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Abstract

Doctor of Philosophy

Toward Automated Augmentation for Traffic Classification

by Chao WANG

Network Traffic Classification (TC), which identifies the application responsible for
generating a given traffic flow, is essential for managing modern networks by en-
abling effective resource allocation and service differentiation. However, TC faces
growing challenges due to encryption, traffic diversity, inference efficiency, and the
scarcity of labeled data. While Machine Learning (ML) offers a promising approach
by learning patterns from limited information, it still faces challenges like distribu-
tion shifts and a scarcity of publicly available annotations.

This dissertation tackles the challenges mentioned above through three main contri-
butions. First, we benchmark 18 hand-crafted augmentations for supervised TC and
integrate them into contrastive learning to handle label-scarce scenarios, demon-
strating improved performance and generalization. Second, to deepen our under-
standing of state-of-the-art generative models, we begin by exploring diffusion mod-
els in the ML domain, focusing specifically on conditional text-to-image generation
task. We propose novel mutual information estimators using pretrained diffusion
and rectified flow models, and apply them in self-supervised fine-tuning to enhance
text-to-image alignment without external models or annotations. Third, we advance
generative modeling for network traffic by building a standardized benchmarking
framework including datasets, preprocessing, baselines, and evaluation, and devel-
oping a diffusion model for packet series that outperforms existing generative mod-
els in fidelity and downstream utility.

By addressing these areas, this dissertation advances TC under data scarcity, im-
proves alignment in conditional generative models, and provides benchmarks for
generative modeling of traffic — laying a foundation for more robust and adaptable
ML systems in networking contexts.

Keywords: traffic classification — data augmentation — contrastive learning — diffu-

sion model — flow matching — mutual information
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Chapter 1

Introduction

1.1 Overview

The Internet forms the foundation of global digital connectivity, linking billions of
devices and supporting a vast range of applications, from messaging and media
streaming to autonomous systems and industrial automation. Underlying these ser-
vices is the ongoing transmission of data packets, commonly referred to as network
traffic. Understanding the nature of this traffic is essential for managing modern
networks effectively, making network TC, which identifies the application that has
generated a given traffic flow, a fundamental step in network operation. For in-
stance, TC enables intelligent resource allocation, adaptive congestion control, and
low-latency service guarantees for latency-sensitive applications such as online gam-
ing and real-time video conferencing. It also plays a key role in policy enforcement
and service differentiation, ensuring that diverse applications receive the quality of

service they require.

Classifying network traffic in modern networks presents several key challenges. The
increasing use of encryption, which hides payload content, limits the effectiveness
of traditional deep packet inspection techniques. Combined with the growing vol-
ume and diversity of traffic, this makes it difficult to maintain static rule sets or rely
on protocol signatures. In response,MLhas gained attention as a data-driven ap-
proach that extracts patterns from limited information and adapts to changing con-
ditions, enabling efficient, automated TC. Still, machine learning-based classifiers
face their own challenges. Real-time processing requirements in high-speed envi-
ronments impose strict constraints on latency and memory usage. Moreover, traffic
patterns evolve rapidly due to distribution shifts in existing applications over time
and the continuous emergence of new applications, requiring classification systems
to be both robust and scalable. A further limitation in this research area is the lack of
large, open-source datasets. Unlike in computer vision or natural language process-
ing, publicly available labeled traffic data is scarce, due to privacy concerns, legal
restrictions, and the complexity of capturing representative network traffic at scale.
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The ultimate goal of this dissertation is to study how to improve TC in a data-drive
fashion. In particular, recent advances ML literature related to data augmentation,
contrastive learning, and generative modeling have been shown to be effective in
scenarios suffering from data scarcity and distribution shifts, i.e., issues that are com-
monly found also in TC. Building on ideas from this body of literature, this study in-
vestigates if /how to take advantage of synthetic data for improving TC. Specifically,
our work begins with hand-crafted augmentations, then shifts toward understand-
ing diffusion-based generative models in a more established domain of Computer
Vision (CV), and ultimately returns to networking with an integrated generative ap-

proach. The contributions of this dissertation are threefold:

¢ Exploration of hand-crafted augmentation and contrastive learning to TC task:
we benchmark 18 hand-crafted augmentations in supervised learning, and
then apply them within contrastive learning frameworks to address more chal-
lenging scenarios with limited labeled data for target classes, demonstrating
their effectiveness in enhancing classification performance and generalization.

¢ Estimation of MI and its application in improving text-to-image alignment: to
better understand diffusion models, we study conditional generation in the
text-to-image domain. We propose novel MI estimators based on pretrained
diffusion and rectified flow models, and apply them in a self-supervised fine-
tuning strategy to enhance alignment between generated samples and con-
ditioning inputs, achieving improved alignment for text-to-image synthesis

without relying on external models or human annotations.

* Development of generative modeling for network traffic: we return to the orig-
inal problem of traffic modeling by focusing on generative approaches to en-
able more automated and scalable solutions. To address the lack of standard-
ized benchmarks, we build a framework that includes datasets, preprocessing,
baseline methods, and evaluation protocols covering both fidelity and down-
stream classification utility. We also develop a diffusion model for packet series
that achieves better performance than existing generative models.

By addressing these areas, the dissertation advances TC under data scarcity, im-
proves alignment in conditional generative models, and provides benchmarks for
generative modeling of traffic — laying a foundation for more robust and adaptable
ML systems in networking contexts.

1.2 Hand-crafted augmentations and contrastive learning for
traffic classification
In the first part of this dissertation, we focus on introducing hand crafted augmenta-

tions and contrastive learning for TC studies. Specifically, after discussing the back-
ground of TC task, we present the use of hand crafted augmentations in traditional
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supervised classification, and its combination with contrastive learning in various
challenging few-shot scenarios.

Chapter 2 provides background on TC. After framing the importance of this task, the
discussion outlines the three main phases of classification: input encoding, decision
process, and accuracy evaluation, with a focus on the first two. First, commonly
used input representations are reviewed, including payloads, packet time series, and
flowpic, emphasizing the need for robustness to encryption and support for early
classification. Then, decision methods are reviewed in order of their evolution, from
rule-based approaches like Deep Packet Inspection (DPI) to classical ML and modern
Deep Learning (DL) models, discussing their respective strengths and limitations.
Overall, this chapter lays the groundwork for the more advanced methods explored
afterwards.

Chapter 3 builds on the foundational concepts and methods of TC introduced ear-
lier and shifts the focus from model design to the largely unexplored potential of the
data itself. Specifically, the chapter focuses on the application of hand-crafted Data
Augmentation (DA)s to enhance the classifier’s performance in traditional super-
vised classification task, taking packet time series as input. We conduct a compre-
hensive empirical study on 18 hand-crafted augmentation techniques grouped into
three categories: amplitude, masking, and sequence transformations. We evaluate
their effectiveness across multiple datasets, with emphasis on performance improve-
ments, class imbalance mitigation, latent space geometry, and augmentation combi-
nation strategies. Results indicate that, while no single augmentation is universally
optimal, those that provide moderate but meaningful variation tend to perform best,
and injecting augmented samples into the real data mini-batch is the most effective
way to apply them. As a whole, the chapter provides a systematic benchmark of
hand-crafted DA, presenting both their individual and combined effects on classi-
fication performance across several TC datasets, offering valuable insights into the
design space of DA and motivates the application of DA in more challenging sce-
narios in the following chapter.

