
Thèse présentée pour l’obtention du grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Spécialité

Ingénierie / Systèmes Informatiques

École doctorale

Informatique, Télécommunication et Électronique Paris
(ED130)

LARGE-SCALE OPTIMISATION OF 5G TERRESTRIAL

AND NON-TERRESTRIAL NETWORKS

Henri Alam

Soutenue publiquement le : 17 Septembre 2025

Devant un jury composé de :
Marios KOUNTOURIS, Professeur, Eurecom Président du Jury
Beatriz SORET, Professeure, University of Malaga Rapporteuse
Cicek CAVDAR, Professeure, KTH Royal Institute of Technology Rapporteuse
Marceau COUPECHOUX, Professeur, Télécom Paris Examinateur
Florian KALTENBERGER, Professeur, Eurecom Directeur de Thèse





Abstract

This thesis addresses the optimisation of integrated Terrestrial and Non-
Terrestrial Networks (TN-NTNs) in the context of 5G and beyond. As user
demand for seamless, high-capacity connectivity intensifies, conventional
terrestrial networks face limitations in coverage—particularly in remote or
underserved regions. Non-Terrestrial Networks, including low-earth orbit
(LEO) satellites, offer a promising complement by extending coverage and
providing support for the terrestrial network. This work proposes and analy-
ses three major contributions for the large-scale optimisation of TN-NTNs.

First, a utility-based optimisation framework is developed for high-traffic
scenarios, enhancing user association and resource allocation by dynamically
adjusting power levels and bandwidth sharing between terrestrial and satel-
lite tiers. Then, the BLASTER algorithm is introduced, enabling traffic-aware
management by optimising user association, macro base station activation,
and bandwidth allocation throughout the day. This method significantly
reduces energy consumption while enhancing sum log-throughput (SLT).
Finally, a decentralised online learning framework based on the Bandit-
feedback Constrained Online Mirror Descent (BCOMD) algorithm is pre-
sented. This distributed solution adapts to stochastic traffic conditions, en-
suring Quality of Service (QoS) while reducing energy consumption without
requiring centralised control.

Through theoretical analysis and extensive simulations, this thesis demon-
strates how integrated TN-NTNs can dynamically adapt to varying traffic
loads to optimise network performance, reduce energy usage, and provide
robust connectivity across diverse environments.

Keywords: Non-Terrestrial Networks, Low Earth Orbit Satellites, Load Bal-
ancing, Energy Efficiency, Resource Allocation
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Résumé

Cette thèse porte sur l’optimisation des réseaux intégrés terrestres et non-
terrestres (TN-NTN) dans le contexte de la 5G et au-delà. Avec l’augmentation
de la demande des utilisateurs pour une connectivité fluide et à haute capac-
ité, les réseaux terrestres conventionnels montrent leurs limites en matière
de couverture, notamment dans les régions éloignées ou mal desservies. Les
réseaux non-terrestres, tels que les satellites en orbite terrestre basse (LEO),
apparaissent comme un complément prometteur, en étendant la couverture
et en apportant un soutien au réseau terrestre. Ce travail propose et analyse
trois contributions majeures pour l’optimisation à grande échelle des réseaux
TN-NTN.

Dans un premier temps, un cadre d’optimisation basé sur une fonction
d’utilité est développé pour les scénarios de forte affluence, en améliorant
l’association des utilisateurs et l’allocation des ressources grâce à un ajuste-
ment dynamique de la puissance d’émission et au partage de bande passante
entre les couches terrestre et satellite. Ensuite, l’algorithme BLASTER est in-
troduit ; il permet une gestion adaptative au trafic en optimisant l’association
des utilisateurs, l’activation des stations de base macro et la répartition de
la bande passante au fil de la journée. Cette méthode permet de réduire
significativement la consommation d’énergie tout en améliorant le sum log-
throughput (SLT). Enfin, un cadre d’apprentissage en ligne décentralisé,
basé sur l’algorithme Bandit-feedback Constrained Online Mirror Descent
(BCOMD), est présenté. Cette solution distribuée s’adapte aux variations
stochastiques du trafic, garantit la qualité de service (QoS), et réduit la
consommation d’énergie sans nécessiter de contrôle centralisé.

À travers des analyses théoriques et de nombreuses simulations, cette thèse
démontre comment les réseaux intégrés TN-NTN peuvent s’adapter dy-
namiquement aux variations de charge pour optimiser les performances
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du réseau, réduire la consommation énergétique et assurer une connectivité
robuste dans des environnements variés.

Mots-clés: Réseaux non terrestres, Satellites en orbite terrestre basse, Répar-
tition des charges, Efficacité énergétique, Allocation des ressources
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Introduction
1

1.1 Context

In recent years, the rapid evolution of cellular communications has driven an
unprecedented increase in the demand for high-speed, ubiquitous data con-
nectivity. This rising demand has introduced increasingly stringent require-
ments for both widespread coverage and high-capacity network performance.
To address these challenges, mobile operators have significantly expanded
terrestrial macro base stations (MBSs) deployment. However, this approach
has inherent limitations, as coverage cannot be guaranteed in remote or
logistically challenging locations [1].

NTNs have emerged as a promising solution to bridge these connectivity
gaps, enabling expanded service to underserved regions and enhancing the
global communication infrastructure. NTNs utilise airborne vehicles such as
unmanned aerial vehicles (UAVs), high-altitude platform station (HAPS), or
satellites, which serve as MBSs or relay nodes to enable connectivity for UEs
across the network. Their primary advantage lies in their ability to deliver
wide-area coverage, especially in regions where terrestrial MBSs deployment
is either prohibitively expensive or logistically unfeasible. As such, through
collaboration with mobile operators, the objective is to create an integrated
TN-NTN capable of delivering seamless, high-capacity communication ser-
vices [2], while also ensuring efficient support for UEs in the future [3], [4].
While enhancing coverage is a key driver behind the integration of NTNs,
this additional network layer also introduces new opportunities to improve
overall network performance. By offloading traffic from congested TNs, refin-
ing resource utilisation, or supporting backhaul links, NTNs can contribute
to enhanced Quality of Service (QoS). These capabilities position NTNs not
only as a solution for coverage extension, but also as a valuable complement
to the incumbent TN.
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Nevertheless, another major challenge facing mobile networks is sustainabil-
ity—particularly in terms of energy efficiency (EE). Indeed, the extensive
deployment of TNs has significantly increased overall network energy con-
sumption, a growing concern given current environmental and economic
conditions. Recent studies have shown that the telecommunications sec-
tor is responsible for approximately 3 % of global energy consumption [5].
For operators, this translates into a substantial operational burden: indeed,
Fig. 1.1 illustrates that energy-related costs account for 23 % of operational
expenditure (OPEX), as well as for 90 % of network costs. Selling, General

Fig. 1.1: Breakdown of Network Operational Costs [6].

and Administrative (SG&A) expenses make up for the remaining 75 %. Fur-
thermore, Fig. 1.2 demonstrates that the radio access network (RAN) is the
primary contributor to this energy usage, consuming 76 % of the total, com-
pared to 19 % for the core network and data centers, and only 5 % for other
network components. Consequently, a principal aim in the development and
management of mobile networks is minimising energy consumption, while
adhering to QoS standards [8].
Among the various NTN technologies, satellites currently offer the most
promising solution, as other platforms may face significant economic and
regulatory constraints [9], [10]. Although satellite deployment carries a
notable carbon footprint [11] and incurs considerable costs, recent advances
in small-satellite launch and maintenance technologies have made them in-
creasingly cost-effective for commercial use, based on the growing adoption
of real-world projects such as Starlink or Kuiper [12].
Given the decreasing cost of satellite launches, NTNs are becoming a feasible
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Fig. 1.2: Energy Consumption Distribution across Network Components [7].

solution not only for enhancing network coverage in underserved regions,
but also for potentially reducing the overall energy consumption of mobile
networks.

1.2 Motivations and Contributions

As shown in Fig. 1.3, network traffic typically follows a diurnal pattern, with
minimal activity during the early morning hours (idle period), gradually
increasing to peak during daytime and evening hours when user activity is
at its highest, before declining again late at night. This fluctuation in traffic
load naturally influences the priorities of the network operator throughout
the day. During high-traffic periods, the primary objective is to maintain
QoS by ensuring that the demands of all active UEs are met. This often
requires effective load balancing strategies across multiple MBSs to prevent
congestion and ensure fair resource allocation. In contrast, during low-
traffic periods—particularly overnight or in the early morning—the network
operator can shift focus toward EE. With fewer active UEs, it becomes feasible
to shut down underused MBSs, thereby reducing energy consumption and
mitigating the operational costs previously highlighted.
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Fig. 1.3: Daily Network Traffic Load Pattern [13].

Therefore, our study aimed to develop a framework designed for integrated
TN-NTN. This framework was gradually enhanced to tackle the several
challenges discussed in the previous paragraph, moving from simpler to more
complex modelling approaches to effectively address these challenges. It was
designed to harness the advantages of NTN technology to assist the TN and
mobile operators in achieving their objectives, while ensuring adaptability
to varying network traffic conditions. Specifically, we showed that the non-
terrestrial tier can help reduce the network energy consumption in low traffic,
taking up an important role to allow the terrestrial tier to offload a portion
of its UEs, enabling the shutdown of additional MBSs. Conversely, in high-
traffic conditions, we demonstrated that the non-terrestrial tier assumed
a supporting role, primarily serving as an umbrella to the TN to enhance
coverage and facilitate the load distribution.

To that end, in our first contribution, upon recognising the limitations of
traditional max reference signal received power (RSRP) association mecha-
nisms, we developed a utility-based framework that optimised UE association
through a pricing strategy. This framework also controlled the transmis-
sion power of terrestrial MBSs, as well as the allocation of bandwidth be-
tween terrestrial and non-terrestrial tiers during high traffic conditions. It
effectively distributed the load, thereby improving the network sum log-
throughput (SLT) and demonstrated the advantages of low-earth orbit (LEO)
satellites by significantly reducing coverage gaps. Additionally, by examining
scenarios where both tiers share available bandwidth, we highlighted the
compromise between minimising coverage gaps and maximising network
SLT.
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Building on this foundation, we coined BLASTER, our second contribution.
BLASTER is an innovative radio resource management (RRM) algorithm for
integrated TN-NTN, designed to dynamically adjust the role of the satellites
throughout the day. Similarly to the first contribution, BLASTER controlled
the UE association and the split of the bandwidth of both terrestrial and non-
terrestrial tiers. On top of that, it managed the shutdown of terrestrial MBS.
Essentially, by optimising an astutely chosen utility function using the block
coordinate gradient ascent (BCGA) algorithm, we struck the optimal balance
between reducing energy consumption and enhancing network SLT depend-
ing on the traffic load. This algorithm effectively showcased the dynamic
capabilities that the satellites can play over an entire day, demonstrating
substantial energy savings and enhanced throughput, while maintaining
service continuity.

Our third and last contribution stemmed from acknowledging the need for
scalable and distributed solutions. We developed a comprehensive online
learning framework leveraging the bandit-feedback constrained online mir-
ror descent (BCOMD) algorithm. This framework facilitated the dynamic
optimisation of key network parameters—namely UE association, bandwidth
allocation, and terrestrial MBS shutdown decisions—and enabled fully dis-
tributed control over these processes, removing the need for a centralised
entity as required in earlier versions of the framework.
Shifting to a stochastic traffic model, in which each UE had a variable data-
rate demand to satisfy, we demonstrated once again the ability of the satellite
tier to adjust to fluctuating traffic conditions. Indeed, we showed that we
could reduce energy consumption in low-traffic, and improve the traffic
load distribution in high traffic, while ensuring that we satisfied the specific
data-rate requirements of each UEs.

1.3 Thesis Outline

The remaining chapters of this thesis are organised as follows:

Chapter 2 presents a general background on NTNs, introducing key tech-
nologies such as UAVs, HAPSs and satellites. We also compare the inherent
advantages and shortcomings of each technology, and explain our motivation
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to focus on LEO satellites in our study. Furthermore, it presents a comprehen-
sive review of the previous contributions that have been made relating to the
large-scale optimisation of integrated TN-NTN, covering areas such as load
balancing, resource allocation, interference management. Finally, we give an
overview of standardisation efforts, highlighting the progressive integration
of NTN by the 3rd Generation Partnership Project (3GPP).

Chapter 3 describes the system model used throughout the thesis, including a
detailed channel model for both terrestrial and non-terrestrial links. We also
present how we model the signal-to-interference-plus-noise ratio (SINR), the
data-rate as well as the energy consumption for a MBS.

Chapter 4 introduces our first contribution, an utility-based optimisation
framework tailored for high traffic conditions in integrated TN-NTNs. This
framework addresses the limitations of conventional RSRP-based association
by introducing a pricing-based mechanism to control UE association as well as
the transmit power of terrestrial MBSs. In addition, it optimises the allocation
of the available bandwidth between the terrestrial and non-terrestrial tiers.
The framework demonstrates its effectiveness in distributing network load
more evenly, reducing coverage gaps, and improving the SLT, particularly
by leveraging the presence of LEO satellites. Simulation results highlight
the potential of joint utility-based association and bandwidth splitting in
managing load during peak traffic periods, while quantifying the trade-offs
between throughput maximisation and coverage guarantees.
The contents of this chapter have been published in the following venues:

• 2023 IEEE International Conference on Communications Work-
shops (ICC Workshops): H. Alam, A. De Domenico, D. López-Pérez
and F. Kaltenberger, "Throughput and Coverage Trade-Off in Integrated
Terrestrial and Non-Terrestrial Networks: An Optimization Framework,"
2023, pp. 1553-1558, Rome, Italy

Chapter 5 builds upon the first contribution and presents BLASTER, a traffic-
aware optimisation algorithm designed to adapt network operations through-
out the day. Unlike the earlier framework, BLASTER introduces an additional
layer of control by enabling dynamic shutdown of underutilised terrestrial
MBSs during low-traffic hours to reduce network energy consumption. It
jointly optimises UE association, bandwidth allocation, and MBS activation
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using BCGA to maximise a utility function that balances SLT and energy
consumption. BLASTER underlines the capability of LEO satellites to flexibly
support the TN in different traffic regimes, and demonstrates significant
improvements in both network throughput and energy savings compared to
heuristic and baseline schemes.
The contents presented in this thesis have been published or submitted in
the following venues:

• Published in 2024 IEEE 35th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC): H. Alam, A.
De Domenico, F. Kaltenberger and D. López-Pérez, "On the Role of Non-
Terrestrial Networks for Boosting Terrestrial Network Performance in
Dynamic Traffic Scenarios," 2024, pp. 1-7, Valencia, Spain.

• Published in Elsevier Academic Press 2026: M. Schellmann, M.A
Jamshed, G. Karetsos, H. Alam, A. De Domenico, F.R. Davoli, S. Adhatarao,
Y. Chen and A. Kaushik, "Non-Terrestrial Networks, Chapter 12: NTN
standardization in 5G NR and the path beyond," 2026, pp. 285-312,
ISBN: 9780443265266.

• Submitted to IEEE Transactions on Vehicular Technology: H. Alam, A.
De Domenico, D. López-Pérez and F. Kaltenberger, "Optimizing Integrated
Terrestrial and Non-Terrestrial Networks Performance with Traffic-Aware
Resource Management".

Chapter 6 addresses the need for a scalable and decentralised solution by
introducing an online learning framework based on the BCOMD algorithm.
This framework enables fully distributed control over UE association, band-
width allocation, and terrestrial MBS shutdown decisions, removing the need
for a centralised entity as required in earlier frameworks. It emulates the
behaviour of BLASTER in a distributed setting and dynamically adapts to
traffic variations while respecting minimal data-rate constraints. Through ex-
tensive simulations, we demonstrated that BCOMD-based control can achieve
performance levels comparable to comparable oracle benchmarks, thus vali-
dating the effectiveness of online and decentralised optimisation in integrated
TN-NTN. The contents presented in this thesis have been published or are to
be submitted in the following venues:
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• Published in 2025 IEEE International Workshop on Signal Processing
and Artificial Intelligence for Wireless Communications (SPAWC):
H. Alam, A. De Domenico, T. Si Salem and F. Kaltenberger, "A Multi-Armed
Bandit Framework for Online Optimization in Green Integrated Terrestrial
and Non-Terrestrial Networks," 2025, pp. 1-5, Surrey, UK.

• To be Submitted to IEEE Transactions on Wireless Communications:
H. Alam, A. De Domenico, T. Si Salem and F. Kaltenberger, "BCOMD-
NETOP: an Online Optimisation Framework for Green Integrated Terres-
trial and Non-Terrestrial Networks".

Chapter 7 concludes the thesis by summarising the key contributions and
findings, while outlining several future research directions to build upon the
work established in this thesis.
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Integrated TN-NTNs:
Technologies,
Challenges, and
State-of-the-Art

2

Before exploring the optimisation of integrated TN-NTN systems, it is es-
sential to first establish a clear understanding of what constitutes an NTN.
To this end, we begin by examining the architectural vision put forward
by the research community for integrated TN-NTN systems, along with a
detailed overview of the different enabling non-terrestrial technologies, in-
cluding UAVs, HAPSs, and satellites—each with its respective strengths and
limitations. We then review the progressive standardisation efforts carried
out by the 3GPP across multiple releases, outlining the key milestones that
have gradually enabled the seamless integration of NTNs into the 5G new
radio (NR) framework. Finally, we present a comprehensive survey of the
state-of-the-art research on large-scale optimisation techniques for integrated
TN-NTN systems—covering aspects such as load balancing, resource alloca-
tion, interference management, and mobility support—and clearly position
our contributions within this broader context.

2.1 Perspectives on Integrated TN-NTN
Architectures

The integration of TNs with NTNs is a key enabler of future communication
systems, aiming to provide seamless, ubiquitous, and high-capacity connec-
tivity. This hybrid three-dimensional (3D) network architecture extends
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Fig. 2.1: Different NTN technologies available [14].

beyond conventional terrestrial MBSs to include a diverse set of airborne and
spaceborne platforms such as UAVs, HAPSs, and satellites, as depicted in Fig.
2.1.

A typical integrated TN-NTN architecture consists of multiple hierarchi-
cal layers. Terrestrial MBSs—operating across sub-6 GHz and millimeter-
wave (mmWave) bands—serve UEs with different densities and orientations,
including uptilted cells for aerial users. The non-terrestrial tier complements
the terrestrial tier nicely by operating at various altitudes and dynamically
extending network coverage beyond traditional ground infrastructure. These
non-terrestrial platforms establish wide-area connectivity through service
links with UEs and feeder links to the core network, ensuring seamless inte-
gration with terrestrial components, as illustrated in Fig. 2.2.
Their mobility and altitude enable adaptive coverage, making them partic-
ularly effective in remote, underserved, or high-mobility environments [2].
Additionally, this non-terrestrial tier enhances network resilience by provid-
ing redundant communication paths and improving service continuity in case
of TN failures or congestion.
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Fig. 2.2: Integrated TN-NTN architecture (Inspired from [3]).

2.2 Emerging Technologies for NTN

Now that we have presented the global architecture of an integrated TN-NTN,
we will go through the different technologies that will play a major role in
NTNs for the foreseeable future, and we will outline their respective strengths
and limitations.

2.2.1 UAVs

UAVs, commonly known as drones, are low-altitude aerial platforms typically
operating at altitudes between 0 and 4 km [15]. They are characterised
by their mobility, and ability to hover or move in three-dimensional space.
In the context of wireless communications, UAVs can serve as flying base
stations (BSs), relays, or access points, providing on-demand connectivity
and coverage, especially in dense urban [16] or hard-to-reach areas [17].
6G networks are envisioned to natively support autonomous vehicles and
drone-based communication systems, an emerging field broadly referred to
as UAV communication systems (UAVCOM). As shown in Fig. 2.1, UAVs form
the lowest altitude layer in the integrated TN-NTN architecture, operating at
a range between 0 and 4 km [15].
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Key Advantages

UAVs play a crucial role in enhancing wireless networks by providing high-
speed backhaul connectivity [18]. Their ability to operate at flexible altitudes
and adapt dynamically makes them ideal for on-demand network expan-
sion in remote or congested areas [19]. Integrated with cell-free massive
multiple-input multiple-output (MIMO) systems, UAVs can also improve spec-
tral efficiency and enable low-latency communication [20]. Furthermore,
their synergy with HAPSs and satellites facilitates continuous information
broadcasting and enhanced data processing, surpassing the capabilities of
standalone deployments [19].

Artificial intelligence (AI) and machine learning (ML) can further optimise
UAV performance by dynamically adjusting flight paths, reconfiguring net-
work topology, and improving communication reliability [20]. Additionally,
UAVs can operate for extended periods by leveraging wireless power transfer
and renewable energy sources such as solar power. Their versatility extends
to emergency services and disaster management, enabling rapid response,
real-time situational awareness, and communication restoration [21]. They
also have the ability to improve security and surveillance, supporting law
enforcement, border monitoring, and infrastructure protection. Furthermore,
UAVs contribute to mobile edge computing, improving computational effi-
ciency and reducing latency [22], [23]. These capabilities position UAVs as a
major driver of future network deployment, offering adaptive, resilient, and
high-performance connectivity across diverse applications.

Although the strengths of UAVs cannot be understated, some technical hur-
dles remain before we can extract the maximum potential from this technol-
ogy.

Related challenges

One critical challenge that the UAVs face is energy consumption, as they re-
quire substantial power to support their mobility and maintain long-duration
flights [19]. Efficient power management strategies and the integration of
wireless power transfer or renewable energy sources are essential to prolong
UAV operation.
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In addition, accurate channel modelling and fast channel estimation are
necessary to improve UAV communication efficiency, particularly in high-
mobility scenarios. Furthermore, interference management is a significant
issue, particularly in line-of-sight (LoS) dominated scenarios where UAVs
operate at high altitudes [24]. Interference mitigation strategies, such as
adaptive beamforming and spectrum-sharing techniques, are essential to
maintaining communication reliability. More advanced techniques—such as
uptilted antenna configurations [25], [26], massive MIMO systems [27], or
cell-free network architectures [28]—offer improved performance but may
be more expensive in the short term, as they require substantial network
upgrades. Addressing these challenges will be key to fully unlocking the
potential of UAVs.

2.2.2 HAPS

HAPS are quasi-stationary aerial platforms, such as airships or balloons, that
operate in the stratosphere at altitudes ranging from 15 to 25 km above sea
level. HAPS provide wide-area coverage while maintaining relative stability.
These platforms effectively act as airborne repeaters, enabling broadcast and
multicast wireless broadband services while extending wireless connectivity
and coverage to underserved areas [29], [30]. Building upon the advantages
and limitations of UAVs, HAPS emerge as a promising alternative for long-
endurance aerial communication [31].

Key Advantages

HAPS-based networks are also being extensively studied since they offer
several advantages, mainly operational simplicity, ease of implementation
due to minimal infrastructure requirements, cost-effective deployment and
launch, efficient spectrum utilisation and extensive geographical coverage
[29]. In terms of flight duration and coverage, HAPS outperform UAV systems
[30].

Compared to satellites, HAPS exhibit significantly lower propagation delays
due to their relative proximity to the Earth. Their ability to be deployed on
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demand allows them to provide rapid and continuous wireless connectivity
across different regions, making them particularly useful for delay-sensitive
Internet of Things (IoT) applications in future networks. Additionally, HAPS
can function as an intermediate communication layer between satellites and
terrestrial receivers, enhancing communication services at a regional level
[15]. Indeed, the HAPS communication layer can be leveraged to perform
local signal processing, supplement terrestrial and satellite communication
systems, support multimedia broadcasting and multicasting, and improve
link budget efficiency. Furthermore, HAPS can accommodate high-density
terrestrial cells during peak demand periods and facilitate high-throughput
backhaul links.

However, HAPSs still have several limitations that need to be dealt with
before this technology is adopted.

Related challenges

A primary concern for HAPS is their high susceptibility to adverse weather
conditions, including high-speed winds, rain and snow attenuation, tem-
perature fluctuations, and fog. To ensure their stability and functionality
in varying atmospheric conditions, designing robust platform and adaptive
control mechanisms is essential.

Another significant challenge is interference, which can degrade link-level
performance and hinder communication efficiency in HAPS-based networks.
Effective interference mitigation strategies are crucial to maintaining reliable
connectivity. Additionally, seamless integration with existing terrestrial and
satellite networks is required to support high-speed backhaul and fronthaul
links, demanding further research in this area.

Moreover, the development of accurate channel models for HAPS is necessary
to predict signal propagation and optimise network performance [32]. Effi-
cient signal processing techniques, resource allocation strategies, scheduling
algorithms, modulation and coding schemes, and handover mechanisms
must also be refined to enhance system reliability and efficiency [30]. Also,
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large-scale MIMO systems and mmWave frequencies present promising op-
portunities for HAPS-based communication, making them important topics
for future research and development.

Lastly, recent techno-economic studies [9], [10] have highlighted the techno-
logical, regulatory and economic constraints the HAPS suffer from, leaving
some room for improvement in that regard.

2.2.3 Satellites

Satellites are spaceborne communication nodes that operate at various al-
titudes, typically partitioned in two categories: geostationary orbit (GSO)
satellites and non-GSO satellites.
GSO satellites, commonly known as geostationary orbit (GEO) satellites,
orbit on the equatorial plane of the Earth, at an altitude of approximately
35 800 km. Conversely, non-GSO satellites are composed of medium-earth
orbit (MEO) and LEO satellites, which operate at altitudes ranging from 2 000
to 35 000 km for MEO and 200 km to 2 000 km for LEO, respectively. Note
that non-GSO must be operated within a constellation to ensure continuous
service coverage.
Satellite communication is expected to play a pivotal role in future 6G net-
works, enabling broadband connectivity, high-capacity airborne platforms,
seamless global coverage, and high-speed backbone links. A key objective of
6G is the seamless integration of satellite platforms with TNs to enhance con-
nectivity and system efficiency. In this framework, airborne communication
systems and terrestrial MBSs will rely on satellite links to provide backhaul
support and expand coverage across wide geographical areas [33].

