysis (in particular reverse engineering), they do not significantly af-
fect ML classifiers, which are still able to successfully identify byte-level
signatures.

42 42

4.3.5 Impact of Missing Dynamic Feature Values

Some possible explanations for the worse results of dynamic features com-
pared to static features are that a sandbox may fail to stimulate samples
adequately to cause them to ‘detonate‘, or that samples may not work prop-
erly due to missing local or remote components. As a result, the classifier
might need to take a decision based on a partial view of the malware runtime
behavior.

We computed the Pearson correlation coefficient between the family-
wise recall of binary classification and the FMR to study the link between
the two. Interestingly, the correlation is not statistically significant for the
binary classification task (pearson -0.1 and p-value 0.11). However, there is
a clear negative correlation (-0.43, p-value of 7.61 ∗ 10−16) for the family
classification task. In this case, as the fraction of samples with missing
feature values for a family increases, its classification accuracy decreases.
This is also confirmed by looking at the malware families that are the most
difficult to classify with dynamic features, i.e., those for which the classifier
has the lower accuracy (see Tables 4.8 and 4.9 in Section.4.3.2). Among
the top-10 all have an FMR > 65%.

This outcome demonstrates that the ML classifier might still be able to
identify signs of malicious behavior in incomplete dynamic analysis reports,
but more feature values are needed to precisely distinguish among different
families (in particular for those, like downloaders, that might have similar
behavioral profiles). In addition, binary classification is also affected by
the quality of the behaviors collected from benign samples, while family
classification accuracy is solely associated with the feature completeness of
malware samples in each family.

⟨A5⟩ Globally, a statistically significant inverse correlation in the family
classification task between the family-wise classification accuracy using
dynamic features and the amount of missing dynamic feature values exist.
The correlation is instead not significant for the binary classification
task.

4.3.6 Impact of Ground Truth Confidence

To assign a family to a sample AVClass2 computes a list of (tag, confidence)
pairs, e.g., (FAM:sality, 5), (CLASS:virus, 4), (FAM:zpevdo, 1). Then, it
selects as family the highest confidence tag that is either a family in its
taxonomy or an unknown tag not in its taxonomy. The confidence score
roughly represents the number of AV engines that assign a tag to the sample,
after accounting for aliases and discounting groups of AV engines that copy

4.3. Experimental study 43

their labels. This section examines whether the AVClass2 confidence score
for the selected family impacts the classification accuracy.

To examine this issue, we first compute the confidence score for each
family. For each sample, we obtain a normalized confidence in the [0,1]
range by dividing the confidence score of the assigned family over the sum
of the confidence scores for all family and unknown tags for the sample.
In the case above, this step returns 0.83 as the FAM:sality confidence was
5, but FAM:zpevdo also appeared in the output. Then, we average the
normalized confidence factor across all samples in the family to produce a
family confidence score.

Next, we compute the correlation between the family-wise classification
accuracy and the family confidence score. The hypothesis is that higher
family confidence scores correlate with higher family classification accuracy,
i.e., the more agreement AV engines have when tagging the sample, the eas-
ier it should be to classify the sample. The Pearson correlation coefficient
is 0.083 for static features (p-value 0.03) and 0.062 for dynamic features
(p-value 0.01). The correlation is positive but extremely small. Thus, we
can conclude that poor family classification is not influenced by a low AV-
Class2 confidence score and the result is statistically significant. This is
further confirmed by examining the 10 families with the lowest classifica-
tion accuracy using either static-only or dynamic-only features (Table 4.6
and Table.4.8). Of those 20 families, all have a confidence score above 0.5
and 15 have a confidence score above 0.8. This suggests that even when the
AV engines do not fully agree on the name of a sample, the majority vote
likely selects the correct family, which provides further confidence on our
AVClass2-based ground truth generation approach.

⟨A6⟩ The accuracy of family classification is not correlated with the AV-
Class2 confidence score, which captures the agreement between different
AV vendors on the family name of a sample. This observation supports
that AVclass2 is a valid tool for getting ground truth when it is necessary
to obtain the family name of malware.

4.3.7 Impact of Training Dataset Construction

This section evaluates the effect of the construction of the training dataset
on classification accuracy. We specifically investigate the impact of the size
of the training dataset, the variety of malware families represented, and the
uniformity of the sample-family selection. To the best of our knowledge, the
question of how diversity in terms of families impact binary classification
has not been studied before.

44 44

70 170 270 370 470 570 670

Families

50
60

70
80

Sa
m

pl
es

0.966 0.963 0.965 0.961 0.961 0.962 0.960

0.949 0.967 0.962 0.963 0.960 0.960 0.958

0.961 0.965 0.965 0.964 0.963 0.959 0.959

0.964 0.963 0.967 0.964 0.962 0.958 0.958

0.9500 0.9525 0.9550 0.9575 0.9600 0.9625 0.9650

Figure 4.2: F1 score heatmap for binary classification using static model.

To study this aspect we plot a number of heatmaps. In each experiment,
as described in Section.4.2, we reserved randomly 20 samples in each family
for validation (e.g., hyper-parameter tuning) and we choose p samples from
the remaining 80 samples and use them for training and testing. To study
the impact of number of available samples, we vary p from 50 to 80. To
study instead the impact of the number of different families in the dataset,
we progressively vary the number of families involved in both binary and
family classification from 70 to 670. For each combination of number of
families and number of samples per family, we conduct a 10-fold cross val-
idation test and report the averaged F1 score in the corresponding cell of
each heatmap.

Figure 4.2 and Figure 4.3 present heatmaps of the F1 score for binary
classification, using static features and dynamic features respectively. Fig-
ure 4.4 shows the heatmap for the combined model, for brevity only showing
the variation with the number of families. Figure 4.5, Figure 4.6, and Fig-
ure 4.7 are similar but for the family classification task.

Overall, the results indicate that as the number of samples per family
increases, the classification accuracy also increases. The exception is for
the binary classification using static features, where increasing the samples
per family may cause a decrease in overall accuracy. For example, when
using 50 samples for each of the 670 families the F1 score is 0.960, but
when using 80 samples it slightly decreases to 0.958. However, the trend is

4.3. Experimental study 45

70 170 270 370 470 570 670

Families

50
60

70
80

Sa
m

pl
es

0.922 0.913 0.912 0.911 0.911 0.910 0.904

0.911 0.912 0.912 0.912 0.918 0.915 0.922

0.925 0.925 0.928 0.926 0.924 0.922 0.923

0.940 0.939 0.935 0.935 0.931 0.926 0.926

0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940

Figure 4.3: F1 score heatmap for binary classification using dynamic
model.

70 170 270 370 470 570 670

Families

10
0

Sa
m

pl
es

0.985 0.975 0.963 0.956 0.951 0.948 0.948

0.950 0.955 0.960 0.965 0.970 0.975 0.980

Figure 4.4: F1-score heatmap for binary classification with combined
model.

different if we consider more families. We consider these very small changes
as fluctuations due to the randomness of the sample selection process.

With respect to family diversity, the results confirm that the more fam-
ilies in the training dataset the more difficult their classification is. As ex-
pected, the decrease in classification accuracy is more marked for the family
classification task, where intuitively the higher the number of classes the
more difficult the classification becomes. The decrease is also more marked
for the dynamic features than for the static ones, likely due to their lower
discriminatory power as discussed in Section 4.3.1.

46 46

70 170 270 370 470 570 670

Families

50
60

70
80

Sa
m

pl
es

0.889 0.867 0.855 0.844 0.837 0.829 0.822

0.894 0.872 0.860 0.849 0.841 0.834 0.832

0.898 0.876 0.863 0.853 0.845 0.838 0.840

0.906 0.891 0.877 0.867 0.860 0.852 0.848

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90

Figure 4.5: F1 score heatmap for family classification using Random
Forest on static analysis features.

Non-uniform sampling. We also evaluate the impact of a non-uniform
downsampling strategy for binary classification. For this purpose, we mimic
the distribution of the recently-proposed MOTIF dataset [53], which contain
3,095 PE malware samples from 454 families with an unbalanced distribu-
tion (e.g., the median is 3 samples per family and 29% of families have a
single sample). We create a new dataset by applying the MOTIF distribu-
tion to MB. This new MOTIF-like dataset comprises 4,821 samples from
all 670 families with the following distribution: 29% of the families are sin-
gletons, 41% have 2-5 samples, 12% 6-10, 10% 11-20, 4% 21-30, 2% 31-40,
1% 41-50, and 1% has over 50 samples (up to 100).

We use this to compare two sampling approaches: the uniform approach
(which is the one we adopted so far) where we keep a balanced number of
samples for each family, versus a nonUniform approach, where we consider
a real-world case in which the number of available samples varies from one
family to another, as captured by the MOTIF-like dataset. Table 4.12 shows
the results for both approaches and different feature sets. We could not iden-
tify any significant difference between the two approaches, thus suggesting
that training a classifier with a non-uniform amount of samples does not
significantly impact its performance, under the important assumption that
the testing dataset also follows the same distribution.

4.3. Experimental study 47

70 170 270 370 470 570 670

Families

50
60

70
80

Sa
m

pl
es

0.730 0.702 0.692 0.673 0.670 0.651 0.640

0.735 0.708 0.694 0.679 0.672 0.653 0.640

0.737 0.721 0.697 0.686 0.684 0.659 0.656

0.751 0.726 0.705 0.692 0.692 0.673 0.657

0.64 0.66 0.68 0.70 0.72 0.74

Figure 4.6: F1 score heatmap for family classification using Random
Forest on dynamic analysis features

70 170 270 370 470 570 670

Families

10
0

Sa
m

pl
es

0.976 0.935 0.902 0.885 0.858 0.855 0.865

0.86 0.88 0.90 0.92 0.94 0.96

Figure 4.7: F1-score heatmap for family classification when combining fea-
tures derived from static and dynamic analysis

⟨A7⟩ Increasing the number of malware families in the training set makes
the classification more complex and generally results in lower accuracy.
While not surprising, this is very important because previous studies
were often performed on only a few dozens of families, with the risk
of reporting inflated results that do not generalize to larger and more
realistic datasets.
Increasing the number of samples per family can help to increase the clas-
sification accuracy, in particular for models based on dynamic analysis.
Finally, the choice between a non-uniform and a uniform downsampling
strategy does not significantly affect the binary classification accuracy.

48 48

Model Prec. Recall F1 Acc.

binary-static-uniform 0.956 0.957 0.957 0.957
binary-dynamic-uniform 0.962 0.892 0.926 0.929
binary-combined-uniform 0.963 0.934 0.948 0.948
binary-static-nonUniform 0.961 0.960 0.961 0.960
binary-dynamic-nonUniform 0.959 0.886 0.921 0.924
binary-combined-nonUniform 0.955 0.927 0.940 0.927

Table 4.12: Impact of uniform and non-uniform sample selection in training
dataset.

Model Singletons Unseen

binary-static-uniform 0.943 0.815
binary-dynamic-uniform 0.805 0.898
binary-combined-uniform 0.985 0.908
binary-static-nonuniform 0.810 0.653
binary-dynamic-nonuniform 0.328 0.855
binary-combined-nonuniform 0.758 0.637

Table 4.13: Binary classification accuracy on singletons and unseen families
datasets.

4.3.8 Model Generalization

In this section, we test how well our models for binary and family classifica-
tion generalize on unseen data. To this extent, we validate the performance
of the previously-trained models on the singleton and unseen datasets in-
troduced in Section 4.1.2, which include new families and have different
distributions from the training data. This scenario is known as the "out-of-
distribution" (OOD) test [72], where training and testing data have different
distributions in the feature space. The distribution gap between the training
and testing data has been frequently witnessed in malware analysis [52], as
malware families evolve rapidly over time. Theoretically, one should expect
the performance of a ML model to drop drastically in this more realistic
scenario, as OOD samples directly violate the IID assumption of ML tech-
niques.

4.3. Experimental study 49

70 170 270 370 470 570 670

Families

SS
SU

DS
DU

Ex
pe

rim
en

t

0.520 0.580 0.634 0.888 0.899 0.939 0.943

0.556 0.611 0.658 0.735 0.799 0.803 0.815

0.242 0.366 0.413 0.776 0.815 0.832 0.805

0.831 0.855 0.938 0.958 0.957 0.954 0.898

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.8: Binary classification accuracy on singletons and unseen families
of the uniform dynamic and static models. (SS: Static Singleton. SU: Static
Unseen. D is for Dynamic)

Binary Classification. Table 4.13 summarizes the binary classification
results over the singletons and unseen families using the static, dynamic, and
joint feature pool. "Uniform" and "non-uniform" in the table denote training
with the 670 families with uniformly and non-uniform dataset construction
methods (Section 4.2.4) The empirical measurements shown in Table 4.13
can be summarized around three main observations.

First, the accuracy of binary classification using only static or dynamic
features deteriorates significantly over singleton and unseen family files. Us-
ing the combined feature set, the binary classification accuracy with the uni-
form setting augments over the singleton samples, whereas it deteriorates
over the unseen families. In the non-uniform setting, we can observe the
same tendency of accuracy drop over the OOD samples. The observations
echo closely to the out-of-distribution challenge of machine learning raised
in [72].

Second, the accuracy deterioration over the out-of-distribution samples
is more significant in the non-uniform setting of training than that in the
uniform setting, regardless of the used features.

This is different from the results of the in-distribution evaluation in Ta-
ble 4.12, where we observe no major difference in accuracy between the
uniform and non-uniform settings. These results show an important point:

50 50

0.0 0.2 0.4 0.6 0.8
Entropy

0.00

0.25

0.50

0.75

1.00

CD
F

family-static-singleton
family-static-unseen_families
family-dynamic-singleton
family-dynamic-unseen_families

family-dynamic-uniform
family-combined-uniform
family-static-uniform

Figure 4.9: Entropy distribution comparison

classifiers built on very unbalanced datasets may perform equally well when
tested on samples with the same unbalanced distribution, but generalize
more poorly to other testing datasets, likely because many families were
underrepresented in the training and thus the model failed to properly cap-
ture them.

Third, we can notice that static features generalize poorly to unseen
families, while dynamic features perform better in this scenario. This is due
to the nature of the features themselves: static information can precisely
pinpoint only known samples, while dynamic behavior can better generalize
also to unknown ones. Thus, compared to static features, dynamic fea-
tures may provide more rich information to capture new types of malicious
behaviors that never appear in the training phase.

We investigate this aspect in more detail by varying the number of fam-
ilies we used for training. In Figure 4.8, we can see that dynamic features
perform poorly when the number of malware families for training is low (as
there was not enough example of behaviors to learn from) but, with a suf-
ficient number of families, they offer better classification results than static
features. Dynamic features usually have a high dimensional and highly
sparse feature representation. For example, some files or processes only ap-
pear a few times in the training set for specific malware families. A smaller
number of families may aggravate the curse of dimensionality, which results
in an overfitting of the classifier. Furthermore, we can observe the classi-
fication accuracy over unseen samples improves as the number of families
increases, regardless of the features used in the test.

4.3. Experimental study 51

Family Classification. So far, we only tested the generalization of our
models in a binary classification scenario. We now apply our family clas-
sifier trained using the 670 families over the singleton and unseen families
as another out-of-distribution test scenario. Achieving high or low classifi-
cation accuracy over these out-of-distribution samples is not interesting, as
most of these samples share no common families as the training data and
we don’t have the ground truth family labels for these samples. Thus, the
purpose of organizing this test is only to study how the uncertainty level of
the family classifier changes over the out-of-distribution malware samples.

To measure the uncertainty difference, we define the Relative Entropy
Score (RES) of the classifier’s output as

∑C

k=1
pk log pk

T , where T =
∑C

k=1 1/C log 1/C
and C is the number of the families covered by the training data building the
classifier. In this experiment, C is therefore set to 670. For an input sample,
the output of the family classifier is a 670-dimensional probability-valued
vector {pk} (k=1,2,3,...,C=670). Each pk gives the probabilistic confidence
that the sample belongs to the corresponding family. By definition, the nu-
merator

∑C
k=1 pk log pk provides the entropy of the classifier’s output. The

denominator
∑C

k=1 1/C log 1/C denotes the maximum entropy that the clas-
sifier’s classification output may have. As a result, the magnitude of RES is
strictly normalized between 0 and 1. Higher/Lower RES denotes that the
classifier shows higher/lower uncertainty level over the classification output.

In Figure 4.9, we demonstrate the empirical cumulative distribution
function (CDF) of RES-based uncertainty distribution of the family clas-
sifier’s output on the testing malware samples of the 670 families (in-
distribution samples) and those belonging to singleton / unseen families.
Consistently with theoretical studies [72], we can find that the uncertainty
level of the family classification output over the singleton and malware sam-
ples of previously unseen families increases significantly, compared to those
derived with the testing samples sharing the same families of the training
data.

52 52

⟨A8⟩ Our experiments confirm a significant performance drop in binary
classification over out-of-distribution samples, both in the case of sin-
gleton and unseen families. At the same time, the confidence of the
ML-based classifier decreases significantly over these out-of-distribution
samples. This implies that ML-based models tend to be less certain over
malware samples drifted from the training samples. Our results also
show that models trained on a very unbalanced dataset generalize more
poorly, and that dynamic features generalize better than static over new
families. Overall, as the distribution gap between training and testing
malware samples is common in practice, these results raise concern over
the utility of ML-based malware classification for real-world scenarios.