Chapter 4 addresses Few-Shot Learning (FSL) challenges using DA together with
contrastive learning methods, given the success of DA in traditional supervised clas-
sification. Starting with clarifying the task definition, FSL aims to build effective
classifiers from a small number of labeled training samples for the target classes,
which is particularly useful in network environments where data collection and an-
notation is at high cost. In this context, this chapter examines two specific FSL cases:
(i) pretraining on a large collection of unlabeled samples and fine-tuning on a few
labeled samples from the target classes, and (ii) pretraining on labeled samples from
non-target classes, followed by fine-tuning on the target classes. Regarding to the
methodologies, contrastive learning that builds on data augmentation plays an im-

portant role in both cases by explicitly enforcing geometric properties in the latent
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space. Specifically, contrastive learning optimizes the feature representation by max-
imizing the distance between samples from different classes (namely negative pairs)
and minimizing the distance between samples from the same class (namely positive
pairs) in the latent space. After introducing the mathematical foundation of con-
trastive learning, a series of experiments for the first FSL case with flowpic input
reveals that Change RTT and Time Shift are the best augmentations and confirms
their effectiveness in self-supervised contrastive pretraining. Furthermore, in the
second FSL case with packet time series input, supervised contrastive learning also
outperforms other monolithic- and meta-learning methods. Overall, these findings
highlight how contrastive learning, in conjunction with DA, facilitates robust TC in
data-scarce regime.

Taken together, these chapters demonstrate the value of DA and contrastive learning
in building data-efficient, generalizable TC classifiers.

Publications

* Chao Wang, Alessandro Finamore, Pietro Michiardi, Massimo Gallo, Dario
Rossi. “Data Augmentation for Traffic Classification”. In Passive and Active
Measurement Conference (PAM), 2024.

¢ Alessandro Finamore, Chao Wang, Jonatan Krolikowski, Jose M Navarro, Fux-
ing Chen, Dario Rossi. “Replication: Contrastive Learning and Data Augmen-
tation in Traffic Classification Using a Flowpic Input Representation”. In Pro-
ceedings of ACM on Internet Measurement Conference (IMC), 2023.

¢ Idio Guarino, Chao Wang, Alessandro Finamore, Antonio Pescape, Dario
Rossi. “Many or Few Samples? Comparing Transfer, Contrastive and Meta-
Learning in Encrypted Traffic Classification”. In Network Traffic Measurement
and Analysis Conference (TMA), 2023.

1.3 Mutual information for conditional generation

In the previous part, we tackled TC using hand-crafted data augmentations. While
effective, these methods require manual design and extensive tuning of intensity.
This motivates the use of generative models to automatically produce realistic, di-
verse samples for augmentation. Among them, diffusion models are particularly
promising for their stability during training and ability to generate high-quality, di-
verse samples. Before applying diffusion models to traffic packet series, we first turn
to a more mature ML domain: text-to-image generation, where state-of-the-art open-
source diffusion models such as Stable Diffusion have been extensively studied and
evaluated. This setting provides a well-defined conditioning framework, supported
by rich datasets and established tools for evaluating the alignment between inputs
and generated samples. In the second part of this dissertation, by studying how to
enhance this alignment through MI, we build the foundation for more controllable
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generative models. This investigation also provides deeper insight into the under-
lying mechanisms of diffusion models, which helps guide their application in Part
3.

Chapter 5 provides an introduction to the two prominent types of generative models
that we focus on in this part: DM and RF. DM progressively adds noise to data and
then learns to reverse this process to generate samples, while RF models, a flow-
based approach, minimize kinetic energy through flow matching techniques. By
introducing the core mathematical principles (e.g., the processes” Stochastic Differ-
ential Equation (SDE)/Ordinary Differential Equation (ODE), training objective, and
conditional generation), the chapter provides the foundation for the application of
these models in advanced generative tasks in the following chapters.

Chapter 6 delves into the estimation of MI, building upon the concepts introduced in
the previous chapter. MI is a measure of the mutual dependence between two RVs,
and in this chapter, we derive two innovative estimators of point-wise MI using con-
ditional generative models — one using the discrete time DMs, the other using the
RF models. Experimental evaluation on MI estimation benchmark demonstrates the
effectiveness of the RF-based MI estimator. The formulas and results from this chap-
ter lay the groundwork for using MI to enhance the alignment between generated
data and the conditioning variables, such as images and text prompts in Text-to-
Image (T2I) generation, which will be explored in subsequent chapter.

Chapter 7 applies the MI estimator from the previous chapter to address the key
challenge of alignment in T2I conditional generation with DMs and RF models. DMs
and RF models for T2I conditional generation have recently achieved tremendous
success. Yet, aligning these models with user’s intentions still involves a labori-
ous trial-and-error process, and this challenging alignment problem has attracted
considerable attention from the research community. In this chapter, instead of re-
lying on fine-grained linguistic analyses of prompts, human annotation, or auxil-
iary vision-language models, we use MI to guide model alignment. Specifically,
our method uses self-supervised fine-tuning and relies on a point-wise MI estima-
tion between prompts and images to create a synthetic fine-tuning set for improving
model alignment. Our analysis indicates that our method is superior to the State-
Of-The-Art (SOTA), yet it only requires the pre-trained denoising network of the T2I
model itself to estimate MI, and a simple fine-tuning strategy that improves align-
ment while maintaining image quality.

Publications

¢ Chao Wang, Giulio Franzese, Alessandro Finamore, Massimo Gallo, Pietro
Michiardi. “Information Theoretic Text-to-Image Alignment”. In International
Conference on Learning Representations(ICLR), 2025.
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¢ Chao Wang, Giulio Franzese, Alessandro Finamore, Pietro Michiardi. “RFMI:
Estimating Mutual Information on Rectified Flow for Text-to-Image Align-
ment”. In International Conference on Learning Representations Workshop on Deep
Generative Models: Theory, Principle, and Efficacy (ICLR DeLIn Workshop), 2025.

1.4 Generative data augmentation for traffic classification

In Part 1, we explored hand-crafted augmentations for packet time series, which
proved empirically effective for TC. However, their performance is highly dataset-
dependent and requires extensive hyperparameter tuning. To address these limita-
tions, we turned to insights from Part 2, where conditional diffusion models demon-
strated the ability to generate diverse, realistic outputs that are semantically aligned
with input conditions, as shown in the text-to-image domain. This motivated us to
ask: can class-conditional diffusion models be adapted to model the distribution of
packet series such that the generated data maintain fidelity and further introduce
meaningful variation for downstream classification? In Part 3, we present an initial

investigation into this direction.