Key Advantages

Due to their larger altitude of orbit, GEO satellites offer extensive geographi-
cal coverage. Also, since they maintain a fixed position relatively to the Earth,
they are constantly visible to terrestrial terminals. In contrast, LEO and MEO
satellites provide a higher signal-to-noise ratio (SNR) and lower transmission
latency, owing to their closer proximity to the Earth. Notably, LEO satellite
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systems have gained significant interest for broadband applications in recent
years. Since LEO satellites operate at much lower altitudes compared to MEO
and GEO satellites, they can minimise path loss, latency, and enhance signal
reception, thereby enabling higher data rates [34], [35]. This proximity to
Earth also leads to reduced energy needs for launching and lower power
usage for transmitting signals to and from the satellite [36].

LEO satellite networks are particularly valuable for rural and remote ar-
eas, where they can provide expanded coverage and increased capacity.
Additionally, LEO satellites can be integrated with HAPS and UAV-based
communication systems to further enhance connectivity. The intelligent inter-
connection between satellite and UAV networks is expected to play a crucial
role in future 6G networks, ensuring seamless and wide-area coverage [37],
[38].

Nevertheless, satellites still face several challenges that must be addressed to
ensure their seamless integration and widespread adoption.

Related challenges

Although the GEO satellite has proven to be useful in some scenarios, its
significant orbit altitude causes a substantial signal propagation delay as well
as notable attenuation. Due to their non-stationarity, key issues for LEO and
MEO satellites include Doppler variation and Doppler shift, which can impact
synchronisation, signal detection, as well as a higher bit error rate (BER)
[34]. These challenges can affect communication reliability, signal processing,
and network efficiency, necessitating advanced mitigation strategies.

As detailed previously, multiple satellite stations must be deployed to provide
seamless global coverage, which introduces synchronisation complexities as
satellites remain in constant motion [34], [35]. Addressing these issues re-
quires the development of accurate air-to-ground channel models, trajectory
optimisation techniques, and efficient resource allocation mechanisms for
satellite communications [39].
Another critical issue is interference management between terrestrial and
satellite platforms, which can degrade link-level performance. Moreover,
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efficient spectrum utilisation and resource management remain key concerns
for optimising satellite network operations.

Despite these challenges, LEO satellites stand out as a particularly promis-
ing solution. Their relative proximity to the Earth ensures stronger signal
strength, lower latency, and the ability to cover large areas — with a beam
diameter of approximately 50 km [40]. Moreover, recent studies have high-
lighted the cost-effectiveness of LEO satellites compared to other technolo-
gies.

In light of these advantages, we focus our research on LEO satellite systems.
The following subsections present key architectural features of LEO satellites,
including payload types and beam coverage strategies, which are essential to
understanding their role in next-generation networks.

Payload Type

In the context of NTNs, the payload type defines the technological and
functional characteristics of the payload integrated into the satellite. This
payload facilitates the transmission, reception, and, in some cases, processing
of communication signals within the NTN framework. NTN payloads are
generally categorised into two main types: transparent (also known as "bent-
pipe") and regenerative, whose differences are portrayed in Fig. 2.3.

Transparent A transparent payload functions as an analog radio frequency (RF) re-
peater. Unlike regenerative payloads, it lacks onboard signal processing
capabilities. Instead, it receives the uplink (UL) RF signal, shifts its fre-
quency, filters, amplifies, and retransmits it via the downlink (DL). This
design is cost-effective and easier to implement, as it offloads complex
processing tasks to ground-based systems. However, its functionality is
restricted to signal relay, without the ability to enhance or manage the
transmitted data.

Regenerative A regenerative payload integrates onboard processing capabilities into
the satellite, extending its functionality beyond basic RF operations
such as filtering, frequency conversion, and amplification. It can per-
form advanced tasks including demodulation, decoding, switching,
routing, encoding, and modulation. Essentially, this type of payload
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Fig. 2.3: Bent-pipe and regenerative architectures [41].

functions similarly to a BS, allowing it to manage signals autonomously.
By reducing reliance on ground infrastructure, regenerative payloads
enhance operational efficiency, optimise bandwidth usage, and enable
more intelligent data routing.

Beam Coverage Type

There are two types of beam coverage patterns that have been proposed for
the LEO satellites: Earth-moving or Earth-fixed beams, as depicted in Fig.
2.4.
For Earth-moving beams, the beam moves in synergy with the satellite
which means that the coverage area is in constant motion. This induces
some complexities to maintain uninterrupted connectivity as this necessitates
frequent cell transitions or handovers for stationary devices.
Conversely, in the case of Earth-fixed beams, the satellites use beam-pointing
mechanisms (mechanical or electronic steering feature) to compensate for
their mobility and cover a given fixed region regardless of the satellite orbit
position.
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Fig. 2.4: Earth-moving (left) and Earth-fixed (right) moving beams [42].

2.3 3GPP NR Standardisation Outline

The standardisation of NTNs by the 3GPP has evolved progressively across
the last Releases, each providing specific enhancements to enable seamless
satellite integration into future cellular networks. In the following section, we
outline the key developments that have underpinned the technical feasibility
of NTNs.

2.3.1 Release 14 - Preliminary Phase

Initial considerations for the integration of NTNs began as early as Release
14. The motivation behind these early efforts stemmed from several practical
and strategic factors. One of the primary drivers was the need to extend
coverage to remote or underserved regions lacking reliable terrestrial cellular
infrastructure. In addition, certain services—particularly multicast and broad-
cast transmissions—could be delivered more efficiently via satellite links.
NTNs were also envisioned as a resilient fallback option in disaster scenarios,
where terrestrial infrastructure may be compromised or completely unavail-
able. Beyond these operational benefits, the standardisation of a unified
radio interface for both terrestrial and non-terrestrial components promised
cost efficiencies by enabling seamless interoperability and reducing system
complexity. These foundational motivations set the stage for subsequent
technical developments in later 3GPP releases.
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2.3.2 Release 15 (2016 - 2018)

Release 15 marked the first effort to standardise the normative requirements
for 5G NR, with an initial focus exclusively on TNs. Stage 1 of TS 22.261
[43] outlined a requirement for 5G to support multiple access technologies,
emphasising the need for seamless mobility across supported access networks.
However, due to time constraints, satellite support was not included in the
standardisation efforts for Release 15. To address this limitation, TSG RAN
initiated a study item (SI) titled “Study on NR to Support NTN”. This
study focused on several key areas, including the identification of NTN
use cases for enhanced mobile broadband (eMBB) and massive machine
type communication (mMTC) services, the adaptation of the 3GPP channel
model from Release 14 to accommodate the unique characteristics of NTNs,
and the detailed examination of deployment scenarios. The study also
analysed the necessary modifications required to enable satellite and HAPS
operations within the NR framework. The outcomes of this investigation
were transcribed in TR 38.811 [44].
In the context of eMBB, NTN use cases primarily focused on delivering
broadband connectivity to cells or relay nodes in underserved regions, often
in combination with the TN. These use cases also included establishing
broadband links between the core network and remote or isolated cells.
Furthermore, this study showed that NTNs enabled broadband connectivity
between the core network and cells located on moving platforms, supporting
continuous service in dynamic environments. For mMTC, NTN has been
designed to enable global connectivity for IoT devices by facilitating direct
communication between these devices and the NTN. Finally, Release 15
coined the terms of the two primary architectures for NTNs: regenerative
and transparent satellites, as described in Sect. 2.2.3.

2.3.3 Release 16 (2018-2020)

In Release 16, two different working groups from the 3GPP initiated a SI
related to NTNs.
The SA1-led SI titled “Study on using satellite access in 5G” examined 12
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specific use cases for integrating satellite access into NR, with findings doc-
umented in TR 22.822 [45]. The study evaluated the conditions, service
impacts, interactions with existing features, and potential Stage 1 require-
ments. These included aspects such as TN-NTN roaming, satellite-based
broadcast/multicast, IoT connectivity, temporary satellite use, routing op-
timisation, transborder continuity, global overlays, indirect satellite access,
fixed and mobile backhaul, 5G-to-premises connectivity, and offshore service
center links.
The RAN3-led SI focused on developing solutions to enable NR support for
NTN, addressing service continuity and multi-connectivity scenarios between
TN and NTN, or between two NTN systems in parallel. This work, docu-
mented in TR 38.821 [40], built upon the key impacts identified in Release
15 by analysing their implications for RAN protocols and architecture and
exploring initial solution proposals. The study emphasised satellite access
through transparent GEO and LEO networks, treating HAPS as a special NTN
case due to its relatively low Doppler and variation rates. Usage scenarios
covered both pedestrian UEs and those in high-mobility environments such
as high-speed trains and aircraft. Reference scenarios included GEO and
LEO satellites with steerable and moving beams (see Fig. 2.4), using either
transparent or regenerative payloads. RAN3 recommended that normative
work prioritise GEO satellites with transparent payloads and LEO satellites
with either transparent or regenerative payloads. The outcomes of this and re-
lated SIs provided concrete recommendations to guide subsequent normative
standardisation efforts.

2.3.4 Release 17 (2020 - 2022)

Release 17 marked the first 3GPP release to introduce normative support
for NTN, encompassing both 5G NR and long term evolution (LTE)-based
technologies such as Narrowband-IoT and enhanced MTC. The first work
items (WIs) for NR NTN were approved by the end of 2019, building on
prior study results from Release 16. In WI "5GSAT", working group SA1
formalised Stage 1 requirements for satellite integration, later incorporated
into TS 22.261 [43]. Parallel efforts in SA2 focused on architectural inte-
gration, producing key specifications including TS 23.501, TS 23.502 and
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TS 23.503 [46]–[48], which outlined the system architecture, operational
procedures, and policy control framework for NTN-enabled 5G.
The RAN-led WIs aimed to adapt core aspects of NR to account for satellite-
specific characteristics such as large round-trip delays and the transparent
satellite architecture. To address the UL synchronisation challenges posed
by large satellite-induced delays, the 3GPP introduced a Global Navigation
Satellite Systems (GNSS)-based timing advance (TA) compensation, where
UEs would use their GNSS position along with broadcast ephemeris and com-
mon TA parameters to pre-compensate transmission timing. While effective
for many NTN use cases, this method introduces practical limitations for
devices without GNSS support.
Furthermore, to mitigate hybrid automatic repeat request (HARQ) stalling
over long-delay links (especially with GEO satellites), HARQ feedback can
be disabled in favour of radio link control (RLC)-level automatic repeat re-
quest (ARQ), or the number of HARQ processes can be increased to 32. For
mobility, the network provides satellite ephemeris of serving and neighbour-
ing cells within the handover command. New Conditional Handover (CHO)
mechanisms were introduced in RRC_CONNECTED mode, including time-based
and location-based triggers, enabling the UE to execute handover based on
satellite transitions or proximity thresholds. Moreover, multiple SSB measure-
ment timing configurations (SMTCs) per carrier were supported to handle
significant propagation delay variations across neighboring satellites—critical
for reliable reception of synchronisation signal blocks (SSBs).
For RF and co-existence, the requirements were captured in TR 38.863 [49]
and standardised in TS 38.101-5 [50] and TS 38.108 [51]. These specifica-
tions ensure NTN compatibility in FR1, while accounting for adjacent and
overlapping band coexistence. For instance, NTN bands n255 (L-band) and
n256 (S-band) overlap or border terrestrial NR bands (e.g., n1, n34, n65),
necessitating regional deployment constraints or interference mitigation to
meet coexistence requirements.

2.3.5 Release 18 (2022 - 2024)

Release 18 introduced several enhancements to improve the practical deploy-
ment of NR NTN systems. UL coverage was optimised to support commercial
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smartphones with limited antenna gain (-5.5 dBi) and polarisation loss, im-
proving initial access performance. The frequency support was also expanded:
in addition to the S-band, LS-band n254 was added, and Ka-band operation
in FR2 was standardised for both GSO and non-GSO scenarios, covering DL
frequencies from 17.3-20.2 GHz and UL from 27.5-30.0 GHz. The maximum
supported bandwidth for NR NTN in FR1 was extended to 30 MHz and
formalised in TS 38.101-5 (Rel.18) [52] and TS 38.108 (Rel.18) [53].
To address core network (CN) selection in large NTN cells spanning multiple
national borders, Release 18 introduced network-verified UE location using
round trip time (RTT)-based positioning. This mechanism allows the CN to
verify UE-reported positions and assign the appropriate CN, ensuring compli-
ance with regulatory requirements. It assumes a single satellite in view to
simplify architecture and ensure location fidelity.
Mobility management was also refined in Release 18: For TN-NTN cell re-
selection, NTNs could broadcast TN coverage information, enabling UEs
in RRC_IDLE or RRC_INACTIVE states to avoid unnecessary TN measure-
ments and conserve energy. For NTN-NTN scenarios, random access chan-
nel (RACH)-less handover was introduced, supporting beam switching within
the same satellite or across different feeder links and gateways, provided
timing alignment conditions are met.
Finally, Release 18 addressed support for discontinuous satellite coverage,
particularly relevant during early constellation deployments. NTN coverage
information can be delivered to UEs to improve power-saving strategies and
prevent unnecessary access attempts when no NTN signal is available.

2.3.6 Release 19 (Ongoing)

Looking ahead, Release 19 aims to continue to advance NTN support with a
focus on improving DL coverage and system performance under satellite hard-
ware constraints. Given the limited number of simultaneously active beams
a satellite can support (e.g., 16–108 beams), enhancements such as beam
hopping and adaptive beam sizing are being introduced to dynamically allo-
cate power and coverage across wide satellite footprints. These techniques
aim to increase the overall coverage ratio and address performance-limiting
“bottleneck” channels, which suffer from poor link budgets due to constrained
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transmit power.
On the uplink, orthogonal cover codes (OCC) are introduced to improve
spectral efficiency. By assigning different OCC sequences to UEs sharing
the same time-frequency resources, UL multiplexing becomes feasible even
under the high-repetition schemes typically required for NTN link robustness,
thus helping offset associated capacity losses. Enhancements for broadcast
services are also being considered. Indeed, since NTN beams can cover areas
significantly larger than traditional terrestrial cells, new mechanisms are
being developed to notify UEs of the specific service area within a large beam,
improving the relevance and efficiency of broadcast delivery.
Architecturally, regenerative payloads with onboard 5G functions are being
standardised for the first time. Unlike transparent payloads used in previous
releases, these satellites may implement the full gNB stack, reducing end-to-
end latency and enabling localised scheduling. While Release 19 focuses on
full gNB functionality onboard, future work may explore functional splits be-
tween central and distributed units (CU/DU). This shift will improve UL and
DL performance, particularly for control and data channels, and extend NTN
functionality to higher-frequency bands and critical services like emergency
communications. As Release 19 evolves, it is expected to unify air, space,
and ground into a resilient 3D network fabric, paving the way for the NTN
to play a pivotal role in the forthcoming 6G era. A timeline of the technology
advancements is provided in Fig. 2.5.

Release 152016 Release 162018 Release 172020 Release 182022 Release 192024

- Initiated feasibility studies for 
NTN, focusing on architecture 
and channel models.  

- Definition of eMBB and mMTC 
use cases for NTN integration.

- Introduction of transparent and 
regenerative satellite 
architectures.

- Study on satellite access use 
cases and service requirements.

- Evaluation of NTN-TN 
multi- connectivity and mobility 
scenarios.

- Established key assumptions for 
transparent satellite 
architectures and delay- tolerant 
communication models.

- Standardized direct NTN access 
via transparent payloads 
(bent-pipe satellites).  

- GNSS-based uplink timing, 
HARQ adaptations, CHO 
introduction. 

- RF requirements and band 
coexistence defined for NTN 
operation.

- Uplink coverage 
enhancements and expanded 
band support (n254, Ka-band). 

- CN selection for UE using RTT 
positioning.

- RACH- less handover and 
energy-saving features for 
discontinuous coverage.

- Beam hopping, adaptive beam 
sizing, and bottleneck channel 
improvements.  

- Uplink multiplexing using 
Orthogonal Cover Codes (OCC).  

- Regenerative payloads with 
onboard gNB.

Fig. 2.5: Timeline of 3GPP Standardisation Advancements.
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Although the full integration of NTNs into TNs has yet to be realised, on-
going standardisation efforts by the 3GPP signals a strong momentum in
that direction. As we have seen in this section, the capabilities and interop-
erability of NTNs are being significantly enhanced with each new release,
culminating with the introduction of regenerative satellites. These develop-
ments lay the technical foundation for NTNs to play a far more active role
in supporting TNs, particularly as we move toward the 6G era. In parallel
with these standardisation advances, a growing body of research has focused
on optimising the performance of integrated TN-NTN systems, under the
assumption that full integration will be achieved in the upcoming years.
The next section presents a detailed review of this work, highlighting key
strategies in load balancing, resource allocation, interference mitigation, and
mobility management.

2.4 Integrated TN-NTN Large-Scale
Optimisation: State-of-the-art

This section provides a comprehensive examination of several techniques that
have been explored for the large-scale optimisation of integrated TN-NTNs.
By critically analysing solution related to this field, this chapter lays the
foundation for understanding how we can leverage NTNs in the upcoming
years to evolve and accommodate the ever-increasing needs and requirements
of the users in a multi-dimensional network.

2.4.1 Load Balancing in Integrated TN-NTN

In integrated TN-NTNs, load balancing is not limited in associating UEs with
the MBS providing the best signal quality, as done in traditional TNs. Instead,
there is the requirement to dynamically coordinate UE distribution among
the different tiers of the network, while the inherent mobility of NTNs, its
variability in link quality, and resource constraints necessitate efficient, adap-
tive and fairness-aware load distribution mechanisms.
To that end, Kwon et al. [54] and Li & Shang [55] both focus on enhancing
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connectivity in integrated networks. Indeed, Kwon et al. propose a novel
access-backhaul coordination strategy based on gNB cooperation in TN-NTNs.
Their system enables multiple gNBs to jointly manage UE access and back-
haul routing, leveraging inter-node communication to reduce bottlenecks and
handover failures. This cooperative approach significantly improves end-to-
end service continuity and alleviates localised congestion without requiring
changes in satellite architecture. In Li & Shang, the authors investigate
how multi-connectivity can mitigate handover instability and throughput
degradation in heterogeneous networks. They propose a dual-connectivity
framework that allows UE to maintain simultaneous links with terrestrial and
satellite infrastructures. Simulation results confirm improved robustness and
reduced service disruption, particularly in border areas where signal strength
fluctuates frequently.
Sadovaya et al. [56] present a dynamic traffic offloading mechanism which
is based on real-time link conditions. The authors integrate this with a hybrid
connectivity model that supports seamless transitions between terrestrial and
satellite paths, resulting in substantial improvements in packet delivery relia-
bility and connection persistence. Khoramnejad & Hossain [57] introduce a
predictive traffic engineering method using generative diffusion models. The
approach enables proactive load redistribution by forecasting traffic demand
patterns and carrier availability. Through optimised joint use of satellite and
terrestrial carriers, the model achieves better resource utilisation and QoS,
especially during traffic surges. Cao et al. [58] propose a learning-based
strategy for access scheduling. Using a deep reinforcement learning (RL)
framework, the system selects optimal UE associations and access points by
accounting for UE priority, channel conditions, and fairness constraints. This
technique outperforms traditional rule-based schedulers in throughput and
delay trade-offs, particularly in environments with fluctuating link quality
and intermittent satellite coverage.
Sun et al. [59] present a centralised task assignment mechanism that uses
queue and beam-awareness to balance load across heterogeneous tiers. By
incorporating both link capacity and service latency into its scheduling logic,
the framework ensures equitable task allocation while maintaining system
responsiveness. Lee et al. [60] and Shamsabadi et al. [61] try to achieve
network fairness through different ways. Lee et al. address spatially uneven
UE demand in satellite coverage zones. The authors formulate a scheduling
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scheme that adapts resource allocation based on UE angular positions and
orbital dynamics. Their fairness-driven optimisation avoids the common
issue of beam-edge starvation and achieves more uniform throughput across
all UEs. Shamsabadi et al. examine how different optimisation goals—such
as max-throughput, proportional fairness, and max-min fairness—affect UE
association decisions. Their findings show that careful selection of the ob-
jective function can significantly influence not only fairness but also overall
system spectral efficiency, depending on UE density and traffic load.
Finally, Di et al. [62] focus on relieving terrestrial congestion through adap-
tive satellite integration. The authors propose a density-aware traffic steering
mechanism that assigns users to satellites with lower load and acceptable
latency. Their results indicate significant improvements in system stability
and resource utilisation when compared to static offloading models.

2.4.2 Resource Allocation in Integrated TN-NTN

Resource allocation in TN-NTNs presents challenges that extend well beyond
classical terrestrial models. The coordination of time-varying resources across
LEO satellites and/or HAPSs with the terrestrial MBSs demands optimisation
strategies that account for intermittent connectivity, tier-specific constraints
and heterogeneous QoS requirements.
A prominent thread in recent literature focuses on the use of deep learning
and RL to enable adaptive and predictive resource allocation. Several works
in this domain target the stochastic and time-varying behavior of TN-NTNs us-
ing neural predictive models and online decision-making algorithms. Huang
et al. [63] explore power and block allocation under the rate-splitting mul-
tiple access (RSMA) protocol, using real-time channel feedback to guide
learning-based control policies. Similarly, Minani et al. [64] integrate long
short-term memory (LSTM)-based channel forecasting with deep RL schedul-
ing to improve UL fairness and delay bounds across satellite-connected UEs.
Furthering this direction, Zhang et al. [65] introduce DetSTIN, a framework
which combines deep RL with a genetic optimiser to prioritise service types
and guarantee delay-aware scheduling across TN and NTN domains.

Several contributions tackle UE association, beam scheduling, and spectral
efficiency in integrated TN-NTN through algorithmic and data-driven ap-
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proaches. Namely, Peng et al. [66] propose an analog-digital hybrid model
that leverages spatial sparsity to improve link quality and avoid beam colli-
sions. Complementing this, Zhang et al. [67] formulate a convex-concave
optimisation problem to minimise UE outage under joint beam steering and
power allocation constraints. Deng et al. [68] take a group-based approach
by clustering UEs with similar channel characteristics, applying joint precod-
ing and allocation to enhance intra-beam spectral efficiency. In the domain
of adaptive UE-to-beam mapping, Mashiko et al. [69] offer a model for ad-
justing beam assignments based on UE load and mobility, further improving
link utilisation under dynamic topologies.

Effective resource allocation across satellite, HAPS, and ground domains
demands intelligent cross-tier coordination. Therefore, several studies have
proposed mechanisms to dynamically manage backhaul routing, gateway
selection, and UE association across layers. Jia et al. [70] cast the backhaul
assignment problem as a matching game, enabling stable, utility-maximising
associations between aerial access nodes and satellites. In Dahrouj et al. [71],
a neural network scheduler adaptively assigns UEs to either TN, HAPS or
LEO tier based on predicted load patterns and mobility states. Similarly, Fu et
al. [72] integrate spectrum and computational scheduling under predictive
control to enable global fairness, while [73] further enhance these ideas by
modelling multi-operator environments and using fairness-aware admission
control for inter-domain resource governance.
Emerging use cases also necessitate coexistence with primary services and
dynamic spectrum reuse. Liu et al. [74] examine how non-orthogonal
multiple access (NOMA) enables spectrum reuse in cognitive satellite systems.
The authors propose joint subcarrier and power allocation for opportunistic
access by terrestrial UE to satellite spectrum, while safeguarding primary
NTN services.

2.4.3 Interference Management in Integrated TN-NTN

It is imperative to examine another equally critical aspect: interference
management. Indeed, as integrated TN-NTNs become more adopted and
dense-with coexisting terrestrial, aerial, and satellite nodes—interference be-
comes a fundamental barrier to reliable performance. Unlike legacy cellular
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networks, integrated TN-NTNs must address not only intra-tier interference
(e.g., between LEO satellites) but also cross-tier and cross-technology inter-
ference, which are often exacerbated by spatial overlaps, beam cross-links,
and the use of shared spectrum bands.
To address these multifaceted challenges, recent literature proposes a diverse
range of strategies, including spectrum coexistence modelling, stochastic
geometry analysis, RRM, and access protocol innovations.

A number of studies focus on quantifying and modelling coexistence sce-
narios between terrestrial and satellite systems sharing the same frequency
bands. Ayoubi et al. [75] examine interference leakage from 5G systems to
satellite receivers in shared spectrum. The paper uses stochastic geometry
and Monte Carlo simulations to establish coexistence thresholds and inform
policy decisions. Similarly, Niloy et al. [76] provide a detail model of how
terrestrial 5G deployments interfere with non-geostationary satellite services.
The authors then recommend constraints on terrestrial MBS power levels
and guard zones to preserve satellite link integrity. Kim et al. [77] analyse
scenarios where multiple LEO satellites operate in close orbital proximity
using overlapping channels. The authors find that even slight misalignment
in beam pointing or orbital spacing can cause severe degradation unless pre-
cise beam scheduling and coordination mechanisms are enforced. The study
realised by Niloy et al. [78] further advances this line of work by proposing
adaptive interference constraints that change based on environmental and
temporal context. This dynamic approach allows coexistence policies to
scale with traffic patterns, improving spectrum utilisation efficiency without
sacrificing service protection.