4.4 Final Recommendations

The goal of this Chapter was to understand the key factors that influence the
performance of ML models for malware detection and family classification.
Based on our experimental results, we can draw some general recommenda-
tions on the use of ML for malware classification:

1. Ideally, experiments on malware classification (both binary and family)
should be performed on hundreds of different families, each containing a
sufficient and balanced number of samples. However, this is often difficult
to achieve in the malware field. Thus, we believe the contribution of our
Chapter is not to simply re-state this obvious finding, but to provide
for the first time a quantitative assessment of the impact of the lack of
these characteristics on the classification results. For instance, we show
that classifiers trained on a few families (like the ones using the popular
Microsoft dataset) can provide misleadingly high accuracy scores while
experiments conducted on unbalanced datasets tend to generalize poorly
when tested over different distributions.
Our findings can also be used to better understand and compare results
reported in previous studies. For example, our results show that a family
classifier with a F1 score of 0.89 over 600 families is likely better than a
classifier with a score of 0.93 on 30 families.

2. Static features dominate detection and classification of samples from
known families, by relying on signature-like information extracted from
sequences of bytes and opcodes. Packing, in its current widespread imple-
mentation, does not seem to have a considerable negative effect on this.
The addition of dynamic features, which are much more time-consuming

4.4. Final Recommendations 53

and error-prone to extract, has only a marginal impact on the classifi-
cation accuracy and therefore its use should be carefully considered if
the goal is to detect known families. However, static features are unable
to capture samples from unknown families, where instead models based
on dynamic behavior show a better ability to generalize. Therefore, our
findings suggest that today static features alone are sufficient for family
classification, but a combination of static and dynamic features is prob-
ably preferable for binary classification.

3. The performance of all ML models drop drastically when tested on OOD
samples. While the feature completeness and the regular update of the
training data to cover new malware families are key to obtaining good
classification accuracy, both of them are difficult to achieve in the real
world. It is due to the data-driven nature of ML-based classification
mechanisms. The quality and coverage of training data play a core role in
determining the classification performance. Beyond improving the quality
of training data, our experiments suggest that the inclusion of dynamic
features into the classification task can be used to alleviate the impact of
the OOD issue. More specifically, we show that using dynamic features
still allows us to successfully flag suspicious previously-unseen malware
samples, even if with less accuracy and higher false positive rates in binary
and family classification tasks.

This chapter opens several directions for future work. For example, we
would like to explore how to mitigate the impact of missing features in
dynamic analysis, e.g., through feature selection. We also plan to analyze
the reasons behind hard-to-detect families, which could be due to custom
packers, benign functionality in the malware, generic families that cover
different malware, or other reasons.

54 54

Chapter 5

Understanding Intra-Family

Diversity and Polymorphism

After focusing on inter-family classification challenges in the previous chap-
ter, we now turn to an equally critical but often overlooked problem: un-
derstanding the structural variability that exists within malware families
themselves. This chapter systematically investigates its root causes, quan-
tifies its extent, and analyzes how it manifests across different parts of the
PE file format.

A fundamental starting point for this discussion is clarifying what con-
stitutes a malware family. Despite decades of research and thousands of
publications, the scientific community still lacks a universally agreed-upon
definition. One common interpretation is that a malware family consists
of distinct malicious samples (i.e., with different file hashes) that all orig-
inate from the same code base, similar to how different builds or versions
represent the same benign program. Samples within a family are generally
expected to share behavioral traits, structural patterns, and attribution to
the same threat actor group [6].

However, this expectation is challenged by the widespread use of poly-

morphism. Malware authors routinely introduce structural variation, even
within the same malware version, using techniques like re-packing, binary
obfuscation, and code injection. As a result, samples from the same family
can differ substantially in binary representation, even if their underlying
functionality remains the same. For example, file infectors spread by em-
bedding malicious code into unrelated host executables, creating further
diversity among samples. This polymorphism is one of the main drivers
behind the constant growth in the number of distinct malware binaries ob-
served by the security industry [35].

55

56 56

Such intra-family variability has important implications for analysis and
detection. AntiVirus (AV) signatures are generally designed to match fam-
ilies or significant portions of them, not just individual samples. Likewise,
ML-based family classifiers are expected to generalize from training samples
to unseen variants from the same family. Yet, this generalization depends
heavily on the nature and extent of differences between samples. Minor dis-
crepancies in PE headers have a very different impact than deep structural
changes introduced by packers or protectors.

This chapter aims to provide the first comprehensive exploration of the
reasons behind the polymorphism in the samples belonging to the same
malware family. For this, we leverage three malware family datasets (the
Balanced Dataset proposed in Chapter 4 [34], the MOTIF dataset [53], and
the Malicia dataset [83]), building a superset composed of 66,160 samples
split into 743 families. Our analysis involves a static examination of malware
samples to understand the syntactic variations within samples belonging to
the same malware family. Static analysis is preferred for examining such
syntactic characteristics, whereas dynamic analysis is necessary for assessing
behaviors. However, in our dataset, the behavioral similarities among the
samples are already captured by the family labels assigned to the samples.
More specifically, this chapter is organized to answer the following three
Research Questions:

RQ1: How can we measure the structural differences among multiple

samples from the same family? At first, in Section 5.2, we break down
the PE file format in a number of disjoint components, that fully cover the
whole PE file format structure and content. Then, given two executables, we
design a structural comparison approach to precisely locate their differences
and similarities at the component level. We implement our approach in an
open-source tool we named PEdiff [10].

RQ2: What are the polymorphic techniques that affect multiple com-

ponents, and what is their prevalence? In Section 5.3, we examine two
main reasons for cross-component differences: file truncation and packing.
Truncation occurs when the expected size of a sample is larger than the
real size of the file on disk. Truncation occurs due to errors during sample
collection (e.g. samples extracted from network traffic where packets were
missing). Packing is a technique that compresses or encrypts code on disk
and then recovers it at runtime. We measure packing in two ways: by using
state-of-the-art signature-based tools to reliably detect known off-the-shelf
packers and by implementing a machine learning (ML) classifier proposed
by Aghakhani et al. [14] to also identify custom packers.

RQ3: What are the many reasons of polymorphism at the component

5.1. Datasets 57

granularity? In Section 5.4, we examine polymorphism in one or multiple
components. Our results show that two-thirds of the families have no com-
mon components among their samples, meaning that all the PE components
are at least slightly different. On the other hand, for 12.8% of the families,
we were able to pinpoint the single reason behind the polymorphic variants.

In summary, we first developed a novel methodology for the structural
comparison of PE files. Then, we highlighted the importance of two com-
mon elements (packing, truncation) which are crucial for the construction
of malware datasets. We advocate for the community to conscientiously
consider the elements they wish to exclude or include in their studies, given
the potential bias these decisions may introduce. Lastly, we conducted a
comprehensive measurement of polymorphism across 743 malware families.
This analysis provides valuable insights for future research, enabling a tar-
geted focus on the most prevalent trends and the timely development of
appropriate solutions.

Finally, the scientific significance of this work is particularly relevant in
the context of the design and evaluation of robust ML classifiers: we believe
that their (in)ability to generalize to different samples needs to be always
corroborated by an analysis of the variability of samples within the families
in the dataset.

5.1 Datasets

This study uses three malware datasets: the Balanced Dataset [34], MO-
TIF [53], and Malicia [83]. A detailed description of each dataset, including
their size, collection period, labeling methodology, and family distribution,
is provided in Chapter 3.

For our experiments, we apply specific filtering to ensure reliability and
comparability across analyses. We first remove truncated samples and fam-
ilies with fewer than 10 non-truncated samples, as detailed in Section 5.3.1.
This step ensures that all samples used have valid and analyzable binary
content.

For families with more than 100 non-truncated samples, we randomly
select 100 samples to maintain consistency across family sizes. In the end,
the final dataset used in this study comprises 66,160 samples distributed
across 743 families.

58 58

Type Components

Metadata DOS Header, DOS Stub, Rich Header †, COFF Header, Optional Header,
Data Directories †, Section Table

Sections Entry Point Section, Resource Section †, Other Sections †

Extra Certificate Table †, Overlay †

Table 5.1: Components of a PE executable and their type. The dagger
† indicates an optional component.

5.2 Structural Comparison

While samples in a family differ in file hash, they may exhibit similarities,
while their differences may be concentrated on specific parts. To examine
similarities and differences within a malware family, we have designed a
methodology for structural comparison of executables. It first divides each
executable into 12 disjoint components, described in Section 5.2.1, that fully
represent the PE executable format [31]. Next, it performs pairwise com-
parisons of all executables in a family at the component level, categorizing
components as unchanged, similar, or different, as detailed in Section 5.2.2
We have implemented our methodology into PEdiff [10], an open-source
tool comprising 1K lines of Python code.

5.2.1 PE Components

We split each executable into 12 disjoint (i.e., non-overlapping) components
that capture its structure, depicted in Table 5.1. We grouped them into
three parts: the Metadata contains the first seven components, which do
not carry the actual content of the executable but define its structure and
properties, the Sections which contain the code and data of the executable,
and the Extra, which consists of components that are appended at the end
of the file. Of the 12 components, six are optional and may not exist.

Within the Metadata, the DOS Header and DOS Stub correspond to
the legacy MS-DOS information that is still present for compatibility. The
COFF header and Optional Header capture the homonymous PE headers.
The Rich Header is an undocumented component containing information
about the tool versions used to build the different object files in the exe-
cutable [134]. The Data Directories is an array of 16 entries, where each
entry contains the start offset and size of a data directory, including the
export, import, resource, and certificate tables. The Section Table is an

5.2. Structural Comparison 59

array that defines the name, start offset and the size of the sections that
form the main body of the executable.

We identify three Sections components: The Entry Point Section is the
section that contains the AddressOfEntryPoint field of the Optional Header.
The Resources Section is a special section that contains a tree structure
holding data items such as strings, images, and icons. Finally, the Other

Sections component captures all other sections in the executable that do not
contain the entry point or the resources. This is the only component that
does not necessarily correspond to a contiguous sequence of bytes, since the
order of the sections is defined in the Section Table and the entry point and
resources sections may not be the first or last sections.

Executables may contain two optional Extra components. For signed
executables, the Certificate Table contains a digital signature and a list of
X.509 certificates for validating the file’s integrity and the identity of the
publisher. The Overlay component captures data appended at the end of an
executable. This data is not described in the PE header, thus it is ignored
by the loader. However, it is accessible by reading it directly from the file on
disk. The presence of an overlay can be identified because the file’s expected
size (i.e., the sum of the start offset and size of the last section) is smaller
than the real size of the file on disk. Some tools consider the certificate table
to be an overlay. However, we consider it a separate component because
its start offset and size are defined in the Data Directories and thus its
existence is known to the loader. For signed samples, we consider that an
overlay exists if and only if there is additional data after the end of the
certificate table.

5.2.2 Family Component Analysis

Given the samples in a family, our goal is to identify which components are
similar and different in the family. For this, we compare the contents of a
component across all pairs of samples in the family. For each component in
each pair of samples, we apply a pairwise similarity function to determine
whether the contents of the component across the two samples are similar
or not, and accumulate results across all pairs of samples.

Pairwise similarity. We experiment with three Boolean similarity func-
tions that given the content of a component in two samples determine
whether the component is similar. The first function computes the SHA256
hash of the sequence of raw bytes of the component1 and checks if both

1For the Other Sections component, we sort the sections according to their offset,
concatenate their raw bytes, and compute the SHA256 of the resulting buffer.

60 60

Algorithm 1 Determine Component Status: Similar, Different, or Missing
Require: Array of samples S belonging to family F , Component c, Thresh-

old t
1: Initialize Cp ← 0
2: Initialize Cd ← 0
3: NS ← |S|, number of samples in S
4: P ← all combinations of S
5: NP ← NS(NS−1)

2 , number of samples combinations and cardinality of
P

6: for all (Sx, Sy) ∈ P do

7: if c ∈ Sx and c ∈ Sy and Sx[c] = Sy[c] then

8: Cp ← Cp + 1
9: Cd ← Cd + 1

10: else if c /∈ Sx and c /∈ Sy then

11: Cd ← Cd + 1
12: end if

13: end for

14: Cp ← Cp

NP

15: Cd ← Cd
NP

16: if Cp ≥ t and Cd ≥ t then

17: return Similar
18: else if Cp < t and Cd < t then

19: return Different
20: else

21: return Missing
22: end if

hashes are the same. This is the strictest similarity function requiring both
samples to have identical content in the component. The second function
computes instead the TLSH [86] fuzzy hash over the components’ raw bytes.
Fuzzy hashes output similar digests when the inputs are similar. Among
all the fuzzy hashes available in the wild, we chose TLSH because it is the
one that can produce a hash for the smallest stream of bytes, given that
the minimum size is 50 bytes. Thus, it can handle most of the smallest
components that are usually headers. Other fuzzy hashes could require
very large minimum sizes (e.g. SSDEEP requires at least 4KB to compute
the hash). TLSH returns a distance in the x ∈ [0,∞) range, which we

5.2. Structural Comparison 61

normalize (y = max{300−x
3 , 0}) to a similarity in the y ∈ [0, 100] range as

suggested by other works [124, 88]. The component values are considered
similar if the TLSH similarity was ≥ 90, as proposed by Oliver et al. [86].
This function is more lax because it considers the component values to be
similar even if they are not identical, as long as the raw byte differences
are small. Pagani et al. [88] showed that TLSH can remain robust when
small modifications are introduced in the code; however, they also observed
that compiling the exact same source with seemingly minor tweaks (such
as slightly different compiler flags) can result in anything from negligible
differences to extensive ripple effects in the final executable. Therefore, we
compute the code similarity using the popular BinDiff [41] tool, which dis-
assembles both executables (using IDA Pro 8.1 in our setup) and uses graph
isomorphism and heuristics to match their functions. It returns a similarity
value in [0, 1]. The advantage of BinDiff is that it disassembles the code
and thus can ignore differences in the data between code blocks and handle
some code reordering. But, it only measures code similarity, so we only ap-
ply it to the Entry Point Section component. We determine that the Entry
Point Section of two samples is similar if their BinDiff similarity is > 0.85,
as suggested by Egele et al. [36].
Family components. To determine if a component is similar, different, or
missing across a family we use Algorithm 1. It takes as input the 10 ≤ n ≤
100 samples that belong to a family, a similarity function, and a threshold
t. For each component c, it initializes to zero two counters: Cc

d and Cc
p. The

first captures the number of pairs a component differs and the other the
number of pairs where the component is present. For each of the n(n−1)/2
pairs of samples in the family, it compares each of the 12 components. If a
component c is present in both samples and is similar, it increments both
counters for the component; if present in only one sample, the counters are
not modified; and if the component is absent in both, it increments Cc

d. Once
all pairs of samples have been analyzed, counters are normalized by dividing
them by the number of pairs. For each component, if Cp ≥ t and Cd ≥ t,
the component is deemed similar (present and consistent in most samples),
if Cp < t and Cd < t, the component is present with varying values and
is classified as different, and if Cp < t and Cd ≥ t, the component is often
missing and thus should be ignored as there is not enough information.
Threshold selection. Requiring a component to be similar across all pairs
of samples (i.e., t=1.0) is too strict, e.g., some samples could have wrong
family labels. Instead, we evaluate lower threshold values that allow a frac-
tion of pairs to differ. Figure 5.1 presents the number of families with none,
few (1-3), or many (>3) common components while varying the threshold t

62 62

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Threshold

0

100

200

300

400

500

600

Fa

m
ilie

s

SHA256 - None in common
SHA256 - 1-3 common
SHA256 - Others
TLSH - None in common
TLSH - 1-3 common
TLSH - Others

Figure 5.1: Number of families with none, 1-3 or more than 3 common
components by varying the threshold, and using SHA256 or TLSH.

for both SHA256 (solid lines) and TLSH (dashed lines). The results show
clear differences between both pairwise similarity functions. Using SHA256,
raising the threshold increases the number of families with no similar com-
ponents gradually from 405 at t=0.6 to 510 at 0.9, while the number of
common components gradually decreases in opposite fashion. In contrast,
using TLSH the number of families with no common components remains
fairly constant around 20 and only starts to increase at high thresholds.
Our manual analysis shows that using TLSH is problematic with small data
components (i.e., PE headers in Metadata) where component similarity is
determined even when important fields differ. Thus, we conclude that us-
ing the stricter crypto hash is more appropriate to analyze polymorphism.
While changing the threshold of the crypto hash affects a relatively small
subset of families, too low a threshold reduces confidence that components
are truly shared, while too high a threshold increases the risk of discarding
slightly different but essentially similar data. For the experiments in Sec-
tion 5.4 we use the SHA256 pairwise similarity with a threshold of 0.75
which we have observed to strike a good balance by tolerating small differ-
ences without overlooking meaningful commonalities.