Chapter 8 builds a systematic framework for evaluating generative modeling of
packet series and proposes a diffusion model, DDPMS4, that surpasses baseline
generative models in both fidelity and downstream utility. Motivated by the in-
consistency in datasets and input representations across the networking literature,
our first goal was to build a benchmark with curated datasets, unified preprocessing,
and baseline implementations. From a ML perspective, we observed that most gen-
erative models in tabular and time series domains overlook augmentation utility in
their evaluations, leading to our second goal: establishing an evaluation protocol
encompassing class-agnostic fidelity, class-conditional fidelity, and augmentation
utility. We benchmark three generative models and three hand-crafted augmenta-
tions using XGBoost for downstream classification. While DDPMS4 performs best
among the generative models, it still underperforms compared to training solely on
real data, due to limited coverage of low-density regions. We also find that simply
generating more samples is not effective for augmentation, as the diffusion model
is constrained by the information present in the training data, and the score func-
tion approximation is inherently imperfect. Therefore, generative models must be
redesigned to go beyond fidelity and explicitly promote extra diversity that benefits
downstream tasks. Finally, although hand-crafted augmentations can be effective,
simple metrics like L2 distance fail to capture semantic similarity in packet series,
highlighting the need for more expressive measures of class-relevant structure.

Chapter 9 concludes our work and outlines future research directions.

Publications
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* Chao Wang, Alessandro Finamore, Pietro Michiardi, Massimo Gallo, Dario
Rossi. “Toward Generative Data Augmentation for Traffic Classification”. In
Proceedings of International Conference on emerging Networking EXperiments and
Technologies Student Workshop (CoNEXT SW), 2023.
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Chapter 2

Introduction to traffic classification

The classification object of TC is a flow — a directional communication in which a
host A sends traffic to a specific host B; formally this means all the packets sharing
the tuple (IP4, IPg, L4port 4, L4port B, L4protocol )- Given a flow, TC is the process of
identifying the application that has generated it.

In the nowadays Internet, TC helps to understand both the users” behavior and the
network status, which is valuable for Internet Service Providers (ISPs) to optimize
services in multiple use-cases. For instance, companies may rely on firewalls to block
some applications (e.g., use of social networks in working environments), or some
latency sensitive traffic (e.g., gaming and video meetings) may need to be prioritized
to improve the Quality of Experience (QoE) perceived by the users — real-time TC is
needed to be able to enforce such desired policies. Furthermore, TC also supports
anomaly detection, such as identifying malware or DDoS attacks, and can help spot
illegal activities like content piracy. Overall, TC is crucial for understanding and
managing networks.

Given its importance, TC is a long investigated topic by both industry and academia
with seminal works dating back nearly two decades ago (Moore and Zuev, 2005)
which have been instrumental for bringing ML tools into networks operation and
management. Since then, the TC field has been flourishing with literature and it is
regularly surveyed (Nguyen and Armitage, 2008; Pacheco et al., 2018).

In general, when TC is operated via ML, the classification process involves the three
common phases of an ML classifier: input encoding, where we transform the flow
into a data representation that is usable for classifier as input and characterizes flows
belonging to the same application; decision process, where a classifier model is fitted
on the set of input data at training and is used to predict the application as output
at inference; accuracy evaluation, where the effectiveness of the classifier model is

assessed with metrics like accuracy.

In the following, we first present two popular input data representations and their
variants (Sec. 2.1), next we introduce the general mechanism behind three main-
stream classification method in the order in which they were proposed (Sec. 2.2).
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2.1 Input data representations

There are two popular choices for classifiers” input data representation: raw pay-

loads, and statistical profiling of flows dynamics.

2.1.1 Payload

A network packet consists of a set of stacked headers and an application layer pay-
load, where the headers carry control information commonly standardized in RECs
(such as source and destination addresses and protocol identifiers) and the payload
contains the actual application data being transmitted. Since the payload holds con-
tent that can reveal the type of application, it is potentially a very informative input
representation for TC.

Several recent works, such as ET-BERT (Lin et al., 2022) and YaTC (Zhao et al., 2023),
have successfully leveraged payload information by applying Natual Language Pro-
cessing (NLP)-inspired models to classify traffic based on packet content. These
methods demonstrate the potential of deep models to capture fine-grained seman-
tics embedded in payloads.

However, relying on the payload presents notable challenges. First, payloads can
span thousands of bytes, making real-time inference computationally expensive on
high-speed links. More critically, payload-based methods become ineffective when
the traffic is encrypted, as the payload’s content cannot be inspected to discern use-
ful information. These limitations have motivated the networking community to
explore alternative, payload-agnostic representations. In this part, we adopt this
direction and focus on features that remain informative even when the payload is
encrypted.

2.1.2 Packet time series

A widely adopted payload-agnostic input data representation is packet time series,
which includes the raw properties of the first few packets in a flow. Commonly
used packet properties include packet size, direction, and Inter-Arrival Time (IAT).
Unlike statistical summaries such as means or quantiles, a packet time series consists
of the raw per-packet values themselves, preserving the fine-grained temporal and
structural characteristics of the early flow.

This representation offers two key advantages. First, it enables early classification
by focusing only on the initial portion of a flow, making it well-suited for real-time
applications where decisions must be made before the flow completes. Second, it
focuses on the initial segment of the flow, where handshake dynamics and proto-
col behaviors typically reveal the most discriminative features for identifying the
application.
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In addition to using the packet series directly as sequential input, some works fur-
ther transform them into 2D images (namely flowpic) to leverage DL architectures
originally designed for CV, such as Convolutional Neural Networks (CNNs). Since
we adopt this image-based format in Chapter 4, we provide a brief introduction to
it here.

Flowpic.  The flowpic representation was originally introduced by Shapira and
Shavitt, 2019, and then adopted by Horowicz et al., 2022. In Figure 2.1 we show
a YouTube flow (extracted randomly from the UCDAVIS19 dataset (Rezaei and Liu,
2019)) as well as its related flowpic at different resolutions. The left most plot shows
the packet time series. Notice the expected bursty nature typical of video stream-
ing services. To compute a flowpic, Horowicz et al., 2022 use only the first 15s of
the time series. Specifically, both the 15s and the packets size range (0-1500) are split
into bins based on the resolution of the target flowpic.! For instance a 32x 32 flowpic
leads to 469.8ms time bins and 46B packet size bins. Then, the count of the packets
occurring in each time window are tallied based on the defined packet size bins. In
other words, each time window provides a frequency histogram of the packet sizes,
and by vertically stacking all the histograms we obtain a "picture" of the flow dy-
namics. For instance, at the 32x32 resolution, the vertical stripes match the packet
bursts of the original time series. This sort of patterns make the flowpic representa-
tion appealing for CNN-based DL architectures as convolutional layers are explic-
itly designed to extract features to detect such patterns. Yet, the higher the flowpic
resolution, the sparser the representation, and the higher their computational pro-
cess. While flowpic was introduced with a 1500x 1500 resolution, in Horowicz et al.,
2022 this is compared against a 32 x 32 resolution, i.e., a mini-flowpic. Despite being
well suited for CV-related methods, the flowpic representation is not a mainstream
choice for TC as it requires to observe multiple seconds of traffic. This can enforce
a late/post-mortem classification (i.e., after the flow ends), which, while still useful
for monitoring, might not fit network management needs—prioritization, schedul-
ing and shaping benefit from classification after the first few packets, so waiting for
multiple seconds to take action can be sub-optimal. Conversely, original packet time
series and payload bytes do not face this limitation.