Beyond spectrum-level modelling, several contributions examine how astute
RRM can proactively mitigate interference in integrated TN-NTNs. In fact,
Shamsabadi et al. [79] introduce a context-aware RRM framework for
HAPS and terrestrial integration. It dynamically adjusts power and time-
frequency resource blocks using environmental feedback, thereby reducing
interference between aerial and ground MBSs. A broader architectural
perspective is presented in Rahman et al. [80]. This work proposes a
joint optimisation framework that allocates traffic between TN and NTN
segments while simultaneously tuning transmission parameters to minimise
inter-tier interference. By integrating load distribution and interference-
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aware scheduling, the system reduces cross-tier congestion and improves
overall throughput. Shamsabadi et al. [81] explore the unique challenges of
deploying TN-NTNs in dense urban environments. The paper highlights how
beam overlaps and reflection-induced interference become more significant
in cities and offers design considerations for minimising these effects through
spatial isolation and altitude planning.

Some studies focus on fundamental waveform or access-layer innovations to
reduce interference in integrated TN-NTNs. In Zhu et al . [82], the authors
demonstrate how NOMA can enable better spectral reuse while also reducing
mutual interference by exploiting power-domain multiplexing and UE clus-
tering techniques. Torrens et al. [83] shift the focus to mmWave technology
and THz-based NTN systems, where narrow beamwidths can offer interfer-
ence mitigation but are susceptible to alignment loss. The study quantifies
interference dynamics in cross-links and offers design recommendations for
beam scheduling under high mobility.

Finally, spatial scheduling and beam pattern management are increasingly
relevant for minimising interference in dense LEO constellations. Lei et al.
[84] present an optimisation framework which selects beam patterns and
schedules UEs based on demand density and spatial alignment. By doing
so, it minimises co-beam interference and improves link fairness. Kim et al.
[85] model the coexistence of satellite and TNs using stochastic geometry. It
characterises interference fields and proposes spatial coordination policies,
such as exclusion zones and directional filters, that help balance throughput
and reliability under shared access conditions. Lastly, Zhang et al. [86]
introduce cross-layer cooperation to address co-tier and cross-tier interference
explicitly, improving both energy efficiency and spectral fairness via joint
scheduling and interference-aware power distribution.

2.4.4 Mobility and Cell Switching in Integrated TN-NTN

Another pivotal area in the realisation of integrated TN-NTN systems is
the efficient handling of mobility and cell switching. The heterogeneity in
altitude, mobility profiles, and coverage footprints across terrestrial and
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non-terrestrial tiers introduces unique challenges in maintaining continuous,
efficient connectivity.

A foundational approach is explored in Li et al. [87], where a dual-objective
optimisation model addresses energy-aware mobility management by bal-
ancing the load between satellite and terrestrial nodes through adaptive cell
switching and radio access selection. The framework shows significant gains
in both throughput and energy efficiency under dynamic network conditions.
Meanwhile, the work done by Benzaghta et al. [4] demonstrates the impor-
tance of intelligent offloading of UAV traffic to satellite links. This reduces
both the outage experienced by UAVs and UL interference to ground UEs,
effectively leveraging mobility-induced diversity for improved performance.
The role of learning-based schemes in dynamic mobility environments is
exemplified in Benzaghta et al. [88]. The authors propose a data-driven
Bayesian optimisation framework to learn optimal handover decisions with
minimal signalling overhead. It proves especially effective in high-mobility
contexts, adapting to spatio-temporal variations in satellite coverage.

Finally, the comprehensive system proposed in Huang et al. [89] introduces
a hybrid deep RL-based algorithm that jointly manages task offloading, UAV
trajectory, and cloud selection. The integration of task dependency, partial
offloading, and satellite dynamics into mobility decisions reflects the grow-
ing complexity and importance of mobility-aware orchestration in TN-NTN
systems.

2.4.5 Summary and Open Challenges

The integration of TN-NTNs has been extensively studied in recent years, with
various works addressing the architectural, technological, and algorithmic
aspects required to enable seamless global connectivity. These efforts have
largely focused on the design of layered infrastructures incorporating UAVs,
HAPS, and satellites, as well as the development of resource allocation
and user association strategies to coordinate access across heterogeneous
platforms. Collectively, this body of work has laid the foundation for the
future of 6G networks. Despite these advances, several key limitations remain.
One major shortcoming in the current literature is the fact that NTNs seem
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to be considered merely as a coverage enhancement, failing to exploit the
full potential of this technology. Indeed, as seen in Sect. 2.4.4, there is a
scant amount of work examining the role that the NTNs can play in reducing
the network energy consumption. Moreover, there is limited research on the
ability of NTNs to enable load balancing of the TN as shown in Sect. 2.4.1.
Another important gap lies in the treatment of the spectrum allocation
between the terrestrial and non-terrestrial tiers. In fact, previous studies
overlook the potential of dynamic bandwidth sharing both tiers, as revealed
in Sect. 2.4.2. This is a critical limitation, as the ability to control how
bandwidth is split between the terrestrial and non-terrestrial tiers can directly
affect how the role of the NTN evolves over time. For example, satellites can
be leveraged to offload traffic during peak demand periods or take a more
prominent role when terrestrial MBSs are shut down to conserve energy.
Therefore, managing the inter-tier bandwidth split is not just a resource
allocation task—it is a central mechanism through which the network can
adjust its operating mode in response to the daily traffic fluctuation depicted
in Fig. 1.3.

In light of these limitations, this thesis proposes a comprehensive optimi-
sation framework that addresses the shortcomings of existing research and
unlocks the full potential of integrated TN-NTN systems. The proposed
framework explicitly models and controls the bandwidth sharing between
the terrestrial and non-terrestrial tiers, enabling the dynamic reallocation of
spectral resources based on real-time traffic demands. It adapts continuously
to the temporal variations in user demand and network load, allowing the
system to prioritise either load balancing or energy efficiency depending
on current conditions. This flexibility reveals the polyvalent nature of the
NTNs, which can act as a high-capacity load balancer during busy hours,
or as a resilient fallback layer when terrestrial infrastructure is temporarily
deactivated.
Through these contributions, the thesis not only fills critical gaps in the exist-
ing literature but also demonstrates how integrated TN-NTN systems can be
made more adaptive and efficient—paving the way toward truly autonomous
and resilient 6G networks.
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System Model
3

In this chapter, we will detail the system model that we will adopt for the
remainder of the manuscript, covering different subjects related to the system
model and providing a comprehensive view. As the system model naturally
evolved and became more complex with time, we will present the most
complete version of it and specify the exact system model relevant to each of
our contributions to ensure clarity.

3.1 System Parameters and Notation

Our study focuses on the DL of a cellular network which consists of M
terrestrial MBSs and N MBSs installed on a constellation of LEO regenerative
satellites, making a total of L MBSs. They provide service to K UEs located
in the area of study, where the MBSs are deployed in an hexagonal grid
layout [90]. The area of study was exclusively a rural scenario in our initial
work in Chapter 4. Afterwards, in Chapters 5 and 6, we shifted to a hybrid
layout, with an area composed of both rural and urban zones, as depicted in
Fig. 3.1. Deployment configurations for UEs and MBSs differ between rural
and urban scenarios, with urban zones generally featuring a higher density
to accommodate greater demand and infrastructure capacity. We refer to the
overall network bandwidth as W , which is distributed by the mobile network
operator across the ground and space-based networks. We suppose that the
network operates within the S band, around 2 GHz, with ground and satellite
MBSs using orthogonal, but dynamically adjustable, portions of this band.

Throughout this manuscript, we will use T and S to represent the set of terres-
trial and satellite MBSs respectively. Moreover, B = T ∪S = {1, · · · , j, · · · , L}
is the complete set of MBSs, and U = {1, · · · , i, · · · , K} defines the set of
UEs. We will also designate the Hadamard product with ⊙.

55



Fig. 3.1: Representation of the area of study.

3.2 Channel modelling

We now detail the channel model considered for satellite and terrestrial links,
who were constructed based on the 3GPP recommendations provided in [44],
[91].

3.2.1 Terrestrial Link

We adopt the height and distance notation defined in Fig. 3.2 for the remain-
der of this section when presenting the channel model, including path loss
and LoS probability.

Line-of-sight Probability

It should be noted that the LoS condition greatly impacts the channel quality
and should not be overlooked when aiming to build a realistic scenario. For
UEs being served by ground MBSs, the LoS probability is calculated based
on the model detailed in [91, Table 7.4.2-1].
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(a) Definition of d2D and d3D for outdoor
UEs.

(b) Definition of d2D−out, d2D−in, d3D−out,
and d3D−in for indoor UEs.

Fig. 3.2: Distance and height parameter definitions for outdoor and indoor UEs
[91].

For the rural scenario, the LoS probability is computed as:

PLoS =

1, if d2D−out ≤ 10 m

exp
(
−d2D−out−10

1000

)
, else.

(3.1)

For the urban scenario, the LoS probability can be derived as:

PLoS =



1, if d2D-out ≤ 18 m[
18

d2D-out
+ exp

(
−d2D-out

63

)(
1− 18

d2D-out

)]
·1 + 5

4 C′(hUE)
(
d2D-out

100

)3

exp
(
−d2D-out

150

) , else.

(3.2)

where C′(hUE) =


0, if hUE ≤ 13 m(
hUE − 13

10

)1.5

, else 13 m < hUE ≤ 23 m.

Large-scale channel gain

The large-scale channel gain between a ground-based MBS j and a UE i is
calculated as follows:

βij = ⌊GTX +GUE + PLb
ij + SFij + PLtw

ij + PLin
ij +N

(
0, σ2

p

)
⌉, (3.3)

where all components are expressed in dB, and the operator ⌊·⌉ is used to
convert dB values to linear. GTX and GUE represent the MBS and the UE
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antenna gains, respectively, PLb
ij is the basic outdoor path loss detailed in

[91, Table 7.4.1-1], and SFij is the shadow fading, which follows a normal
distribution, in the dB domain, of mean 0 and variance σ2

SF.
The last three components are related to the outdoor-to-indoor (O2I) building
penetration loss and are developed in [91]. Indeed, PLtw

ij represents the loss
in signal strength as it penetrates the external wall of the building, PLin

ij is
the inside loss, which depends on the location of the UE inside the building
and N

(
0, σ2

p

)
denotes the random component of the penetration loss, with

standard deviation σp. In order to calculate the basic path loss component
PLb, we need to introduce the breakpoint distances dPB and d′

PB:

dBP = 4hBShUEfc

c
d′

BP = 2πhBShUEfc

c
. (3.4)

The breakpoint distances dBP and d′
BP represent the critical distance beyond

which the path loss model changes its formulation. It is computed as a
function of the effective antenna heights at the MBS hBS and the UE hUE,
the carrier frequency fc in hertz, and the speed of light in free space c =
3.0× 108 m/s. This distance is essential in distinguishing between the near-
field and far-field propagation behaviour.
Then, the basic path loss component PLb (in LoS) in the rural scenario is
computed as:

PLRMa-LoS =

PL1, if 10 m ≤ d2D ≤ dBP

PL2, else dBP < d2D ≤ 10 km
(3.5)

where:

PL1 = 20 log10 (40πd3Dfc/3) + min
(
0.03h1.72, 10

)
log10(d3D)

−min
(
0.044h1.72, 14.77

)
+ 0.002 log10(h)d3D,

and
PL2 = PL1(dBP) + 40 log10(d3D/dBP).

For the non-LoS case, we compute the path loss as:

PLRMa-NLOS = max (PLRMa-LOS,PL′
RMa-NLOS) , (3.6)
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for 10 m ≤ d2D ≤ 5 km, and where:

PL′
RMa-NLOS =161.04− 7.1 log10(Ws) + 7.5 log10(h) (3.7)

−

24.37− 3.7
(
h

hBS

)2
 log10(hBS)

+ (43.42− 3.11 log10(hBS)) (log10(d3D)− 3)
+ 20 log10(fc)−

(
3.2 (log10(1.175hUE))2 − 4.97

)
. (3.8)

The urban scenario path loss formula for both LoS and non-LoS is as fol-
lows:

PLUMa-LoS =

PL1, 10 m ≤ d2D ≤ d′
BP

PL2, d′
BP < d2D ≤ 5 km

(3.9)

where:
PL1 = 28.0 + 22 log10(d3D) + 20 log10(fc), (3.10)

and

PL2 = 28.0 + 40 log10(d3D) + 20 log10(fc)− 9 log10

(
(d′

BP)2 + (hBS − hUE)2
)
.

(3.11)
The parameters used in the path loss model follow standardised units. All
distances, including d2D and d3D, are expressed in meters (m), while the
carrier frequency fc is given in gigahertz (GHz). In the rural scenario, the
MBS height is set to hBS = 35 m and the UE height to hUE = 1.5 m, whereas
for the urban scenario, we consider hBS = 25 m, and hUE ranges from 1.5 m
to 22.5 m.
The average street width is taken as Ws = 20 m, and the average building
height as h = 5 m.
Note that in the rural scenario, these parameters are required to fall within the
following applicability ranges to ensure model validity: 10 m ≤ hBS ≤ 150 m,
1 m ≤ hUE ≤ 10 m, 5 m ≤ h ≤ 50 m, and 5 m ≤ Ws ≤ 50 m.
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3.2.2 Satellite Link

Elevation angle

The elevation angle is a key parameter related to the LEO satellite position,
as it greatly affects the channel quality for terrestrial UEs by influencing
both the LoS probability and the path loss, as we will see in the subsequent
sections. The elevation angle is the angle between the horizontal plane (the
plane parallel to the surface of the Earth at the UE location) and the line of
sight to the satellite, denoted as α in Fig. 3.3.

Fig. 3.3: Representation of satellite elevation angle [44].

In the scope of our work, given the cartesian coordinates of a satellite s

(xs, ys, zs) and a UE u (xu, yu, zu), we can compute the elevation angle θu

as:

θu = arcsin
 zs − zu√

(xs − xu)2 + (ys − yu)2 + (zs − zu)2

 . (3.12)

Note that the mobility of the satellite was only considered in Chapters 5 and
6, while in Chapter 4 we made the assumption that the elevation angle was
constant.

To embrace the mobility of the LEO satellites, we assessed network perfor-
mance at three distinct positions (P1, P2, P3), as illustrated in Fig. 3.4:
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P1) We make the first performance assessment when the satellite is located
at the nadir point of the beam adjacent to our area of study, which is
located at a horizontal distance of 50 kms (as well as a total distance
of approximately 603 kms) from the center of the area of study, with
an elevation angle (for a UE located at the center of the central beam)
approximately equal to 84◦.

P2) The second assessment is made when the satellite is at the nadir point,
exactly above the center of our area of study.

P3) Similarly to the first measurement, we make the assessment when the
satellite is 50 kms away from the center of the area of study, at the
nadir point of the next contiguous beam.

Fig. 3.4: Representation of the satellite positions considered for the area of study
(in red).

Averaging the values obtained from these three assessments, we can get an
overview of the satellite channel quality.
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Line-of-sight Probability

The probability of LoS for UEs served by satellite MBS is determined using
the model outlined in [44, Table 6.6.1-1] and reproduced in Table 3.1. Based

Tab. 3.1: Line-of-Sight Probability.

Elevation angle Urban Scenario Rural Scenario
10° 24.6% 78.2%
20° 38.6% 86.9%
30° 49.3% 91.9%
40° 61.3% 92.9%
50° 72.6% 93.5%
60° 80.5% 94.0%
70° 91.9% 94.9%
80° 96.8% 95.2%
90° 99.2% 99.8%

on these values, we can see that the elevation angle has a large influence on
the LoS probability.

Large-scale channel gain

Similarly, if a satellite MBS j is serving a UE i, we can compute the large-scale
channel gain (detailed in [44]) as:

βij =
⌊
GTX +GUE + PLb

ij + SFij + CL + PLs
ij + PLe

ij

⌉
. (3.13)

In Equation (3.13), CL accounts for clutter loss, which is the attenuation
arising from obstacles such as buildings and vegetation surrounding the UE.
The clutter loss and shadow fading components are provided in Table 3.2 for
urban and rural scenarios respectively.
PLb

ij represents the free-space path loss:

PLb = 32.45 + 20 log10(fc) + 20 log10(d), (3.14)

where the distance d is in meters and fc is in GHz.
PLs

ij captures the scintillation loss, reflecting the quick changes in signal
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amplitude and phase due to ionospheric disturbances. Finally, PLe
ij refers

to the building entry loss, an attenuation that occurs for all UEs located
indoors.

Tab. 3.2: Shadow fading and clutter loss for urban and rural scenarios (S-band)
[44, Section 6.6.2].

Elevation Angle Urban scenario Rural scenario
LoS NLoS LoS NLoS

σSF (dB) σSF (dB) CL (dB) σSF (dB) σSF (dB) CL (dB)
10◦ 4 6 34.3 1.79 8.93 19.52
20◦ 4 6 30.9 1.14 9.08 18.17
30◦ 4 6 29.0 1.14 8.78 18.42
40◦ 4 6 27.7 0.92 10.25 18.28
50◦ 4 6 26.8 1.42 10.56 18.63
60◦ 4 6 26.2 1.56 10.74 17.68
70◦ 4 6 25.8 0.85 10.17 16.50
80◦ 4 6 25.5 0.72 11.52 16.30
90◦ 4 6 25.5 0.72 11.52 16.30

3.3 Signal-to-interference-plus-noise ratio

Considering that each UE is either associated to a terrestrial or satellite MBS,
and there is no interference between the two tiers, as they are allocated
different bandwidths orthogonally, we can calculate the large-scale SINR for
each UE i and MBS j as:

γij = βijpj∑
j′∈Ij

βij′pj′ + σ2 . (3.15)

In (3.15), pj denotes the transmit power allocated per resource element (RE)
at MBS j, Ij indicates the set of MBSs interfering with the serving MBS j

and σ2 represents the noise power per RE.

Note that the numerator in Equation (3.15) is actually the perceived RSRP
for UE i.
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3.4 Data-rate

In the early stages of our work (Chapter 4 and Chapter 5, we assumed a full-
buffer traffic model, where each UE continuously required data and utilised
all available resources. Under this assumption, the total resources of a given
BS were evenly shared among its associated UEs, leading to a simplified
resource distribution model that ensured fairness but did not account for
individual variations in user demand. However, for the work in Chapter 6, we
considered a more realistic scenario where each UE had a specific data-rate
demand, modelled as a random variable following an exponential distribution
of parameter λU. This approach better reflects diverse UE requirements and
introduces variability in resource allocation.

3.4.1 Full-buffer scenario

As detailed above, assuming that MBS j equally shares its total available
bandwidth Wj between the kj UEs it is serving, we are able to compute the
mean throughput for UE i connected to MBS j as follows:

Rij = Wj

kj

log2(1 + γij). (3.16)

Essentially, we multiply the bandwidth available to the UE by the spectral
efficiency based on the Shannon capacity formula.

3.4.2 User-Specific scenario

In this scenario which was used exclusively in Chapter 6, we considered a
physical resource block (PRB) allocation method which took into account
the demanded data-rate for each UE. Thereby, the mean throughput for UE i
served by MBS j is calculated as:

Rij = Bij log2(1 + γij), (3.17)
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where Bij denotes the number of PRBs assigned to UE i by the serving MBS
j.

3.5 Physical Resource Block Allocation

As stated in Section 3.4, we did not take PRB allocation into account in the
system model of our research in Chapters 4 and 5. However, in Chapter
6, we incorporated PRB allocation by considering the demanded data-rate,
ensuring a more realistic and practical assessment of resource distribution.

With that in mind, supposing that UE i has a minimum data-rate demand
of ρi bits/second, the number of PRBs assigned to the UE by the associated
MBS j is computed as:

Bij =
⌈

ρi

∆ log2 (1 + γij)

⌉
. (3.18)

In Equation (3.18), the denominator is the product between the spectral
efficiency and ∆, which represents the total bandwidth of a single PRB in
5G NR. Finally, ⌈·⌉ denotes the ceiling function which rounds up the input
number to the nearest integer.

Then, by denoting NPRB
j the total number of PRBs available at MBS j, we

can compute its load as follows:

νj = 1
NPRB

j

∑
i∈U

Bij. (3.19)

3.6 Energy Consumption model

While [92] provided one of the most widely used models for 4G MBS energy
consumption, it is not well suited for 5G MBSs integrating massive MIMO
technology. Consequently, we chose the more recent model proposed in [93]
which accounts for massive MIMO and carrier shutdown, and thus fits better
to our system design. Note that, in the context of our work, shutdown and
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sleep mode are considered equivalent, as both refer to states in which a
MBS significantly reduces or halts its operations to conserve energy. More
generally, it only takes 3 seconds to shutdown or wake up a MBS, while the
shutdown duration may range from tens of seconds to minutes or even hours
[94].

The energy consumption of a MBS can be modelled as the sum of multiple
components. We denote as the baseline energy consumption, the energy used
by the components that are kept active in a shutdown MBS. Then, we denote
as the static component, the energy consumption that occurs regardless of
the level of the MBS traffic load. The static energy consumption represents
the minimum power required to keep essential systems operational and
maintain standby readiness. Finally, the dynamic component refers to the
load-dependent energy consumption that fluctuates depending on the MBS
traffic load. Typically, the dynamic component increases whenever a MBS
increases its transmit power or uses additional transmission resources, e.g.,
more PRBs For a MBS j, this model can be formulated as:

Qj(pj) = P0 + pj + ψj||pj||0, (3.20)

where P0 represents the baseline energy consumption, ψj represents the
static component and pj accounts for the dynamic consumption of the MBS.
Also, || · ||0 is a binary-valued function equal to 1 if the transmit power pj is
greater than 0.

Regarding the LEO satellite, the total energy consumption can be expressed
as the sum of the inherent energy consumption of the LEO satellite, which
accounts for altitude adjustments, GPS navigation, and routing operations,
plus the energy consumption of the MBS installed on it, as detailed in (3.20).
We suppose that the satellites in the constellation are solar-powered and well-
dimensioned. Thus, they can handle both the power requirements needed for
an operational satellite and manage the telecom equipment added as payload,
based on the growing adoption of real-world projects such as Starlink or
Kuiper.
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Integrated TN-NTN in
High Traffic: a Load
Balancing Option

4

4.1 Introduction

As outlined in Chapter 1, future integrated TN-NTN architectures should be
able to adapt to varying traffic conditions dynamically. In particular, this
adaptability implies an emphasis on load balancing during periods of high
traffic, ensuring efficient utilisation of network resources. However, there
is a scarce amount of research done on the subject, especially with LEO
satellites. The remainder of this chapter is organised as follows. Firstly,
we detail our contribution to this field and provide a quick overview of the
related works on load balancing methods used in integrated TN-NTN systems
and legacy systems. Then, we formally define the problem by describing
the variables that we will optimise, the utility function and the performance
metrics of interest. Following this, we introduce the framework we developed
to optimise this utility function and enable the derivation of optimal resource
allocation strategies in a high-traffic scenario. Subsequently, we present and
analyse the results of our simulations, demonstrating the effectiveness of the
proposed solution. Finally, we conclude the chapter with a summary of key
insights.

4.2 Contribution

In this chapter, we propose a new resource management framework to opti-
mise the UE performance by properly controlling the spectrum allocation, the

67



UE association as well as the transmit power of terrestrial and non-terrestrial
MBSs. Our study reveals that, in rural scenarios, NTNs, combined with the
proposed radio resource management framework, reduce the number of UEs
that are out of coverage in the TN, highlighting the important role of NTNs
in providing ubiquitous connectivity, and greatly improve the overall capacity
of the network.

This contribution was published in 2023 IEEE International Conference on
Communications Workshops (ICC Workshops): H. Alam, A. De Domenico,
D. López-Pérez and F. Kaltenberger, "Throughput and Coverage Trade-Off in Inte-
grated Terrestrial and Non-Terrestrial Networks: An Optimization Framework,"
2023, pp. 1553-1558, Rome, Italy.

4.3 Related Works

Load Balancing in TNs is a topic that has also been well studied over the
past few years, but in the integrated TN-NTN scenario, the contributions are
limited. Typical methods used for load balancing involve the optimisation
of a utility function through a pricing-based association strategy [95], [96].
In this line, the authors in [4] have examined an integrated TN-NTN set
up in an urban setting, and have shown that diverting some of the traffic
to LEO satellites improves the overall signal quality and decreases outages
accordingly. The authors of [81] and [56] have exploited the qualities of
HAPSs to improve the QoS of ground UEs. [81] has proposed a fairness
optimisation approach for integrated TN-NTNs, using MIMO beamforming to
improve spectral efficiency and manage interference, demonstrating superior
performance over standalone TNs. In contrast, [56] has explored multi-
connectivity offloading strategies using UAVs and HAPS in NTNs to reduce
task computation latency for time-sensitive applications.
In [62] and [86], the authors have investigated the uplink performance of an
integrated TN-NTN, leveraging LEO satellites to provide backhaul support
to terrestrial MBSs. Both studies aimed to maximise the total uplink data
rate, while adhering to backhaul capacity limits. To do this, [86] has taken
into account minimum rate requirements, and has adjusted the bandwidth
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division between fronthaul and backhaul links, while [62] has enhanced UE
association and power management using matching algorithms.