5.3 Cross-Component Analysis

Before proceeding to the analysis of individual components, we analyze
different sources of variability that are not specific to a component but may
instead affect the entire PE file structure: file truncation and packing.

5.3. Cross-Component Analysis 63

5.3.1 Truncation

Millions of malware samples are collected and shared daily by various com-
panies and services. Some are retrieved directly from filesystems by endpoint
protection systems, while others come from emails, compressed archives,
network traffic, or memory. Additionally, files may be pre-processed by tools
like unpackers. During this collection and transformation process, a sample
might become truncated, either intentionally or unintentionally. Truncated
samples can be identified because their expected size (i.e., the sum of the
start offset and size of the last section) is larger than the real size of the file
on disk. One caveat is that if a sample has an overlay and the truncation
only affects the overlay, then truncation cannot be detected as the overlay
is not described in the PE headers. Among the 68,683 samples in the three
datasets, 2,504 (3.6%) are truncated. Of those, the vast majority (2,486)
belong to the Balanced Dataset and 18 come from MOTIF, with Malicia
having none. Truncated samples are distributed among 42.9% (320/746) of
the families, showing that truncation is indeed a widespread phenomenon.
We found 1.9% (14/746) families where more than half of the samples are
truncated. The families with the majority of truncated samples are: stone

(97%), kuaizip (92%), ranumbot (88%), duote (87%), and spybot (82%).
To measure the missing part, we define the truncation ratio as the quo-

tient of the missing bytes (expected size minus real size) over the expected
size. The mean truncation ratio is 50.2% (median 52.9%), indicating that,
on average, more than half of the expected file size is missing in truncated
files. Then, by analyzing which components are impacted by truncation,
we found that the offset from which bytes begin to be missing always starts
at least after the Section Table; thus, truncation affects sections, resources,
certificates, and overlay.

Another aspect of the truncation is whether the truncated samples came
from the same original sample (i.e., the only difference is the truncation
size). Thus, for each family, we compared all the truncated samples by
checking whether the smaller sample was once again a truncated version
of the largest. This analysis revealed 77 (10.3%) families having at least 2
samples coming from the same original executable and truncated in different
points. The extreme case is one family, spybot, where 80 truncated samples
come from the same original file that has been truncated at different offsets.

While truncated files are rarely, if ever, mentioned in malware studies,
their consequences are very important. For instance, truncated samples can-
not be executed, and thus fail dynamic analysis. But also static signatures
may not match, and even popular static analysis tools produce confusing
results when run on truncated files. For example, the popular pefile [11]

64 64

(a multi-platform Python module to parse PE files) erroneously reports an
inexistent overlay on all truncated samples. Given that also VirusTotal uses
pefile to parse PE executables, VT often reports truncated samples having
a non-existent overlay.

We remove the truncated samples, as well as any families with less than
10 non-truncated samples, from the dataset. The dataset used in the re-
mainder of this chapter has 66,160 samples distributed in 743 families.

5.3.2 Packing

Samples Families

Factor Present Present(>0%) Present(100%)

Packed (DiE) 15,704 (23.7%) 527 (70.9%) 20 (3.0%)
Packed (PackG) 24,134 (36.5%) 580 (78.1%) 45 (6.1%)
Packed (ML) 55,773 (84.3%) 726 (97.7%) 283 (38.1%)
Packed (All) 59,265 (89.6%) 731 (98.4%) 354 (47.6%)

Table 5.2: Packing prevalence in terms of packed samples and number of
families with some/all packed samples.

We adopt a broad definition of packing, encompassing all transformations
applied to a PE file, such as encryption, compression, or encoding, that re-
quire a runtime component to recover the original data. While these trans-
formations primarily aim to thwart static analysis, they can also generate
vastly different executables by re-packing the same sample with different
algorithms or encryption keys. Consequently, packing is often regarded as
a key driver of polymorphism.

Accurately detecting packed samples is a challenging task and an active
research area. To address this, we employ two state-of-the-art approaches.
Signature-based tools are effective at detecting known off-the-shelf packers,
offering low false positives (FPs). However, they suffer from false nega-
tives (FNs) due to their inability to identify custom packers or all instances
of off-the-shelf packers. To overcome these limitations, we incorporate an
ML classifier capable of detecting both less common off-the-shelf packers
and custom packing routines. However, the classifier may overestimate the
number of packed samples. In summary, we use signature-based tools to
establish a lower bound and the ML classifier to set an upper bound on
packing presence in our dataset.

5.3. Cross-Component Analysis 65

Signature-based tools. We use two publicly available signature-
based packer detection tools: PackGenome [68] and Detect-it-Easy [5].
PackGenome generates YARA rules from dynamic traces of the unpack-
ing routine collected during program execution. The authors released the
code for generating YARA rules for 20 off-the-shelf “accessible” packers.
These rules identify 24,134 (36.5%) samples as being packed. The most
commonly reported packers are UPX (48.6% of detected samples), WinLi-
cense (31.7%) and PECompact (9.8%). The popular open-source Detect It
Easy (DiE) tool, whose output is included in the VT reports at the time of
writing, identified 15,704 samples (23.7%) being packed. The top-3 pack-
ers identified are UPX (58.8% of detected samples), ASPack (12.3%) and
VMProtect (9.5%).

ML classifier. We implement a packer classifier by leveraging the
datasets and the feature classes proposed by Aghakhani et al. [14]. On
their datasets, we used the same nine static feature classes (56,485 individ-
ual features) they extracted to train a Random Forest classifier that predicts
whether a sample is packed or not. We used 10-fold cross-validation to train
and test the classifier and obtained an overall F1-score of 0.96. When ap-
plied to our dataset, the classifier predicted 55,773/66,160 (84.3%) samples
as packed.

In summary, signature detection tools identify 23.7%–36.5% samples
as packed, while the ML classifier identifies instead a much higher 84%, as
summarized in Table 5.2. It is likely that the real fraction lies somewhere in
between, so we use these numbers as lower and upper bounds, respectively.
We illustrate the differences between both packer detection approaches using
privateexeprotector, which has been mislabeled as a malware family but
is rather a commercial protector. When the Balanced Malware [34] was
created, AVClass taxonomy did not yet classify it as a packer, leading to its
mislabeling. Executables labeled privateexeprotector may belong to different
malware families using the same protector. Of 100 samples, 13 are tagged
as "Private EXE Protector" by signature-based tools, 2 as UPX, and 87
remain undetected, showing high FNs. In contrast, the ML classifier detects
99 samples as packed, demonstrating minimal FNs, although potentially
introducing FPs.

Finally, we noticed that many families use different off-the-shelf packers,
a quick shortcut to achieve polymorphism. The most extreme cases are 8
families that use at least 15 different packers. In fact, we computed the
Pearson correlation between the number of different components in each
family and the total number of unique off-the-shelf packers in that family.

66 66

Samples Families

Component Present Present(0%) Present(≥50%) Present(100%) Differs OnlyDifference

DOS Header 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 524 (70.5%) -
DOS Stub 65,059 (98.3%) 3 (0.4%) 734 (98.8%) 655 (88.2%) 484 (65.1%) -
Rich Header † 42,577 (64.4%) 94 (12.7%) 497 (66.9%) 168 (22.6%) 494 (66.5%) -
COFF Header 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 622 (83.7%) -
Optional Header 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 652 (87.8%) 1 (0.1%)
Data Directories † 66,148 (99.9%) - 743 (100.0%) 741 (99.7%) 638 (85.9%) -
Section Table 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 642 (86.4%) -
Entry Point Section 66,155 (99.9%) - 743 (100.0%) 739 (99.5%) 637 (85.7%) 2 (0.3%)
Resource Section † 57,230 (86.5%) 27 (3.6%) 661 (89.0%) 385 (51.8%) 625 (84.1%) 1 (0.1%)
Other Sections † 64,734 (97.8%) 3 (0.4%) 731 (98.4%) 583 (78.5%) 636 (85.6%) 7 (0.9%)
Certificate Table † 11,257 (17.0%) 344 (46.3%) 108 (14.5%) 19 (2.6%) 188 (25.3%) 1 (0.1%)
Overlay † 31,096 (47.0%) 87 (11.7%) 319 (42.9%) 87 (11.7%) 493 (66.4%) 37 (5.0%)

Table 5.3: Component statistics. For each component, number of samples
where the component is present, number of families where the component is
present in none/half/all samples, number of families where the component
differs, and number of families where the component is the only one with
differences. A dash means zero in all columns. A dagger † indicates an
optional component.

We obtained a moderate relationship (0.42, p-value = 6.0e−34), namely,
more packers, greater difference.

5.4 Component Analysis

We now use PEdiff to understand in which parts of a PE file the differences
among samples of the same family are located. Section 5.4.1 first examines
how frequently each component exists. Then, Section 5.4.2 identifies similar
and different components in families. Section 5.4.3 examines where their
polymorphism is being introduced in individual components.

5.4.1 Component Presence

Table 5.3 summarizes the presence of individual components in the dataset.
Most required components are present in all samples (DOS Header, COFF
Header, Optional Header, Section Table). Optional components vary signif-
icantly in presence. Three are common: Data Directories (present in 99.9%
of samples), Other Sections (97.8%), and Resource Section (86.5%). Less
common optional components include the Rich Header (64.4%), Overlay
(47.0%), and Certificate Table (17.0%). The presence of an optional com-
ponent is not consistent across all samples in a family. For example, while
399 (53.7%) families have some signed sample and 656 (88.3%) families

5.4. Component Analysis 67

have a sample with an overlay, only 19 (2.6%) families have all samples
signed and only 87 (11.7%) have an overlay in all samples. Similarly, there
are 94 families (12.7%) where no sample has the Rich Header, 168 (22.6%)
where all samples have it, but in the majority of families some samples, but
not all, have it (87.3%).

5.4.2 Similar and Different Components

This section examines how many similar and different components there are
in each family. Roughly two-thirds of the dataset, specifically 454 families,
contain samples with no components in common, i.e., where all parts of
the PE files are, at least partially, different. Among the remaining 289
families, 95 families contain largely similar files, with only one, two, or
three different components and 157 families contains instead files that are
all different except for 1–3 components.

We examine these three family groups separately. In most families, dif-
ferences among samples span all PE file components, not just localized parts.
This suggests malware authors did not achieve polymorphism by altering a
few bytes or simply re-compiling (which would preserve sections like data,
resources, and the Rich Header). For the 42,498 samples in this group,
40.1% are packed according to the signature-based tools, 84.7% according
to the ML classifier, and 90.4% when combining both methods. Of the
samples in the remaining 289 families (23,662 samples), 38.4% are packed
according to the signature-based tools, 83.6% according to the ML classi-
fier, and 90.4% using both methods. Despite slightly higher percentages
in the first group, the difference is too small to attribute polymorphism to
packing alone.

We focus on families with files sharing few common components. The
most consistent components are the DOS Header and Stub, in 95 and 131
families respectively, and the Rich Header, in 21 families. In highly similar
families, the most variable component, is the overlay (78 families), appear-
ing over three times more frequently than others like other sections (22),
resource (17) and entry point (14) section. Rare differences include headers
and, in three families, only the Certificate Table.

5.4.3 Individual Component Polymorphism

So far, our analysis has been binary, components were either identical or
different. In this section, we explore differences and similarities in greater
detail. For example, over 5% of the families in our dataset contain samples
that differ only in their overlay. What do these overlays look like? Are they

68 68

entirely different, or do they contain only a few unique bytes? To address
these questions, we examine each component individually.

Rich Header. The Rich Header is an optional and undocumented com-
ponent, which can be useful to detect if two executables may come from the
same project. Among the 494 (66.5%) families where the Rich Header is
different, in 12 families the entry IDs are similar, and in 4 family also its
counts meaning that most objects used to build the samples are common.

Entry Point Section. This component contains the very first instruction
of the program and thus can be considered a code section. The SHA256
pairwise similarity identifies 41 (5.5%) families where this component does
not change at all and another 65 (8.7%) families where this component is
similar. For the remaining 637 (85.7%) families, we use the BinDiff similar-
ity to compare their code, identifying an additional 7 families with similar
code. For 37/637 (5.81%) families BinDiff failed to properly disassemble all
the samples, mainly because the entry point address points to invalid code.
Such behavior is a common evasion technique in malware, where a custom
loader, often implemented via TLS callbacks, dynamically reconstructs the
correct code during runtime.

Resource Section. Among the 625 (84.1%) families where the resource
section differs, there is one family (dostre) where this component is the only
difference. The difference is in the resource values, in particular, there is one
specific Bitmap resource whose value keeps changing. We manually reversed
the code and discovered that the malicious code’s payload (extracted and
executed at runtime) was encoded within that image. We also identify four
families (moarider, winloadsda, axespec, sohana) where their only difference
lies in the order of the resource names, three families (blackshades, umbra,
virfire) for which the resources are the same, but the padding of the section
differs, ten families where the difference is in the Resource Table but not
in the resources identifiers, and another (lolbot) has the only difference in
a single string that changes for all the samples. The observed variations
in the samples are likely introduced intentionally to achieve hash-bursting
and, subsequently, polymorphism.

Other Sections. This component includes default sections with a pre-
defined purpose (e.g., .idata, .bss, .rdata). But it is possible to create
custom sections as well. This is the case of packers, which usually create

5.4. Component Analysis 69

one section for accomodating the unpacked payload. For one family (ez-

softwareupdater) the only difference in the whole executable is a single 32-
byte string in the .rdata section, containing hexadecimal characters, likely
a unique identifier, and in another family (stormattack) the difference was
also in the .rdata section where a few hexadecimal strings were changing.

Overlay. To measure how much hidden data has been added to samples
with an overlay, we define the excess ratio as the quotient of the size on disk
over the expected size (i.e., without the overlay). The median excess ratio
is 1.73x, an additional 73% content over the expected length. However, the
mean is 130x, because some samples contain a vast amount of additional
data. The extreme case is a sample with an expected size of 2.56KB but
an overlay of 454MB.

We removed the overlays from all samples in the dataset and re-computed
their SHA256 hash (which we will now refer to as “no-overlay hash”). About
one-fourth (18,315/66,160) of the samples share the same no-overlay hash
with at least another sample, indicating that the overlay was the only dif-
ference between them. In particular, 13 families only contain samples with
the same no-overlay hash, and 46 families have at least 75% of their sam-
ples with the same no-overlay hash. Interestingly, 156 no-overlay hashes
are shared across different families, with one matching samples in 12 fami-
lies. This hash corresponds to 7zS.sfx, a template for 7-zip self-extracting
archives. These archives are created by combining 7zS.sfx, a configura-
tion file, and a compressed archive, with the overlay holding the latter two.
Another hash matches 6 families and corresponds to Default.sfx, used by
WinRAR for self-extracting files. These cases highlight the frequent use of
self-extracting archives in malware for distributing multiple files, and likely
also for obfuscation as analyzing them requires inspecting the overlay’s com-
pressed data.

Four families had overlay differences that stem solely from strings. In
three cases, the overlay was entirely ASCII text, while the fourth had
one meaningless differing string. However, examining the overlay revealed
strings resembling CA names. Despite the Certificate Table fields being
set to 0 in the Data Directory, treating the overlay as a Certificate Table
revealed valid PKCS#7 signatures.

Finally, we analyzed overlay content using DiE. In 43.67% of cases
(13,537/31,096), no file type was detected. Among the rest, 6.08% (1,890/31,096)
were archives (RAR, ZIP, 7ZIP), 8.87% (2,750/31,096) were PE files, and
18.17% (5,650/31,096) contained ASCII text. Of these, 7.88% (445/5,650)
were valid Base* encodings with no recognizable file types when decoded.

70 70

Certificate Table. For the 11,257 samples (17.0%) with a Certificate Ta-
ble, we extracted the Authentihash and its hash algorithm. The Authenti-
hash is computed from the file’s content at signing, excluding the Checksum

and Certificate Table Data Directory. We failed to extract a signature for
1,044 samples due to truncation or corruption (e.g., incorrect offset). For
the remaining 10,213, a mismatched Authentihash indicated modification
or unrelated signatures in 1,845 samples across 211 families. Thus, 8,368
samples (12.6%) had valid signatures when signed, though some may now
be invalid (e.g., revoked). Among these, 1,098 samples had an overlay after
the Certificate Table.

We computed the Authentihash for all samples using SHA256, resulting
in 63,404 unique values, with 492 shared by multiple samples. Samples
with identical Authentihash must belong to the same program (family and
version), differing only in their Certificate Table and checksum. For in-
stance, all the samples in the amigo family share the same Authentihash,
checksum, and a chain of 5 certificates, indicating polymorphism in hidden
parts of the Certificate Table.

Other Components. Of the remaining six components (DOS header,
COFF and Optional Header, DOS Stub, Section Table, Data Directory), all
except the DOS Stub have predefined structures in the PE format but can
still be manipulated for polymorphism. For example, in bebloh, the only
difference is the Optional Header’s version values, while the code and data
are identical. In lebreat, standard UPX section names (.upx0, .upx1, .rsrc)
are replaced with random strings, though the content remains unchanged.
We also analyzed the COFF Header’s creation timestamp, which can be
faked. It differs in 622 (83.7%) families, but 130 (11.3%) families share
the same timestamp in over 75% of comparisons. Interestingly, obit has the
same timestamp across all samples (Saturday, June 1, 2019 5:56:28 AM),
likely fabricated, as the content differs.