Last, we note that although payload is not interpretable in the encrypted case, in un-
encrypted case, since both time series and payload input enable early classification,
they can also be combined in “multi-modal” architectures (Aceto et al., 2019a; Akbari
etal., 2021a; Luxemburk and Cejka, 2023a) that have become popular in networking
and other fields—rather than selecting either one representation or the other, a DL
model can be designed to learn from different input formats at the same time.

ITraffic directionality is not considered when composing the flowpic in (Horowicz et al., 2022) al-
though the representation could be reformulated to take it into account.
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FIGURE 2.1:  Example of a packet time series transformed into a
flowpic representation for a randomly selected YouTube flow in the
UCDAVIS19 dataset. Heatmaps are in a log scale normalized between
the max and min value for each flowpic, with higher packets count
values having darker shades (images better viewed digitally).

2.2 C(Classifiers

2.2.1 Rule-based classifiers

Traditional techniques classify traffic based on rules applied to the content of net-
work packets. One of the most used technologies is DPI, which examines the exis-
tence of specific keywords within the packet payload using pattern matching and
regular expressions — e.g., if a packet’s payload begins with the string "BitTorrent",
it is highly likely that the traffic originates from the BitTorrent application. In other
words, given the input data representation being the packet’s payload, the decision
process involves sequentially checking some pre-defined rules (namely regular ex-
pression (regex)) about its patterns, signatures, and fingerprints (Piet et al., 2023),
until a match is found. However, despite their popularity, DPI is nowadays more
and more challenged by the over increasing adoption of encrypted protocols (e.g.
Hypertext Transfer Protocol Secure (HTTPS) and Transport Layer Security (TLS)) as
the payload in this case corresponds to a sequence of random number and by the
policies imposed by regulatory bodies to product user privacy (e.g. GDPR). More-
over, DPI is difficult to automate as it requires large domain knowledge and manual
effort to construct effective classification rules.

2.2.2 Machine learning classifiers

The search for alternatives to DPI already started two decades ago with early propos-
als of application of traditional ML classifiers. Depending on the availability of as-
sociated ground-truth application labels in the training dataset, these algorithms are
commonly divided between supervised and unsupervised methods. Members of the
former class are for example Support Vector Machines (SVM), K-Nearest Neighbors
(KNN), Light Gradient Boosting Machine (LightGBM) and Extreme Gradient Boost-
ing (XGBoost), while the latter approach includes notably clustering and its variants.
Although these ML algorithms are more automated than DP], their trained models
are not flexible for continuous monitoring to catch up with the updates of applica-
tions, and have no intermediate feature space for the analysis of Out-of-Distribution
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(OOD) detection.

2.2.3 Deep learning classifiers

Thanks to the rapid development of Artificial Intelligence (AI), more recent TC pro-
posals focus on DL with an emphasis on exploring/adapting training techniques,
algorithms and Neural Network (NN) architectures proven to be successful in tradi-
tional DL fields like CV and NLP, and this thesis falls within such research area.

A NN classifier is a function ¢ : x € X — y € )Y mapping an input x to its label
y. It can be regarded as a composition of two functions ¢(x) = h(f(x)) = y: a
base encoder network f(-) and a simple classifier head %(-) (e.g., a linear layer or
KNN). In other words, an input sample x is first encoded into an intermediate space,
namely the latent space, where different classes’ latent representations f(x) = z are
expected to occupy different regions. The better such separation, the easier is for the
classifier head h(z) = y to identify the correct label.

With the NN architecture divided into two parts, its training algorithms can be cat-
egorized into two paradigms as well: single-stage end-to-end training of ¢ = ho f,
or two-stages approach consisting of pretraining the encoder f followed by training
the classifier head h if needed.

The most common approach in a supervised setting is a single-stage training, with
a classifier head being a linear layer, and both the encoder and the head are jointly
trained in a supervised manner on a labeled dataset. By minimizing the difference
between the classifier’s predicted outputs and the ground-truth labels quantified
typically by Cross-Entropy (CE) loss, the model learns an end-to-end mapping func-
tion h o f from the input data to the output label.

In contrast, two-stages approaches are common for transfer learning settings. First
we train an encoder f to yield good latent representations, for which a training loss
optimizing the latent representation directly is required. One popular choice is Con-
Trastive (CT) loss, which explicitly regularizes latent space geometry by penalizing
cases where samples from the same class are far apart and samples from different
classes are too close. Then, after the encoder f being trained to identify similarities
and clusters within the input data, a linear classifier / is trained on top of the base
encoder with CE loss or a KNN is applied on the latent space, in order to output the
predicted class label.

Last, we note that depending on the properties of training set and test set, there are
multiple variants of classification tasks that are meaningful in TC. For instance, in
the traditional classification task, no data shift is expected between training set and
test set. However, in reality, training and managing classifiers for networks face the

“infinite loop” of collecting new data and re-train models to keep them up to date.
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The key to break this cycle resides in (i) training more generalized models and (i7)
adapting them to new scenarios by means of little-to-no extra data. This calls for
DL techniques that enable the reuse of knowledge from a source dataset to address
a target dataset with limited labeled data and distribution shift — such as sharing
class labels but differing in feature patterns due to variations in time or location, or
having entirely different class labels.

Specifically, in this thesis, we focus on data generation considering both manually
designed augmentations as well as state of the art generative models. In fact, even
if many studies investigated data augmentations for CV and time series (e.g., in the
medical field), reusing such methods is not trivial for TC as data suffers from two
extra undesirable restrictions: input samples are short—traditionally, they are time
series of the first N packets of a flow (e.g., the first 10 packet sizes and inter arrival
times) and are semantically weak — interpreting packet time series is less obvious

than interpreting electrocardiograms.
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Benchmark of hand-crafted data

augmentation

3.1 Introduction

As outlined in Sec. 2.2.3, a renewed thrust in addressing TC via data-driven model-
ing is fueled today by the rise of DL. Despite the existing literature, we argue that op-
portunities laying in the data itself are still unexplored based on three observations. First,
CV and NLP methods usually leverage “cheap” DA strategies (e.g., image rotation
or synonym replacement) to complement training data by increasing samples vari-
ety. Empirical studies show that this leads to improved classification accuracy. Yet to
the best of our knowledge, only a handful of TC studies considered DA (Horowicz
et al., 2022; Rezaei and Liu, 2019; Xie et al., 2023b) and multiple aspects of DA de-
sign space remain unexplored. In addition, network traffic datasets are imbalanced
due to the natural skew of app/service popularity and traffic dynamics. In turn,
this calls for training strategies focused on improving classification performance for
classes with few examples. However, the interplay between imbalance and model
performance is typically ignored in TC literature. Finally, the pursuit of better model
generalization and robustness necessitates large-scale datasets with high-quality la-
beling resulting in expensive data collection processes. In this context, the extent to
which DA can alleviate this burden remains unexplored.