4.4 Problem Formulation

Since we want to ensure a proportionally fair resource allocation, our goal
is to optimise the SLT across all UEs in the network, similarly to [95]. To
achieve this goal, we want to find the optimal bandwidth split between the
non-terrestrial and terrestrial tiers of the network. Taking this into account,
we introduce ε as the share of the bandwidth allocated to the LEO satellites.
Thus, the bandwidth Wj of the MBS j can be computed as Wε if it is a
satellite MBS or as W (1 − ε) if it is a terrestrial MBS. Let us also define a
binary variable xij which is equal to 1 if UE i is associated to the MBS j, and 0
otherwise. Our aim is then to optimise the UE-MBS association, the transmit
power allocation at each MBS as well as the bandwidth allocation to each
tier to maximise the SLT of the network. This can be written as follows:

max
X, p, k, ε

∑
i∈U

∑
j∈S

xij log (εRij) +
∑
j∈T

xij log ((1− ε)Rij) (4.1a)

s.t. xij ∈ {0, 1}, i ∈ U , j ∈ B, (4.1b)∑
j

xij = 1, ∀i ∈ U , (4.1c)

∑
i

xij = kj, ∀j ∈ B, (4.1d)

∑
j

kj = K, (4.1e)

pj ≤ pjmax, ∀j ∈ B, (4.1f)∑
j

xijpjβij ≥ RSRPmin, ∀i ∈ U , (4.1g)

ε ∈ [0, 1] , (4.1h)

where p = [p1, . . . , pL]T is the vector representing the transmit power at
each MBS, k = [k1, . . . , kL]T is the vector which shows the number of UEs
associated to each MBS, and X = [xij]i∈U ,j∈B is the binary association matrix.
The artificial inclusion of vector k will later allow us to determine whether
a MBS is overloaded or not. Constraint (4.1c) ensures that each UE is
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associated with a unique MBS, while constraint (4.1e) indicates that all UEs
in the network must be served. Furthermore, the maximum transmit power
allocated per RE in each MBS j is restricted by pjmax in constraint (4.1f).
Finally, constraint (4.1g) ensures the coverage of the entire network by
imposing that the minimum RSRP for each UE is greater than a set threshold
RSRPmin.

4.5 Utility Optimisation

In this section, we study the solution to our optimisation problem (4.1a).
Due to the nature of X, this is a mixed discrete optimisation problem, hence
complex to solve. To simplify the problem, we will first optimise the UE-MBS
association and the bandwidth allocation considering fixed transmit power,
similarly to [96]. Then, we will optimise the transmit power level considering
the first two parameters fixed.

4.5.1 Utility optimisation under fixed transmit power

Since the transmit power is fixed, we consider (4.1a) without constraint
(4.1f). We can solve this problem using the Lagrange multipliers, as it
has been proposed in [95], [96]. We introduce λ = [λ1, . . . , λK ]T , µ =
[µ1, . . . , µL]T , α, and ρ as the dual variables for constraints (4.1g),(4.1d),(4.1e)
and (4.1h), respectively.
The Lagrangian function is then:

L (X, k, ε, λ, µ, α, ρ) = ρ (1− ε)− α
∑

j∈B
kj −K

+
∑
j∈B

µj

(
kj −

∑
i

xij

)

+
∑

i

(∑
j∈S

xij log (εRij) +
∑
j∈T

xij log ((1− ε)Rij)
)

+
∑

i

λi

∑
j∈B

xijpjβij − RSRPmin

 .
(4.2)
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After this, we are able to compute the derivative of the Lagrangian with
respect to all the variables that we want to optimise, i.e. xij, kj and ε, as

∂L
∂xij

=

log (εRij) + λipjβij − µj, if j ∈ S,

log ((1− ε)Rij) + λipjβij − µj, otherwise.
(4.3)

The choice of the MBS association is made by finding which one maximises
the derivative. Therefore, we can derive the following expression:

x∗
ij =


1, if j = arg max

j′
∂L

∂xij′
,

0, otherwise.
(4.4)

This association criterion is actually quite intuitive. Indeed, as we will see
later, the dual variable µj represents the cost of association to MBS j. Each
UE is thus associated to the MBS which maximises the difference between
the data rate and the cost of association.

For the vector k, we derive its optimal value by computing the partial deriva-
tive of the Lagrangian, and finding its root:

k∗
j = eµj−α−1. (4.5)

Finally, we isolate all the terms of the Lagrangian function related to ε, and
compute the corresponding partial derivative, which yields:

∂L
∂ε

= ∂

∂ε

∑
i

∑
j∈S

xij log(ε) +
∑
j∈T

xij log(1− ε)
− ερ


= 1
ε

∑
i

∑
j∈S

xij

− 1
1− ε

∑
i

∑
j∈T

xij

− ρ
= 1
ε
KS −

1
1− ε (K −KS)− ρ,

(4.6)

where KS represents the number of UEs associated to a satellite in the
network. Equating (4.6) to 0, we obtain:
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ρε2 − (K + ρ) ε+KS = 0, (4.7)

which allows us to find the following optimal value:

ε∗ =
K + ρ−

√
(K + ρ)2 − 4ρKS

2ρ . (4.8)

From Eq. (4.8), we can observe that the proportion of bandwidth allocated
to the non-terrestrial tier is directly proportional to the number of UEs
associated with an LEO satellite. In fact, if we gradually increase the value of
KS from 0 to K, the value of ε∗ slowly shifts from 0 to 1.
We thereby introduce the Lagrangian dual function, which can be written
as:

D (λ, µ, α, ρ) = max
X,k,ε
L (X, k, ε, λ, µ, α, ρ) . (4.9)

Accordingly, the Lagrangian problem (4.1a) can then be rewritten as:

min
µ,λ,α,ρ

D (λ, µ, α, ρ) . (4.10)

By injecting the expressions obtained in (4.4), (4.5), and (4.8), we get:

D (λ, µ, α, ρ) = L (X∗, k∗, ε∗, λ, µ, α, ρ)

=
∑

i

(∑
j∈S

x∗
ij log (ε∗Rij) +

∑
j∈T

x∗
ij log ((1− ε∗)Rij)

)
+ρ (1− ε∗)

+
∑

i

λi

∑
j

x∗
ijpjβij − RSRPmin

+
∑

j

µj

(
k∗

j −
∑

i

x∗
ij

)

− α

∑
j

k∗
j −K

 .
(4.11)
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In order to minimise this function, we use the subgradient method to update
the Lagrange multipliers, as already suggested in [95], [96], as follows:

µj (t+ 1) = µj (t)− δ1(t)
(
k∗

j −
∑

i

x∗
ij

)
, (4.12)

λi (t+ 1) = λi (t)− δ2(t)
∑

j

x∗
ijpjβij − RSRPmin

 , (4.13)

α (t+ 1) = α (t)− δ3(t)
K −∑

j

k∗
j

 , (4.14)

ρ (t+ 1) = ρ (t) + δ4(t)ε∗, (4.15)

where δ1(t), δ2(t), δ3(t), and δ4(t) represent the step-sizes used for each
dual variable. Since the dual problem is always convex, the usage of the
subgradient method with decreasing step sizes guarantees convergence to
the optimal solution of this problem [97].
Eq. 4.12 explains how the proposed framework balances the load among the
MBSs. Indeed, as stated previously, µj is the cost of association to MBS j.
This price will only rise if the right component in the equation is negative,
meaning that the number of UEs associated to the MBS is excessively large.
This way, a MBS with fewer UEs has a lower cost and is more attractive,
whereas MBSs with higher loads become less favourable.

4.5.2 Transmit power optimisation under fixed association

Once the UE-MBS association and bandwidth allocation problem has been
solved, we fix X and ε to further optimise the transmit power at each MBS
and maximise the network SLT. For ease of reading, we will denote by
f (p) the SLT of the network (4.1a) to indicate that it is a function of the
transmit power vector p. The transmit power optimisation problem can then
be expressed as:
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max
p

f (p) (4.16a)

s.t.
∑

j

xijpjβij ≥ RSRPmin, ∀i ∈ U , (4.16b)

pj ≤ pjmax, ∀j ∈ B. (4.16c)

Since the objective function is concave w.r.t. p, we can try to approximate the
zero of the gradient using the Newton-Raphson iterative method to maximise
the utility function, as demonstrated in [96]. As suggested in [98], the
computational complexity of inverting the Hessian matrix can be reduced by
using only its diagonal entries, rather than the full matrix. To this end, the
first and second order derivatives are computed as follows:

∂f(p)
∂pj

=
∑

i

γij

rij (1 + γij)
xij

pj

−
∑

i

∑
j′ ̸=j

βijγ
2
ij′

βij′rij′ (1 + γij′)
xij′

pj′
, (4.17)

and

∂2f(p)
∂p2

j

=
∑

i

∑
j′ ̸=j

β2
ijγ

3
ij′ (2rij′ + γij′ (rij′ − 1))
β2

ij′r2
ij′ (1 + γij′)2

xij′

p2
j′

−
∑

i

(
1
r2

ij

+ 1
rij

)
γ2

ij

(1 + γij)2
xij

p2
j

,

(4.18)

where
rij = log (1 + γij) . (4.19)

The Newton step is then:

∆pj = ∂f(p)
∂pj

/∣∣∣∣∣∂2f(p)
∂p2

j

∣∣∣∣∣ . (4.20)

Once we update the transmit power vector using (4.20), it is necessary to
project the value in a region where constraints (4.16b) and (4.16c) are
respected. Naturally, the upper bound of our feasible region is the maximum
transmit power for each MBS. For the lower bound, we utilise the minimal
coverage constraint, i.e. we know that for a MBS j, all UEs associated to
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it should be receiving a signal power greater than RSRPmin. This can be
translated as:

∀i ∈ Uj, pj ≥ RSRPmin

βij

, (4.21)

with Uj being the set of UEs associated to MBS j. We are therefore able to
establish the lower bound of the feasibility region for each MBS j as:

τj = max
i∈Uj

(
RSRPmin

βij

)
. (4.22)

Finally, the transmit power update done at the end of step t is written as
such:

p
(t+1)
j =

[
p

(t)
j + δ5(t)∆pj

]pj max

τj

, (4.23)

with δ5(t) being a step-size factor.

4.6 Simulation Results & Analysis

In this section, we assess the effectiveness of our proposed optimisation
framework for UE association, bandwidth allocation, and transmit power
control in an integrated TN-NTN. As previously mentioned in Chapter 3,
we analyse a rural scenario where the terrestrial MBSs are deployed in an
hexagonal grid layout [90].
It is important to note that, in this particular contribution, we do not account
for satellite mobility as discussed in Sect. 3.2.2. Instead, we assume a
constant elevation angle throughout the analysis. Also, we do not factor
in the UE antenna gain GUE nor building entry losses when computing the
channel models outlined in 3.3 and 3.13.

As for the UE deployment, we consider an inhomogeneous deployment. In-
deed, we first randomly select 30% of the terrestrial MBSs, and for these
MBSs, we deploy the UEs in a "hot-spot" manner, to possibly create overload
in the related cells and allow our framework to demonstrate its effective-
ness.
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Parameter Value

Total Bandwidth W 40 MHz
Carrier frequency fc 2 GHz
Subcarrier Spacing 15 kHz
UE density 2 UE/km2

Inter-Site Distance 1732 m
Number of Macro BSs 1067
Terrestrial Max Tx Power per RE pmax [99] 17.7 dBm
Satellite Max Tx Power per RE pmax [40] 15.8 dBm
Antenna gain (Terrestrial) GTX [100] 14 dBi
Antenna gain (Satellite) GTX [40] 30 dBi
Shadowing Loss (Terrestrial) SF [91] 4− 8 dB
Shadowing Loss (Satellite) SF [44] 0− 12 dB
Line-of-Sight Probability (Satellite / Terrestrial) Provided in [44] / [91]
White Noise Power Density [100] −174 dBm/Hz
Coverage threshold RSRPmin −120 dBm

Tab. 4.1: Simulation parameters.

Half of the UEs are deployed among those hot-spots, and the other half are
uniformly spread across the entire area. The most important simulation
parameters, set according to [40], [44], [91], [99]–[101], are listed in Table
4.1.

Benchmarks

To compare and assess the performance of both developed algorithms, we
introduce the two following benchmarks: The 3GPP-TN configuration includes
only a TN operating on a bandwidth of 10 MHz. In contrast, the 3GPP-NTN
configuration includes a satellite network overlaying the terrestrial one. In
this case, the bandwidth is divided according to the 3GPP suggestions in
[40], with 30 MHz assigned to the satellite tier and 10 MHz to the terrestrial
one. In both configurations, the UEs associate to the MBSs based on the
max-RSRP rule, with no DL transmit power optimisation.
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4.6.1 Framework convergence analysis

In this section, we analyse the convergence of the proposed optimisation
framework. Specifically, Figure 4.1 shows the iterative evolution of 1) the
network SLT, along with 2) the optimal bandwidth split (ε) and 3) the actual
fraction of UEs associated to the satellite in the network, i.e. k0∑

j

kj
.
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Fig. 4.1: Evolution of the bandwidth allocation proportion and the utility function
of our framework.

When initialising the algorithm presented in Sec. 4.5, the bandwidth split,
ε is set to 0.5, and the fraction of UEs associated to the LEO satellite is
0.15. Note that the initial UE-MBS association follows the max-RSRP rule.
During the iterative process, we can see that the SLT continuously improves,
while the ratio of UEs associated to the LEO satellite and the fraction of
bandwidth allocated to it decreases. Eventually, the algorithm converges
after 20 iterations, with an improved SLT and 11% of the bandwidth being
allocated to the LEO satellite and approximately 6% of the UEs associated to it.
Note that this bandwidth split is different than the one recommended in 3GPP
specifications [40]. Considering that all MBSs were initially transmitting at
their maximum power, we observe an 82% decrease of the average transmit
power. This is explained by the fact that our framework reduces the transmit
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power of the MBSs that have no UEs and thus no coverage constraint (4.1g)
to uphold.

In the following, we denote by εopt the optimal bandwidth split derived by
the proposed framework.

4.6.2 Network coverage analysis

In this section, we study the benefits of integrating a NTN to a TN in terms
of coverage, i.e. the capability to provide wireless services. Figure 4.2 shows
the cumulative distribution function (CDF) of the RSRP perceived at each
UE from the serving MBS in the following four scenarios:

1. The 3GPP-TN setting.

2. A scenario where all the bandwidth is allocated to the terrestrial net-
work (ε = 0) and the UE association and power control is done through
our framework.

3. The 3GPP-NTN setting.

4. The scenario where bandwidth split, association, and power are allo-
cated through the proposed framework (εopt).

In the first two scenarios, we observe a similar performance in terms of
coverage since all the UEs are served by MBSs, which leads to 7% of the UEs
to be out of coverage since their respective RSRPs are below the threshold
pmin. In contrast, when integrating the NTN in the last two scenarios, the
proportion of UEs out of coverage drastically drops down to around 0.4 %.
Indeed, the satellite can reach UEs located at the cell edge and provide them
with a signal of much better quality than that provided by the strongest MBSs.

4.6.3 UE rate analysis

In this section, we compare the data rate performance achieved by our
framework with the one of the 3GPP-TN and 3GPP-NTN settings. Also, we
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Fig. 4.2: CDFs of the UE RSRP, with (εopt, 3GPP-NTN) and without (ε = 0, 3GPP-TN)
an active satellite.

consider the case where only the user association and the power control are
optimised and the bandwidth split is fixed, i.e., ε ∈ {0, 0.25, 0.5, 0.75}. Figure
4.3 shows the CDFs of the data rate achieved when considering the various
deployment and resource allocation scenarios.

Also, Table 4.2 presents the 5-th percentile, the mean, the median, and the
95-th percentile of the different data rate distributions resulting from the
most relevant of the compared solutions.

ε = 0 εopt ε = 0.75 3GPP-NTN 3GPP

5-th Percentile (kbps) 0 81 614 558 0
Mean (Mbps) 44.4 38.3 12.0 11.7 11.1
Median (Mbps) 28.3 27.1 7.7 7.3 7.1
95-th Percentile (Mbps) 136.6 112.7 37.0 36.4 34.1

Tab. 4.2: Data-rate analysis.
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We first notice that higher data rates, in average, are achieved when we
allocate a large split of the bandwidth to the terrestrial network. This is
because of the large spectrum reuse in the area under investigation.

However, it is important to note that the tail of the rate distribution greatly
suffers if we prioritise the terrestrial network when controlling the spectrum
split. With the 3GPP-TN setting and when all the bandwidth is allocated
to macro BSs (ε = 0), around 7% of the UEs are out of coverage, as we
observed in the previous section, and their rate is null. When the NTN
bandwidth is increased, the coverage holes of the network are reduced, and
the rate experienced by the cell edge UEs increases. This can be observed
in the zoom of Fig. 4.3. Overall, we can highlight the underlying trade-off
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Fig. 4.3: CDFs of UE data rates for various bandwidth allocation settings.

between cell-edge (5-th percentile UEs) and cell-center (mean/median and
95-th percentile UEs) throughput. If the operator gives a small share of the
bandwidth to the satellite, it may achieve large cell-center UE data rates at
the expense of coverage holes and degraded performance at the cell edge. In
contrast, if the operator decides to allocate a large share of the bandwidth
to the satellite, the cell edge performance greatly improves, at the expense
of the cell-center UE data rate. For example, a UE which would be out of
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coverage when ε = 0 or in the 3GPP-TN scenario experiences a data rate of
roughly 81 kbps if, using the proposed framework, we optimally set ε to 0.11.
With our proposal, the mean UE rate decreases by 14% with respect to the
setting of ε = 0 but results in a gain of more than 200 % with respect to the
3GPP-TN and the 3GPP-NTN settings. Therefore, our framework is able to find
the best solution to this trade-off by improving the coverage condition of the
UEs that suffer from large path losses whilst providing large data rates to
cell-center UEs.

4.7 Conclusion & Perspectives

In this chapter, we have proposed a framework to control the UE associa-
tion, transmission power, and bandwidth allocation between terrestrial and
satellite tiers. Our proposal is able to distribute the load, while mitigat-
ing the number of coverage holes and maximising the SLT in the network.
Specifically, we demonstrated that incorporating a LEO satellite atop the TN
in rural areas significantly reduces the proportion of out-of-coverage UEs.
Additionally, by examining the scenario where both tiers share the band-
width, we highlighted the trade-off between minimising coverage holes and
maximising network SLT, and struck the optimal balance point. Finally, our
results indicate that the UE-MBS association resulting from our framework
greatly improves the performance of the network in terms of mean and 95-th
percentile of throughput compared to the max-RSRP rule.
However, this work exclusively addressed the high-traffic scenario, where
the demand is at its peak. In the next chapter, we will study the versatility of
an integrated TN-NTN and how it can enhance overall network performance
given any traffic load.
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BLASTER: A Tool for
Traffic-Aware Network
Optimisation

5

5.1 Introduction

After developing a framework which can efficiently improve the network
performance in high traffic in the previous chapter, we aim to extend our
work to varying traffic loads, evaluating the adaptability and effectiveness
of integrated TN-NTNs in dynamic network environments. Specifically, with
varying traffic loads come distinct demands that need to be addressed: in
high-traffic conditions, the focus shifts to efficiently balancing the load across
the network, while in low-traffic scenarios, the priority shifts towards reduc-
ing the energy consumption of the network.
The rest of this chapter is structured as follows: First, we present a brief
review of the related works on MBS activation methods applied in integrated
TN-NTN systems as well as incumbent TNs. Then, we formulate the optimisa-
tion problem in mathematical terms, with a clear presentation of the relevant
parameters and the utility function to be optimised. Subsequently, we present
the solutions we developed for this problem and assess their performance by
comparing them to the benchmarks defined previously. Finally, we conclude
the chapter by providing a summary highlighting the main findings of the
chapter.
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5.2 Contribution

This chapter presents a novel radio resource management algorithm, BLASTER
(Bandwidth SpLit, User ASsociation, and PowEr ContRol), which integrates
bandwidth allocation, UE association, power control, and MBS activation
within an integrated TN-NTN. This algorithm aims to optimise network
resource allocation fairness and energy consumption dynamically, demon-
strating new opportunities in deploying satellite networks in legacy cellular
systems. Also, by exploiting the special properties of the formulated optimi-
sation problem, we design a practical heuristic with an intuitive behaviour
to solve the problem with limited complexity, achieving results that high-
light the trade-off between enhancing network SLT and reducing energy
consumption.

The contents of this chapter have been published or submitted in the follow-
ing venues:

• Published in 2024 IEEE 35th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC): H. Alam, A.
De Domenico, F. Kaltenberger and D. López-Pérez, "On the Role of Non-
Terrestrial Networks for Boosting Terrestrial Network Performance in
Dynamic Traffic Scenarios," 2024, pp. 1-7, Valencia, Spain.

• Published in Elsevier Academic Press 2026: M. Schellmann, M.A
Jamshed, G. Karetsos, H. Alam, A. De Domenico, F.R. Davoli, S. Adhatarao,
Y. Chen and A. Kaushik, "Non-Terrestrial Networks, Chapter 12: NTN
standardization in 5G NR and the path beyond," 2026, pp. 285-312,
ISBN: 9780443265266.

• Submitted to IEEE Transactions on Vehicular Technology: H. Alam, A.
De Domenico, D. López-Pérez and F. Kaltenberger, "Optimizing Integrated
Terrestrial and Non-Terrestrial Networks Performance with Traffic-Aware
Resource Management".
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5.3 Related Works

MBSs activation is a well-studied topic in TNs, although research in inte-
grated TN-NTNs remains limited but is slowly gaining momentum. The
authors of [102] have introduced an energy-efficient algorithm that strate-
gically shuts down MBSs one at a time, ensuring they do not overburden
neighbouring MBSs. To preserve the QoS, [103] has examined the effects of
traffic offloading in heterogeneous networks (HetNets) on energy use, and
proposed a centralised Q-learning method to strike a balance between energy
saving and QoS satisfaction. In addition, the authors of [104] have devised
an algorithm that enables UEs to associate with multiple MBSs across differ-
ent frequency bands, simultaneously optimising the transmit power of the
MBSs to facilitate their shutdown during periods of low traffic. The authors
of [105] have also tackled traffic uncertainties in ultra-dense networks by
optimising both MBS activation and UE association strategies, employing
chance constraint programming based on statistical traffic data to effectively
balance traffic loads and reduce interference.
Recent studies such as [106]–[108] have explored the integration of HAPS to
enhance network efficiency in a more dynamic and sustainable manner. In-
deed, [106] has investigated how HAPSs can complement traditional network
densification to manage dynamic traffic in urban areas, demonstrating better
energy efficiency and sustainability by using HAPSs to handle peak demand
periods. In [107], the authors have tackled the traffic load estimation issue
in HAPS-assisted networks, proposing Q-learning algorithms to optimise
cell-switching strategies, improving energy efficiency and making advanced
cell-switching methods feasible for vertical heterogeneous networks. The
authors of [108] have investigated the challenges of MBSs activation in an
integrated TN-NTN using HAPS, focusing on offloading traffic from deacti-
vated terrestrial MBSs to the HAPS, mainly using a sorting algorithm, which
prioritises switching off MBSs with relatively lower traffic loads. Although
the studies in [106]–[108] have provided valuable insights and promising
results, they have not explored the optimisation of spectrum sharing and
allocation strategies, thereby limiting resource utilisation efficiency in inte-
grated TN-NTNs. To the best of our knowledge, only the authors of [107]
and [108] have considered NTNs as a solution for meeting coverage and
capacity demands while deactivating MBSs.
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5.4 Problem Formulation

Our objective is to develop a framework, which simultaneously increases
UE performance and reduces network energy consumption by adjusting the
resource distribution between satellite and terrestrial MBSs in response to
the hourly fluctuations in network traffic. Specifically, our goal is to achieve
proportional fair resource allocation by optimizing the network SLT, while
limiting the TN energy consumption: in fact, the nature of the logarithmic
cost function discourages each MBS to allocate disproportionate resources to
a single UE. Let us denote as ε the fraction of the bandwidth allocated to the
LEO satellites at a given hour of the day; then, the bandwidth allocated for
an MBS j can be written as:

Wj =

εW if j ∈ S,

(1− ε)W else.
(5.1)

Also, we define xij, a binary variable, which equals 1 if UE i is associated
to MBS j. Accordingly, the perceived throughput for UE i can then be
reformulated as:

Ri =
∑
j∈B

xijRij. (5.2)

To achieve our goal —strike the optimal balance between maximizing the
network SLT while minimizing the total TN energy consumption—, we opti-
mise the split of the bandwidth between the terrestrial and non-terrestrial
tier, the UE association, the MBS transmit power as well as the activation of
each MBS. This problem can be summed up as the following:

max
X, ε, p

∑
i∈U

log(Ri)− λ
∑
j∈T

Qj(pj) (5.3a)

s.t. xij ∈ {0, 1}, i ∈ U , j ∈ B, (5.3b)

β̃ · p ≥ RSRPmin · 1K , (5.3c)

pj ≤ pjmax, ∀j ∈ B, (5.3d)

ε ∈ [0, 1] . (5.3e)

Here, X = [xij] ∈ RK×L represents the UE-MBS association matrix, p =
[p1, . . . , pL]T ∈ RL is the transmit power vector, and 1K = [1, . . . , 1]T ∈ RK .
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Also, β̃ = X ⊙ β is a matrix of dimension K × L, resulting from an element-
wise multiplication of matrices X and β. λ is a regularisation parameter
that allows us to control the trade-off between UE performance (higher SLT)
and network energy consumption1. Constraint (5.3b) states that xij is a
binary variable. Constraint (5.3c) is the coverage constraint: it ensures that
the perceived RSRP for each UE is greater than the set threshold RSRPmin.
Also, (5.3d) guarantees that the transmit power per RE for each MBS j does
not exceed pjmax. The indicator variable xij enforces a unique association,
making the problem combinatorial. As highlighted in [95], UE association
and resource allocation are interdependent. Also, the transmit power of
each MBS further complicates optimisation by affecting signal strength and
coverage. Consequently, predicting the behaviour of the utility function
becomes challenging because of these interdependencies.