5.4.4 File Infectors

File infectors, or viruses, infect benign executables with malicious code,
creating samples with a combination of malicious and benign content. Fur-
thermore, file infector families tend to be highly polymorphic since a single
sample may infect many executables stored in the compromised host.

We investigated file infectors on our dataset using a combination of static
and dynamic analysis. We first used AVClass [112] to obtain tags for all
samples in the dataset. Using the tags, we identified 70 likely-virus families

5.5. Final Remarks 71

where the CLASS:virus tag appeared in more than half of the samples.
For each of these families, we randomly selected 5 samples, dynamically
executed them in a virtual machine (VM), and identified those that modified
executables that already existed in the VM prior to the execution, i.e.,
the same filepath in the VM pointing to an executable file had different
hashes before and after the execution. For those samples, we used PEdiff

to examine the component differences between the original executable and
the modified one produced during the execution.

Using this approach we identified 20 virus families. Of those, 16 are
pre-pender viruses where the PE executable contains the malicious code
and the infected (benign) executable is in the overlay: lamer, induc, neshta,
shodi, sinau, sivis, soulclose, xiaobaminer, memery, pidgeon, detroie, gogo,
lmir, stihat, xolxo, xorer. For all those 16 families, our analysis identifies the
overlay as a component that changes. For two families (gogo, soulclose) the
overlay is the only component that changes, i.e., the malicious executable
has no polymorphism itself, but obtains it from the infected executable in
the overlay. In the other 14 families, polymorphism is also added to other
components. The remaining 4 families are appender viruses. Two of these
(expiro, wlksm) extend one of the sections of the infected executable with the
malicious code. The other two families (triusor, wapomi) add new sections
at the end of the infected executable with malicious code. For all these four
families, our analysis outputs that no component is similar across the family
samples.

5.5 Final Remarks

A Complex Picture. Our study aimed to identify the main causes of
polymorphism and assess their prevalence across a large dataset of malware
families. Through our experiments, we identified several causes, summarized
in the following section. More importantly, we found that a single factor is
rarely sufficient to explain the diversity of samples within a family. In fact,
only 12.8% of the families (95 out of 743) exhibited polymorphism due to a
single cause. For the remaining 87.2%, polymorphism arose from multiple
overlapping factors. This is not a failure but a key finding, highlighting
that attributing polymorphism solely to repacking is an oversimplification.
It also suggests that no holistic solution exists to address the problem. For
example, while removing or normalizing certain components may help in
comparing samples, any approach addressing only one or a few causes will
have limited success in explaining and mitigating the dissimilarities within
a family.

72 72

Truncation. While truncated files are rarely, if ever, mentioned in mal-
ware studies, we observed that 3.6% of the files in the initial datasets
are truncated, with 99.3% coming from the Balanced Dataset. Since that
dataset was collected from the VirusTotal file feed, a similar ratio of trun-
cated PE executables might affect other studies using the VT feed [126].
Truncated samples are distributed among nearly half of the dataset families,
indicating this is not an issue specific to some families but likely a common
error that occurs during sample collection. Truncated samples pollute mal-
ware feeds and waste resources such as storage and sandbox time if they are
queued for execution. Therefore, we suggest filtering out these samples, as
we did, to avoid biasing the results.

Overlays. Similar to truncation, the impact and role of overlays are rarely
mentioned in malware studies. However, our experiments show that they
are extremely prevalent, affecting a stunning 47.0% of all samples in our
dataset, being the most prevalent cause of polymorphism that we find.
These overlays often contain a considerable amount of data, on average
over a hundred times larger than the main executable alone. Despite this,
previous works sometimes purposefully excluded overlays when extracting
features for static analysis [97]. This is fine if the overlay contains useless
data simply added to achieve polymorphism, but our analysis shows that
this is not the case: 6.1% of the overlay data are compressed archives, and
8.9% are PE files.

Packing. Packing is a pervasive phenomenon in our dataset: while it is
difficult to measure with precision, it might affect between 40% to 90%
of our samples. This is not surprising since it is one of the most effective
methods to counter static analysis. However, one would expect a significant
difference in the components between the families where packing was most
prevalent, but the distributions of packed samples and the negligible cor-
relations we found did not confirm this expectation. We also discover that
malware authors, in a trivial but effective way, achieve high polymorphism
by using many different packers.

Other polymorphism. Beyond packing, our study reveals that malware
families introduce polymorphism into a variety of components. Among oth-
ers, we observe families that modify PE headers to generate polymorphic
variants such as bebloh that varies the version fields in the Optional Header.
We also observe families that reorder resources without modifying them (e.g.
moarider, winloadsda), introduce random bytes in the padding (blackshades,

5.5. Final Remarks 73

umbra, virfire), and introduce hidden data in the certificate table (amigo).
There are also families whose differences are limited to some specific strings
(e.g., lolbot). The range of techniques we observe shows that a structural
analysis of the PE file format is a powerful tool for analyzing the reasons
behind malware family polymorphism.

Dataset limitations. Our analysis is limited by the datasets used. One
issue is the quality of family labels. Despite dataset authors’ efforts to refine
labeling (e.g., identifying aliases and generic tokens), we found some errors
such as privateexeprotector being considered a family. Also, the MOTIF and
Malicia datasets are highly imbalanced, with few families having more than
10 samples. Still, our use of three datasets should help ameliorate selection
bias.

Conclusions. Our large-scale analysis of 743 malware families offers a
comprehensive understanding of the factors driving polymorphism in mal-
ware. The study reveals that in about 90% of cases, polymorphism results
from multiple overlapping factors, rather than a single cause. This complex-
ity underscores the inadequacy of simplistic solutions, such as attributing
polymorphism solely to repacking, and highlights the need for multifaceted
approaches.

74 74

Chapter 6

Structural Overlaps and the

Precision Boundaries of

Malware Clustering

While Chapter 5 focused on investigating the structural diversity that ex-
ists within malware families, highlighting the many reasons why samples
from the same family may differ, this chapter addresses the complemen-
tary problem: understanding the structural similarities that emerge across

different malware families. These inter-family similarities can severely af-
fect the precision of malware clustering techniques based on static features,
leading to situations where unrelated samples are mistakenly grouped to-
gether. Beyond measuring this loss of precision, we also aim to explain
why these features fail, identifying the structural artifacts and confounding
factors most responsible for false similarities.

Given the critical role of clustering in malware analysis pipelines, un-
derstanding these precision limitations is essential. Clustering malicious
executables into families enables analysts and researchers to group samples
originating from the same malicious codebase, allowing for scalable inves-
tigation, labeling, and threat tracking. This step is commonly used for
tasks such as malware classification [39], labeling support [122], new threat
discovery [25], malware triage [55], and lineage analysis [44, 32].

To group malware samples belonging to the same family, clustering ap-
proaches may use static features extracted directly from executables, dy-
namic features extracted from the runtime behavior, or a combination of
both. Static features are cheaper to extract and thus are more commonly
used in applications that require the analysis of a large numbers of samples.
They can also avoid the common mistake of grouping unrelated samples

75

76 76

only because they exhibit a similar runtime behavior, e.g., putting together
different downloader families in the same cluster.

Different classes of static features exist. For example, binary code simi-
larity approaches [123] extract features from the executable code. However,
these approaches require a correct disassembly of the malware code, which
is very challenging in presence of obfuscation [64], and may also require
complex analysis of control and data flows. This is why most of the exist-
ing approaches focus instead on features that can be easily and efficiently
extracted, and thus can be applied to very large numbers of samples. Most
popular amongst these are whole-file fuzzy hashes like SSDeep [61] and
TLSH [86], which produce similar digests for similar input files. Another
highly scalable approach is to compute a hash over a subset of an executable
such as the import table (imphash) [1], selected fields in the PE headers (pe-

hash, richpe) [135, 134], or the certificate table [63, 59]. We will focus on
these scalable features in our study.

Researchers have proposed multiple supervised malware classifiers based
on machine learning techniques [138, 40, 128, 136, 34]. However, supervised
classifiers can only accurately classify samples of families observed during
model training. Their performance significantly degrades when applied to
out-of-distribution data where samples from new families may appear. In
contrast, malware clustering approaches can handle previously unknown
malware families by capturing similarity between samples. An accurate
malware clustering approach should optimize both precision and recall, or
the F1-score that combines both. However, a key observation about malware
clustering is that, while recall is an important metric (i.e., we do not want
samples of a given family to be sub-divided in many clusters), precision

is always paramount (i.e., it is rarely acceptable when samples of different
families are erroneously combined within the same cluster). In fact, while
a lower recall might result in more manual work for the analysts (e.g., to
label the different clusters), a poor precision often leads to wrong results
and conclusions.

To date, little is known about the practical limitations that affect the
precision of popular static features. In particular, both when they fail and,
most importantly, why they fail are two aspects still poorly understood.

Since precision is instrumental in identifying similarities between dif-
ferent families, while recall is more focused on uncovering diversity within
samples from the same family, the primary objective of this chapter is to
investigate the former aspect. We examine the limitations of the precision
of widely-used, highly scalable, static similarity features. Our emphasis is
on understanding the underlying causes of errors that result in the mis-

77

classification of samples from different malware families that are incorrectly
placed in the same cluster.

It is important to emphasize that our aim is not to propose novel mal-
ware clustering approaches, nor to critically evaluate or challenge existing
ones. On the contrary, we contend that the insights derived from this in-
vestigation will offer valuable contributions to the broader field of malware
clustering research. Specifically, for each static feature analyzed, we explore
the factors that lead to the erroneous grouping of samples from distinct
families, thereby reducing the overall precision.

To this end, we leverage three public datasets of malicious Windows exe-
cutables labeled with their family [34, 53, 83]. We cluster the 66,160 unique
samples using separately each of 11 popular static similarity features. We
selected these features for their proven ability to effectively cluster malware
samples, utilizing established methods from both industry and academic
research. These features are commonly available through online malware
analysis services, such as VirusTotal [129], and have been used in previous
studies for clustering based on static features [37, 86, 69, 63, 59, 60, 15,
85, 26, 139]. Then, we compute the clustering accuracy obtained by each
feature individually, with an emphasis on precision. Finally, we examine
the mixed clusters containing samples from different families according to
the ground truth labels. For this examination, we leverage 8 analysis fea-
tures that capture possible reasons why samples from different families may
be grouped such as being generated by different EXE-building tools (e.g.,
packers, installers, compressors), having overlays, or being truncated. Using
this approach, we answer two research questions.

RQ1: What is the precision of the most commonly-adopted static

features when used for malware family clustering? Our analysis
identifies three groups of features regarding precision. The first group con-
tains three features related to code signing with nearly perfect precision
(over 99%). However, their ability to group samples is limited, making
them especially suitable for verifying the correctness of ground truth labels
during dataset construction. The second group achieves high precision in
the range of 94% to 97% and comprises structural hashes such as pehash

and VirusTotal’s proprietary vhash and whole-file fuzzy hashes (SSDeep and
TLSH), In this group, pehash is particularly effective, offering the highest
precision and average cluster size. The third group has features with lower
precision, below 90% and includes imphash, richpe, and icon-based features.
These features exhibit frequent collisions in their values introducing signif-
icant errors in identifying samples from the same family.

78 78

Dataset Samples Families Collection CV KL

Balance Dataset [34] 67,000 670 08/2021 - 03/2022 0.0 0.0
MOTIF [53] 3,095 454 01/2016 - 12/2020 1.69 0.71
Malicia [83] 9,908 53 03/2012 - 02/2013 4.56 2.71
Superset 79,993 1,125 03/2012 - 03/2022 2.77 0.72

Table 6.1: Datasets used and imbalance metrics: Coefficient of Variation
(CV) and Kullback-Leibler Divergence (KL). Lower means more balanced.

RQ2: What are the main limits of those features for malware

family clustering? When should analysts be careful with their

use? The main limits of the analyzed similarity features stem from their
sensitivity to EXE-building tools, which often introduce similarities unre-
lated to malware family characteristics. The impact of EXE-building tools
is small in the first group of features (high precision), but significant for the
other two groups where the largest clusters are mixed, i.e., contain samples
from different families. For some features like SSDeep and TLSH, up to
45% of the mixed clusters may be caused by EXE-building tools. Beyond
EXE-building tools, features in the third group (lowest precision) also suf-
fer from inherent weaknesses, such as collisions caused by short import and
rich header tables and generic icons. We identify cases where the precision
is lowered, not by feature limitations, but due to erroneous ground truth
labels.

Finally, we evaluate whether pre-processing techniques such as avoiding
to group samples known to be generated by EXE-building tools, with in-
valid certificate chains, or with short import tables can solve the issues. The
precision increase is highest for features in the third group, especially for
imphash, where precision improves 10.3%. However, even with preprocess-
ing, some limitations persist, such as those related to generic icons. These
findings emphasize the importance of careful feature selection and prepro-
cessing to mitigate errors and maximize the precision in malware family
clustering.

6.1 Datasets

In their seminal work on the evaluation of malware clustering, Li et al. [67]
showed that the approach used to assemble ground truth (GT) data and the
balance between different families introduced a considerable bias in the ac-
curacy of previous clustering experiments, often leading to vastly different

6.2. Features 79

results when the same technique was used on different malware datasets.
To mitigate these problems, we use three datasets of malware samples as
summarized in Table 6.1: the Balanced Dataset [34], MOTIF [53], and Mali-
cia [83]. Detailed descriptions of their collection processes, family coverage,
and labeling methodologies are provided in Chapter 3.

VT reports. We collected reports on all samples through the VirusTotal
(VT) API in October 2024. All samples were known to VT as dataset
authors had submitted the samples. We use the VT reports to extract
features for the samples such as the sample hashes (MD5, SHA1, SHA256),
scan results with AV engines, and the date the sample was first submitted
to VT.

Superset. To enable joint analysis across datasets, we unified the sample
identifiers using SHA256 hashes obtained from the VT reports. This yielded
66,160 unique samples across the three datasets, covering 1,125 distinct
family names. These samples constitute our Superset dataset.

At the sample level, the three datasets are largely disjoint. However,
8 samples appear both in Balance Dataset and MOTIF and 2 samples in
both Balance Dataset and Malicia. There are no common samples between
MOTIF and Malicia. Of the 8 samples in Balance Dataset and MOTIF,
5 have the same family in both datasets and three have different families.
One sample is assigned disttrack in Balance Dataset and shamoon in MO-
TIF, which are aliases according to AVClass. Of the 2 samples in Balance
Dataset and Malicia, one has the same family in both datasets and the other
has different families. Thus, we find 3 samples with incompatible families
in two datasets. When analyzing one dataset, we include all dataset sam-
ples. When analyzing the Superset dataset, we consider the 66,160 unique
samples. One family (ramnit) appears in all three datasets and 51 families
appear in two datasets. The largest overlap is between MOTIF and Balance
Dataset with 46 families in common. Balance Dataset and Malicia share 6
families and MOTIF and Malicia two.

6.2 Features

After a careful review of the static features used in the literature, detailed
in Section 2.6, we selected 11 features for clustering the samples (described
in Section 6.2.1), 8 features for analyzing the clustering results (described
in Section 6.2.2), and the AVClass [111] labeling results as a baseline for
comparison.

80 80

Feature Type Source Samples Values Clustering

authentihash cryptohash PE 79,993 (100.0%) 77,222 FVG
cert_subject string VT 8,906 (11.13%) 1,610 FVG
cert_thumbprint cryptohash VT 8,906 (11.13%) 2,004 FVG
icon_dhash fuzzyhash VT 45,820 (57.28%) 9,138 FVG
icon_hash cryptohash VT 45,820 (57.28%) 15,166 FVG
imphash cryptohash PE 77,245 (96.56%) 20,023 FVG
pehash cryptohash PE 79,993 (100.0%) 31,367 FVG
richpe cryptohash PE 49,815 (62.27%) 11,651 FVG
tlsh fuzzyhash PE 79,993 (100.0%) 79,236 HAC-T
ssdeep fuzzyhash PE 79,993 (100.0%) 75,535 Single linkage
vhash structhash VT 79,823 (99.79%) 27,446 FVG
avclass string VT 78,067 (97.59%) 1,270 FVG
die_packer string list PE 16,520 (20.65%) 190 -
die_installer string PE 3,359 (4.20%) 24 -
die_archive string list PE 5,015 (6.27%) 15 -
die_script string list PE 2,227 (2.78%) 7 -
packgenome string list PE 25,961 (32.45%) 100 -
truncated Boolean PE 2,520 (3.15%) 2 -
overlay_sha256 cryptohash PE 35,461 (36.27%) 30,690 -
no_overlay_sha256 cryptohash PE 79,993 (100.0%) 61,366 -

Table 6.2: Features used and presence in Superset dataset. On top the 12
similarity features used for clustering samples, below the 8 analysis features
used to analyze clustering results.