In this chapter, we fill these gaps by first providing a comprehensive evaluation
of “hand-crafted” augmentations — transformations designed based on domain
knowledge — applied to packets time series typically used as input in TC. Given
the broad design space, we defined research goals across multiple dimensions. First
of all, we selected a large pool of 18 augmentations across 3 families (amplitude,
masking, and sequence) which we benchmark when used in isolation or combined
(e.g., via stacking or ensembling). Augmented time series are combined with orig-
inal training data via different batching policies (e.g., replacing training data with
augmentation, adding augmented data to each training step, or pre-augmenting the
dataset before training). We also included scenarios where imbalanced datasets are
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re-balanced during training to give more importance to minority classes. Last, we
dissected augmentations performance by exploring their geometry in the classifiers
latent space to pinpoint root causes driving performance. Our experimental cam-
paigns were carried over 2 mid-sized public datasets, namely MIRAGE-19-HALF and
MIRAGE-22 (up to 20 classes, 64k flows), and a larger private dataset Enterprise-100
(100 classes, 2.9M flows).

We summarize our major findings as follows:

¢ We confirm that augmentations improve performance (up to +4.4% weighted
F1) and expanding training batches during training (i.e., the Injection policy)
is the most effective policy to introduce augmentations. Yet, improvements
are dataset dependent and not necessarily linearly related to dataset size or
number of classes to model;

* Sequence ordering and masking are more effective augmentation families for
TC tasks. Yet, no single augmentation is found consistently superior across
datasets, nor domain knowledge suffice to craft effective augmentations, i.e.,
the quest for effective augmentations is an intrinsic trial-and-error process;

¢ Effective augmentations introduce good sample variety, i.e., they synthesize
samples that are neither too close nor too far from the original training data.

To the best of our knowledge, a broad and systematic study of hand-crafted DA tech-
niques in TC as the one performed in our study is unprecedented. Ultimately, our
analysis confirms that DA is currently suffering from a single pain point—exploring
the design space via brute force. However, our results suggest a possible road map
to achieve better augmentations via generative models which might render obsolete
the use of brute force.

In the remainder, we start by introducing DA basic concepts and reviewing relevant
ML and TC literature (Sec. 3.2). We then introduce and discuss our research goals
(Sec. 3.3) and the method used to address them (Sec. 3.4). Finally, we present our
experimental setting (Sec. 3.5) and results (Sec. 3.6) before closing with final remarks
(Sec. 3.7).

3.2 Related work

DA consists in adding synthetic samples (typically derived from real ones) to the
training set to increase its variety. DA has been popularized across many ML dis-
ciplines (Mumuni and Mumuni, 2022; Shorten and Khoshgoftaar, 2019; Wen et al.,
2021) with a large number of variants which we can be broadly grouped into two cat-
egories (Mumuni and Mumuni, 2022): hand-crafted DA and data synthesis. Hand-
crafted DA (also known as data transformations) involves creating new samples by
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applying predefined rules to existing samples. Instead, data synthesis relates to gen-
erating new samples via generative models, e.g., Variational AutoEncoder (VAE),
Generative Adversarial Network (GAN), DM, etc., trained on existing and typically

large datasets.

In this section, we overview the existing DA literature with an emphasis on hand-
crafted DA and methods closer to the scope of this chapter. We begin by introducing
relevant CV and time series ML literature. Then, we review TC literature using DA
and close with a discussion about general design principles/requirements that we

used for defining our research goals outlined in Sec. 3.3.

3.2.1 Data augmentation in traditional machine learning tasks

As explained in Sec. 2.2.3, supervised learning of good NN classifiers corresponds
to discover a good function ¢(-) based on a large labeled training set that includes
high variety. As these are notoriously difficult to share and correct labeling is costly,
enlarging the labeled dataset in supervised learning or reducing dependency from
labels by self-supervised learning with the help of DA is particularly appealing.

When performing DA, the training set is expanded by adding new samples x’ =
Aug(x) created by altering original samples x—these transformations act directly in
the input space X’ and the additional synthetic samples contribute in defining ¢(-)
as much as the original ones. It follows that having a comprehensive understanding
of samples/classes properties and their contribution to models training is beneficial
for designing effective augmentations, i.e., transformations enabling higher classifica-
tion performance. Beside operating in the input space, DL models offer also a latent
space. It follows that this design enables a second form of augmentations based on
altering samples in the latent space rather than in the input space. Last, differently
from hand-crafted DA, generative models aims to learn the training set data distri-
bution. In this way generating new synthetic data corresponds to sampling from the
learned distribution. In the following we expand on each of these three methodolo-
gies.

Input space transformations. In traditional ML, Synthetic Minority Over-
sampling TEchnique (SMOTE) (Chawla et al., 2002) is a popular augmentation tech-
nique. This approach generates new samples by interpolating the nearest neighbors
of a given training sample. To address class imbalance, SMOTE is often employed
with a sampling mechanism that prioritizes minority classes (Han et al., 2005; He
et al., 2008).

In CV, several image transformations have been proposed to improve samples va-
riety while preserving classes semantics. These transformations operate on colors
(e.g., contrast and brightness changes, gray scaling) and geometry (e.g., rotation,
flipping, and zooming), or via filters (e.g., blurring with Gaussian kernel) and masks
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(e.g., randomly set to zero a patch of pixels). Furthermore, transformations like Cut-
Mix (Yun et al., 2019) and Mixup (Zhang et al., 2018) not only increase samples va-
riety but also increase classes variety by creating synthetic classes from a linear com-
bination of existing ones. The rationale behind this approach is that by introducing
new artificial classes sharing similarities with the true classes the classification task
becomes intentionally more complex, thereby pushing the training process to extract
better data representations. Empirical validations of DA techniques in CV have con-
sistently demonstrated their effectiveness across a diverse range of datasets, tasks,
and training paradigms (Chen et al., 2020; He et al., 2015; Redmon et al., 2016). As a

result, DA has become a ubiquitous component in the CV models training pipelines.

Considering time series instead, input transformations can either modify data am-
plitude (e.g., additive Gaussian noise) or manipulate time (e.g., composing new time
series by combining different segments of existing ones). Similarly to CV, the re-
search community has provided empirical evidence supporting the effectiveness of
these transformations in biobehavioral (Yang et al., 2022a) and health (Yu and Sano,
2022) domains. However, contrarily to CV, these transformations are less diverse
and have been less widely adopted, possibly due to the stronger reliance on domain
knowledge—an amplitude change on an electrocardiogram can be more difficult to

properly tune compared to simply rotating an image.