Moreover, given the fact that the energy consumption model detailed in
(3.20) is not a continuous function, the problem may prove hard to optimise.
Hence, we approximate it using a L1-L2 penalty function. The choice and
nature of this function push for a sparse solution, as shown in [109]. A sparse
solution is ideal as it entails shutting down several MBSs, thus effectively
reducing the network energy consumption. We can then reformulate our
initial problem as:

max
X, ε, p

∑
i∈U

log(Ri)− λ
||p||1 +

L∑
j=1

ψjwj||p||2

 (5.4a)

s.t. (5.3b)− (5.3e), (5.4b)

where || · ||1 and || · ||2 represent the L1 and L2 norm respectively. wj denotes
the power weighting of MBS j. These weights vary inversely with the transmit
power of each MBS, thus prompting the shutdown of those with lower
transmit power.

1We discuss how to set λ based on the expected UE traffic in Sec. 5.6.1.
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5.5 Designed Solutions

In this section, we first present BLASTER, the framework proposed to address
the optimisation problem outlined in (5.4a)-(5.4b). Then, we design a low-
complexity heuristic based on the special characteristics of the problem,
and provide a comparison for BLASTER w.r.t. performance state-of-the-art
benchmarks. Finally, we provide an analysis of the complexity of both
solutions.

5.5.1 BLASTER

We adopt the BCGA algorithm to solve problem (5.4a)-(5.4b). BCGA is a
technique used to maximise a function by iteratively updating its different
parameters. Similar to the framework presented in Chapter 4, we begin by
optimising the UE-MBS association and bandwidth split while considering
the transmit power fixed. Then, we optimise the transmit power at each MBS
whilst keeping the two previous parameters unchanged. The full overview is
provided in Algorithm 1.

Utility optimisation under fixed transmit power

Let f represent the utility function we aim to maximise in (5.4a). By relaxing
constraint (5.3b) such that xij ∈ [0, 1], we get a convex optimisation problem
with respect to X. To tackle this problem, the iterative gradient projection
method serves as an ideal solution [110], given its suitability for constrained
optimisation. The gradient projection method involves calculating the gra-
dient of the objective function and then projecting this gradient onto the
viable region delineated by the problem constraints. Adopting the gradient
projection method, we can determine the gradient update at iteration s as
follows:

X̃(s) = X(s) + α∇Xf (X, p, ε) , (5.5)
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Algorithm 1 BLASTER Framework
Data: K UEs and L MBs.

1 Initialisation:
s = 0
X: Association done through max-RSRP
p: Transmit power set to maximum
ε = 0.5; // Equal bandwidth split

2

Compute: f (X, ε, p) ; // Initial point
3 w = [1, . . . , 1] ∈ RL

Initialise α ∈ RK×L

Initialise µ ∈ RK

Initialise η ∈ RL

Initialise δ ∈ R
while Utility function f has not converged do

// UE Association and bandwidth split
4 Compute: X̃(s) = X(s) + α∇Xf (X, p, ε) (5.5)

Solve (5.13a) using gradient projection to obtain µ∗

Compute: X(s+ 1) = max{X̃(s)− β ⊙ pPAD ⊙ µ∗PAD, 0}(5.14)
ε∗ = KS

K (5.18)
// Power control step

5 Compute: p̃(s) = p(s) + η∇pf (X, p, ε) (5.20)
Compute: t = λ · η · wTψ (5.22)
Compute: p̂(s) = max

{
1− t

||p̃(s)||2
, 0
}
p̃(s) (5.23)

Compute: τ based on (4.22)

Compute: p(s+ 1) =
[
p̂(s)

]pmax

τ
(5.26)

w =
[

1
p1+δ , . . . ,

1
pL+δ

]
// δ small constant to avoid numerical instability

6 Compute: f (X(s), ε, p(s))
s = s+ 1

7 end
8 return X,ε,p
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where α ∈ RK×L is a convenient step-size and ∇ denotes the gradient
operator. The projection into the feasible region can be achieved solving the
following problem:

min
X(s)

1
2 ||X(s)− X̃(s)||2F (5.6a)

s.t. β̃ · p ≥ RSRPmin · 1K , (5.6b)

where || · ||F represents the Frobenius norm. To lighten the reading, for
the remainder of this section, we omit the iteration indices. We employ the
Lagrange multipliers method to address the projection problem (5.6a)-(5.6b).
With this in mind, we compute the Lagrangian function associated with the
problem (5.6a) - (5.6b):

L (X,µ) = 1
2 ||X − X̃||

2
F +

(
β̃ · p−RSRPmin · 1K

)T
µ

= 1
2 ||X||

2
F − Tr

(
XT X̃

)
+ 1

2 ||X̃||
2
F +

(
β̃ · p

)T
µ− (RSRPmin · 1K)T µ,

(5.7)

where µ ∈ RK is the Lagrange multiplier associated with constraint (5.3c).
Calculating the gradient of (5.7) with respect to X, we obtain:

∇XL (X,µ) = X − X̃ + β ⊙
(
1K · pT

)
︸ ︷︷ ︸

:=pPAD

⊙
(
µ · 1T

L

)
︸ ︷︷ ︸

:=µPAD

.
(5.8)

Fixing the dual variable, we are able to determine the minimal point for the
gradient, which is obtained for:

X⋆ = max{X̃ − β ⊙ pPAD ⊙ µPAD, 0}. (5.9)

Subsequently, we can introduce the Lagrangian dual function, formulated
as:

D (µ) = max
X
L (X,µ) . (5.10)
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Proposition 1. We can rewrite D (µ) as:

D (µ) = 1
2 ||X

⋆||2F − Tr
(
X⋆

[
X̃ − β ⊙ pPAD ⊙ µPAD

]T)
− (RSRPmin · 1K)T µ.

(5.11)

Proof. Please refer to Appendix A.

Also, we notice that for any matrix A:

1
2

∣∣∣∣∣∣∣∣max{A, 0}
∣∣∣∣∣∣∣∣2

F
− Tr

(
max{A, 0}AT

)
= −1

2

∣∣∣∣∣∣∣∣max{A, 0}
∣∣∣∣∣∣∣∣2

F
(5.12)

Then, combining Proposition 1 with (5.12), we are able to rewrite the dual
problem associated to the projection step problem (5.6a) - (5.6b) as the
following:

min
µ

1
2 ||X

⋆||2F + (RSRPmin · 1K)T µ (5.13a)

s.t. µ ≤ 0. (5.13b)

To solve problem (5.13a)-(5.13b) detailed above, we can utilise the gradient
projection problem, as the constraint is a simple projection into the non-
positive orthant. Once we find the solution µ∗, we can recover the optimal
solution to problem (5.6a)-(5.6b) by:

X(s+ 1) ≜ X⋆ = max{X̃(s)− β ⊙ pPAD ⊙ µ∗PAD, 0}. (5.14)

We repeat those iterations until convergence to obtain the optimal association
setting X∗.

Once this is done, we have to optimally split the bandwidth between both
terrestrial and non-terrestrial tiers. To this aim, we rewrite the mean UE
throughput, defined in (3.16), as follows:

Rij =

εrij if j ∈ S,

(1− ε) rij otherwise,
(5.15)

where
rij = W

kj

log2 (1 + γij) .
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Note that, since in (5.15) both the MBS transmit power and the noise power
scale linearly with the bandwidth, γij is unaffected by the bandwidth split
between satellite and TN.

Proposition 2. The optimal bandwidth allocation for the non-terrestrial tier
linearly increases with the fraction of UEs associated to a satellite MBS in the
network, provided that all UEs have the same requirements, i.e.:

ε∗ = KS

K
(5.16)

where KS denotes the number of UEs associated to a satellite within the network.

Proof. First, we compute the gradient of our utility function f with respect
to ε:

∇εf (X, p, ε) = ∂

∂ε

(
K∑

i=1
log (Ri)

)
=

K∑
i=1

∂

∂ε
log (Ri)

=
K∑

i=1

∂
∂ε

(Ri)
Ri

=
K∑

i=1

∂
∂ε

[∑
j∈S

εxijrij + ∑
j∈T

(1− ε)xijrij

]
Ri

=
K∑

i=1

∑
j∈S

∂
∂ε

[εxijrij] + ∑
j∈T

∂
∂ε

[(1− ε)xijrij]

Ri

=
K∑

i=1


∑

j∈S
xijrij −

∑
j∈T

xijrij

Ri

 .
(5.17)

Let us denote as US and UT the sets of UEs served by the satellites and
terrestrial MBSs respectively, such that U = US ∪ UT .
Then, by setting (5.17) to 0, we can strike the optimal splitting point for the
bandwidth as follows:

∇εf (X, p, ε) = 0⇔
∑

i∈US

1
ε

+
∑

i∈UT

−1
1− ε = 0⇔ KS

ε
− K −KS

1− ε = 0

⇔ ε∗ = KS

K
.

(5.18)
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Transmit power optimisation under fixed association

Once we have solved the UE association and bandwidth allocation problem,
we consider those two parameters as constant and focus on adjusting the
transmit power at each terrestrial MBS to maximise the utility function
introduced in (5.4a). The problem of optimizing the transmit power can thus
be articulated as:

max
p

∑
i∈U

log(Ri)− λ
||p||1 +

L∑
j=1

ψjwj||p||2

 (5.19a)

s.t. (5.3c)− (5.3d) (5.19b)

Owing to the discontinuous nature of the L1 norm, we need to employ
the iterative proximal gradient method [111] for the resolution of (5.19a)-
(5.19b). To do that, we first compute the gradient update at iteration s as
follows:

p̃(s) = p(s) + η∇pf (X, p, ε) (5.20)

where η ∈ RL is a pertinent step-size. Then, as outlined in [111], the
proximal gradient method updates p by addressing the problem described
below:

min
p

1
2 ||p̃(s)− p(s)||

2
2 + t||p(s)||2 (5.21a)

with
t = λ · η · wTψ. (5.22)

A closed-form solution to this problem, known as block-soft thresholding
[111, Sec. 6.5.1] is expressed as:

p̂(s) = max
{
1− t

||p̃(s)||2
, 0
}
p̃(s). (5.23)

After updating the transmit power vector, it is necessary to project it into
a feasible region to ensure compliance with constraints (5.3c) and (5.3d).
The maximum transmit power per RE naturally sets the upper limit of our
feasible region. To determine the lower boundary, we apply the minimal
coverage constraint. Indeed, as indicated by (5.3c), each UE connected to
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a MBS j must receive a signal power that exceeds the minimum required
RSRP value, RSRPmin. This can be rewritten as:

∀i ∈ Uj, pj ≥ RSRPmin

βij

, (5.24)

with Uj representing the set of UEs connected to the MBS j. Consequently,
we can define the lower bound of the feasible region for each MBS j as:

τj = max
i∈Uj

(
RSRPmin

βij

)
. (5.25)

Finally, the transmit power update at the iteration s can be computed as
follows:

p(s+ 1) =
[
p̂(s)

]pmax

τj

. (5.26)

After the algorithm yields p(s+ 1), we adjust the power weights wj following
the re-weighting algorithm described in [104]. Indeed, we update the vector
w as follows:

w(s+ 1) =
[

1
p1 + δ

, . . . ,
1

pL + δ

]
(5.27)

where δ is a parameter introduced to avoid numerical instability. By updating
the vector w based on (5.27), we reduce the impact on the utility function of
the MBSs that have a large transmit power to provide continuous coverage
to the associated UEs. In contrast, this weighing method effectively pushes
MBSs that are not providing traffic to decrease the transmit power further
until they shutdown.

5.5.2 Heuristic development

Given that BLASTER is composed of two iterative methods (BCGA and gradient
projection method to solve (5.13a)), we have developed a low computational
complexity heuristic based on the domain expertise. The designed heuristic
has a structure similar to that of BLASTER. Indeed, it first deals with the UE-
MBS association phase and allocates the bandwidth resources accordingly.
Then, it deactivates part of the MBSs in the network and/or updates their
transmit power. The heuristic algorithm iteratively repeats these three steps
until the selected utility function, i.e., the network SLT converges. Specifically,
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the three steps of the proposed low computational complexity heuristic can
be described as the following:

• UE Association: To maximise the number of terrestrial MBSs that can
be switched off during low-traffic hours (0 AM - 7 AM), it is desirable
to maximise the share of the traffic served by the non-terrestrial tier.
Hence, the proposed heuristic associates each UE that has an RSRP
larger than RSRPmin to the satellite. For each remaining UEs that is
yet to be associated to a MBS, we collect the perceived RSRPs from all
the MBSs that are providing an RSRP greater than ≥ RSRPmin. Then,
we average these RSRP measurements and rank each UE based on the
calculated average from worst to best. Then, starting from the UE with
the poorest average, we associate it with the MBS providing the largest
throughput with the aim of maximizing the SLT.
In the case of a high-traffic scenario, the satellite merely acts as an
umbrella over the ground network to provide service for UEs that have
no service, and potentially facilitate the distribution of the load. In
this regard, the UE association process is quite similar to the low-traffic
scenario as we rank each UE based on their average perceived RSRP
and associate to the MBS providing the best throughput2.

• Bandwidth split: The bandwidth is split according to the expression
derived in (5.18).

• MBS shutdown and power control: In low-traffic scenario, the proposed
heuristic shuts down all MBSs serving less UEs than a set threshold
TUE, provided that these UEs can be successfully handed over to neigh-
bouring MBSs. We also reduce the MBS transmit power as long as the
coverage constraint (5.3c) is satisfied for the connected UEs (feasible
region computed in (5.25)). On the other side, for high traffic, we only
shut down inactive MBSs and reduce the transmit power similarly to
the low-traffic scenario.

The complete heuristic is detailed in Algorithm 2.

2Note that the association is done only once for each UE and does not change even if
the associated MBS is not providing the best throughput anymore due to the increased
number of served UEs.
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Algorithm 2 Heuristic
Data: K UEs and L MBs.

1 Initialisation
s = 0
X: Association done through max-RSRP
p: Transmit power set to maximum
ε = 0.5; // Equal bandwidth split

2 Compute: SLT // Initial point
3 while SLT has not converged do

// UE Association and bandwidth split
4 if low-traffic hour: then
5 for all UEs u do
6 if RSRP perceived from satellite ≥ RSRPmin then
7 Associate UE u to the satellite
8 end
9 end

10 end
11 Rank each UE according to the average perceived RSRP

for all UEs u uncovered do
12 C : List of MBSs providing an RSRP greater than RSRPmin for UE u

Associate u to the MBS ∈ C providing the largest throughput.
13 end
14 ε∗ = KS

K (5.18) // Power control step
15 if low-traffic hour: then
16 for all MBSs b serving less than TUE do
17 if we can handover every UE served by b then
18 Offload each UE to a neighboring MBS

Shutdown MBS b
19 end
20 end
21 end

// For remaining active BSs:
22 Compute: τ based on (5.25) // Reduce Tx Power while ensuring coverage for

all UEs:
23 Compute: p(s+ 1) = τ

s = s+ 1
24 end
25 Return X,ε,p
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5.5.3 Complexity Analysis

Concerning the algorithmic complexity, we can compare both solutions that
we have developed:

BLASTER complexity

First, let’s analyse the complexity of the operations in an iteration of BLASTER.
For the optimisation of X, the computation of the gradient step (5.5) has a
complexity of O (K × L). In addition, we solve a gradient projection problem
(5.13a) at the end of the UE association phase using an iterative method. Each
iteration of the gradient projection method is executed with a complexity
of O (K × L). We denote as Iµ the number of iterations needed to reach a
stopping criterion for the gradient projection method. The stopping criterion
is either the convergence of the utility function (SLT) or the completion of a
given number of iterations. Then, the overall complexity for the optimisation
of X is O (K × L+ Iµ ×K × L) = O (Iµ ×K × L). To obtain the optimal
split of the bandwidth as per (5.18), our algorithm computes the fraction of
the UEs associated to the satellites, which is an operation of complexityO (K).
Finally, the transmit power vector optimisation has an overall complexity of
O (K × L). Taking all of this into account, if Iblaster represents the number of
iterations needed to meet a stopping criterion for BLASTER (specified above),
the complexity of the framework is O (Iblaster × Iµ ×K × L).

Heuristic complexity

For modelling the heuristic complexity, we consider separately low and high
traffic cases. In the low-traffic scenario, the proposed algorithm associates
to a satellite each UE perceiving an RSRP greater than RSRPmin from a
satellite. This results in having to do the ranking and MBS association process
detailed above for K − KS UEs. Therefore, in low traffic, the complexity
of the UE association phase is O ((K −KS)× L). Also, the complexity of
the operations for the transmit power optimisation and BS activation is
O (K × L). Therefore, the overall complexity for one iteration in a low-traffic
scenario is O (K × L). For the high-traffic case, the complexity for those
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steps is O (K × L), explained by the fact that the UE association process is
done for each of the UEs. Finally, denoting by IH the number of iterations
needed for the utility function to converge, the overall complexity of the
heuristic is O (IH ×K × L).

5.6 Simulation Results & Analysis

In this section, we assess the performance of the proposed solution under
different traffic conditions. All the results and analyses presented in the
following section have been conducted over a 24-hour observation window,
with snapshots of the network taken at the start of each hour, and generated
using a custom-built system-level simulator following the 3GPP recommenda-
tions for the channel model. We model the traffic variations by changing the
number of active UEs in the network. Precisely, the number of UEs deployed
in the network scales according to the daily downlink traffic load pattern
presented in Chapter 1. The number of UEs decreases during the night, until
it reaches its minimum of 400 at 5 AM, and increases in high traffic, reaching
up to 10 000 at 8 PM. The UEs are deployed uniformly across the entire study
area, with a higher density of deployment in the urban area relatively to
the rural one. In our simulation setting, we consider that 80 % of the UEs
are indoor [91]. Table 5.1 lists the primary simulation parameters used in
this study, incorporating several minor additions and modifications to those
shown in Table 4.1.

Benchmarks

As in Chapter 4, we introduce two benchmark scenarios to compare with our
proposed framework. The 3GPP-TN configuration comprises solely a TN oper-
ating with a bandwidth of 10 MHz. Conversely, the 3GPP-NTN configuration
features a NTN that overlays the TN. In this setup, the total bandwidth is
allocated following the guidelines provided by 3GPP in [40], assigning 30
MHz to the satellite tier and 10 MHz to the terrestrial tier. In both scenarios,
UEs associate to MBSs based on the max-RSRP criterion, without employing
DL transmit power optimisation nor MBS shutdown.
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Parameter Value

Total Bandwidth W 40 MHz
Carrier frequency fc 2 GHz
Subcarrier Spacing 15 kHz
Urban/Rural Inter-Site Distance 500/1 732 m
Number of Macro BSs 1 776
Satellite Altitude [40] 600 km
Terrestrial Max Tx Power per RE pmax [99] 17.7 dBm
Satellite Max Tx Power per RE pmax [40] 15.8 dBm
Antenna gain (Terrestrial) GTX [100] 14 dBi
Antenna gain (Satellite) GTX [40] 30 dBi
Shadowing Loss (Terrestrial) SF [91] 4 − 8 dB
Shadowing Loss (Satellite) SF [44] 0 − 12 dB
Line-of-Sight Probability (Terrestrial / Satellite) Refer to [91] / [44]
White Noise Power Density −174 dBm/Hz
Coverage threshold RSRPmin −120 dBm
Urban/Rural UEs distribution proportion 40%/60%
UE Antenna gain GUE [44] 0 dBi
Satellite baseline energy consumption Ec 500 J

Tab. 5.1: Simulation parameters.

5.6.1 Optimisation of the regularisation parameter

As specified in Section 5.4, λ is a regularisation parameter, which allows
to control the trade-off between maximising network SLT and minimising
the TN energy consumption (see (4.1a)). Indeed, a high value of λ leads
BLASTER to increase the number of shutdown MBSs, as the priority becomes
to reduce the TN energy consumption. Conversely, a low value of λ indicates
that the focus is on improving the SLT, by balancing the load and ensuring
a proportional fair resource allocation. To achieve this goal, in our study,
we set λ inversely proportional to the number of UEs, K, in the network as
follows:

λ = λmaxKmin

K
, (5.28)

where λmax is the value of λ when the UEs number is equal to its lowest, i.e.,
Kmin. This approach allows us to simplify the setting of the hyper-parameter

99



λ, by fixing λmax and using (5.28). Therefore, in the following, we investigate
the impact of λmax on the behaviour of BLASTER. In particular, we let λmax

take values in {10, 1e3, 1e7, 1e10}, and study the corresponding distribution
of the SLT during high and low traffic as well as that of the total TN energy
consumption. In Fig. 5.1, we see a clear trend, with larger values of λmax
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Fig. 5.1: Sum Log Throughput distribution achieved by BLASTER in high traffic for
various λmax.

leading to a downward shift of the SLT distribution during high traffic. In
fact, we observe a gradual increase of the median value of the SLT in high
traffic, as λmax decreases. This is in line with our assumption that a small
value of λ moves the focus from the TN energy consumption to improving
the SLT. Specifically, in Fig. 5.1, we see a 2 % increase of SLT by varying λmax

from the largest value (λmax = 1e10) to the smallest one (λmax = 10). Note
that, during high traffic, the performance in terms of SLT stagnates, once
λmax starts crossing extremely high values.

Conversely, in Fig. 5.2, we notice that there is a limited change of the SLT, if
the value of λmax varies. In fact, in low traffic scenarios, our framework aims
mainly to reduce the TN energy consumption, i.e., maximising the SLT has
limited importance.
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Fig. 5.2: Sum Log Throughput distribution achieved by BLASTER in low traffic for
various λmax.

To verify this analysis, Fig. 5.3 plots the TN energy consumption for the
distinct values of λmax, specified previously. We remark that the TN energy
consumption increases throughout the day when the value of λmax decreases.
Indeed, a small value of λmax hampers the transmit power optimisation in
(5.23), as each update becomes negligible, making it hard to effectively drive
down the energy consumption of the TN.
Through these results, we are able to grasp the trade-off between reducing
energy consumption and balancing the network load efficiently. Indeed, we
observe that limiting the value of λmax, i.e., λmax = 10 and λmax = 1e3, we
only achieve, during high traffic hours, a minor gain in terms of network
SLT of approximately 2% compared to the other cases (λmax = 1e7 and
λmax = 1e10), while the total energy consumption surges by approximately
84%. Considering all of this, we fix λmax = 1e7 as this value ensures a
balanced performance in both SLT and TN energy consumption.
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Fig. 5.3: Daily profile of the terrestrial network energy consumption achieved by
BLASTER for various λmax.

5.6.2 Complexity and Convergence Analysis

In Fig. 5.4, we display the operational complexity of both proposed frame-
works BLASTER and HEURISTIC as derived in Section 5.5.3. We notice that
the operational complexity of BLASTER is higher than HEURISTIC throughout
the day. This is expected, as the latter framework is implemented using
less complex operations compared to the former, which resorts to multiple
gradient descent methods. In fact, we see an average decrease in operational
complexity of approximately 21% in the day, which underlines the simplicity
of HEURISTIC compared to BLASTER. Moreover, we notice that the complex-
ity follows a pattern similar to the traffic load for both frameworks, which
corroborates with the formulas derived in 5.5.3. Indeed, a lower number of
total UEs K naturally leads to a lower complexity, as seen in Fig. 5.4. On the
opposite, a surge in traffic results in an increased complexity due to a higher
number of operations needed to complete both frameworks.

To illustrate the convergence of BLASTER, we analyse the relative gain be-
tween successive iterations. A positive relative gain indicates an increase in
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Fig. 5.4: Daily profile of the complexity of BLASTER and HEURISTIC.

the objective function, whereas a negative relative gain implies a decrease.
Fig. 5.5 presents the average relative gain per iteration along with the cor-
responding standard deviation, computed across multiple runs of BLASTER
at different hours of the day. Initially, we observe a sharp increase in rela-
tive gain, followed by a steady decline towards zero. Notably, the relative
gain remains positive for the vast majority of iterations, confirming that the
objective function generally improves over time. This behaviour highlights
the convergence of BLASTER which on average occurs after approximately 30
iterations.

5.6.3 Impact of the Satellite Network on Traffic
Distribution

In this section, we look at the shifting role that the satellites play on the
mobile network throughout the day. Fig. 5.6 presents the daily profile of the
fraction of UEs associated with the satellite network in the different frame-
works under investigation. Also, we plot the hourly number of UEs deployed
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Fig. 5.5: Average relative gain per iteration for BLASTER.

in the network, represented by the black dotted line. As we have previously
underlined, the priority for the proposed BLASTER and HEURISTIC frameworks
during low traffic is to reduce the TN energy consumption. Hence, the satel-
lite becomes a compelling option for offloading the TN and shutting down
lightly loaded MBSs. Fig. 5.6 shows that BLASTER and HEURISTIC achieve
a 70 % and 500 % increase of the fraction of UEs associated to the satellite
network in low-traffic hours as compared to the benchmark 3GPP-NTN. Also,
we notice that the proportion of UEs associated to the satellite is far greater
for HEURISTIC compared to BLASTER. This is due to the fact that HEURISTIC
ensures that every UE that has a signal strength greater than RSRPmin is
associated to the satellite, opposed to the more sophisticated BLASTER, who
would still consider the available throughput before associating to the satel-
lite. Conversely, during high traffic hours, we notice that the satellite network
takes a less prominent role for both BLASTER and HEURISTIC, essentially act-
ing as an umbrella, providing service to UEs that would otherwise be out
of coverage. Accordingly, most of of the total bandwidth is allocated to the
terrestrial tier, which can efficiently serve more UEs than the non-terrestrial
tier and can significantly improve the spatial reuse.
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Fig. 5.6: Daily profile of the proportion of UEs associated to the satellite network.