6.2.1 Similarity Features

The top part of Table 6.2 summarizes the 11 similarity features used to clus-
ter samples in the datasets. The list includes six crypto hashes, calculated
over different parts of a PE file: imphash covers the import table [1]; pehash

covers selected fields in the PE headers [135]; richpe covers the optional Rich
Header that contains information about the compilation of modules in the
PE executable [134]; cert_thumbprint covers the leaf certificate for signed
samples; authentihash covers the full PE executable excluding code signing
fields (e.g., checksum and Certificate Table) and overlays; and icon_hash

covers the optional icon image. All cryptographic hashes are compared using
equality, i.e., two files have the same hash or not.

The list also includes three fuzzy hashes, which produce similar values for
inputs that share some similarities. We use two fuzzy hashes computed over
the whole file: tlsh and ssdeep. tlsh uses Hamming distance on the digests to

6.2. Features 81

determine if two inputs are similar while ssdeep uses edit distance. We also
include dhash, a perceptual hash applied over the embedded icon image.
Perceptual hashes are a special type of fuzzy hashes that produce similar
digests for images that look similar to a human (e.g., resized, color changes).
We use equality to compare dhash digests, thus grouping images only if they
are nearly identical. It is possible to use Hamming distance with a threshold
(e.g., 2 bits) on the dhash digest to identify more dissimilar icons, but that
reduces the precision.

Another type of hash included is vhash, VT’s proprietary structural
hash. According to VT’s minimal documentation on it [131], this hash
takes into account properties such as imports, exports, sections, and file
size. VT provides daily results of files clustered by vhash. Samples in
the same cluster always have the same vhash value, so we use equality to
compare two vhashes.

Finally, our list of features includes the leaf certificate subject distin-
guished name (cert_subject), which is useful for identifying signed samples
that use different certificates for the same entity.

Most features can be extracted directly from the PE executables, except
VT’s proprietary vhash. However, as shown in the Source column in Ta-
ble 6.2, we also extract the certificate and icon features from the VT reports.
The reason for this is that different ways exist for extracting these pieces
of information from an executable, and it is therefore more convenient for
users to leverage the VT reports to avoid implementing their own method.
For example, signed samples contain an unordered sequence of certificates
and identifying the leaf certificate requires carefully ordering them. Simi-
larly, an executable may include multiple resources of type icon, and VT
selects among those the one it considers the main icon.

As shown in Table 6.2, some features are optional and may not exist in
all samples. For example, only 11% of samples are signed, 57% have icons,
62% have a Rich Header, and 96% have an import table.

AVClass. We also consider the malware family obtained by feeding the
VT reports to the AVClass malware labeling tool [111, 112]. While the
11 similarity features can be used for clustering similar samples, they do
not provide a family name to the clusters. In contrast, AVClass is mainly
a labeling tool, that aims to assign a family name to each input sample.
However, its output can also be used for clustering, by grouping together
samples assigned the same family name. In contrast to the similarity fea-
tures, we do not know exactly how the AVClass family was generated since
it is obtained from a majority voting between the labels assigned by different

82 82

AV engines, each using their own proprietary techniques (e.g., signatures,
machine learning). We use AVClass families as a baseline to compare the
clusters obtained by individual similarity features.

6.2.2 Analysis Features

The bottom part of Table 6.2 summarizes the 8 analysis features that we use
to examine the clustering results. These features capture potential reasons
for two different programs to share some binary similarity. We will study
how these analysis features correlate with the clusters created using the
similarity features.

EXE building tools. Beyond compilers and linkers, there exist other
off-the-shelf tools that malware authors can use to build their malicious
executables. We consider four classes of such tools: software protectors,
installers, self-extracting archives, and tools that embed scripts and their
interpreter in an executable. Protectors are used by malware authors for
evasive purposes [121, 76]. For instance, protectors may compress or en-
crypt the code and data of the original program and uncompress or de-
crypt them at runtime. They may also inspect the runtime environment to
identify the presence of analysis tools or security products, refraining from
running the malicious behavior in case any are detected. For simplicity, in
this work, we refer to software protectors as packers. Popular packers in-
clude UPX, PECompact, ASPack, and Themida. Installers are responsible
for performing all installation steps for a target program. They are used
when a program requires multiple files beyond the main executable or when
the installation requires actions such as creating folders or setting up reg-
istry keys. Popular installer builders include InnoSetup, NSIS, InstallShield,
WIX, and InstallMate. Self-extracting (SFX) archives embed a compressed
archive and the decompression routine required to automatically extract the
archive when the executable is run. Most popular compressors (e.g., 7-zip,
WinRAR, and WinZip) can build SFX archives. Finally, executables can be
generated from scripts by embedding the script’s code with its correspond-
ing interpreter. Popular tools in this category include aut2exe for AutoIt
and bat2exe for BAT.

To identify samples built using the above classes of tools, we leverage the
signatures provided by Detect-it-Easy (DiE) [5]. To identify packed samples
we also leverage YARA rules for 20 packers built with PackGenome [68].
Other packing detection tools exist (e.g., PEiD [3]), but DiE and PackGenome
are the most up-to-date (e.g., PEiD [3] has not been updated in 7 years).

6.3. Analysis Approach 83

According to DiE, one-third of the samples in the Superset dataset have
been produced by EXE-generating tools: 16,520 (20.6%) samples packed
with well-known packers, 5,015 (6.2%) SFX archives, 3,359 (4.2%) in-
stallers, and 2,227 (2.7%) samples generated from scripts. PackGenome
detects 32.4% packed samples.

Overlay. A PE executable has an overlay if it contains additional data
appended to its end, whose presence is not revealed by the PE header fields.
Overlays can be detected because the size of the file on disk is larger than
its expected size (i.e., the sum of the start offset and size of the last section).
A stunning 36.2% (35,461) of our samples include an overlay. For each of
them, we computed the hash of the overlay’s content (overlay_sha256) and
the hash of the executable without the overlay (no_overlay_sha256).

Truncation. Samples may get truncated as part of the malware collec-
tion process. From a security analysis perspective, truncated samples can
be considered corrupted and cannot be executed. Truncated samples can
be identified because their expected size (i.e., the sum of the start offset and
size of the last section) is larger than the real size of the file on disk. We
identify 2,521 (3.1%) truncated samples: 2,486 (3.7%) in Balance Dataset,
24 (0.8%) in MOTIF, and 11 (0.1%) in Malicia. Although it is especially
prevalent in Balance Dataset (and thus in the VT file feed), this confirms
that truncation is a widespread phenomenon that affects all datasets. Trun-
cated samples should arguably not be included in malware datasets, as they
do not correspond to fully functional programs.

6.3 Analysis Approach

This section summarizes our approach for analyzing the limits of the similar-
ity features. It comprises three steps: clustering the samples, computing the
clustering accuracy, and analyzing the clusters with samples from multiple
families.

Clustering. We perform a separate clustering of the samples in each
dataset by using each similarity feature in isolation. Depending on the
feature, we employ two different clustering approaches. For 10 of the sim-
ilarity features, we perform a simple feature value grouping (FVG) which
places samples with the same feature value in the same cluster, i.e., one
cluster per feature value. This approach is used for cryptographic hashes,
structural hashes, strings, and boolean features. We also use FVG for the

84 84

icon_dhash fuzzy hash to only group samples with nearly identical icons.
In the event that a sample lacks a particular feature, the FVG clustering
places the sample in a singleton cluster on its own.

For the other two fuzzy hashes, we employ an agglomerative clustering
approach. For tlsh, we use HAC-T, a hierarchical agglomerative clustering
technique specially designed for TLSH digests [85]. The main advantage
of HAC-T is that it is more efficient than traditional hierarchical cluster-
ing, which has a quadratic complexity. For our experiments, we use the
suggested clustering hyper-parameter value, i.e., Cdist = 30 [85]. For ss-

deep, we rely instead on the built-in single-linkage clustering provided by
its official implementation [117]. In this case, clusters are formed based on
the presence of at least one pairwise connection above a threshold t. We
choose a conservative threshold t = 70 since this value appears to provide
the best balance between sensitivity and specificity for malware classifica-
tion [80, 81].

Clustering accuracy. We compute the clustering accuracy1 using an ex-
ternal clustering validation approach that compares the clustering results
with the reference clustering provided by the GT. The external validation
evaluates if the two sets of clusters group samples in a similar way. It is
important to note that only the structure of the clusters is compared, i.e.,
the family names in the reference clusters are not used in the evaluation.
For each experiment, we report precision, recall, and F1 score, as computed
in prior malware clustering works [25, 103, 83, 93]. A clustering has perfect
precision if every cluster is pure, i.e., contains only samples from a single
family. In other words, there are no mixed clusters (MCs) containing sam-
ples from multiple families. A high recall means that most samples of each
family belong to a single cluster, while a low recall indicates that a family
is fragmented over multiple clusters.

We examine how often each similarity feature makes errors that reduce
its precision, i.e., link samples in different families. We focus on precision be-
cause features with high precision can be combined into more sophisticated
clustering approaches with minimal errors. Also because when clusters have
perfect precision, i.e., contain only samples of one family, then an analyst
can simply label one of the samples in the cluster and propagate the label
to other samples. While we also provide recall and F1 score metrics, it is
important to stress that our goal is not to examine how good each individual
feature is at clustering samples, as real-world malware clustering approaches

1Henceforth, we use the term accuracy as an overarching designation for measures of
predictive performance, rather than the Accuracy metric itself.

6.4. Analysis 85

would most likely combine multiple features to achieve better results. We
focus instead on analyzing the limits of each feature and the reasons they
might produce mixed clusters.

Mixed cluster analysis. None of the features has perfect precision, i.e.,
they all incorrectly group together some samples belonging to different fami-
lies. To identify the causes behind the errors, we analyze the mixed clusters
(MCs), which contain samples from different families and are responsible
for lowering the overall clustering precision. For each MC, we compute a
distribution of each of the 8 analysis features. For example, we count how
many samples are packed with each specific packer identified by DiE or
PackGenome, how many samples use each specific installer software, and
how many samples are truncated. If any of the analysis features affects
all samples in the cluster, then we conclude that the analysis feature offers
a possible explanation for the MC. For example, if a cluster has 100 sam-
ples and DiE identifies that all 100 samples are generated by the InnoSetup
installer, we consider that samples in the cluster may have been grouped to-
gether (despite belonging to different families) due to being generated using
that installer software.

It is worth noting that this approach captures correlation rather than
causality. However, while we cannot claim that a given analysis feature nec-
essarily is the cause behind the errors, our results often point to a possible
causal link. For instance, the use of a given installer tool does in fact intro-
duce common parts in the resulting program binaries, and this similarity is
picked up by some of the features and thus results in erroneously combining
otherwise different samples in the same cluster. In any case, in order to gain
further insight into the underlying causes of the errors introduced by each
feature, we complement the correlation analysis with a manual investigation
of the clusters.

6.4 Analysis

This section first presents the clustering results in Section 6.4.1 and then
analyzes the limits of the similarity features in Section 6.4.2.

86 86

Clusters

Feature All Singl. > 1 Max Avg Prec. Recall F1

authentihash 77,221 76,721 500 185 6.5 0.997 0.026 0.050
cert_subject 72,696 72,003 693 160 11.5 0.991 0.050 0.096
cert_thumbprint 73,090 72,232 858 160 9.0 0.994 0.040 0.077
icon_dhash 43,310 40,618 2,692 1,651 14.6 0.856 0.203 0.328
icon_hash 49,338 46,281 3,057 1,521 11.0 0.888 0.186 0.307
imphash 22,771 17,133 5,638 547 11.1 0.873 0.321 0.470
pehash 31,367 25,342 6,025 345 9.1 0.963 0.230 0.372
richpe 41,524 37,847 3,677 715 11.5 0.887 0.211 0.340
ssdeep 41,367 34,866 6,501 310 6.9 0.967 0.172 0.292
tlsh 40,025 33,412 6,613 342 7.0 0.959 0.174 0.295
vhash 27,615 19,726 7,889 715 7.6 0.939 0.183 0.306
avclass 3,195 2,241 954 2,595 81.5 0.909 0.872 0.890

Table 6.3: Clustering results on Superset dataset. For each similarity fea-
ture, it shows the number clusters, singleton clusters, non-singleton clusters,
largest cluster size, average cluster size excluding singletons, and the accu-
racy metrics.

6.4.1 RQ1 – Similarity Feature Precision

Table 6.3 summarizes the clustering accuracy of each feature over the Su-
perset dataset. While all individual features provide reasonably high pre-
cision, we can clearly identify three groups: three features (authentihash,
cert_thumbprint, cert_subject) have a precision above 99%, four features
(pehash, ssdeep, tlsh, vhash) have a precision between 94% and 97%, and
four features (imphash, richpe, icon_hash, icon_dhash) have a precision
below 90%.

On the other hand, individual features fail to group many samples to-
gether: the largest cluster contains 1,651 samples (icon_dhash) but the
average cluster size (excluding singletons) is always lower than 14.6 samples
(icon_dhash). The trend of groups we observed for the precision is reverted,
e.g., the group of features with higher precision has the lowest recall. For
instance, the feature that is most effective at creating large clusters (icon_-

dhash) is also the one with the lowest precision, i.e., the one that makes
more errors.

The comparison with the AVClass labeling tool used as baseline shows
that individual similarity features have precision in the same range as a
popular malware labeling tool, but the recall (and thus the F1 score) is

6.4. Analysis 87

much lower. This makes sense as malware clustering approaches typically
combine multiple features to increase the overall accuracy [22, 25, 92].

Feature Mixed None Packer Archive Script Inst. No-Over. Trunc.

authentihash 7 2 2 1 - 2 - -
cert_subject 141 113 12 3 1 12 - -
cert_thumbprint 122 91 13 4 1 13 - -
icon_dhash 890 764 82 17 11 13 3 -
icon_hash 725 609 75 15 10 12 4 -
imphash 790 434 234 44 35 22 19 2
pehash 418 172 92 36 38 35 38 7
richpe 656 492 93 39 5 16 9 2
ssdeep 443 240 97 41 27 12 23 3
tlsh 504 267 117 40 28 24 22 6
vhash 1,191 387 427 110 88 87 45 47
avclass 361 346 3 1 4 7 - -
All 6,248 3,917 1,247 351 248 255 163 67

Table 6.4: Number of mixed clusters (MCs) per feature in Superset and
possible reasons.

6.4.2 RQ2 – Similarity Feature Limits

Table 6.4 reports the number of MCs obtained with each similarity feature,
along with the number of such clusters in which all samples share the same
analysis feature. For instance, a value of 2 in the Packer column means that
two of the MCs contained all their samples packed with the same packer.
Next, we examine the reasons behind the MCs for each feature in order to
identify their limits for family clustering.

Authentihash. This feature exhibits the highest precision (0.997) be-
cause samples with the same authentihash are nearly identical and can only
differ in the checksum field, certificate table, and overlay (if these parts ex-
ist). On the other hand, it also groups the least number of samples with
over 99% of the clusters containing only one sample, and the remaining
containing 6.5 samples on average. There are only 7 authentihash MCs, all
from the Balance Dataset dataset. None of the samples in the MCs include
an overlay. Looking at the certificate, two clusters have all samples signed
using the same leaf certificate, three have a mixture of signed and unsigned
samples but all signed samples use the same leaf certificate, and two have
two unsigned samples each. Since the only differences are in the signature-
related fields, samples in these MCs have the same code and data, and thus

88 88

they necessarily belong to the same family. Thus, the reason behind the
MCs are instead errors in the GT. In particular, we identify that 4 MCs
are due to different Balance Dataset families being in reality aliases. In
particular, we identify two alias groups (ascentive, speedcat, gamini, decept-

pcclean) and (winwrapper, spigot). We approached the AVClass team about
these two groups and they concluded they are indeed aliases that should be
incorporated into AVClass. The other MCs are due to three samples being
mislabeled in the Balance Dataset GT.

Thus, we conclude that while authentihash does not group much, it has
nearly perfect precision and therefore we suggest researchers to use it while
constructing malware datasets to identify GT errors.

Certificates. The certificate features boast the second and third highest
precision with 0.994 for cert_thumbprint and 0.991 for cert_subject. The
latter groups more as it can identify samples with different certificates for
the same entity, but at the expense of lower precision. The number of MCs
(122–141) is the lowest behind authentihash. The most common likely expla-
nations are packers and installers, which cover 10% of MCs each. Installers
are a much more common explanation than other features likely because
installers are prevalent among PUPs, and a larger fraction of PUP is signed
compared to malware [63]. This is interesting as it shows a clear correla-
tion without causality, as the installer per se does not affect the certificates.
Of the 10 largest clusters for cert_thumbprint, 6 are pure and the other
4 are MCs due to GT errors already described, thus no real collisions are
observed between families in the top 10 clusters. However, we identify a
few smaller MCs that are due to invalid certificate chains, including leaf
certificates of benign entities such as “Mozilla Corporation”, “Corel Corpo-
ration”, and “Opera Software AS”. To avoid such errors we can change the
certificate features to only be extracted for properly signed samples. This
change increases the precision of both features to 0.996.

We conclude that certificate features have high precision and are rarely
affected by EXE-building tools. However, to handle the misuse of benign
certificates by different families, we suggest certificate features to be ex-
tracted only for properly signed samples.