Latent space transformations. Differently from traditional ML, DL models offer
the ability to shape the feature extractor to create more “abstract” features. For
example, Implicit Semantic Data Augmentation (ISDA) (Wang et al., 2020d) first
computes class-conditional covariance matrices based on intra-class feature variety;
then, it augments features by translating real features along random directions sam-
pled from a Gaussian distribution defined by the class-conditional covariance ma-
trix. To avoid computational inefficiencies caused by explicitly augmenting each
sample many times, ISDA computes an upper bound of the expected cross entropy
loss on an enlarged feature set and takes this upper bound as the new loss function.
Based on ISDA, and focused on data imbalance, Sample-Adaptive Feature Augmen-
tation (SAFA) (Hong et al., 2022) extracts transferable features from the majority
classes and translates features from the minority classes in accordance with the ex-

tracted semantic directions for augmentation.

Generative models. In addition to traditional hand-crafted DA techniques, gener-
ative models offer an alternative solution to generate samples variety. For instance,
(Burg et al., 2023; Trabucco et al., 2023) use a multi-modal diffusion model trained
on an Internet-scale dataset composed of (image, text) pairs. Then, the model is used
to synthesize new samples—text prompts tailored to specific downstream classifica-
tion tasks are used as conditioning signal to create task-specific samples—to enlarge
the training set for a classification task. While these types of generative models can
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provide high-quality samples variety, their design and application still requires a
considerable amount of domain knowledge to be effective.

3.2.2 Data augmentation in traffic classification

TC tasks usually rely on either packet time series (e.g., packet size, direction, IAT,
etc., of the first 10-30 packets of a flow) or payload bytes (e.g., the first 784 bytes of a
flow, possibly gathered by concatenating payload across different packets) arranged
as 2D matrices. Recent literature also considers combining both input types into
multi-modal architectures (Akbari et al., 2021b; Aceto et al., 2019b; Luxemburk et
al., 2023a).

Such input representations and datasets exhibit three notable distinctions when
compared to datasets from other ML /DL disciplines. First, TC datasets show sig-
nificant class imbalance—this is a “native” property of network traffic as different ap-
plications enjoy different popularity and traffic dynamics while, for instance, many
CV datasets are balanced. Second, TC input representation is typically “small” to ad-
here to desirable system design properties—network traffic should be (i) early classi-
fied, i.e., the application associated to a flow should be identified within the first few
packets of a flow, and (ii) computational/memory resources required to represent a
flow should be minimal as an in-network TC system needs to cope with hundreds
of thousands of flow per second. Last, TC input data has weak semantics—the under-
lying application protocols (which may or not be known a priori) may not be easy to
interpret even for domain experts when visually inspecting packet time series.

Hand-crafted DA. The combination of the above observations leads to have only
a handful of studies adopting DA in TC literature. Rezaei and Liu, 2019 created
synthetic packet time series input by sampling multiple short sequences across the
duration of a complete flow based on different policies (e.g., selecting one packet
every N from a random starting point); hence, from one flow they obtain multiple
“subflows” which semantically correspond to a coarser-grained “view” of the origi-
nal flow. Horowicz et al., 2022 instead focused on a flowpic input representation—a
2D summary of the evolution of packets size throughout the first 15s of a flow, and
considered DA techniques applied to either flowpics (e.g., rotation) or to the pack-
ets time series (e.g., altering inter-arrival times) from which the flowpics are then
computed. While both studies show the benefit of DA, these strategies violate the
early classification principle as they both consider multiple seconds of traffic, thus
they are better suited for post-mortem analysis only. Conversely, Xie et al. (Xie et al.,
2023a; Xie et al., 2023b) recently proposed some packet series hand-crafted DA to
tackle data shifts arising when applying a model on network traffic gathered from

networks different from the ones used to collect the training dataset. Specifically,
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inspired by Transmission Control Protocol (TCP) protocol dynamics, authors pro-
posed five packets time series augmentations (e.g., to mimic a packet lost/retrans-
mission one can replicate a value at a later position in the time series) showing that
they help to mitigate data shifts. Yet, differently from (Horowicz et al., 2022; Rezaei
and Liu, 2019), the study in (Xie et al., 2023b) lacks from an ablation of each individ-

ual augmentation’s performance.

Generative models. Last, (Wang et al., 2020a; Wang et al., 2019; Yin et al., 2018)
investigate augmentations based on GAN methods when using payload bytes as
input for intrusion detection scenarios, i.e., a very special case of TC where the
classification task is binary. More recently, (Jiang et al., 2023) compared GAN and
DM for generating raw payload bytes traces while (Sivaroopan et al., 2023a; Siva-
roopan et al., 2023b) instead leveraged GAN or DM to generate 2D representations
(namely Grammian Angular Summation Field (GASF)) of longer traffic flow signals

for downstream traffic fingerprinting, anomaly detection, and TC.

3.2.3 Design space

Search space. Independently from the methodology and application discipline,
DA performance can only be assessed via empirical studies, i.e., results are bound
to the task definition, the datasets used, and the input representation format. More-
over, to find an efficient strategy one should consider an array of options, each likely
subject to a different parametrization. In the case of hand-crafted DA, one can also
opt for using stacking (i.e., applying a sequence of transformations) or ensembling
(i.e., applying augmentations by selecting from a pool of candidates according to
some sampling logic)—an exhaustive grid search is unfeasible given the large search
space. Besides following guidelines to reduce the number of options (Cubuk et al.,
2019b), some studies suggest the use of reinforcement learning to guide the search
space exploration (Cubuk et al., 2019a). Yet, no standard practice has emerged.

Quantifying good variety. As observed in TC literature (Horowicz et al., 2022;
Rezaei and Liu, 2019; Xie et al., 2023b), domain knowledge is key to design efficient
augmentations. Yet, ingenuity might not be enough as models are commonly used
as “black boxes”, making it extremely challenging to establish a direct link between
an augmentation technique and its impact on the final classification performance.
For instance, rotation is considered a good image transformation as a result of em-
pirical studies. Likewise, generative models are trained on large image datasets but
without an explicit connection to a classification task (Schuhmann et al., 2022)—the
design of the augmentation method itself is part of a trial-and-error approach and
the definition of metrics quantifying the augmentation quality is still an open ques-
tion.
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One of the aspects to be considered when formulating such metrics is the variety in-
troduced by the augmentations. Gontijo-Lopes et al. (Cubuk et al., 2021) propose
metrics quantifying the distribution shift and diversity introduced by DA contrast-
ing models performance with and without augmentations. Other literature instead
focuses on mechanisms that can help defining desirable properties for augmenta-
tions. For instance, from the feature learning literature, (Shen et al., 2022; Zou et
al., 2023) find that DA induces models to better learn rare/less popular but good
features by altering their importance, thus improving model generalization perfor-
mance. Samyak et al. (Jain et al., 2023) find that optimization trajectories are different
when training on different augmentations and propose to aggregate the weights of
models trained on different augmentations to obtain a more uniform distribution of
feature patches, encouraging the learning of diverse and robust features.