5.6.4 Analysis on the Network Sum Log-Throughput

In this section, we analyse the SLT achieved by the algorithms under investi-
gation throughout the day and, in particular, how they adapt the network
resources to the daily variations of the traffic load. Fig. 5.7 shows the
daily profile of the SLT achieved by the schemes under investigation, and
Fig. 5.8 presents the relative SLT gain for BLASTER, HEURISTIC and 3GPP-NTN
compared to 3GPP-TN.

Remember that in 3GPP-TN there are no satellites available to serve UEs
perceiving low RSRP from terrestrial MBSs. In addition, the total bandwidth
available for the TN is only 10 MHz, which leads to low UE throughput,
especially during busy hours. As expected, we observe an SLT performance
improvement with the integration of satellites into the network. Indeed, LEO
satellites are able to provide service to cell-edge UEs, which do not perceive a
signal strong enough to be served from the terrestrial tier, thereby increasing
the network SLT.
In more detail, in Fig. 5.7, we can see that both BLASTER and the proposed
HEURISTIC outperform the 3GPP-NTN benchmark, with an average SLT in-
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Fig. 5.7: Daily profile of the sum log throughput.

crease of approximately 6 % across the day, highlighted in Fig. 5.8. Moreover,
and although the SLT gain for 3GPP-NTN in Fig. 5.7 is more visually dis-
cernible during high-traffic hours, note that its relative gain with respect
to 3GPP-TN, illustrated in Fig. 5.8 does not change drastically and remains
around 2% throughout the day.
In low traffic, Fig. 5.8 underlines that BLASTER outperforms HEURISTIC in
terms of SLT. This is due to the different association methods used for both
proposed frameworks. As detailed in Section 5.6.3, the association criterion
to the satellite in HEURISTIC is more lenient, which results to more UEs
sharing the resources of the satellite, leading to a deteriorated throughput
for its UEs and a worse SLT performance. Note that the improvement com-
pared to the 3GPP benchmarks is more apparent during high traffic hours,
typically midday to end of evening than low traffic hours. Indeed, as detailed
before, the onus of both the HEURISTIC and BLASTER during low traffic is on
reducing energy consumption, which explains the mitigated improvement of
the network SLT.
During high traffic, both algorithms strive to balance the traffic load to
maximise the SLT, which explains the striking improvement with respect
to 3GPP-NTN and 3GPP-TN. That gain is due to various reasons. First of all,
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the UE-MBS association methods of HEURISTIC and BLASTER are designed
to ensure a proportional fair resource allocation, which increases the SLT.
In addition, the dynamic split of the network bandwidth based on the time-
varying fraction of UEs associated to the satellite network (see Proposition
2) allows the proposed HEURISTIC and BLASTER to astutely distribute the
frequency resources, differently than the 3GPP benchmarks [40]. In fact,
since the majority of UEs are associated to a terrestrial MBS (see Fig. 5.6),
a larger share of the resources are allocated to the terrestrial tier, which
leads to a larger provided data-rate than the one achievable following the
3GPP benchmarks. By splitting the bandwidth based on the fraction of UEs
associated to the satellites, we observe an enhancement of the mean SLT by
at least 8% and 6% for both the proposed frameworks compared to 3GPP-TN
and 3GPP-NTN respectively.
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Fig. 5.8: Relative gain of the sum log throughput compared to 3GPP-TN.

5.6.5 Analysis on the Network Energy Consumption

In this section, we study the performance of the proposed BLASTER and
HEURISTIC in terms of energy usage. To this end, Fig. 5.9 displays the TN
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energy consumption throughout the day for the various algorithms under
investigation.
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Fig. 5.9: Daily profile of the TN energy consumption.

The red dotted line represents the energy consumption level for both 3GPP-TN
and 3GPP-NTN settings, for which the TN energy consumption is at maximum
level through the entire day, as they do not integrate neither power con-
trol nor MBS shutdown. Also, the black dotted line represents the same
setting as 3GPP-TN, but with the added mechanism of shutting down all
inactive MBSs when they have no UEs, denoted 3GPP–ENERGY SAVING. This
setting reduces the average daily energy consumption by 17 % compared
to 3GPP benchmarks, due to its ability to shut down MBSs, which leads to a
more efficient energy use. As discussed in Section 5.6.3, with BLASTER and
HEURISTIC, the satellite network serves a larger proportion of UEs during
low traffic than the standard 3GPP-NTN, which facilitates the shutdown of
terrestrial MBSs. This is apparent in Fig. 5.9, as, in low traffic, the TN energy
consumption sees an average decrease of approximately 67 % and 54 % for
the BLASTER and HEURISTIC settings with respect to the benchmark 3GPP-NTN
and 3GPP-TN, respectively. In comparison, for the 3GPP–ENERGY SAVING con-
figuration, BLASTER and HEURISTIC experience a decrease of approximately
49 % and 31 %, respectively. We also notice that, even though, during the
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low-traffic hours, the HEURISTIC is characterised by a larger share of UEs
associated to the satellite network than the BLASTER, it still leads to a larger
TN energy consumption. Interestingly, the transmit power optimisation of
BLASTER allows for a greater reduction of the transmit power of the TN
MBSs. Indeed, the transmit power vector update step for BLASTER (5.20) -
(5.26) is specifically designed to solve the optimisation problem, reducing
the terrestrial MBSs transmit power efficiently while the HEURISTIC updates
the transmit power for terrestrial MBSs based on a rule of thumb, which
suffices to reduce the network energy consumption.
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Fig. 5.10: Daily profile of the satellite energy consumption

This also explains the striking difference in the high-traffic scenario, as the
average energy consumed by the network is reduced by around 56 % and
14 % for BLASTER and HEURISTIC respectively, compared to the TN energy
consumption in the 3GPP benchmarks. This result further underlines the
flexible nature of both proposed frameworks, adjusting their behaviours
to the traffic state and its specific demand. Moreover, Fig. 5.10 depicts
the energy consumption of the satellite throughout the day for the settings
detailed above. We notice that BLASTER and HEURISTIC considerably reduce
the daily average energy consumption of the satellite by up to 80% and 90%
respectively. It is important to note that the 3GPP benchmark is configured
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such that it utilises the full 30 MHz of bandwidth made available throughout
the day, which leads to consistently higher energy consumption. In contrast,
BLASTER and HEURISTIC use a smaller portion of the total bandwidth, as
highlighted in Fig. 5.6 which results in lower energy usage. Additionally, by
comparing Fig. 5.9 and Fig. 5.10, we notice that the energy consumption of
a single satellite is negligible compared to the TN (less than 0.1% of the total
terrestrial energy use).

5.7 Conclusion & Perspectives

In this chapter, we have presented BLASTER, a framework designed to opti-
mise RRM in an integrated TN-NTN. BLASTER aims to control UE association,
splits the bandwidth between terrestrial and non-terrestrial tiers, and man-
ages the MBS activation and MBS transmit power level. A novel method for
splitting the bandwidth between terrestrial and non-terrestrial tiers is intro-
duced, based on the fraction of UEs associated to the latter. The proposed
algorithm also highlights the critical and dynamic part the satellites play
in this integrated TN-NTN, adapting their role to various traffic demands.
Indeed, the non-terrestrial tier takes a prominent role in low traffic, ensur-
ing that terrestrial MBSs offload their UEs to the satellite to enable their
shutdown. Conversely, the non-terrestrial tier embraces a secondary role
in high traffic, mainly acting as an outlet to cell-edge UEs, facilitating load
distribution while also giving up a share of its resources to the terrestrial tier.
To further enhance the practicality and scalability of our approach, we now
turn our attention to revising the deterministic UE association strategy em-
ployed thus far. While effective in controlled scenarios, such a rigid associa-
tion mechanism can be challenging to implement in real-world deployments
due to its centralised nature. In the next chapter, we explore a ML-based
solution that leverages a distributed framework to enable more adaptive and
implementable UE association policies, as well as replicate the behaviour of
the integrated TN-NTN from this chapter.
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A Distributed Approach
to Integrated TN-NTN
Optimisation Using
Online Learning
Methods

6

6.1 Introduction

In the previous chapter, we developed a framework which dynamically
adapted UE association and resource allocation based on traffic conditions
to enhance the performance of integrated TN-NTN. While this solution
showcases promising results, its centralised nature may hinder real-time
implementation, especially in large-scale deployments such as in our studies.
Indeed, it relies on a centralised optimisation process that requires global
knowledge of the network state and coordination for the UE association pro-
cess, power control, and resource allocation across all MBSs—including the
joint optimisation of the association matrix X, which must be computed and
updated centrally. To overcome this limitation, we now explore a distributed
approach that preserves the adaptive capabilities of BLASTER without the
need for centralised orchestration. A common approach to optimising UE
association in a distributed manner is through the handover events defined
by the 3GPP [112]. For example, Event A3 is triggered when a neighbouring
cell becomes offset better than the serving cell, i.e.:

Mn + Ofn + Ocn − Hys > Mp + Ofp + Ocp + Off (6.1)

where:
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• Mn, Mp respectively represent the measurement result of the neigh-
bouring and serving cell (RSRP in our case).

• Ofn, Ofp represent the frequency offset of the neighbouring and serving
cell, expressed in dB.

• Ocn, Ocp represent the cell individual offset (CIO) of the neighbouring
and serving cell, expressed in dB.

• Off represents the offset parameter for this event, expressed in dB.

• Hys is the hysterisis parameter.

Specifically, by tuning the CIOs, the network can bias handover decisions in
favour of underutilised cells to enable load balancing in a distributed manner,
for example. However, such optimisation proves computationally intractable
for realistic network sizes. Therefore, we propose a ML-based solution rooted
in online learning theory, capable of adapting to traffic dynamics in a dis-
tributed manner.
The remainder of this chapter is structured as follows. We begin by review-
ing relevant literature that has explored distributed approaches to similar
optimisation challenges. Next, we formally define the optimisation problem
at hand and introduce the proposed solution. Finally, we assess the per-
formance of our approach through a comparative evaluation against two
tailored benchmarks, and conclude with a summary of the key findings.

6.2 Contribution

This chapter introduces a learning-based framework, BCOMD-NETOP, designed
to optimise the performance of integrated TN-NTN. The framework aims to
dynamically adapt key control parameters—such as UE association, band-
width allocation between terrestrial and satellite tiers, and MBS shutdown
policies—based on real-time traffic conditions. The core of the method is
a constrained online learning algorithm that balances EE and resource al-
location fairness. Additionally, the framework employs a mirror descent
algorithm named BCOMD proposed in [113] using the Tsallis entropy [114]
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as the mirror map in place of the Shannon entropy [115]. This work de-
rives novel performance guarantees specifically for the adversarial setting,
extending the theoretical foundation of this approach studied most recently
by Deng et al. [116], Shi & Eryilmaz [117] and Zhou & Ji [118]. Also, we
propose a novel windowed estimator technique to reduce noise in gradient
estimation, leading to improved empirical performance. The effectiveness
of the solution is validated through simulations, demonstrating its ability
to closely match offline-optimal strategies while remaining responsive to
time-varying network conditions.

This chapter includes content that has been published or is under submission
in the following venues:

• Published in 2025 IEEE Workshop on Signal Processing and Artificial
Intelligence for Wireless Communications (SPAWC): H. Alam, A.
De Domenico, T. Si Salem and F. Kaltenberger, "A Multi-Armed Bandit
Framework for Online Optimization in Green Integrated Terrestrial and
Non-Terrestrial Networks," 2025, pp. 1-5, Surrey, UK.

• To be Submitted to IEEE Transactions on Wireless Communications:
H. Alam, A. De Domenico, T. Si Salem and F. Kaltenberger, "BCOMD-
NETOP: an Online Optimisation Framework for Green Integrated Terres-
trial and Non-Terrestrial Networks".

6.3 Related Works

As stated in Sect. 6.1, a number of works address the tuning of handover
parameters such as CIO to enable load-aware mobility control. Classical RL
approaches, such as done by Asghari et al. [119], utilise Q-learning and
SARSA to adjust CIO values in real time, offering improved adaptability in
dynamic environments compared to fixed-parameter schemes. Expanding
on this, deep RL techniques are adopted in works like those of Alsuhli et al.
[120] and Attia et al. [121], where actor-critic methods such as deep deter-
ministic policy gradient (DDPG) and twin delayed deep deterministic (TD3)
policy gradient enable continuous control over CIOs and transmission power
across large-scale networks. These works reflect a broader trend toward
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decentralised and distributed RL frameworks. For instance, the work by
Alsuhli et al. [120] on decentralised DDPG explicitly enables MBSs to make
local decisions based on their own KPIs, reducing reliance on centralised
control and improving scalability in dense deployments. Similarly, Attia et al.
[121] propose a layered RL architecture that can be adapted to distributed
scenarios, managing both discrete and continuous action spaces in a hybrid
formulation. Muñoz et al. [122] propose a fuzzy rule-based approach that
enables each femtocell to autonomously adjust its behaviour based on locally
observed network conditions. Meanwhile, works like that of Alsuhli et al.
[123] incorporate agent-based modelling, where cells act independently but
are coordinated through reinforcement mechanisms, a setup well-suited for
self-organising networks (SONs).
Altogether, these studies demonstrate that, alongside centralised approaches,
there are viable decentralised and distributed solutions for addressing mobil-
ity load balancing and handover optimization.

6.4 Problem Formulation

Following the approach of Chapter 5, our objective is to develop a framework
that jointly optimises network SLT and TN energy consumption. This is
achieved by dynamically adapting resource allocation and controlling UE
association in response to network load, while ensuring that the data-rate
requirements of all UEs are satisfied.

In order to do that, we are going to select, at each time slot t, an action (or
arm) at among a set of n possible actions A = {1, . . . , n}, which corresponds
to a specific setting of θ = [ε, τν , τRSRP, α]. Each arm influences network
behaviour through a heuristic mechanism, which takes θ as input and is
described in detail in Section 6.5. Based on the selected arm, we will
observe a certain cost and constraint: this is a classic representation of a
multi-armed bandit (MAB) problem with bandit feedback. Indeed, in those
problem settings, an oblivious adversary specifies the loss and constraint
values in advance by selecting a loss vector ft ≜ (ft,a)a∈A and a constraint
vector gt ≜ (gt,a)a∈A for each time slot t ∈ [T ] at the start of the game.
Then, at each time slot t, we select an arm at, drawn according to the
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probability distribution xt over the action space A, where xt belongs to the
n−dimensional simplex:

∆n ≜ {x ∈ [0, 1]n : ||x||1 = 1} . (6.2)

To assess network performance at time t, we define a cost function that
encapsulates the primary trade-offs involved:

ft (at,xt) = ζ
∑
j∈B

Qj(θ)−
∑
i∈U

log (Ri(θ)) . (6.3)

Here, Ri(θ) denotes the throughput experienced by UE i, and Qj(θ) rep-
resents the energy consumption of MBS j, both evaluated under a given
network configuration θ. The parameter ζ serves as a regularization factor
that balances the trade-off between UE performance (i.e., SLT) and overall
network energy consumption, accordingly to the traffic load.
Also, we define the constraint violation incurred by arm at as the following:

gt (at,xt) = 1
K

∑
i∈U

1{Ri(θ)<ρi}. (6.4)

Without loss of generality, the values of the cost and constraint functions are
scaled to lie within the ranges [0, 1] and [−1, 1] respectively. In particular, a
negative value for the constraint function implies that every UE is satisfied.
Note that a UE is also considered unsatisfied if its perceived RSRP falls below
a predefined threshold RSRPmin.

Naturally, the cost distribution associated with each arm varies over time, as
network demand fluctuates with changes in traffic load. For example, an arm
that improves capacity under high-traffic conditions may become suboptimal
during periods of low traffic, highlighting the necessity of context-aware arm
selection. This inherent non-stationarity in the cost structure aligns with the
adversarial bandit-feedback framework presented in [113]. Consequently,
we adopt the algorithm proposed in [113], which is specifically designed
to accommodate dynamic cost environments while maintaining long-term
constraint satisfaction.

We define a policy as a sequence of actions taken based on the history of past
actions, as well as previously incurred costs and constraints. Furthermore,
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let x⋆ denote the oracle policy, representing the sequence of actions that
minimises the cumulative loss over the entire time horizon:

{x⋆
t }

T
t=1 ∈ arg min

{xt}T
t=1∈×T

t=1 ∆n,t

{
T∑

t=1
ft(at,xt)

}
, (6.5)

where ∆n,t is the set of feasible points within the simplex at time t:

∆n,t ≜ {x ∈ ∆n : gt (at,x) ≤ 0} . (6.6)

Therefore, our objective is to determine a policy π that minimises the cu-
mulative loss relative to the oracle policy, while simultaneously satisfying
time-varying constraints. Following the notation introduced in [113], we
define the notions of regret and constraint violation, which constitute the
primary performance metrics to be minimised:

RT (π) ≜ Eπ

[
T∑

t=1
ft(at,πt)

]
−

T∑
t=1

ft(at,x∗
t ), (6.7)

VT (π) ≜ Eπ

[
T∑

t=1
gt(at,πt)

]
. (6.8)

The first term of (6.7) is the expected cumulative cost incurred by our policy
over T time steps and represents the actual performance of our learning
algorithm over time. The second term is the cumulative cost of the oracle
policy. In essence, determining π allows us to identify the best configuration
for the parameters in θ to optimise network performance throughout the
day—according to traffic load—while maintaining QoS for the UEs.

6.5 Designed Solution

In this section, we first describe the BCOMD algorithm proposed in [113], as
well as the heuristic that we developed which will be embedded within the
BCOMD algorithm to create the BCOMD-NETOP algorithm to optimise network
performance. We then present the theorem that establishes bounds on both
dynamic regret and constraint violation. Finally, we propose an enhancement
to the BCOMD-NETOP algorithm through a windowed estimator approach.
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6.5.1 Bandit-feedback Constrained Online Mirror Descent

In this section, we detail the BCOMD algorithm initially presented in [113].
First, we define the expected cost and constraint violation, at time t, as:

ft(x) ≜ ft · x, gt(x) ≜ gt · x, (6.9)

where x ∈ ∆n.
The algorithm is based on a Lagrangian formulation given by:

Ψ(x, λ) ≜ ft(x) + λgt(x). (6.10)

The first term in the Lagrangian function represents the cost function, while
the second term introduces a penalty for soft constraint violations, scaled by
the Lagrange multiplier, which serves as a weighting factor. In the bandit-
feedback setting, we construct unbiased estimators for the gradients of ft(x)
and gt(x) as follows:

f̃t = ft (at,xt)
xt,at

eat , g̃t = gt (at,xt)
xt,at

eat , (6.11)

where at is the arm selected at time step t, and eat denotes the unit basis
vector corresponding to that arm.

Nevertheless, the unbounded variances of these estimators present a major
obstacle to establishing reliable performance guarantees in the bandit setting.
To mitigate this issue, [113] proposes the use of online mirror descent (OMD),
which has demonstrated effectiveness in variance control and offers improved
convergence rates compared to conventional online gradient methods.

Definition 1. A mirror map Φ : D → R is a function which verifies the following
properties:

1. The domain D of Φ is a convex and open set such that the decision set ∆n

is included in its closure, and their intersection is non-empty: ∆n ∩D ≠ ∅.

2. The map Φ is strictly convex and differentiable over D.

3. The map ∇Φ(x) : D → Rn is surjective.
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4. The gradient of Φ diverges on the boundary of D.

Definition 2. Let Φ : D → R denote a mirror map. The Bregman projection
induced by Φ onto a convex set S is defined as: ΠΦ

S : Rn → S

ΠΦ
S (y) ≜ arg min

x∈S
DΦ(x,y), (6.12)

where we denote the Bregman divergence as:

DΦ(x,y) = Φ(x)− Φ(y)− ⟨∇Φ(y),x− y⟩. (6.13)

In OMD, updates are initially performed in the dual space and subsequently
mapped back to the primal space using a mirror map, such as the negative
Shannon entropy that is used in [113]. Each step pertaining to the BCOMD
algorithm is listed in Algorithm 3 (Lines 16→ 23).

6.5.2 BCOMD-NETOP

The proposed framework for evaluating network performance under a given
configuration θ can be decomposed into the following steps:

1. Initialisation: Given the input configuration θ = [ε, τν , τRSRP, α], the
process begins by associating each UE to the MBS offering the highest
RSRP. The resulting load on each MBS is then computed, followed by
a redistribution of radio resources between terrestrial and satellite tiers
according to the parameter ε.

2. UE Association: For each UE i, we introduce a pricing function that
incorporates both the received signal power and the current load on
MBS j:

Pi(j) = RSRPij − ανj. (6.14)

A positive value of α penalises heavily loaded MBSs, thereby encour-
aging a more balanced load distribution across the TN. In contrast,
a negative value incentivises associations with already loaded MBSs,
potentially increasing the number of idle MBSs. Each UE is then associ-
ated with the MBS that maximises this pricing function.
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3. MBS Shutdown: For each terrestrial MBS j, we verify whether the
combined load of MBS j and the satellite is below the threshold τν . If
this condition holds, and all UEs served by j receive a satellite RSRP
greater than τRSRP, the UEs are handed over to the satellite, and the
MBS is shut down to conserve energy.

4. Cost and Constraint Evaluation: The incurred cost and constraint
violations are then computed in accordance with (6.3) and (6.4).

BCOMD-NETOP, combining the BCOMD approach with the proposed heuristic,
is outlined in Algorithm 3. It illustrates the iterative refinement of the action
distribution within the OMD framework. At each iteration, the update direc-
tion is computed by combining an estimated gradient of the cost function
with a weighted sum of the constraint gradient estimates (Lines 21 → 22).
These weights are adaptively adjusted in response to the cumulative con-
straint violations (Line 23), rather than being fixed. This dynamic adaptation
enables the policy to balance cost minimisation with constraint satisfaction
over time. Moreover, the probability assigned to each action is bounded
below by a predefined threshold γ, ensuring sufficient exploration.

6.5.3 Performance Guarantees

In this section, we introduce additional definitions and assumptions necessary
to establish a performance guarantee for the BCOMD algorithm when using
the Tsallis entropy as the mirror map.

Assumption 1. There exists a point x ∈ ∆n such that, ∀ t ∈ [1, T ], and κ > 0:

gt(x) ≤ −κ.

This assumption ensures that Slater’s condition is satisfied, which is instru-
mental in deriving the performance guarantees presented later. In contrast
to [113], which employs the negative Shannon entropy as the mirror map,
we consider the Tsallis entropy, a broader generalisation that extends the
classical Shannon formulation. While the negative Shannon entropy offers
well-established convergence guarantees and smooth multiplicative updates,
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Algorithm 3 BCOMD - NETOP
Data: Initial x1 = (1/n)a∈A, λ1 = 0, Mirror map Φ : Rn → R, learning rate η > 0,

γ ∈ [0, 1/n], Ω > 0
1 for t = 1, . . . , T do
2 Sample action at ∼ xt // Run Framework

Data: K UEs, L MBs, θ = [ε, τν , τRSRP, α].
3 Initialization: Association done through max-RSRP

Compute the load for MBS
Redistribute the resources according to ε
UE association:
for all UEs u do

4 Associate UE u to MBS j∗ such that:
j∗ = arg maxj Pu(j) (6.14)

5 end
6 Recompute the load for MBS MBS Shutdown:
7 for all MBSs j do
8 if νj + νsat ≤ τν then
9 if RSRP from satellite of all served UEs by MBS j ≥ τRSRP then

10 Associate each UE to the satellite Shutdown MBS j
11 end
12 end
13 end
14 Incur ft(at,xt) and gt(at,xt) ; // Bandit-feedback
15 f̃t ← (ft(at,xt)/xt,at

) eat
; // Loss gradient estimate

16 g̃t ← (gt(at,xt)/xt,at
) eat

; // Constraint gradient estimate
17 ω̃t ← (Ω/xt,at)eat ; // Bias term
18 b̃t ← ω̃t + f̃t + λtg̃t ; // Gradient for Ψ(·, λt)
19 yt+1 ← (∇Φ)−1 (∇Φ(xt)− ηb̃t

)
; // Update primal action distribution

20 xt+1 ← Π∆n,γ
(yt+1) ; // Project to feasible simplex

21 λt+1 ← (λt + µgt(at))+ ; // Update dual variable
22 end
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it restricts the feasible domain to the interior of the probability simplex,
requiring a minimum exploration level to prevent zero-probability actions.
In contrast, the Tsallis entropy permits sparsity by operating over the full
simplex, allowing the algorithm to fully discard suboptimal arms and better
adapt to time-varying or adversarial environments. This makes it particularly
well-suited for dynamic scenarios, where only a subset of configurations
remains relevant at a given time.

Definition 3. For q ∈]0, 1[, we define the Tsallis entropy as:

Φq(x) = 1
1− q

[
1−

n∑
i=1

xq
i

]
(6.15)

Also, as affirmed at the end of Section 6.5.2, the algorithm operates over a
restricted subset of the probability simplex ∆n,γ = ∆n ∩ [γ, 1]n. This restric-
tion will also play a critical role when establishing performance guarantees
later on.
Finally, as highlighted in Jadbabaie et al. [124], deriving worst-case bounds
for dynamic regret without additional assumptions is generally intractable.
Therefore, we impose regularity conditions to characterise the non-stationarity
of the problem. Specifically, we adopt two distinct metrics to quantify non-
stationarity: the path length, denoted by P ⋆

T ∈ R≥0, which captures variations
in the comparator sequence {x⋆

t }T
t=1 and thus indirectly reflects changes in

the cost functions; and the temporal variation of the cost functions, denoted
by VT ∈ R≥0, which directly measures the magnitude of change in the cost
functions over time:

P ⋆
T ≜

T∑
t=1

∥∥∥x⋆
t − x⋆

t+1

∥∥∥
1
,

VT ≜
T∑

t=1
∥ft − ft+1∥∞ .