Whole-file fuzzy hashes. Both SSDeep and TLSH capture whole-file
binary-level similarity and achieve similar results, so we discuss them to-
gether. Both features achieve high precision (0.967 for SSDeep and 0.959
for TLSH) and limited grouping (6.9 and 7.0 average samples per clus-
ter). SSDeep shows slightly better precision, generating 443 MCs compared

6.4. Analysis 89

Table 6.5: Of the 10 largest Superset clusters using SSDeep, 9 are MCs and
6 are likely due to EXE-generating tools.

Samples MC Families Likely Reason

1 310 ✓ 5 installer:inno
2 185 ✓ 4 GT errors
3 173 ✓ 19 script:aut2exe
4 167 ✓ 2 archive:sfx
5 162 1 -
6 157 ✓ 2 no_overlay_sha256
7 157 ✓ 2 packer:dxpack
8 149 ✓ 8 packer:upx
9 132 ✓ 3 GT errors

10 125 ✓ 3 archive:sfx

to 504 for TLSH. Our analysis features provide a possible explanation for
46%–47% of these MCs, with the most common causes being packing (22%–
23%), SFX archives (8%–9%), script-generating tools (5%–6%), overlays
(4%–5%), installers (3%–5%), and file truncation (0.7%–1%). Table 6.5
shows the 10 largest SSDeep clusters. Of those, 9 are MCs and 6 are likely
caused by EXE-generating tools such as SFX archives (2 MCs), the In-
noSetup installer (1), the aut2exe script-building tool (1), and the UPX (1)
and dxpack (1) packers. For example, the MC at rank 3 comprises 173
samples from 19 families written in AutoIt. The top families in this MC are
autinject (70 samples), autoitinject (37), and aitinject (21), but the clus-
ter also contains families that may wrap samples in AutoIt scripts such as
remcos [133]. Another two MCs are due to the GT errors already described
in the authentihash paragraph. The other MC contains 157 samples from
two families (spesr, vbinder) all with an overlay and the exact same content
when ignoring the overlay (no_overlay_sha256). This behavior is charac-
teristic of prepender viruses that store benign infected program in the file
overlay [49]. Interestingly, there is an almost one-to-one mapping with the
10 largest TLSH clusters, the exceptions being the top SSDeep being broken
in two with TLSH and the top TLSH cluster broken in three by SSDeep.
This suggests that both fuzzy hashes perform similar mistakes and that
those mistakes are likely caused by the same underlying reasons.

We conclude that up to 45% of the clusters generated by both SSDeep
and TLSH, and most of the largest ones, only capture similarity introduced

90 90

by EXE-building tools, rather than the similarity of the malicious code and
data.

PEhash. This feature achieves high precision (0.963) and less MCs (418)
than the whole-file fuzzy hashes. In addition, the use of PEhash also tends
to group more samples, with an average cluster size of 9.1. The distribution
of possible reasons reported in Table 6.4 is similar to the one we discussed
for fuzzy hashes: packers (19%), script-building tools (9%), SFX archives
(9%), overlays (9%), installers (8%), and truncation (1.6%). Out of its 10
largest clusters, 6 are pure and 4 are MCs. The MCs correspond to ranks
1, 2, 4, and 10 in Table 6.5, two of which are due to SFX archives, one to
InnoSetup, and the other to GT errors.

We conclude that pehash is slightly better than fuzzy hashes for grouping
samples into families, but is similarly affected by EXE-building tools.

Vhash. The proprietary vhash has medium precision (0.939), lower than
pehash, ssdeep, and tlsh. It groups more samples than ssdeep and tlsh, but
less than pehash. The use of this feature results in a stunning 1,191 MC
clusters, which correspond to 15% of its non-singleton clusters. This is
twice the ratio of other features: ssdeep (6.8%), pehash (6.9%), and tlsh

(7.6%). The possible reasons for MCs are dominated by packers (36%).
This feature also seems more affected by truncation (4%) than others. Of
the largest 10 clusters, 6 are pure and 4 MCs. The 4 MCs correspond to
rank 1 (split into two MCs), 2, and 6 in Table 6.5.

We conclude that vhash is worse than pehash for grouping PE executa-
bles into families, achieving less precision and grouping less. It seems to
generate a higher number of collisions too, although its proprietary design
makes it difficult to assess the exact reasons.

Imphash. This feature has the lowest precision (0.873) and second high-
est number of MCs (790). On the other hand, it has the highest recall
(0.321) and an average cluster size of 11.1 samples. Compared to other fea-
tures, this feature is more affected by packers (30%). This makes sense as
packers often hide the import table of the original code, replacing it with a
potentially smaller table. This is reflected in the 10 largest clusters, which
are all MCs. Five of them are likely due to known EXE-building tools: In-
noSetup (2), aut2exe (1), and the UPX (1) and Themida (1) packers. The
import table for the UPX cluster has 21 imports and the one from Themida
only two. Another four clusters have very small import tables with 1–4 im-
ports and contain detections for multiple packers. Thus, different packers

6.4. Analysis 91

Figure 6.1: Icons responsible for the 9 largest MCs using icon_hash.

may generate the same small import table. The final cluster is one of the
previously mentioned with GT errors.

We conclude that imphash is not very good at grouping samples into
families. Not only it is affected by EXE-building tools, but it also groups
samples built using different packers that produce the same small import
tables. And since packers are very common among malware authors, this is
a very severe limitation. Removing samples with very small import tables
can ameliorate the impact of packers, but it would remove a large number of
samples and would not affect MCs caused by other tools, e.g., the mentioned
aut2exe MC has 522 imports, and the InnoSetup MCs 99–137.

Richpe. This feature has the third lowest precision (0.887). Only 25%
of its 656 MCs have a possible explanation with packers (14%) being the
most common explanation. Out of the 10 largest clusters, all are MCs and
all have a small number of entries (1–13) in the RichPE header. One MC
is likely caused by the NSIS installer. For the rest, there is no likely cause
and we observe a mixture of packers and other tools. This likely indicates
collisions where different EXE-building tools happen to have used the same
compilers to build their modules. It is interesting to note that in this case
collisions are also observed with samples where no EXE-building tool is
detected.

Similar to imphash, we conclude that the richpe hash is not very good
at grouping malware samples into families, suffering from collisions between
different EXE-building tools and other malicious samples.

Icons. icon_dhash has lower precision (0.856) and higher recall (0.203)
than icon_hash (0.888 and 0.186, respectively), as it groups samples that
have visually similar, but not identical, icons, incorrectly grouping unrelated
samples. A small ratio of MCs has a likely explanation: 16% for icon_hash

and 14% for icon_dhash. Of the 10 largest clusters for icon_hash, all are
MCs, although one seems to identify zbot (352 samples) with one incorrectly
labeled virut sample. The other nine are due to the icons in Figure 6.1.
These are common icons, not specific to a single family. Thus, their MCs
contain samples from many (25–100) families identified as using different

92 92

EXE-building tools and no tools at all.
We conclude that icon_hash works better than icon_dhash for group-

ing samples into families, but both suffer from common icons that are not
specific to a family and are responsible for 9 out of 10 of the largest clusters.

AVClass. AVClass has the lowest ratio (4%) of MCs with a possible ex-
planation. This makes sense as AVClass produces much larger clusters (81.5
samples on average) due to its ability to link samples of the same family
considered dissimilar by individual features. Thus, the analysis features
should rarely be able to explain an AVClass MC. Most likely, the possible
explanations for those 4% MCs capture correlation rather than causality.

6.5 Discussion

This section discusses the impact of our results on malware family clustering
and potential avenues for improvements.

Feature effectiveness. The similarity features analyzed can broadly be
divided into three groups. First are the authentihash and the leaf certifi-
cate features, which have nearly perfect precision (over 99%) but limited
grouping ability. We suggest that these features be used during dataset con-
struction to spot potential errors in the GT labels. Next come structural
hashes (pehash, vhash) and whole-file fuzzy hashes (ssdeep, ssdeep) with
precisions 94%–97%. These features are impacted by EXE-building tools,
which may cause them to capture similarity not due to family characteristics
but rather to the EXE-building technology itself, thus causing samples from
unrelated malware families to be placed together in MCs. For instance, for
SSDeep and TLSH up to 45% of MCs were likely caused by EXE-building
tools. In this group, pehash seems the best choice for grouping samples into
families as it has the highest precision and average cluster size. Finally,
the remaining 4 features (imphash, richpe, both icon features) have preci-
sion below 90%. They are affected by EXE-building tools, but also show
collisions in values due to other factors (e.g., short tables or generic icons).
These features can introduce significant errors in family clustering.

Feature pre-processing. A potential fix to address the limits of the sim-
ilarity features would be to avoid using them in cases known to be problem-
atic. Table 6.6 measures the improvement in feature precision if we place
in singleton clusters samples identified as being produced by EXE-building
tools. This is a generic fix that can be applied to all similarity features.

6.5. Discussion 93

Table 6.6: Clustering precision on the Superset dataset before (Original)
and after (NoBuilt) placing the 35,766 samples identified as being built
with EXE-generating tools in singleton clusters.

Feature Original NoBuilt Delta

authentihash 0.997 1.000 0.003
cert_subject 0.991 0.998 0.007
cert_thumbprint 0.994 0.999 0.005
icon_dhash 0.856 0.949 0.093
icon_hash 0.888 0.963 0.075
imphash 0.873 0.976 0.103
pehash 0.963 0.988 0.025
richpe 0.887 0.959 0.072
ssdeep 0.967 0.991 0.024
tlsh 0.959 0.987 0.028
vhash 0.939 0.982 0.043
avclass 0.909 0.942 0.033

The top three features by precision (authentihash and the certificate fea-
tures) show very limited improvement (<1%) since they are originally little
affected by EXE-building tools. In contrast, imphash shows a precision im-
provement of 10.3% The icon features and richpe still maintain lower pre-
cision (94.9%–96.3%) indicating that collisions unrelated to EXE-building
tools still happen often.

Another option is applying specific pre-processing to selected features.
For example, we showed that if we avoid extracting leaf certificate features
from samples with invalid certificate chains, the precision of the certificate
features increased by 2% for cert_thumbprint and 4% for cert_subject. Sim-
ilarly, if we place in singletons samples with an import table with less than
10 entries, the imphash precision improves by 3.4% from 0.873 to 0.907.
However, this is lower than the precision obtained by especially handling
samples produced with EXE-building tools (0.976) showing that collisions
also happen on larger import tables. Another potential fix is ignoring generic
icons in both icon features. However, identifying generic icons is a challenge
in itself.

94 94

Ground truth errors. We identified several cases where MCs are likely
due to GT errors, rather than to limits of the similarity features. Most cases
are aliases identifying the same family, which can happen within a dataset
and across datasets. For example, in the authentihash analysis we observed
two groups of aliases within Balance Dataset and we also spotted likely
aliases in MOTIF, e.g., ligsetrac and skimer. But, we also observe aliases
across datasets such as MOTIF using kronos where Balance Dataset uses
kronosbot. We have been reporting such cases to the AVClass developers
and hope that the identified aliases will be incorporated into that tool. We
also spot cases where individual samples seem incorrectly labeled. However,
verifying these errors is harder and may require significant manual analysis.

6.6 Conclusion

The findings of this study have significant implications for malware cluster-
ing methodologies. Future work should focus on measuring the presence of
EXE building tools in their datasets, to ensure the generalizability of find-
ings. Additionally, the systematic refinement of preprocessing techniques,
such as the exclusion of known problematic elements (e.g., short import
tables, common icons), holds promise for improving feature robustness.

Chapter 7

Conclusion

This thesis presented a multi-faceted investigation into malware diversity
and its implications for malware classification and similarity analysis. Each
of the three studies included in this work focused on a distinct, yet com-
plementary, aspect of the problem: machine learning-based classification,
intra-family polymorphism, and inter-family structural similarity.

7.1 Summary of Findings

The first study focused on understanding the key factors that influence the
performance of machine learning models for malware detection and family
classification. The experimental results revealed several critical insights.
First, the study provided a quantitative assessment of how dataset charac-
teristics, such as the number of families and their distribution, affect clas-
sification performance. The findings showed that models trained on small,
imbalanced datasets often report inflated accuracy scores and generalize
poorly to different family distributions. Second, the study highlighted that
static features dominate detection and classification for samples belonging
to known families, largely unaffected by common techniques such as pack-
ing. Dynamic features, while more costly and error-prone to extract, demon-
strated better generalization to unknown families and improved binary clas-
sification tasks. However, their overall impact on family classification for
known families was marginal. Finally, the experiments demonstrated that
all machine learning models experienced significant performance drops when
tested on out-of-distribution samples. The data-driven nature of these mod-
els makes their performance heavily dependent on the quality and coverage
of the training data. Nevertheless, incorporating dynamic features helped
alleviate some of the performance degradation when classifying previously

95

96 96

unseen malware, especially for binary classification tasks, although this im-
provement came with higher false positive rates.

The second study examined the causes and prevalence of polymorphism
within malware families. The analysis revealed that polymorphism is rarely
the result of a single factor. In fact, for nearly 90% of the families stud-
ied, multiple overlapping causes contributed to intra-family diversity. This
finding challenges the common assumption that polymorphism can be ex-
plained solely by repacking. Among the observed causes, truncation af-
fected 3.6% of the samples, with truncated files distributed across nearly
half of the families. This suggests that truncation is a widespread artifact in
datasets collected from large-scale malware feeds and highlights the impor-
tance of filtering such samples to avoid biasing results. Overlays emerged
as the most prevalent cause of polymorphism, affecting 47.0% of all sam-
ples. Contrary to assumptions in prior research, many overlays contained
meaningful data, including compressed archives and even entire PE files.
Packing remained widespread in the dataset, though its correlation with
intra-family component differences was lower than expected. Malware au-
thors often used multiple different packers to increase diversity within the
same family. Additionally, several other forms of polymorphism were ob-
served, including modifications to PE headers, resource reordering, random
padding insertion, and hidden data in certificate tables. To enable this fine-
grained analysis, we developed a dedicated structural comparison tool for
PE files, which allowed us to locate and quantify differences across specific
binary components. These findings underscore the complexity of structural
polymorphism in malware and the limitations of simplistic, single-cause ex-
planations.

The third study investigated inter-family structural similarity and its
impact on malware clustering methodologies. The findings demonstrated
that shared artifacts introduced by common build environments and EXE-
building tools could lead to false similarities between unrelated samples.
This structural overlap risks distorting clustering results and undermining
the reliability of feature-based analysis. The study also highlighted the
importance of measuring the presence of such build artifacts within datasets
to ensure the generalizability of future research findings.

In conclusion, this thesis exposes both the promise and the limits of
current learning-based malware analysis. Moreover, a deep dive into poly-
morphism further dispelled the myth of any single root cause, revealing
many PE manipulations that together drive intra-family diversity. Finally,
we demonstrated how ubiquitous build-environment artifacts can manufac-
ture illusory inter-family links, threatening the integrity of clustering re-

7.2. Future Work 97

sults. Collectively, these findings argue for richer, better-curated datasets,
multi-modal feature pipelines that balance static speed with dynamic ro-
bustness, and rigorous controls for structural noise. Only by embracing this
multifaceted perspective can future research and defenses hope to achieve
reliable, real-world malware detection and classification.

7.2 Future Work

The findings presented in this thesis open several directions for future re-
search. One important aspect is exploring how to mitigate the impact of
missing features in dynamic analysis, for example through feature selection
techniques aimed at identifying the most informative and consistently avail-
able features across samples. Reducing the dependency on features that are
often incomplete or unavailable could help improve classification robustness,
especially in real-world deployment scenarios.

Another promising line of work involves investigating the reasons behind
the poor detectability of certain malware families. The results observed in
this thesis suggest that these detection challenges may arise from a combina-
tion of factors, including the use of custom packing strategies, the inclusion
of benign-like functionality that complicates behavioral detection, or overly
generic labeling practices that blur family boundaries. Conducting targeted
studies on these hard-to-detect families could help clarify the underlying
causes and inform the development of more specialized or adaptive detec-
tion approaches.

A deeper understanding of build environment artifacts and EXE-building
tools also emerges as an important objective. Measuring their presence
within malware datasets could help ensure that future analysis findings gen-
eralize beyond the specific build environments observed during training and
evaluation. This would also support more accurate interpretation of similar-
ity measurements by reducing the risk of feature-driven false relationships
between unrelated samples.

Finally, the systematic refinement of preprocessing techniques, such as
excluding known problematic elements like short import tables or common
icons, holds promise for improving the robustness of static similarity fea-
tures. Such refinements could help reduce feature noise and improve the
reliability of similarity-based clustering results.