Training loss. Self-supervision and contrastive learning are DL training strategies
that take advantage of augmentations by design. In a nutshell, contrastive learn-
ing consists of a 2-steps training process. First, a feature extractor is trained in a
self-supervised manner (or in a supervised manner) with a contrastive loss function
that pulls together different augmented “views” of a given sample while distancing
them from views of other samples (or pulls together different augmented “views” of
samples from the same class while distancing them from views of samples from dif-
ferent classes ). Then, a classifier head is trained on top of the learned representation
in a supervised manner using a few labeled samples—the better the feature repre-
sentation, the lower the number of labeled samples required for training the head.
Empirical studies have demonstrated the robustness of the feature representations
learned with contrastive learning (Chen et al., 2020; Eldele et al., 2021; Poppelbaum
et al., 2022; Yue et al., 2022) and a few recent studies investigated contrastive learn-
ing also in TC (Guarino et al., 2023; Horowicz et al., 2022; Towhid and Shahriar,
2022; Xie et al., 2023b).

Linking generative models to classifiers. When we consider the specific case of
using generative models to augment training data, we face a major challenge—
generative models are not designed to target a specific downstream task (Sivaroopan
et al., 2023a; Sivaroopan et al., 2023b; Wang et al., 2019). While studies like (Odena
etal.,, 2017) integrated a classifier in GAN training in the pursuit of improving the re-
liability the model, how to properly link and train a generative model to be sensitive
to a downstream classification task is still an open question even in CV literature.

Overall, while we believe that a broad and systematic (i.e., across multiple datasets
and inputs) comparison of DA techniques in the TC field should be of community-
wide interest.
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T D Number of packet features
D 2/I I T Number of packets per feature
| 1 |-IJ Gy 1 Standard deviation of a generic coordinate (d, t) for class y

X, v feature value E(Z ) Average standard deviation for dimension d for class y

FIGURE 3.1: Input sample x shape and related notation.

3.3 Research goals

Drawing insights from the literature reviewed in Sec. 3.2, we undertake a set of em-
pirical campaigns to better understand hand-crafted DA when applied in the input
space of NN classifier for TC task.

The hand-crafted DA in the input space is based on a clear definition of the input
format. In this chapter, the input data representation of a flow is a multivariate
packet time series x with D dimensions (one for each packet feature) each having T
values (one for each packet) while x(, 4 is the value of x at coordinates (d, t) where
d € {0.D—1}and t € {0.T —1}. In particular, in this chapter, we consider D = 3
packet features, namely packet size, direction, and IAT, and the first T = 20 packets
of a flow, as sketched in Figure 3.1.

With input representation being this multi-variate time series of D properties of the
first T packets of a flow, we will address the following research goals under the
setting of traditional supervised learning:

What is the performance of different individual augmentations? This includes in-
vestigating augmentations sensitivity to their hyper-parametrization and different
dataset properties (e.g., number of samples and classes).

How augmented samples should be added to the training set and how many sam-
ples should be added? Is augmenting minority classes beneficial to mitigate class
imbalance?

Why some augmentations are more effective than others?
Does combining multiple augmentations provide extra performance improvement?

In Sec. 3.4, we motivate each goal and introduce the methodology we adopted to
address them.

3.4 Method

3.4.1 Benchmarking hand-crafted data augmentation (G1)

Given a real multi-variate packet time series x, we define x' = Aug(x, «) as an aug-
mentation, i.e., the transformation x’ of sample x is subject to a magnitude a €10,1]
controlling the intensity of the transformation (1 = maximum modification).
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Augmentations pool. In this study, we considered a set A of 18 augmentation
functions. These functions can be categorized into 3 families: 5 amplitude transfor-
mations, which introduce different type of jittering to the feature values (Table 3.1);
2 masking transformations, which force certain feature values to zero (Table 3.2); and
11 sequence transformations, which modify the order of feature values (Table 3.3).
It is important to note that, given a sample x, amplitude augmentations are solely
applied to either packet size or IAT while packet direction is never altered since the
latter is a binary feature and does not have amplitude (i.e., it can be —1 or 1). On the
contrary, masking and sequence augmentations are applied to all features in parallel
(e.g., if a transformation requires to swap t = 1 with t = 6, all features are swapped
accordingly x(;1) <> x(j) for Vi € {0...D —1}). For each augmentation, Tables 3.1-3.3
report a reference example annotating its parametrization (if any).

TABLE 3.3: Sequence order augmentations.

Name Description Example

magnitude « =0.5

Horizontal
Flip

pkts size

Swap values left to right (no magnitude needed)

1k>A\/\"/\’A<
)

Densify time series by injecting average values
and then sample a new sequence of length T

Details: Expand each feature by inserting the av- t=8

erage 0.5(x(44) + X(4441)) in-between each pair of

Interpolation ) )
values. Then randomly select a starting point

pkts size
o =

t=U[0, T — 1] and extract the following T values © = = =
for all features x. .., ) (no magnitude needed).

Swap segments of two different samples

Details: Given a training mini-batch, define pairs

of samples (x1,x2) by sampling without re-
CutMix placement. Then sample a segment of length
w~U[0, T — 1] starting at t~U[0, T —1 — w] and

pkts size

swap the segment of each feature between x1 and 53 1w B
x2 (no magnitude needed).

Remove values in a random time range (as if pack-
ets were not received)

Details: Defining A as time to observe the first T —

Packet Loss packets, sample § ~ UJ0, A] and remove values
across all features in the interval § £ (10« + 5).

pkts size
o
=
| E

Then recompute the IAT and pad with zeroes at o
the end (if needed).

Continued on next page
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Translation

Wrap

Permutation

Dup-RTO

Dup-
FastRetr

Perm-RTO

Perm-
FastRetr

Move a segment to left (=pkt drop) or the right (=
pkt dup/retran)

Details: Define N = 14arg max,;{a; < a} where
a; € {0.15,0.3,0.5,0.8} and sample n ~ U[1, N].
Then, sample a direction b € {left, right} and a
starting point t~U[0, T]: If b = left, left shift each
feature values n times starting from t and replace
shifted values with zero; if b = right, right shift
each feature values 7 times starting from f and re-
place shifted values with the single value x4 )

Mixing interpolation, drop and no change

Details: Compose a new sample x’ by manipulat-
ing each x(. ;) based on three options with proba-
bilities Pinterpolute = Piscara = 0.5a and Pnochange =
1 —a. If “nochange” then keep x(.,; if “inter-
polate” then keep x(.;y and x.;) = 0.5(x( +
X(.4+1)); if “nochange” then do nothing. Stop
when |X'| = T or apply tail padding (if needed).