There is a subtle difference between those two measures. Indeed, path
length captures the cumulative variation of the cost functions with respect
to a specific comparator sequence, whereas the temporal variation directly
measures the temporal changes in the cost functions themselves.
Given all the above, we can now introduce the regret bound achieved by
Algorithm 3:
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Theorem 1. Let η = 1
M

√
T

min
{√

P ∗
T , V

1
3

T T
1
6

}
, µ = 1

M
√

T
and γ = Θ( 1√

T
), with

M a large enough constant such that η ≤ Ω−2 ≤ 1 and µ ≤ 1. Then, the regret
of policy π obtained from Algorithm 3 satisfies:

RT (π) = Õ
(

min
{√

P ∗
TT , V

1
3

T T
2
3

})
, (6.16)

VT (π) = Õ
(√

T
)
. (6.17)

Note that Õ is a variant of O, with logarithmic factors excluded.

Proof. Please refer to Appendix B.

6.5.4 Windowed Estimator

In this section, we introduce an enhancement to the BCOMD algorithm. A
well-established approach to reducing estimator variance involves averaging
observations over multiple time slots, thereby mitigating the inherent noise
of each observation. To that end, instead of constructing the estimators of
both cost and constraint functions as in (6.11), we create a new class of
estimators:

f̃t,Tw = 1
Tw

 t∑
i=t−Tw

fi(ai,xi)
xi,ai

eai

 . (6.18)

In Section 6.6.2, we discuss how to set Tw empirically, and evaluate the
performance of the windowed estimator within the BCOMD algorithm, in
comparison to the original estimator.

6.6 Simulation Results & Analysis

In this section, we evaluate the performance of the proposed solution over
a 24-hour period under varying traffic conditions. We begin by detailing
the simulation settings and baseline comparisons in Section 6.6.1. Next,
Section 6.6.2 investigates the effectiveness of the windowed estimator intro-
duced in Section 6.5.4, comparing it against the original variant, followed
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by an examination of the convergence behaviour of our algorithm in Sec-
tion 6.6.3. Section 6.6.4 details how each parameter of θ evolves through the
iterations with the resulting policy. Lastly, we finish by analysing the impact
of our algorithm on network ST and energy consumption in Section 6.6.5.

6.6.1 Simulation Settings and Benchmarks

Settings

In this study, the number of UEs varies hourly, following the traffic profile
described in Chapter 5. Using a custom-built system-level simulator in com-
pliance with 3GPP guidelines [40], [44], [91], [99]–[101], we generated
7 × 103 network snapshots per hour, resulting in a total of 168 × 103 sam-
ples across the day. For each hour, the learned policy was used to select
an action, allowing us to assess the resulting network performance. The
optimisation parameters took values from the following predefined discrete
sets: ε and τν were chosen from [0.25, 0.50, 0.75, 0.85, 0.90], τRSRP from
[−80, −90, −100, −110, −120] dBm, and α from [−3, −2, −1, 0, 1, 2, 3].
Also, similarly to the previous chapter, the UEs are distributed uniformly
throughout the study area, with a higher deployment density in the urban
region compared to the rural one. Terrestrial MBSs are arranged in a hexago-
nal grid layout in both environments, following the 3GPP guidelines in [90],
with denser deployment in the urban area. Finally, we assume that 80% of
UEs are located indoors, in accordance with [91]. The parameter ζ is set
to be inversely proportional to the number of UEs in the network. Detailed
simulation parameters are provided in Table 6.1. For clarity, we use the terms
BCOMD and BCOMD-NETOP interchangeably in the remainder of the analysis,
referring specifically to the implementation described in Algorithm 3, unless
stated explicitly.

Benchmarks

For this specific work, we compared the performance of our framework to
two relevant benchmarks that are comparable:
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Parameter Value

Total Bandwidth W 40 MHz
Urban/Rural Inter-Site Distance 500/1 732 m
Number of Macro BSs 1 776
Satellite Altitude [40] 600 km
Number of arms n 875
Traffic model parameter λU 600 000
Terrestrial Max Tx Power per RE pmax [99] 17.7 dBm
Satellite Max Tx Power per RE pmax [40] 15.8 dBm
Antenna gain (Terrestrial) GTX [100] 14 dBi
Antenna gain (Satellite) GTX [40] 30 dBi
Shadowing Loss (Terrestrial) SF [91] 4–8 dB
Shadowing Loss (Satellite) SF [44] 0–12 dB
Line-of-Sight Probability (Terrestrial / Satellite) Refer to [91] / [44]
White Noise Power Density −174 dBm/Hz
Coverage threshold RSRPmin −120 dBm
Urban/Rural UEs distribution proportion 40%/60%
UE Antenna gain GUE [44] 0 dBi

Tab. 6.1: Simulation parameters.

Static-Opt The Static-Opt benchmark, which represents the optimal fixed dis-
tribution in hindsight, is computed by solving a convex optimisation
problem that minimises the average cost over the entire time horizon,
subject to the averaged constraint being satisfied. This benchmark as-
sumes full knowledge of all cost and constraint realisations in advance
and thus serves as a strong baseline for assessing the performance of
online algorithms under both objective and constraint metrics.

FTL The Follow-The-Leader (FTL) benchmark, in contrast, simulates a my-
opic strategy that selects the optimal fixed decision at each time step
based on all past observations up to that point. Specifically, at each
round, the decision is obtained by minimising the average of previ-
ously observed costs, subject to satisfying the corresponding averaged
constraints. This benchmark reflects an adaptive baseline that reacts
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to historical data, making it a useful comparator for evaluating how
quickly online algorithms track changing environments.

6.6.2 Windowed Estimator Parameter Tuning and
Performance Analysis

In this section, we empirically determine the optimal value of the window size
Tw for the estimator introduced in (6.18), and assess its performance relative
to the original (non-windowed) estimator. To this end, Fig. 6.1 presents the
final time-averaged cost achieved under various choices of Tw. The results
indicate that a moderate window size—specifically, T ⋆

w = 50—yields the
lowest cost, suggesting an effective balance between variance reduction and
reactivity to changes in observed costs. We adopt this empirically chosen
configuration as the default setting in the following experiments. Once Tw
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Fig. 6.1: Time-averaged cost for various window sizes.

is set, we compare the performance of the windowed and vanilla BCOMD
estimators across a wide range of learning rates, as shown in Fig. 6.2.
Similar to Fig. 6.1, we display the final time-averaged cost achieved by both
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estimators under each configuration. We notice that the windowed estimator
consistently yields lower costs, outperforming the vanilla estimator across
the entire range of values for η, thereby empirically confirming its robust-
ness and superiority. This improvement stems from the reduced variance in
gradient estimates introduced by the windowing mechanism, which allows
for more stable and effective learning updates. Additionally, we observe
that the best performance is achieved for η⋆ = 10−3, where the final cost
reaches approximately 0.10, a significant drop from nearly 0.35 observed at
suboptimal settings.
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Fig. 6.2: Performance comparison of vanilla and windowed estimators under the
BCOMD algorithm (Tw = 50).

Based on the findings above, we adopt the windowed estimator for all sub-
sequent analyses, with the window size and learning rate fixed to their
empirically optimal values, T ⋆

w and η⋆, respectively. Therefore, any refer-
ence to BCOMD in the following performance evaluations or comparisons will
implicitly refer to this improved, windowed variant.
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6.6.3 Convergence Analysis

In Fig. 6.3, we illustrate the learning dynamics of the BCOMD algorithm
over the complete set of samples. Indeed, we show the time-averaged cost
and constraint violations over the 168× 103 snapshots. The plotted curves
correspond to cumulative averages, with the respective confidence bounds
reflected through the shaded bands. The steady decline of the cost indicates
that the BCOMD algorithm progressively improves its control decisions, refining
the selection policy to reduce long-term costs. Concurrently, the constraint

Fig. 6.3: Convergence of BCOMD: time-averaged cost and constraint violations.

violation curve shows a clear downward trend, suggesting that the algorithm
adapts to the network constraints over time. This joint evolution confirms
that the BCOMD algorithm not only converges over time, but also effectively
balances optimisation of network performance and feasibility through online
correction of its policy.

127



6.6.4 Control Parameters Evolution Analysis

In this section, we analyse how the policy influences the evolution of each
parameter in θ and provide insights into the resulting behaviour. From the
learned probability distributions over each hour, we derive the marginal distri-
bution of each parameter in θ, yielding the most likely value for each. These
representative values are summarised in Table 6.2 across 4-hour intervals.

Parameter Value \ Hour 0–4 4–8 8–12 12–16 16–20 20–24

ε 0.85 0.85 0.75 0.75 0.75 0.85
τRSRP (dBm) -110 -120 -100 -90 -90 -100
τν 0.85 0.90 0.75 0.50 0.50 0.85
α -1 -2 +1 +2 +2 -1

Tab. 6.2: Most probable parameter values across time-of-day for BCOMD-NETOP.

Table 6.2 reveals clear temporal trends in the parameters of θ. The resource
allocation parameter ε increases during low-traffic periods and decreases
during peak hours, in line with 3GPP recommendations [40]. This behaviour
is a direct consequence of the cost function (6.3), which prioritises energy ef-
ficiency when traffic is low. Indeed, allocating more resources to the satellite
enables the shutdown of additional terrestrial MBSs while still preserving
sufficient capacity for the terrestrial MBSs to serve active UEs. During high-
traffic periods, ε is reduced, though not to its minimum possible values (e.g.,
ε = 0.25 or 0.5). The algorithm learns that restricting satellite resources
would hinder its ability to accommodate handovers from overloaded terres-
trial cells, thereby reducing overall network capacity.
A similar adaptive trend is observed for the RSRP threshold τRSRP. The
threshold is relaxed during low-traffic hours, allowing more UEs to associate
with the satellite and contributing to traffic offloading and energy savings. In
contrast, τRSRP becomes stricter when traffic is high, ensuring that only UEs
with strong satellite signals are offloaded. This limits the resource usage of
the satellite tier and ensures that offloaded UEs can still meet their data-rate
requirements.
The load threshold τν also adapts to traffic conditions, mirroring the be-
haviour of ε. Higher values during low demand encourage aggressive MBSs
shutdowns for energy-saving purposes, while lower thresholds in peak hours
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limit shutdowns to nearly idle sites, avoiding coverage gaps that could de-
grade user experience.
Finally, the observed behaviour of the parameter α is consistent with the
intended design described in Section 6.5.2. Indeed, during low-traffic peri-
ods, α takes a negative value, effectively making heavily loaded cells more
attractive and thus concentrating the load to allow for more MBSs to shut
down. Conversely, in high-traffic conditions, α becomes positive to promote
load balancing by steering UEs away from congested cells.

6.6.5 Network Performance Analysis

This section examines the impact of the learned policy and the resultant
setting of θ on key network performance metrics under BCOMD-NETOP, and
compares them to the benchmarks presented above.

Impact of Satellite Network

Figure 6.4 illustrates the evolution of the proportion of UEs associated to the
satellite for the three strategies: BCOMD-NETOP, FTL, and Static-Opt. Both
BCOMD-NETOP and FTL consistently associate a higher proportion of UEs to
the satellite compared to Static-Opt in low-traffic periods (2 to 8 AM),
while during high-traffic hours, all three strategies converge to similar levels.
Indeed, those dynamic strategies associate associate up to 3 times more UEs
to the satellite during low-traffic period (approximately 30–35%) than the
Static-Opt baseline (roughly 10 %). This increased usage stems from their
adaptive nature—BCOMD-NETOP learns optimal policies over time using online
feedback, while FTL exploits past observations to make myopic but responsive
decisions. Therefore, they both identify that allocating more resources
to the satellite during low traffic leads to a smaller cost, and adapt their
behaviour accordingly. In contrast, as stated before, the Static-Opt strategy
is computed offline with full knowledge of observed costs and is designed to
minimise long-term average cost under constraints. As such, it conservatively
utilises satellite resources, resulting in a lower overall proportion of UEs
associated to the satellite. This behaviour is expected, as Static-Opt reflects
the globally optimal resource distribution, allocating fewer resources to

129



the satellite to preserve them for the TN and ensure consistent constraint
satisfaction. The higher satellite usage seen in BCOMD-NETOP and FTL thus
reflects the ability of these strategies to dynamically adjust to varying traffic
demand, offering improved short-term flexibility and responsiveness.
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Fig. 6.4: Daily profile of the proportion of UEs associated to the satellite.

Analysis on Network Energy Consumption

Next, we study how the energy consumption of the TN fluctuates across the
day. To that end, Fig. 6.5 illustrates the evolution of TN energy consumption
throughout the day for the three strategies detailed previously, with an
inset zooming into the low-traffic interval. Firstly, in low traffic, we notice
that both BCOMD-NETOP and FTL display lower energy consumption than the
Static-Opt baseline, with the energy consumption being decreased by an
average of roughly 4.5 %. This difference arises from the larger share of
the bandwidth being allocated to the satellite in these strategies. Indeed,
a higher amount of resources are available for the satellite which leads to
a greater number of UEs being handed over to it, as observed in Fig. 6.4.
This results in a more proficient offloading of the traffic and leads to larger
number of MBSs being shut down. Indeed, as stated previously, the more
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conservative approach of Static-Opt regarding the satellite usage limits the
potential gains in terms of energy saving during off-peak periods.
As traffic increases, the difference between BCOMD-NETOP and Static-Opt
narrows down and is virtually similar. This is explained by the fact that our
algorithm adapts to the traffic and identifies that the priority is to enhance
the capacity of the network, which hampers energy saving. On the opposite,
we notice that the FTL baseline consistently consumes less energy than the
two other strategies, with an average decrease of 2.5 % in high traffic. This is
explained by the nature of the FTL: as the decision is taken based on previous
observations, this strategy greedily follows the optimal decision for the past,
which leads to a higher proportion of the bandwidth allocated to the satellite
even when the traffic increases. However, this apparent efficiency comes
with hidden costs, as we will see in the following sections.
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Fig. 6.5: Daily profile of the TN energy consumption.

Analysis of UE Satisfaction

We study the UE satisfaction constraint violation. To that end, Fig. 6.6 depicts
the proportion of UEs who are not satisfied throughout the day for our frame-
work as well as the two benchmarks mentioned previously. This figure clearly
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shows that BCOMD-NETOP consistently achieves the lowest violation levels
throughout the day, indicating its superior ability to maintain UE QoS. In
contrast, FTL exhibits the highest proportion of constraint violations, particu-
larly during high-traffic periods (approximately 10 AM to 10 PM), where its
violation rate approaches 30 %. This significant performance gap is primarily
caused by the inherent lag in decision-making of the FTL strategy. Indeed,
as a myopic, reactive algorithm, FTL relies solely on historical observations,
which leads to delayed adaptations to traffic surges. Consequently, as we can
see in Fig. 6.5, this strategy prioritises energy saving, which comes at the
expense of the signal quality, as aggressively shutting down more MBSs in
high traffic results in coverage holes and the inability to satisfy all UEs.
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Fig. 6.6: Daily profile of the proportion of unsatisfied UEs.

On the other hand, BCOMD-NETOP outperforms both benchmarks due to its
adaptive, learning-based design. Indeed, it continuously adjusts the network
control parameters in response to current conditions, thereby minimising
violations. The key mechanism behind this responsiveness is the primal-dual
update structure, which dynamically increases the Lagrange multiplier λt

(Line 23 in Algorithm 3) whenever constraint violations grow. This penalises
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actions that lead to poor QoS and naturally steers the algorithm toward more
feasible solutions in future time steps. Unlike BCOMD-NETOP, FTL lacks any
such corrective mechanism—it cannot anticipate or counteract the effects of
constraint violations. Meanwhile, Static-Opt, though more stable than FTL,
remains a fixed offline solution and is inherently unable to react to dynamic
network states.

Analysis on Network Sum Throughput

Finally, we analyse the evolution of network ST: Fig. 6.7 depicts the ST of the
network throughout the day for our algorithm and the two benchmarks. Dur-
ing low-traffic hours, both BCOMD-NETOP and FTL outperform the Static-Opt
benchmark by approximately 7 % and 8.5 % respectively.
However, as traffic ramps up during daytime, the performance gap between
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Fig. 6.7: Daily network ST profile.

BCOMD-NETOP and Static-Opt diminishes close to 0. In fact, the two strate-
gies closely track each other, delivering comparable throughput levels on
average. This indicates that BCOMD-NETOP effectively matches the globally
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optimised behaviour of Static-Opt even under high load, thanks to its adap-
tive design and continual parameter tuning.
In stark contrast, the network ST under the FTL strategy significantly de-
grades, underperforming by as much as 10 % compared to the other strategies.
This drop in performance directly correlates with the higher proportion of
unsatisfied UEs shown in Fig. 6.6, many of whom fall into coverage holes due
to the lag in adapting to rapidly shifting traffic conditions. These UEs receive
negligible or null throughput, dragging down the overall system capacity.
These results underscore the resilience and adaptivity of BCOMD-NETOP in
maintaining performance in dynamic environments.

6.7 Conclusion & Perspectives

In this chapter, we introduced a comprehensive online learning framework
that leverages the BCOMD algorithm to dynamically optimise network con-
trol parameters affecting UE association, bandwidth allocation, and MBS
shutdown. Our proposed solution successfully adapts to fluctuating traffic
conditions, prioritising energy efficiency during low-demand periods while
ensuring robust UE satisfaction during high traffic. Through extensive sim-
ulations, we demonstrated that our framework closely tracks the offline
optimal benchmark, achieving a near-optimal trade-off between network
energy consumption and capacity in real time.
Also, we leverage a generalised Tsallis mirror map in our implementation,
which enables sparse action distributions and improved adaptability in dy-
namic settings, compared to prior methods based on Shannon entropy. We
derive formal performance guarantees for this new mirror map, establish-
ing regret and constraint violation bounds under adversarial conditions.
Additionally, we proposed a novel windowed class of estimators, which sig-
nificantly improves gradient estimate stability by reducing observation noise,
yielding enhanced empirical performance.
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Conclusion &
Perspectives

7

This thesis addressed the pressing problem of how to efficiently operate
integrated TN-NTNs systems, especially under dynamic traffic conditions and
stringent energy and coverage constraints. Although integrated TN-NTNs
offer significant potential, prior research has generally treated the non-
terrestrial tier as a static coverage enhancement layer, without leveraging its
ability to dynamically support traffic load balancing or contribute to energy
savings in the TN. Moreover, existing works have largely overlooked the joint
optimisation of spectrum sharing between the terrestrial and non-terrestrial
tiers, failing to fully exploit the flexible role that the latter tier can play,
adapting its role according to time-varying network conditions and traffic
demands.
In contrast, we developed an optimisation framework that demonstrated
that the non-terrestrial tier can play a context-aware role: acting as a high-
capacity overlay to assist with load balancing during peak hours, and serving
as a resilient fallback layer that enables energy-efficient operation of the
terrestrial tier during low-traffic periods. By dynamically adjusting UE associ-
ation, bandwidth partitioning, and terrestrial MBS activation, the proposed
framework unlocks the full potential of TN-NTNs as a self-optimising and
traffic-aware architecture for next-generation networks.

In Chapter 4, after identifying the shortcomings of traditional max-RSRP
association mechanisms, we developed a utility-based framework which
optimises UE association using a pricing method, the terrestrial MBSs trans-
mission power, as well as the bandwidth allocation between both terrestrial
and non-terrestrial tiers in high traffic. The framework was able to distribute
the load efficiently, enhancing the network SLT, and showcased the strengths
of LEO satellites by reducing considerably the coverage holes. Furthermore,
by analysing the scenario in which both tiers share the available bandwidth,
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we highlighted the trade-off between reducing coverage gaps and maximising
the network SLT.

Building on this, we developed BLASTER in Chapter 5, a novel algorithm
designed to adapt the role of satellites throughout the day. By optimising a
varying utility function which finds the best compromise between reducing
energy consumption and enhancing network SLT depending on the traffic
load, we were able to display the dynamic role satellites can play during an
entire day. In low-traffic conditions, the non-terrestrial tier assumes a central
role by offloading UEs from terrestrial MBSs, thereby enabling their shutdown
and conserving energy. In contrast, during periods of high traffic, it shifts to
a supporting role—primarily serving cell-edge UEs to ease congestion—while
also reallocating part of its resources to reinforce the terrestrial tier. BLASTER
demonstrated significant energy savings and enhanced throughput, while
maintaining service continuity.

Finally, recognising the need for scalable and distributed solutions, we de-
veloped a comprehensive online learning framework based on the BCOMD
algorithm in Chapter 6, enabling dynamic optimisation of key network con-
trol parameters, including UE association, bandwidth allocation, and MBS
shutdown decisions. This framework mirrored the behaviour of BLASTER,
successfully adapting to the varying traffic, while achieving results on par
with oracle solutions.

Each of these contributions were rigorously evaluated against comparable
benchmarks, and results consistently showed meaningful improvements in
relevant metrics such as throughput, user satisfaction, and energy consump-
tion.

These contributions not only address key limitations in the current research
landscape but also align closely with the broader vision of future 6G networks.
The integration of NTN technology is increasingly seen as a cornerstone of 6G,
with standardisation bodies such as the 3GPP actively working to incorporate
TN-NTNs into the 5G and beyond through Releases 17 to 20. While full-scale
deployment of NTNs remains a long-term goal, the potential benefits are
far-reaching. These include bridging the digital divide, supporting global IoT
applications, enhancing resilience in disaster-prone regions, and enabling
more inclusive access to connectivity—particularly for remote or underserved
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populations. The frameworks presented in this thesis contribute to this
trajectory by proposing practical methods for large-scale optimisation of
integrated TN-NTNs.

Perspectives

Throughout our work, we identified several promising directions to explore
to enhance the proposed frameworks and broaden their applicability:

BLASTER Convexity Analysis

Although BLASTER has demonstrated strong performance and there is em-
pirical proof that the optimisation problem is convex, a formal investiga-
tion into its convexity properties remains an open challenge. Establishing
whether the underlying optimisation problem is convex—or identifying con-
vex subsets—would help provide theoretical convergence guarantees for the
algorithm.

Interference Analysis

In our simulations, we primarily considered a single-satellite NTN overlay-
ing our study area. However, in practical deployments, multiple satellites
may operate concurrently, potentially causing inter-satellite and cross-link
interference. Indeed, the co-existence of multiple satellites in the same area
would alter the signal quality received from the non-terrestrial tier, and
may lead to differing results from the one in our work. Hence, future work
should incorporate interference modelling and coordination strategies in
multi-satellite settings to improve the accuracy and reliability of performance
evaluations.
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Uplink Analysis

Our current study focuses on DL optimisation, where UE experience is often
most impacted. Nevertheless, acUL performance is equally critical, especially
in applications such as IoT or remote sensing. Extending the proposed models
to account for UL constraints such as power limitations for example, would
offer a more comprehensive network perspective.

Integrated HAPS-Satellite Layout Analysis

Building upon the foundation laid by BLASTER, our ongoing work explores
the integration of an intermediate High-Altitude Platform Station (HAPS)
layer into the existing TN-NTN architecture. The inclusion of HAPS intro-
duces new modelling dimensions and challenges. For instance, when both
non-terrestrial tiers (HAPS and satellites) operate within the same frequency
band, inter-tier interference becomes a critical factor that can significantly
degrade overall network performance. Conversely, adopting a three-way
bandwidth split among terrestrial, HAPS, and satellite tiers can mitigate
interference but introduces a more intricate resource allocation problem.
In this latter case, maintaining fairness and managing handovers across all
three tiers may require new optimisation strategies.

UAV CIO Optimisation

As discussed in Chapter 6, employing deep RL techniques to optimise the
CIOs based on handover events defined by the 3GPP—as explored by Alsuhli
et al. [120] and Attia et al. [121]—proves computationally intractable when
applied to a coverage area as large as that of a LEO satellite beam. The sheer
number of terrestrial MBSs within such a region leads to an enormous state
and action space, making real-time training and inference impractical. In
contrast, UAVs typically serve much smaller coverage areas, encompassing
fewer terrestrial MBSs, which significantly reduces the problem complexity.
This makes deep RL-based CIO optimisation a far more viable and scalable
solution in UAV-assisted scenarios, and one direction of research that we
would look into in the future.
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Decentralised Optimisation Beyond BCOMD

A promising direction for future research involves exploring alternative de-
centralised learning frameworks for network control in integrated TN-NTNs.
While we considered online learning methods such as BCOMD, more flexible
and fine-grained approaches are emerging. In particular, the distributed com-
binatorial MAB framework presented by Wang et al. [125] offers a powerful
paradigm for real-time, agent-level optimisation. Similar methods could en-
able each network node/BS to independently select from a multi-dimensional
action space based on local observations and performance feedback, without
requiring global coordination.
Moreover, the use of weighted reward functions within combinatorial MAB
schemes could allow explicit control over the trade-offs between the different
key performance indicators (KPIs) we monitor. Adapting such methods to the
TN-NTN context could enhance scalability under varying traffic and mobility
patterns.
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Appendix A - Proof of
Proposition 1

First, we inject (5.9) into formula (5.10) to get:

D (µ) = L (X⋆, µ) = 1
2∥X

⋆∥2
F − Tr

(
X⋆T X̃

)
+ 1

2∥X̃∥
2
F

[(
X⋆ ⊙ β

)
· p
]T

µ

− (RSRPmin · 1K)T µ. (.1)

Then, keeping the same notations as above, we notice that:

[(
X⋆ ⊙ β

)
· p
]T

µ = Tr
(
X⋆

(
β ⊙ pPAD ⊙ µPAD

)T
)
, (.2)

Indeed, developing the left component of (.2), we get:

[(
X⋆ ⊙ β

)
· p
]T

µ =



x∗

11 · · · x∗
1L

... . . . ...

x∗
K1 · · · x∗

KL

⊙

β11 · · · β1L

... . . . ...