98 98

Appendices

99

101

Table 1: Summary of the features extracted from PE headers

Feature name Header Description

ImageBase Optional The address of the memory mapped location of the file
AddressOfEntryPoint Optional The address where the loader will begin execution
SizeOfImage Optional The size (in bytes) of the image in memory
SizeOfCode Optional The size of the code section
BaseOfCode Optional The address of the first byte of the entry point section
SizeOfInitializedData Optional The size of the initialized data section/s
SizeOfUninitializedData Optional The size of the uninitialized data section/s
BaseOfData Optional The address of the first byte of the data section
SizeOfHeaders Optional The combined size of the MS-DOS stub, PE headers, and section headers
SectionAlignment Optional The alignment of sections loaded in memory
FileAlignment Optional The alignment of the raw data of sections
NumberOfSections COFF The number of sections
SizeOfOptionalHeader COFF The size of the optional header
Characteristics bit COFF 16 Boolean values - one for each bit of the Characteristics bit [31]

102 102

Table 2: Summary of the features extracted from PE sections. Processed

resources and Processed sections reflect max, mean, and min values com-
puted among all the resources and sections in the PE file. The last block
of features are computed for each ith section and for the section containing
the binary entry point, and then only features that show variability and are
present in more than 1% of the samples retained.

Feature name Description

Processed_resources_nb Resource number in the PE
Processed_resourcesMaxEntropy Max Shannon entropy among resources
Processed_resourcesMaxSize Max size among resources
Processed_resourcesMeanEntropy Mean Shannon entropy among resources
Processed_resourcesMeanSize Mean size among resources
Processed_resourcesMinEntropy Min Shannon entropy among resources
Processed_resourcesMinSize Min size among resources
Processed_sectionsMaxEntropy Max Shannon entropy among sections
Processed_sectionsMaxSize Max size among sections
Processed_sectionsMaxVirtualSize Max virtual size among sections
Processed_sectionsMeanEntropy Mean Shannon entropy of all the sections
Processed_sectionsMeanSize Mean size of all the sections
Processed_sectionsMeanVirtualSize Mean virtual size of all the sections
Processed_sectionsMinEntropy Min Shannon entropy of all the sections
Processed_sectionsMinSize Min size of all the sections
Processed_sectionsMinVirtualSize Min virtual size of all the sections
Section_i_exists True if the ith section exists in the binary
Section_i_name_is_standard True if the ith section has a standard name [31]
Section_i_size Size of the ith section
Section_i_phisicalAddress The starting address of the ith section in the file
Section_i_virtualSize The total size of the ith section in memory
Section_i_entropy The Shannon entropy of the ith section
Section_i_numberOfRelocations The number of relocation entries in the ith section
Section_i_pointerToRelocations The address of the first byte of the relocation entries in the ith section
Section_i_characteristics bit 32 Boolean values - one for each bit of the section Characteristics bit [31]

References

[1] Tracking Malware with Import Hashing | Mandiant — man-
diant.com. https://www.mandiant.com/resources/blog/

tracking-malware-import-hashing. January 16, 2026.

[2] Decodingmlsecretsofwindowsmalwareclassification,
2023. https://anonymous.4open.science/r/

DecodingMLSecretsOfWindowsMalwareClassification-E60C.

[3] Pe identifier (peid), 2024. https://github.com/wolfram77web/

app-peid.

[4] Chocolatey, the package manager for windows. https://chocolatey.

org/, Accessed January 16, 2026.

[5] Detect-it-easy. https://github.com/horsicq/Detect-It-Easy, Ac-
cessed January 16, 2026.

[6] Find malware detection names for Microsoft Defender for End-
point. https://learn.microsoft.com/en-us/microsoft-365/security/

intelligence/malware-naming, Accessed January 16, 2026.

[7] Juanlespin. https://github.com/Maff1t/JuanLesPIN-Public, Ac-
cessed January 16, 2026.

[8] Lordnoteworthy/al-khaser. https://github.com/LordNoteworthy/

al-khaser, Accessed January 16, 2026.

[9] MOTIF Dataset. https://github.com/boozallen/MOTIF, Accessed
January 16, 2026.

[10] PEdiff. https://github.com/im-overlord04/PEDiff, Accessed Jan-
uary 16, 2026.

[11] Pefile, portable executable reader module. https://pypi.org/project/

pefile/, Accessed January 16, 2026.

103

https://www.mandiant.com/resources/blog/tracking-malware-import-hashing
https://www.mandiant.com/resources/blog/tracking-malware-import-hashing
https://anonymous.4open.science/r/DecodingMLSecretsOfWindowsMalwareClassification-E60C
https://anonymous.4open.science/r/DecodingMLSecretsOfWindowsMalwareClassification-E60C
https://github.com/wolfram77web/app-peid
https://github.com/wolfram77web/app-peid
https://chocolatey.org/
https://chocolatey.org/
https://github.com/horsicq/Detect-It-Easy
https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/malware-naming
https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/malware-naming
https://github.com/Maff1t/JuanLesPIN-Public
https://github.com/LordNoteworthy/al-khaser
https://github.com/LordNoteworthy/al-khaser
https://github.com/boozallen/MOTIF
https://github.com/im-overlord04/PEDiff
https://pypi.org/project/pefile/
https://pypi.org/project/pefile/

104 104

[12] Proxmox virtual environment. https://www.proxmox.com/en/

proxmox-ve, Accessed January 16, 2026.

[13] Yara patterns of retdec. https://github.com/avast/retdec/tree/

master/support/yara_patterns, Accessed January 16, 2026.

[14] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer,
Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher
Kruegel. When malware is packin’heat; limits of machine learning
classifiers based on static analysis features. In Network and Distributed

Systems Security (NDSS) Symposium 2020, 2020.

[15] Muqeet Ali, Josiah Hagen, and Jonathan Oliver. Scalable malware
clustering using multi-stage tree parallelization. In 2020 IEEE Inter-

national Conference on Intelligence and Security Informatics (ISI),
pages 1–6. IEEE, 2020.

[16] Hyrum S Anderson and Phil Roth. Ember: an open dataset for
training static pe malware machine learning models. arXiv preprint

arXiv:1804.04637, 2018.

[17] Simone Aonzo, Yufei Han, Alessandro Mantovani, and Davide
Balzarotti. Humans vs. machines in malware classification. In To

appear in Usenix Security 2023, 2022.

[18] Asad Arfeen, Zunair Ahmed Khan, Riaz Uddin, and Usama Ahsan.
Toward accurate and intelligent detection of malware. Concurrency

and Computation: Practice and Experience, 34(4):e6652, 2022.

[19] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke,
Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Kon-
rad Rieck. Dos and don’ts of machine learning in computer security.
In 31st USENIX Security Symposium (USENIX Security 22), pages
3971–3988, Boston, MA, August 2022. USENIX Association.

[20] AV-TEST Institute. AV-TEST Security Report: Malware Statistics
for 2025, 2025. Accessed: June 2025.

[21] Ahmad Azab, Robert Layton, Mamoun Alazab, and Jonathan Oliver.
Mining malware to detect variants. In Cybercrime and Trustworthy

Computing Conference, 2014.

[22] Michael Bailey, Jon Oberheide, Jon Andersen, Zhuoqing Morley Mao,
Farnam Jahanian, and Jose Nazario. Automated Classification and

https://www.proxmox.com/en/proxmox-ve
https://www.proxmox.com/en/proxmox-ve
https://github.com/avast/retdec/tree/master/support/yara_patterns
https://github.com/avast/retdec/tree/master/support/yara_patterns

References 105

Analysis of Internet Malware. In International Symposium on Recent

Advances in Intrusion Detection, 2007.

[23] Márton Bak, Dorottya Papp, Csongor Tamás, and Levente Buttyán.
Clustering iot malware based on binary similarity. In IEEE/IFIP

Network Operations and Management Symposium, 2020.

[24] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo
Cavallaro. Transcending transcend: Revisiting malware classification
in the presence of concept drift. In IEEE Symposium on Security and

Privacy (Oakland), 2022.

[25] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christo-
pher Kruegel, and Engin Kirda. Scalable, Behavior-Based Malware
Clustering. In Network and Distributed System Security Symposium,
2009.

[26] Marcus Botacin, Vitor Hugo Galhardo Moia, Fabricio Ceschin, Marco
A Amaral Henriques, and André Grégio. Understanding uses and mis-
uses of similarity hashing functions for malware detection and family
clustering in actual scenarios. Forensic Science International: Digital

Investigation, 38:301220, 2021.

[27] Frank Breitinger and Harald Baier. Similarity preserving hashing:
Eligible properties and a new algorithm mrsh-v2. In International

Conference on Digital Forensics and Cyber Crime, 2013.

[28] Capstone. Capstone - The ultimate disassembly framework, 2022.
https://www.capstone-engine.org/.

[29] Silvio Cesare, Yang Xiang, and Wanlei Zhou. Malwise—an effective
and efficient classification system for packed and polymorphic mal-
ware. IEEE Transactions on Computers, 62(6):1193–1206, 2012.

[30] Macdonald Chikapa and Anitta Patience Namanya. Towards a fast
off-line static malware analysis framework. In 2018 6th International

Conference on Future Internet of Things and Cloud Workshops (Fi-

CloudW), pages 182–187. IEEE, 2018.

[31] Microsoft Corporation. PE Format, 2022. https://docs.microsoft.

com/en-us/windows/win32/debug/pe-format.

[32] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding Linux Malware. In IEEE Symposium on

Security and Privacy, 2018.

https://www.capstone-engine.org/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

106 106

[33] George E. Dahl, Jack W. Stokes, Li Deng, and Dong Yu. Large-
Scale Malware Classification using Random Projections and Neural
Networks. In IEEE International Conference on Acoustics, Speech

and Signal Processing, 2013.

[34] Savino Dambra, Yufei Han, Simone Aonzo, Platon Kotzias, Antonino
Vitale, Juan Caballero, Davide Balzarotti, and Leyla Bilge. Decoding
the Secrets of Machine Learning in Malware Classification: A Deep
Dive into Datasets, Feature Extraction, and Model Performance. In
ACM Conference on Computer and Communications Security. ACM,
November 2023.

[35] Jake Drew, Tyler Moore, and Michael Hahsler. Polymorphic malware
detection using sequence classification methods. In IEEE Security and

Privacy Workshops, 2016.

[36] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley.
Blanket execution: Dynamic similarity testing for program binaries
and components. In USENIX Security Symposium, 2014.

[37] David French and William Casey. 2 fuzzy hashing techniques in ap-
plied malware analysis. Results of SEI Line-Funded Exploratory New

Starts Projects, page 2, 2012.

[38] Nicola Galloro, Mario Polino, Michele Carminati, Andrea Continella,
and Stefano Zanero. A systematical and longitudinal study of evasive
behaviors in windows malware. Computers & Security, 113:102550,
2022.

[39] Marius Gheorghescu. An automated virus classification system. In
Virus bulletin conference, 2005.

[40] Daniel Gibert, Carles Mateu, Jordi Planes, and Ramon Vicens. Using
convolutional neural networks for classification of malware represented
as images. Journal of Computer Virology and Hacking Techniques,
15:15–28, 2019.

[41] Google. BinDiff. https://github.com/google/bindiff, Accessed Jan-
uary 16, 2026.

[42] Weijie Han, Jingfeng Xue, Yong Wang, Lu Huang, Zixiao Kong, and
Limin Mao. Maldae: Detecting and explaining malware based on
correlation and fusion of static and dynamic characteristics. computers

& security, 83:208–233, 2019.

https://github.com/google/bindiff

References 107

[43] Weijie Han, Jingfeng Xue, Yong Wang, Zhenyan Liu, and Zixiao Kong.
Malinsight: A systematic profiling based malware detection frame-
work. Journal of Network and Computer Applications, 125:236–250,
2019.

[44] Irfan Ul Haq, Sergio Chica, Juan Caballero, and Somesh Jha. Malware
lineage in the wild. Computers & Security, 78:347–363, 2018.

[45] Xin Hu, Tzicker Chiueh, and Kang G. Shin. Large-scale Malware In-
dexing Using Function-call Graphs. In ACM Conference on Computer

and Communications Security, 2009.

[46] Xin Hu, Kang G. Shin, Sandeep Bhatkar, and Kent Griffin. MutantX-
S: Scalable Malware Clustering Based on Static Features. In USENIX

Annual Technical Conference, 2013.

[47] Wenyi Huang and Jack W. Stokes. MtNet: A Multi-Task Neural Net-
work for Dynamic Malware Classification. In Detection of Intrusions

and Malware, and Vulnerability Assessment, 2016.

[48] AV-TEST The Independent IT-Security Institute. AV-ATLAS - Mal-
ware & PUA — portal.av-atlas.org. https://portal.av-atlas.org/

malware. [Accessed 30-06-2025].

[49] Lorenzo Ippolito. A Framework for the Analysis of File Infection
Malware. Master’s thesis, Politecnico Di Torino, Torino, Italy, March
2024.

[50] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred:
feature hashing malware for scalable triage and semantic analysis. In
ACM conference on Computer and Communications Security, 2011.

[51] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long,
Christopher Kruegel, and Giovanni Vigna. Neurlux: Dynamic Mal-
ware Analysis without Feature Engineering. In Annual Computer

Security Applications Conference, 2019.

[52] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, Zhi Wang,
Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend:
Detecting concept drift in malware classification models. In Proceed-

ings of the 26th USENIX Conference on Security Symposium, SEC’17,
page 625–642, USA, 2017. USENIX Association.

https://portal.av-atlas.org/malware
https://portal.av-atlas.org/malware

108 108

[53] Robert J Joyce, Dev Amlani, Charles Nicholas, and Edward Raff.
MOTIF: A large malware reference dataset with ground truth family
labels. In Workshop on Artificial Intelligence for Cyber Security, 2022.

[54] Robert J Joyce, Kevin Bilzer, and Seamus Burke. Malware attribution
using the rich header, 2019.

[55] Fabian Kaczmarczyck, Bernhard Grill, Luca Invernizzi, Jennifer Pull-
man, Cecilia M Procopiuc, David Tao, Borbala Benko, and Elie
Bursztein. Spotlight: Malware Lead Generation at Scale. In Annual

Computer Security Applications Conference, 2020.

[56] Kesav Kancherla and Srinivas Mukkamala. Image visualization based
malware detection. In IEEE Symposium on Computational Intelli-

gence in Cyber Security, 2013.

[57] ElMouatez Billah Karbab and Mourad Debbabi. Maldy: Portable,
data-driven malware detection using natural language processing and
machine learning techniques on behavioral analysis reports. Digital

Investigation, 28:S77–S87, 2019.

[58] Kaspersky. The Cyber Surge: Kaspersky Detected 467,000 Malicious
Files Daily in 2024, 2024. Accessed: June 2025.

[59] Doowon Kim, Bum Jun Kwon, and Tudor Dumitraş. Certified mal-
ware: Measuring breaches of trust in the windows code-signing pki.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 1435–1448, 2017.

[60] Jun-Seob Kim, Wookhyun Jung, Sangwon Kim, Shinho Lee, and
Eui Tak Kim. Evaluation of image similarity algorithms for mal-
ware fake-icon detection. In 2020 International Conference on Infor-

mation and Communication Technology Convergence (ICTC), pages
1638–1640. IEEE, 2020.

[61] Jesse Kornblum. Identifying Almost Identical Files Using Context
Triggered Piecewise Hashing. Digital Investigation, 3:91–97, Septem-
ber 2006.

[62] Jesse Kornblum. Identifying almost identical files using context trig-
gered piecewise hashing. Digital investigation, 3:91–97, 2006.

[63] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Caballero.
Certified pup: abuse in authenticode code signing. In Proceedings of

References 109

the 22nd ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 465–478, 2015.

[64] Christopher Kruegel, William Robertson, Fredrik Valeur, and Gio-
vanni Vigna. Static Disassembly of Obfuscated Binaries. In USENIX

Security Symposium, 2004.

[65] Alexander Kuechler, Alessandro Mantovani, Yufei Han, Leyla Bilge,
and Davide Balzarotti. Does Every Second Count? Time-based Evo-
lution of Malware Behavior in Sandboxes. In Network and Distributed

System Security (NDSS) Symposium, NDSS 21, February 2021.

[66] Shinho Lee, Wookhyun Jung, Wonrak Lee, Hyung Geun Oh, and
Eui Tak Kim. Android malware dataset construction methodology to
minimize bias–variance tradeoff. ICT Express, 2021.

[67] Peng Li, Limin Liu, Debin Gao, and Michael K Reiter. On chal-
lenges in evaluating malware clustering. In International Symposium

on Recent Advances in Intrusion Detection, 2010.

[68] Shijia Li, Jiang Ming, Pengda Qiu, Qiyuan Chen, Lanqing Liu,
Huaifeng Bao, Qiang Wang, and Chunfu Jia. Packgenome: Auto-
matically generating robust yara rules for accurate malware packer
detection. In ACM SIGSAC Conference on Computer and Commu-

nications Security, 2023.

[69] Yuping Li, Sathya Chandran Sundaramurthy, Alexandru G Bardas,
Xinming Ou, Doina Caragea, Xin Hu, and Jiyong Jang. Experimental
study of fuzzy hashing in malware clustering analysis. In Workshop

on Cyber Security Experimentation and Test, 2015.

[70] Chia Chin Lip and Dzati Athiar Ramli. Comparative Study on Fea-

ture, Score and Decision Level Fusion Schemes for Robust Multibio-

metric Systems, pages 941–948. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[71] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Ai-
hua Piao, and Wei Zou. αDiff: Cross-version Binary Code Similarity
Detection with DNN. In ACM/IEEE International Conference on

Automated Software Engineering, 2018.

[72] Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-
based out-of-distribution detection. In Proceedings of the 34th In-

110 110

ternational Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[73] Nicola Loi, Claudio Borile, and Daniele Ucci. Towards an automated
pipeline for detecting and classifying malware through machine learn-
ing, 2021.

[74] Robert Lyda and James Hamrock. Using entropy analysis to find
encrypted and packed malware. IEEE Security & Privacy, 5(2):40–
45, 2007.

[75] Lorenzo Maffia, Dario Nisi, Platon Kotzias, Giovanni Lagorio, Simone
Aonzo, and Davide Balzarotti. Longitudinal study of the prevalence
of malware evasive techniques. arXiv preprint arXiv:2112.11289, 2021.

[76] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero,
Alessio Merlo, and Davide Balzarotti. Prevalence and impact of low-
entropy packing schemes in the malware ecosystem. In Network and

Distributed System Security, volume 20, 2020.

[77] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz,
Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar,
Tony Wu, George Yiu, Anthony D. Joseph, and J. D. Tygar. Reviewer
Integration and Performance Measurement for Malware Detection. In
Detection of Intrusions and Malware, and Vulnerability Assessment,
2016.

[78] Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and
Michalis Polychronakis. Spotless sandboxes: Evading malware anal-
ysis systems using wear-and-tear artifacts. In 2017 IEEE Symposium

on Security and Privacy (SP), pages 1009–1024. IEEE, 2017.

[79] Nitin Naik, Paul Jenkins, and Nick Savage. A ransomware detection
method using fuzzy hashing for mitigating the risk of occlusion of
information systems. In International Symposium on Systems Engi-

neering, 2019.

[80] Nitin Naik, Paul Jenkins, Nick Savage, Longzhi Yang, Tossapon Boon-
goen, Natthakan Iam-On, Kshirasagar Naik, and Jingping Song. Em-
bedded yara rules: strengthening yara rules utilising fuzzy hashing
and fuzzy rules for malware analysis. Complex & Intelligent Systems,
7:687–702, 2021.

References 111

[81] Nitin Naik, Paul Jenkins, Nick Savage, Longzhi Yang, Kshirasagar
Naik, Jingping Song, Tossapon Boongoen, and Natthakan Iam-On.
Fuzzy hashing aided enhanced yara rules for malware triaging. In
IEEE Symposium Series on Computational Intelligence, 2020.

[82] Anitta Patience Namanya, Irfan U Awan, Jules Pagna Disso, and
Muhammad Younas. Similarity hash based scoring of portable exe-
cutable files for efficient malware detection in iot. Future Generation

Computer Systems, 110:824–832, 2020.

[83] Antonio Nappa, M. Zubair Rafique, and Juan Caballero. The MALI-
CIA Dataset: Identification and Analysis of Drive-by Download Op-
erations. International Journal of Information Security, 14(1):15–33,
February 2015.

[84] Lakshmanan Nataraj, Vinod Yegneswaran, Phillip Porras, and Jian
Zhang. A comparative assessment of malware classification using bi-
nary texture analysis and dynamic analysis. In Proceedings of the 4th

ACM Workshop on Security and Artificial Intelligence, 2011.

[85] Jonathan Oliver, Muqeet Ali, and Josiah Hagen. Hac-t and fast search
for similarity in security. In International Conference on Omni-layer

Intelligent Systems, 2020.

[86] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh–a locality
sensitive hash. In Cybercrime and Trustworthy Computing Workshop,
2013.

[87] Fernando C Colon Osorio, Hongyuan Qiu, and Anthony Arrott. Seg-
mented sandboxing-a novel approach to malware polymorphism de-
tection. In 2015 10th International Conference on Malicious and Un-

wanted Software (MALWARE), pages 59–68. IEEE, 2015.

[88] Fabio Pagani, Matteo Dell’Amico, and Davide Balzarotti. Beyond
precision and recall: understanding uses (and misuses) of similarity
hashes in binary analysis. In ACM Conference on Data and Applica-

tion Security and Privacy, 2018.

[89] Marek Pawlicki, Michał Choraś, Rafał Kozik, and Witold Hołubowicz.
Missing and incomplete data handling in cybersecurity applications.
In Ngoc Thanh Nguyen, Suphamit Chittayasothorn, Dusit Niyato,
and Bogdan Trawiński, editors, Intelligent Information and Database

Systems, pages 413–426, Cham, 2021. Springer International Publish-
ing.

112 112

[90] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes
Kinder, and Lorenzo Cavallaro. TESSERACT: Eliminating Exper-
imental Bias in Malware Classification across Space and Time. In
USENIX Security Symposium, 2019.

[91] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. McBoost: Boosting
Scalability in Malware Collection and Analysis using Statistical Clas-
sification of Executables. In Annual Computer Security Applications

Conference, 2008.

[92] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral Cluster-
ing of HTTP-Based Malware and Signature Generation Using Mali-
cious Network Traces. In USENIX Symposium on Networked Systems

Design and Implementation, 2010.

[93] Roberto Perdisci and U. ManChon. VAMO: Towards a Fully Auto-
mated Malware Clustering Validity Analysis. In Annual Computer

Security Applications Conference, 2012.

[94] Marco Pontello. TrID - File Identifier, 2021. http://mark0.net/

soft-trid-e.html.

[95] Michal Poslušnỳ and Peter Kálnai. Rich headers: Leveraging this
mysterious artifact of the pe format. Virus Bulletin, October 2019.

[96] J. Ross Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[97] Erwin Quiring, Lukas Pirch, Michael Reimsbach, Daniel Arp, and
Konrad Rieck. Against all odds: Winning the defense challenge in an
evasion competition with diversification. Technical report, 2020.

[98] Dima Rabadi and Sin G Teo. Advanced windows methods on malware
detection and classification. In Annual Computer Security Applica-

tions Conference, 2020.

[99] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan
Catanzaro, and Charles K Nicholas. Malware Detection by Eating
a Whole EXE. In Workshops at the AAAI Conference on Artificial

Intelligence, 2018.

[100] M. Zubair Rafique and Juan Caballero. FIRMA: Malware Clustering
and Network Signature Generation with Mixed Network Behaviors.
In International Symposium on Research in Attacks, Intrusions and

Defenses, 2013.

http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html

References 113

[101] Matilda Rhode, Pete Burnap, and Kevin Jones. Early-stage malware
prediction using recurrent neural networks. computers & security,
77:578–594, 2018.

[102] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and
Pavel Laskov. Learning and Classification of Malware Behavior. In
Detection of Intrusions and Malware, and Vulnerability Assessment,
2008.

[103] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz.
Automatic Analysis of Malware Behavior using Machine Learning.
Journal of Computer Security, 19(4), 2011.

[104] Christian Rossow, Christian J Dietrich, Chris Grier, Christian
Kreibich, Vern Paxson, Norbert Pohlmann, Herbert Bos, and Maarten
Van Steen. Prudent practices for designing malware experiments:
Status quo and outlook. In 2012 IEEE symposium on security and

privacy, pages 65–79. IEEE, 2012.

[105] Vassil Roussev. Data fingerprinting with similarity digests. In IFIP

International Conference on Digital Forensics, 2010.

[106] Vassil Roussev and Candice Quates. Content triage with similarity
digests: The m57 case study. Digital Investigation, 9:S60–S68, 2012.

[107] Zahra Salehi, Ashkan Sami, and Mahboobe Ghiasi. Maar: Robust fea-
tures to detect malicious activity based on api calls, their arguments
and return values. Engineering Applications of Artificial Intelligence,
59:93–102, 2017.

[108] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G
Bringas. Opcode sequences as representation of executables for data-
mining-based unknown malware detection. Information Sciences,
231:64–82, 2013.

[109] Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo Gar-
cia Bringas. OPEM: A Static-Dynamic Approach for Machine-
learning-based Malware Detection. In International joint conference

CISIS’12-ICEUTE´ 12-SOCO´ 12 special sessions, 2012.

[110] Joshua Saxe and Konstantin Berlin. Deep Neural Network Based
Malware Detection using two Dimensional Binary Program Features.
In International Conference on Malicious and Unwanted Software,
2015.

114 114

[111] Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan Ca-
ballero. Avclass: A tool for massive malware labeling. In Research in

Attacks, Intrusions, and Defenses, 2016.

[112] Silvia Sebastián and Juan Caballero. Avclass2: Massive malware tag
extraction from av labels. In Annual Computer Security Applications

Conference, pages 42–53, 2020.

[113] Kimin Seo, Kyungsoo Lim, Jaemin Choi, Kisik Chang, and Sangjin
Lee. Detecting similar files based on hash and statistical analysis for
digital forensic investigation. In International Conference on Com-

puter Science and Its Applications, 2009.

[114] M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar
Farooq. Pe-miner: Mining structural information to detect malicious
executables in realtime. In International workshop on recent advances

in intrusion detection, pages 121–141. Springer, 2009.

[115] Ian Shiel and Stephen O’Shaughnessy. Improving file-level fuzzy
hashes for malware variant classification. Digital Investigation,
28:S88–S94, 2019.

[116] Michael R Smith, Nicholas T Johnson, Joe B Ingram, Armida J
Carbajal, Bridget I Haus, Eva Domschot, Ramyaa Ramyaa, Christo-
pher C Lamb, Stephen J Verzi, and W Philip Kegelmeyer. Mind the
gap: On bridging the semantic gap between machine learning and
malware analysis. In Proceedings of the 13th ACM Workshop on Ar-

tificial Intelligence and Security, pages 49–60, 2020.

[117] ssdeep - Fuzzy hashing program. https://ssdeep-project.github.io/

ssdeep/index.html.

[118] Asghar Tajoddin and Saeed Jalili. Hm 3 ald: Polymorphic malware
detection using program behavior-aware hidden markov model. Ap-

plied Sciences, 8(7):1044, 2018.

[119] Nazgol Tavabi, Andres Abeliuk, Negar Mokhberian, Jeremy Abram-
son, and Kristina Lerman. Challenges in forecasting malicious events
from incomplete data. In Companion Proceedings of the Web Confer-

ence 2020, WWW ’20, page 603–610, New York, NY, USA, 2020.
Association for Computing Machinery.

https://ssdeep-project.github.io/ssdeep/index.html
https://ssdeep-project.github.io/ssdeep/index.html

References 115

[120] G. V. Trunk. A problem of dimensionality: A simple example. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-
1(3):306–307, 1979.

[121] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G
Bringas. SoK: Deep Packer Inspection: A Longitudinal Study of the
Complexity of Run-Time Packers. In IEEE Symposium on Security

and Privacy, 2015.

[122] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. A
close look at a daily dataset of malware samples. ACM Transactions

on Privacy and Security (TOPS), 22(1):1–30, 2019.

[123] Irfan Ul Haq and Juan Caballero. A Survey of Binary Code Similarity.
ACM Computing Surveys, 54(3), April 2021.

[124] Jason Upchurch and Xiaobo Zhou. Variant: a malware similarity
testing framework. In International Conference on Malicious and Un-

wanted Software, 2015.

[125] Jason Upchurch and Xiaobo Zhou. Malware provenance: code reuse
detection in malicious software at scale. In International Conference

on Malicious and Unwanted Software, 2016.

[126] Kevin van Liebergen, Juan Caballero, Platon Kotzias, and Chris
Gates. A Deep Dive into the VirusTotal File Feed. In Conference

on Detection of Intrusions and Malware & Vulnerability Assessment,
2023.

[127] Danish Vasan, Mamoun Alazab, Sobia Wassan, Hamad Naeem, Babak
Safaei, and Qin Zheng. Imcfn: Image-based malware classification
using fine-tuned convolutional neural network architecture. Computer

Networks, 171:107138, 2020.

[128] Sitalakshmi Venkatraman, Mamoun Alazab, and R Vinayakumar. A
hybrid deep learning image-based analysis for effective malware detec-
tion. Journal of Information Security and Applications, 47:377–389,
2019.

[129] VirusTotal. https://www.virustotal.com/, Accessed January 16,
2026.

[130] Antonino Vitale, Simone Aonzo, Savino Dambra, Nanda Rani,
Lorenzo Ippolito, Platon Kotzias, Juan Caballero, and Davide

https://www.virustotal.com/

116 116

Balzarotti. The Polymorphism Maze: Understanding Diversities and
Similarities in Malware Families. In Proceedings of the 30th European

Symposium on Research in Computer Security (ESORICS), 2025. To
appear.

[131] 2021. https://developers.virustotal.com/reference/files.

[132] Virustotal api 2.0 reference: File feed. https://developers.virustotal.

com/v2.0/reference/file-feed, Accessed January 16, 2026.

[133] Amged Wageh. Automating The Analysis Of An AutoIT Script
That Wraps A Remcos RAT. https://amgedwageh.medium.com/

analysis-of-an-autoit-script-that-wraps-a-remcos-rat-6b5b66075b87,
January 2022.

[134] George D Webster, Bojan Kolosnjaji, Christian von Pentz, Julian
Kirsch, Zachary D Hanif, Apostolis Zarras, and Claudia Eckert. Find-
ing the needle: A study of the pe32 rich header and respective mal-
ware triage. In International conference on detection of intrusions

and malware, and vulnerability assessment, pages 119–138. Springer,
2017.

[135] Georg Wicherski. pehash: A novel approach to fast malware cluster-
ing. LEET, 9:8, 2009.

[136] Guoqing Xiao, Jingning Li, Yuedan Chen, and Kenli Li. Malfcs: An
effective malware classification framework with automated feature ex-
traction based on deep convolutional neural networks. Journal of

Parallel and Distributed Computing, 141:49–58, 2020.

[137] jiezhong xiao, qian han, and yumeng gao. Hybrid classification and
clustering algorithm on recent android malware detection. In 2021

5th International Conference on Computer Science and Artificial In-

telligence, CSAI 2021, page 249–255, New York, NY, USA, 2022.
Association for Computing Machinery.

[138] Jinpei Yan, Yong Qi, and Qifan Rao. Detecting malware with an
ensemble method based on deep neural network. Security and Com-

munication Networks, 2018(1):7247095, 2018.

[139] Wang Yang, Mingzhe Gao, Ligeng Chen, Zhengxuan Liu, and Lingyun
Ying. Recmal: Rectify the malware family label via hybrid analysis.
Computers & Security, 128:103177, 2023.

https://developers.virustotal.com/reference/files
https://developers.virustotal.com/v2.0/reference/file-feed
https://developers.virustotal.com/v2.0/reference/file-feed
https://amgedwageh.medium.com/analysis-of-an-autoit-script-that-wraps-a-remcos-rat-6b5b66075b87
https://amgedwageh.medium.com/analysis-of-an-autoit-script-that-wraps-a-remcos-rat-6b5b66075b87

References 117

[140] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Dou-
glas M Blough, Elissa M Redmiles, and Mustaque Ahamad. An inside
look into the practice of malware analysis. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communications Secu-

rity, pages 3053–3069, 2021.

[141] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A
brief survey. In 2010 International conference on broadband, wireless

computing, communication and applications, pages 297–300. IEEE,
2010.

[142] Hao Zhang, Wenjun Zhang, Zhihan Lv, Arun Kumar Sangaiah, Tao
Huang, and Naveen Chilamkurti. Maldc: a depth detection method
for malware based on behavior chains. World Wide Web, 23(2):991–
1010, 2020.

[143] Zhaoqi Zhang, Panpan Qi, and Wei Wang. Dynamic malware analysis
with feature engineering and feature learning. In Proceedings of the

AAAI Conference on Artificial Intelligence, 2020.

	Introduction
	Context and Motivation
	Challenges
	Contributions

	Background and Related Works
	Context and Motivation
	Malware Classification and Machine Learning Challenges
	Dataset Construction for Malware Classification
	Polymorphism and Malware Diversity
	Code and Binary Similarity
	Static Features for Malware Clustering

	Datasets
	Balanced Dataset
	MOTIF Dataset
	Malicia Dataset
	Dataset Usage

	An Empirical Study of Malware Binary and Family Classification
	Dataset Collection
	Malware Samples
	Testing Datasets
	Benign Samples

	Methodology
	Static Features
	Sandbox
	Dynamic Features
	Models

	Experimental study
	Overall Classification Results
	Hard-to-Detect Malware
	Feature Class Importance
	Impact of Packers and Protectors
	Impact of Missing Dynamic Feature Values
	Impact of Ground Truth Confidence
	Impact of Training Dataset Construction
	Model Generalization

	Final Recommendations

	Understanding Intra-Family Diversity and Polymorphism
	Datasets
	Structural Comparison
	PE Components
	Family Component Analysis

	Cross-Component Analysis
	Truncation
	Packing

	Component Analysis
	Component Presence
	Similar and Different Components
	Individual Component Polymorphism
	File Infectors

	Final Remarks

	Structural Overlaps and the Precision Boundaries of Malware Clustering
	Datasets
	Features
	Similarity Features
	Analysis Features

	Analysis Approach
	Analysis
	RQ1 – Similarity Feature Precision
	RQ2 – Similarity Feature Limits

	Discussion
	Conclusion

	Conclusion
	Summary of Findings
	Future Work

	Appendices