βK1 · · · βKL

 ·

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pL



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Then, focusing on the right component of (.2), we have:

X⋆
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β ⊙ pPAD ⊙ µPAD

)T

=


x∗

11 · · · x∗
1L
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Then, by applying the trace operator, we effectively get:

Tr
(
X⋆

(
β ⊙ pPAD ⊙ µPAD

)T
)

=
K∑

i=1
µi

 L∑
j=1

x∗
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Injecting (.2) into (.1) and noticing that , we obtain:

D (µ) = 1
2 ||X

⋆||2F − Tr
(
X⋆

[
X̃ − β ⊙ pPAD ⊙ µPAD

]T)
− (RSRPmin · 1K)T µ,

(.3)

which concludes the proof of the proposition.
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Appendix B - Proof of
Theorem 1

Preliminary Lemmas

Lemma 1. The iterates produced by Algorithm 3 and the Tsallis entropy mirror
map (6.15), with the cost and constraint functions respectively {fs}t

s=1 and
{gs}t

s=1, satisfy the following:

yt+1 =
[
xq−1 − q − 1

q
ηb̃t

] 1
q−1

. (.4)

Proof. Using the fact that:

∇Φq(x) = q

q − 1x
q−1, (.5)

we can derive the inverse function as:

∇−1
Φq

(y) =
[
q − 1
q

y

] 1
q−1

. (.6)

Then, combining with the update step in Line 19, we obtain:

yt+1 =
[
q − 1
q

[
∇Φq(x)− ηb̃t

]] 1
q−1

=
[
q − 1
q

[
q

q − 1x
q−1 − ηb̃t

]] 1
q−1

=
[
xq−1 − q − 1

q
ηb̃t

] 1
q−1

.
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Lemma 2. Under the Tsallis entropy mirror map (6.15), the primal iterates of
Algorithm 3 verify:

E [DΦ(xt, yt+1)|Ht−1] ≤
3nη2

2q γq−2
[
1 + λ2

t + Ω2
]
, (.7)

where Ht−1 ≜ {a1, . . . , at−1} is the history of actions selected up to time t− 1.

Proof. We start this proof by showing that ∇Φq(x) is Lipschitz. Firstly, we
know that:

∥∥∥∇Φq(y)−∇Φq(x)
∥∥∥

1
= q

1− q

n∑
i=1

∣∣∣yq−1
i − xq−1

i

∣∣∣ . (.8)

Then, we use the fact that f(x) = xq−1 is |q − 1|γq−2−Lipschitz, since ∀i ∈
{1, . . . , n}, xi, yi ∈ [γ, 1].

Applying the mean-value theorem to f , we get:

|f(yi)− f(xi)| = |yq−1
i − xq−1

i | ≤ |q − 1|γq−2|yi − xi|, (.9)

where we used the fact that the derivative of f is bounded by |q − 1|γq−2.

Injecting (.9) into (.8), we can upper-bound the left component as:

∥∥∥∇Φq(y)−∇Φq(x)
∥∥∥

1
≤ q

1− q

n∑
i=1

(1− q)γq−2|yi − xi| (.10)

≤ q
n∑

i=1
γq−2 max

i
{yi − xi} (.11)

≤ qγq−2
n∑

i=1
||y − x||∞ (.12)

≤ nqγq−2||y − x||∞. (.13)

Hence, we have shown that ∇Φq(x) is nqγq−2− Lipschitz, which is equivalent
to Φq(x) being nqγq−2−smooth.

However, as stated in Lemma 3.4 of Bubeck [126], a β−smooth function f
verifies:
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||f(y)− f(x)− ⟨∇g(x), y − x⟩||1 ≤
β

2 ∥y − x∥
2
∞. (.14)

By definition of the Bregman divergence, this implies that:

|DΦ(x, y)| ≤ nqγq−2

2 ∥y − x∥2
∞ ∀x, y ∈ ∆n. (.15)

Then, using the Taylor-Young formula to approximate yt+1 based on (.4), we
get:

yt+1 ≈ xt −
η

q
b̃t. (.16)

Therefore, we have:

∥yt+1 − xt∥2
∞ ≈ ∥xt −

η

q
b̃t − xt∥2

∞ ≈
η2

q2 ∥b̃t∥2
∞. (.17)

We can then inject this previous result in the right component of (.15) to
obtain:

DΦ(xt, yt+1) ≤
nqγq−2

2 × η2

q2 ∥b̃t∥2
∞. (.18)

Taking the expectation and using the fact that b̃t = ω̃t + f̃t + λtg̃t:

E [DΦ(xt, yt+1)|Ht−1] ≤
η2nγq−2

2q E
[
∥b̃t∥2

∞

]
. (.19)

We notice that:

∥b̃t∥2
∞ =

(
max

a=1,...,n
ω̃t,a + f̃t,a + λtg̃t,a

)2

≤ (Ω + 1 + λt)2 ≤ 3Ω2 + 3 + 3λ2
t

≤ 3
(
1 + λ2

t + Ω2
)
,

where we used the fact that (x+ y + z)2 ≤ 3x2 + 3y2 + 3z2.

Finally, using this previous inequality, we obtain the result:

E [DΦ(xt, yt+1)|Ht−1] ≤
3nη2

2q γq−2
[
1 + λ2

t + Ω2
]
. (.20)
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Lemma 3. Under the Tsallis entropy mirror map (6.15), the Bregman diver-
gence with variables x, y ∈ ∆n,γ is upper bounded as:

DΦ(x, y) ≤ 4Cγ,q, (.21)

where Cγ,q = q
1−q

γq−1.

Proof. First, let us develop the full-form expression of the Bregman diver-
gence:

DΦ(x, y) = 1
1− q

[∑
i

xq
i −

∑
i

yq
i + q

n∑
i=1

yq−1
i (xi − yi)

]
. (.22)

Then, by applying the mean-value theorem to the function f(z) = zq, we
know that:

∃ c ∈ [min(xi, yi),max(xi, yi)] s.t. xq
i − y

q
i = f ′(c)(xi − yi). (.23)

Using this, we obtain:

Dq(x, y) = 1
1− q

n∑
i=1

[
qcq−1(xi − yi) + qyq−1

i (xi − yi)
]

= q

1− q

n∑
i=1

[
cq−1(xi − yi) + yq−1

i (xi − yi)
]

= q

1− q

n∑
i=1

(xi − yi)
[
cq−1 + yq−1

i

]
.

By definition of c ∈ ∆n,γ and noting that x ↣ xq−1 is a non-increasing
function, we have: c

q−1 ≤ γq−1

yq−1
i ≤ γq−1.

This yields:

Dq(x, y) ≤ 2 q γq−1

1− q

n∑
i=1

(xi − yi). (.24)
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Finally, by observing that ∥x− y∥1 ≤ ∥x∥1 + ∥y∥1︸ ︷︷ ︸
:= 2

, we get:

Dq(x, y) ≤ 4 q

1− qγ
q−1. (.25)

Lemma 4. Under the Tsallis entropy mirror map (6.15), for all t, the variables
λt and xt in Algorithm 3 verify:

E [Ψt(xt, λ)−Ψt(x, λt)] ≤ E
[(

1
η
DΦ(xt, yt+1) + µ

2

)]

+ E
[

1
η

(DΦ(x, xt)−DΦ(x, xt+1)) + 1
2µ

(
(λt − λ)2 − (λt+1 − λ)2

)]
,

for x ∈ ∆n, λ ≥ 0.

Proof. The proof is provided in [113].

Lemma 5. Under the Tsallis entropy mirror map (6.15), the primal iterates of
Algorithm 3 satisfy:

1
2µE

[
λ2

t+1 − λ2
t

]
≤ 2− κE[λt] + 1

η
E [DΦ(x⋆, xt)−DΦ(x⋆, xt+1)]

+ 3nη
2q γq−2

[
1 + E[λ2

t ] + Ω2
]

+ µ

2 .

for x∗ ∈ ∆n satisfying Assumption 1.

Proof. Using Lemma 4, we know that:

E [Ψt(xt, 0)−Ψt(x, λt)] ≤ E
[

1
η

(DΦ(x, xt)−DΦ(x, xt+1))
]

+ 1
2µ

[
λ2

t − λ2
t+1

]
+ E

[
1
η
DΦ(xt, yt+1) + µ

2

]

⇔ 1
2µ

[
λ2

t+1 − λ2
t

]
+ E [Ψt(xt, 0)−Ψt(x, λt)] ≤ E

[
1
η

(DΦ(x, xt)−DΦ(x, xt+1))
]

+ 1
η
E [DΦ(xt, yt+1)] + µ

2 .
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Then, using Lemma 2, we get:

1
2µ

[
λ2

t+1 − λ2
t

]
+ E [Ψt(xt, 0)−Ψt(x, λt)] ≤ E

[
1
η

(DΦ(x, xt)−DΦ(x, xt+1))
]

+ 3nη
2q γ

q−2
[
1 + λ2

t + Ω2
]

+ µ

2 .

However, by noting that Ψt(xt, 0)−Ψt(x, λt) = ft(xt)− ft(x)− λt gt(x) and
using Assumption 1, we obtain:

1
2µ

[
λ2

t+1 − λ2
t

]
≤ 2− κE[λt] + 1

η
E [DΦ(x⋆, xt)−DΦ(x⋆, xt+1)]

+ 3nη
2q γq−2

[
1 + E[λ2

t ] + Ω2
]

+ µ

2 .

Lemma 6. For a fixed y ∈ ∆n,γ, DΦ(·, y) is 2 Cγ,q−Lipschitz.

Proof. Let x′, x” ∈ ∆n,γ, we have:

DΦ(x′, y)−DΦ(x′′, y) = 1
1− q

[ n∑
i=1

x′
i
q −

n∑
i=1

yi
q + q

n∑
i=1

yq−1
i (x′

i − yi)

−
n∑

i=1
x′′

i
q +

n∑
i=1

yi
q − q

n∑
i=1

yq−1
i (x′′

i − yi)
]

Then, we obtain:

DΦ(x′, y)−DΦ(x′′, y) = 1
1− q

[ n∑
i=1

x′
i
q −

n∑
i=1

x′′
i

q + q
n∑

i=1
yq−1

i x′
i − q

n∑
i=1

yq−1
i x′′

i

]

= 1
1− q

[ n∑
i=1

(x′
i
q − x′′

i
q) + q

n∑
i=1

yq−1
i [x′

i − x′′
i ]
]
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Similarly to (.23), we use the mean-value theorem to upper-bound the left
component:

DΦ(x′, y)−DΦ(x′′, y)

≤ 1
1− q

[
qγq−1

n∑
i=1

[x′
i − x′′

i ] + qγq−1
n∑

i=1
[x′

i − x′′
i ]
]

≤ 2 q

1− qγ
q−1
[ n∑

i=1
[x′

i − x′′
i ]
]

≤ 2 q

1− qγ
q−1 ∥x′ − x′′∥1 .

Lemma 7. Let γ ∈ R>0 and {x⋆
t,γ}T

t=1 be the projection of the oracle sequence
(6.5) onto ∆n,γ. Then, under the Tsallis entropy (6.15), the primal decisions
{xt}T

t=1 of Algorithm 3 verify the following:

T∑
t=1

DΦ(x⋆
t,γ, xt)−DΦ(x⋆

t,γ, xt+1) ≤ 2Cγ,q

[
2 +

T −1∑
t=1

∥∥∥x⋆
t+1 − x⋆

t

∥∥∥
1

]
, (.26)

where Cγ,q = q
1−q

γq−1.

Proof. We start by rewriting the sum by extracting the first and last compo-
nent to get:

T∑
t=1

DΦ(x⋆
t,γ, xt)−DΦ(x⋆

t,γ, xt+1) = DΦ(x⋆
1,γ, x1)︸ ︷︷ ︸

≤ 4Cγ,q (Lemma 3)

−DΦ(x⋆
T,γ, xT +1)︸ ︷︷ ︸
≥0

+
T −1∑
t=1

[
DΦ(x⋆

t+1,γ, xt+1)−DΦ(x⋆
t,γ, xt+1)

]
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≤ 4Cγ,q +
T −1∑
t=1

DΦ(x⋆
t+1,γ , xt+1)−DΦ(x⋆

t,γ , xt+1)︸ ︷︷ ︸
≤ 2Cγ,q∥x⋆

t+1,γ − x⋆
t,γ∥1

≤ 4Cγ,q + 2Cγ,q

T −1∑
t=1

∥∥∥x⋆
t+1 − x⋆

t

∥∥∥
1

≤ 2Cγ,q

[
2 +

T −1∑
t=1

∥∥∥x⋆
t+1 − x⋆

t

∥∥∥
1

]
.

Lemma 8. Under the Tsallis entropy (6.15), the dual variables λt, t ∈ [1, T ] in
Algorithm 3 are bounded by:

Ω ≜
4Cγ,q

κ

(
µ

η

)
+ 3n

2κ ·
η γq−2

q
+ 1

2κµ+ 3n
κ
· γ

q−2

q
+ 2
κ

+ 1, (.27)

where η ≤ Ω−2 and µ > 0.

Proof. We adopt a similar approach to the one presented in [113]. First case:
t ≤ 1

µ

In that case, we have:

λt ≤ λt−1 + µ ≤ µt ≤ 1 ≤ Ω.

Second case: 1
µ
≤ t ≤ T

We prove this by contradiction: let us assume that T0 is the first time slot for
which λT0 > Ω, which implies:

λT0− 1
µ
≤ Ω < λT0 . (.28)

This yields the following:

1
µ

T0−1∑
t=T0− 1

µ

E
[
λ2

t+1 − λ2
t

]
= 1
µ
E
[
λ2

T0 − λ
2
T0− 1

µ

]
> Ω2 − Ω2 > 0.

152



Then, using Lemma 5, we have:

1
µ

T0−1∑
t=T0− 1

µ

E
[
λ2

t+1 − λ2
t

]
≤

T0−1∑
t=T0− 1

µ

2
2− κE[λt] + 1

η
E [DΦ(x⋆, xt)−DΦ(x⋆, xt+1)]

+ 3nη
2q γ

q−2
(
1 + E[λ2

t ] + Ω2
)

+ µ

2



≤ 2
 2
µ
− κ

T0−1∑
t=T0− 1

µ

E[λt] + 1
η

T0−1∑
t=T0− 1

µ

E [DΦ(x⋆, xt)−DΦ(x⋆, xt+1)]

︸ ︷︷ ︸
:=(⋆)

+ 3nη γq−2

2qµ + 3nη γq−2

2q

T0−1∑
t=T0− 1

µ

E[λ2
t ] + 3nη γq−2

2qµ Ω2 + 1
2

.
By telescoping the sum in (⋆), and applying Lemma 3, we obtain:

≤ 2
 2
µ
− κ

T0−1∑
t=T0− 1

µ

E[λt] + 4Cγ,q

η
+ 3nη γq−2

2qµ + 3nη γq−2Ω2

2qµ

+ 3nη γq−2

2q

T0−1∑
t=T0− 1

µ

E[λ2
t ] + 1

2

.

Since λT0 > Ω, we know that we have:

T0−1∑
t=T0− 1

µ

E[λt] >
T0−1∑

t=T0− 1
µ

(Ω− sµ) = Ω
µ
− µ

T0−1∑
t=T0− 1

µ

s

>
Ω
µ
− µ 1

µ2 ≥
Ω
µ
− 1
µ
,
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where s ≤ 1
µ
.

Combined with the fact that
∑T0−1

t=T0− 1
µ

E[λ2
t ] ≥ Ω2

µ
, we have:

1
µ

T0−1∑
t=T0− 1

µ

E
[
λ2

t+1 − λ2
t

]
≤ 2

 2
µ
− κΩ

µ
+ κ

µ
+ 4Cγ,q

η

+ 3nη γq−2

2qµ + 3nη γq−2Ω2

qµ
+ 1

2

.

Considering η ≤ Ω−2 yields:

0 < 2
 2
µ
− κΩ

µ
+ κ

µ
+ 4Cγ,q

η
+ 3nµ γq−2

2qµ + 3n γq−2

qµ
+ 1

2

.
Finally, by multiplying both sides by µ

2 κ
, we obtain:

Ω <
4Cγ,q

κ

(
µ

η

)
+ 3n

2κ ·
η γq−2

q
+ 1

2κµ+ 3n
κ
· γ

q−2

q
+ 2
κ

+ 1 = Ω,

which is a contradiction. This hereby proves that λt ≤ Ω, ∀t ∈ [1, T ].

Lemma 9. Given a comparator sequence {ut}T
t=1 in ∆n, we apply Algorithm 3

under the Tsallis entropy mirror map (6.15). Then, we establish the following
regret guarantee:

E
[

T∑
t=1

ft(at)− ft(ut)
]
≤
[

2Cγ,q

η0

(
2 +

T −1∑
t=1
∥ut − ut+1∥1

)
+ η0

]√
βT

+ µT

2 + 2(1 + Ω)γ
√
T ,

where β = n γq−2

q

(
3
2 + 3Ω2

)
, η = η0√

βT
and η0 >

√
2Cγ,q.
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Proof. We start by stating that:

E
[

T∑
t=1

ft(at)−
T∑

t=1
ft(x⋆

t )
]

= E
[

T∑
t=1

E [ft(at) | Ht−1]−
T∑

t=1
ft(x⋆

t )
]

= E
[

T∑
t=1

ft(xt)−
T∑

t=1
ft(x⋆

t )
]

≤ E
[

T∑
t=1

ft(xt)−
T∑

t=1
ft(x⋆

γ,t)
]

+ 2(1 + Ω)γT.

Then, using Lemma 4 yields:

T∑
t=1

E
[
ψt(xt, λ)− ψt(x⋆

t,γ, λt)
]
≤

T∑
t=1

1
η
E
[
DΦ(x⋆

t,γ, xt)−DΦ(x⋆
t,γ, xt+1)

]
+ µ

2 + 1
2µ E

[
(λ− λt)2 − (λ− λt+1)2

]

+ 1
η
E [DΦ(xt, yt+1)]



≤ 1
η

T∑
t=1

E
[
DΦ(x⋆

t,γ, xt)−DΦ(x⋆
t,γ, xt+1)

]

+
T∑

t=1

1
2µ E

[
(λ− λt)2 − (λ− λt+1)2

]

+
T∑

t=1

1
η
E [DΦ(xt, yt+1)] + µT

2

≤ 1
η

[
2Cγ,q

(
2 +

T −1∑
t=1
∥ut − ut+1∥1

)]

+
T∑

t=1

1
2µ E

[
(λt − λ)2 − (λt+1 − λ)2

]

+
T∑

t=1
E
[

1
η
DΦ(xt, yt+1)

]
+ µT

2

By applying Lemmas 2 and 8, we obtain:

T∑
t=1

E
[
ψt(eat , λ)− ψt(x⋆

γ,t, λt)
]
≤ 1
η

[
2Cγ,q

(
2 +

T −1∑
t=1
∥µt − µt−1∥1

)
+ λ2

]

+ µT

2 + nη γq−2

q

(3
2 + 3Ω2

)
T.
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Then, if we set λ to 0, we have the following:

T∑
t=1

E
[
ψt(eat , λ)− ψt(x⋆

rt,γ, λt)
]

=
T∑

t=1
ft(xt)− ft(x⋆

rt
)−

T∑
t=1

λt gt(x⋆
rt

)︸ ︷︷ ︸
≤ 2γ

. (.29)

Injecting (.29) into the previous inequality, we get:

T∑
t=1

ft(xt)− ft(x⋆
γ,t) ≤

1
η

[
2Cγ,q

(
2 +

T −1∑
t=1
∥ut − ut−1∥1

)]
+ µT

2

+ nη γq−2

q

(3
2 + 3Ω2

)
T + 2γΩT.

Finally, we conclude the proof by setting β = n γq−2

q

(
3
2 + 3Ω2

)
and η =

η0√
βT

.

Lemma 10. Given a comparator sequence {ut}T
t=1 in ∆n, we apply Algorithm 3

under the Tsallis entropy mirror map (6.15). Then, we establish the following
regret guarantee:

E
[

T∑
t=1

ft(at)− ft(ut)
]
≤ 3η0

√
βT + 2(1 + Ω)γT + µT

2

+ 2Cγ,qTVT

η2
0 − 2Cγ,q

1

{
T −1∑
t=1
∥ut − ut+1∥1 >

η2
0 − 2Cγ,q

Cγ,q

}
,

where β = n γq−2

q

(
3
2 + 3Ω2

)
, η = η0√

βT
and η0 >

√
2Cγ,q.

Proof. We follow the proof structure of [113]. We start by defining the
following set:

UT ≜

{
µ1, . . . , µT ∈ ∆n

∣∣∣∣∣
T −1∑
t=1
∥ut − ut+1∥1 ≤

η2
0 − 2Cγ,q

Cγ,q
, gt(ut) ≤ 0, ∀t ∈ [T ]

}
(.30)

and u⋆ such that:

{u⋆
t}T

t=1 ∈ arg min
{ut}T

t=1∈UT

T∑
t=1

ft(ut). (.31)
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Considering the above, we have:

E
[

T∑
t=1

ft(at)− ft(ut)
]

= E
[

T∑
t=1

(ft(at)− ft(ut) + ft(u⋆
t )− ft(u⋆

t ))
]

≤ E
[

T∑
t=1

(ft(at)− ft(u⋆
t ))
]

+
T∑

t=1
(ft(u⋆

t )− ft(ut))

≤
[

2Cγ,q

η0

(
2 +

T −1∑
t=1
∥ut − ut+1∥1

)
+ η0

]√
βT + µT

2

+ 2(1 + Ω)γ
√
T +

T∑
t=1

(ft(u⋆
t )− ft(ut)) ,

Since {u⋆
t} ∈ UT , we have:

E
[

T∑
t=1

ft(at)− ft(ut)
]
≤ 3η0

√
βT + µT

2 + 2(1 + Ω)γ
√
T +

T∑
t=1

ft(u⋆
t )− ft(ut)

≤ 3η0

√
βT + µT

2 + 2(1 + Ω)γ
√
T

+
[

T∑
t=1

ft(u⋆
t )− ft(ut)

]
1

{
T −1∑
t=1
∥ut − ut+1∥1 >

η2
0 − 2Cγ,q

Cγ,q

}
,

where we used the fact that

T∑
t=1

ft(u⋆
t )− ft(ut) ≤ 0 if (u1, . . . , uT ) ∈ UT .

Then, similarly to the proof in [113], we partition the time horizon into B
equally sized batches, assigning a fixed comparator to each batch, which
leads to:

T∑
t=1
∥ut − ut+1∥1 ≤ 2B. (.32)
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Taking B = η2
0−2Cγ,q

Cγ,q
, x⋆

t = arg minx ft(x) yields:

T∑
t=1

ft(u⋆
t )− ft(ut) ≤

T∑
t=1

ft(u⋆
t )− ft(x⋆

t )

=
B∑

k=1

∑
t∈Tk

ft(u⋆
t )− ft(x⋆

t )

≤
B∑

k=1

∑
t∈Tk

ft(x⋆
k)− ft(x⋆

t )

≤ T

B

B∑
k=1

max
t∈Tk

{ft(x⋆
k)− ft(x⋆

t )} ,

where tk ∈ Tk ≜
[
(k − 1) T

B
+ 1, k T

B

]
is considered fixed.

Then, as proven in [113], we have for any given tk ∈ Tk:

ft(x⋆
k)− ft(x⋆

t ) ≤ 2
∑
s∈Tk

sup
x∈∆n

|fs(x)− fs−1(x)| . (.33)

Injecting (.33), we finally get:

T∑
t=1

(ft(u⋆
t )− ft(ut)) ≤

T

B

B∑
k=1

max
t∈Tk

{ft(x⋆
k)− ft(x⋆

t )}

≤ 2T
B

B∑
k=1

∑
s∈Tk

sup
x∈∆n

|fs(x)− fs−1(x)|

= 2T
B
VT = 2Cγ,qTVT

η2
0 − 2Cγ,q

,

which concludes the proof.

Proof of Theorem 1

Now that all the necessary lemmas are proven, we can proceed with the
proof of the main theorem.
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Proof. From Lemmas 9 and 10, we have the following:

E
[

T∑
t=1

ft(at)− ft(u⋆
t )
]
≤ µT

2 + 2(1 + Ω)γT

+ min
{

3η0

√
βT + 2Cγ,qTVT

η2
0 − 2Cγ,q

;
[

2Cγ,q (2 + PT )
η0

+ η0

]√
βT

}
,

where η = η0√
βT

, for η0 = min
{√

P ∗
T , V

1
3

T T
1
6

}
. This yields the result outlined:

E
[

T∑
t=1

ft(at)− ft(u⋆
t )
]

= O
(

min
{√

P ⋆
TT , V

1/3
T T 2/3

})
. (.34)

For the constraint violation regret, the proof is similar to [113]. First, we
notice that:

1
µ
E [λt+1 − λt |Ht−1] ≥ gt(xt).

Finally, for µ = Θ( 1√
T

), we have:

E
[

T∑
t=1

gt(at)
]

= E
[

T∑
t=1

gt(xt)
]

≤ E
[

T∑
t=1

1
µ
E [λt+1 − λt |Ht−1]

]

= 1
µ
E[λT +1] ≤

Ω
µ

= O
(√

T
)
,

where we used Lemma 8 and the fact that the choice ofM yields η ≤ Ω−2.
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