Segment the time series and reorder the segments

Details: Define N = 2+arg max;{a; < a} where
2;€{0.15,0.45,0.75,0.9}, a sample n ~ U[2, N] and
split the range [0:T-1] into n segments of random
length. Compose a new sample x’ by concatenat-
ing x(. ;) from a random order of segments

Mimic TCP pkt retrans due to timeout by duplicat-
ing values

Details: Duplicating a range of packets according
to a Bernoulli(p = 0.1«) (see Algo. 1in (Xie et al.,
2023a))

Mimic TCP fast retrans by duplicating values

Details: Duplicating one packet according to a
Bernoulli(p = 0.1a) (see Algo. 2 in (Xie et al.,
2023a))

Mimic TCP pkt retrans due to timeout by permut-
ing values

Details: Delaying a range of packets according to
a Bernoulli(p = 0.1a) (see Algo. 3 in (Xie et al.,
2023a))

Mimic TCP fast retrans by permuting values

Details: Delaying one packet according to a
Bernoulli(p = 0.1a) (see Algo. 4 in (Xie et al,,
2023a))

pkts size

pkts size

®

pkts size

pkts size

pkts size

pkts size

pkts size

t=0,n=10b=

0

H

o

right

JULA,

3,

[7:13]U[0:6]U[14:19]

In the figures, black solid lines — for original samples, red @ lines for augmented

samples.
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Pkts Feat. g Example
Name - g;. 0 Dir IAT Description magnitude « =0.5
Add independently sampled Gaussian noise to
Size or IAT
Gaussian ¢ ~ @ Details: Sample a feature d € {Size, IAT} and add §* M\_
Noise Gaussian noise to its values x (4 +&; where g~ s,
N (0, {c%, 1)

Add independently sampled Gaussian noise to
Size or IAT

Spike Details: Sample a feature d< {Size, IAT} and add "
X © O © . : : H
Noise Gaussian noise to up to 3 of its non-zero values |

X(4,)+ |e:| where etNN(O,a{a(yd’t)}z)

Scale Size or IAT by independently sampled Gaus-
sian values

Gaussian ¢ ¢ Details: Sample a feature de{Size, IAT} and mul- :* W\
WrapUp tiply Gaussian noise to its values x4 ;) - & with N

er~N (1 + 0.0la,0.0Za{U(yd 3 12)

pkt:

Scale Size or IAT by sinusoidal noise

Details: Sample a feature d € {Size IAT} and
Sine ©C O © multiply its values by a sine-like noise x4 - €; "
WrapUp

pkt:

with €;=[1+0.02« - U'(yd,:) -sin(## +0)] and O~ -
ulo, 2m|

Scale IAT by a single randomly sampled value

Details: Sample a single uniformly sampled

c value e~U|a, b] and perform x; - € to all x; of IAT /_W%
onstant i 5

O O e with £
WrapUp a=1+0" . -(0.06—0.02);

Y

(d)

y
d,:

b=1+07, - (0.14+0.02)

O feature never used; © feature selected randomly; @ feature always used.

In the figures, black solid lines — for original samples, red @ lines for augmented
samples; x-axis for time series index and y-axis the feature value (either packet size
or IAT).

TABLE 3.1: Amplitude augmentations.

By adopting such a large pool of augmentations, our empirical campaign offers sev-
eral advantages. First, we are able to investigate a broader range of design pos-
sibilities compared to previous studies. Second, it enables us to contrast different
families and assess if any of them is more prone to disrupt class semantics. Consid-
ering the latter, TC literature (Horowicz et al., 2022; Rezaei and Liu, 2019; Xie et al.,
2023b) predominantly investigate sequence transformations (typically acting only
on packet timestamp) with only (Xie et al., 2023b) experimenting with masking and
amplitude variation, yet targeting scenarios where models are exposed to data shifts
due to Maximum Segment Size (MSS) changes, i.e., the network properties related
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Example

Name Description magnitude a =0.5

Random masking values

Bernoulli  Details: Independently set to zero feature values by
Mask sampling a Bernoulli(p = 0.6«)

pkts size
o =

Masking the same sequences across all features

Details: ~ Given a configured maximum size
Window W=|1+42.5a], sample a window length w~U[1, W]
Mask and a random starting point t=U[0, T — w] and set

pkts size
o =

to zero all x. 4 falling in the sampled window R

o

All three features (Size, DIR and IAT) are affected by all transformations.
In the figures, black solid lines — for original samples, red @ lines for augmented
samples.

TABLE 3.2: Masking augmentations

to the training set are different from the ones of the test set.

Augmentations magnitude. As described in Tables 3.1-3.3, each augmentation
has some predefined static parameters! while the magnitude « is the single hyper-
parameter controlling random sampling mechanisms contributing to defining the
final transformed samples. To quantify augmentations sensitivity to a, we contrast
two scenarios following CV literature practice: a static value of « = 0.5 and a uni-

formly sampled value a ~ U[0, 1] extracted for each augmented sample.

Datasets size and task complexity. Supervised tasks, especially when modeled via
DL, benefit from large datasets. For instance, as previously mentioned, some CV lit-
erature pretrains generative models on large datasets and use those models to obtain
auxiliary training data for classification tasks. While data availability clearly plays a
role, at the same time the task complexity is equivalently important—a task with just
a few classes but a lot of data does not necessarily yield higher accuracy than a task
with more classes and less data. To understand how augmentations interplay with
these dynamics, it is relevant to evaluate augmentations across datasets of different

sizes and number of classes.

3.4.2 Training batches composition (G2)

In order to mitigate any undesirable shifts introduced by artificial samples, it is nec-
essary to balance original and augmented samples. Yet, the way original and aug-
mented samples are combined to form the augmented training set is a design choice.
For instance, in TC literature, (Horowicz et al., 2022; Rezaei and Liu, 2019) augment
the data before starting the training, while (Xie et al., 2023b) augments mini-batches

IThese parameters are tuned via preliminary investigations.
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during the training process. In this work, we apply augmentation samples to a train-
ing mini-batch of size B, with the two policies sketched in Fig. 3.2. Replace substitutes
an original sample x; with its augmentation by sampling from a Bernoulli(P=Py¢piace)
random variable—during one training epoch, approximately a P, ;. fraction of the
original data is “hidden”. Instead, Inject increases the batch size by augmenting
each sample Ny, times (e.g., in Fig. 3.2 the original batch size is doubled by setting
Ninject = 1).

B B/2
original [X; ------ X, e X | original
A A ! —
"fa\lprepluce 'f&\.Prepluce 'fé\lpreplace inject™=L
| /&0 /D /D
augmented |X;  =xree- X[ e X;| augmented [X; -+ Xg,| X[ - X[,
B B
(a) Replace (b) Inject

FIGURE 3.2: Training batch creation policies.

3.4.3 Latent space geometry (G3)

Augmented samples play a crucial role in model training, just like the original train-
ing samples from which they are derived. To understand the impact of augmenta-
tions on the improvement or detriment of classification performance, we propose
to examine the latent space of the classifier. In order to conduct a comprehensive
analysis, we need to consider two aspects applicable to any supervised classification
task.

Augmentation-vs-Test. ML methods operate on the assumption that training data
serves as a “proxy” for test samples, i.e., the patterns learned on training data “gen-
eralize” to testing data as the two sets of data resemble each other properties. In
this context, augmentations can be considered as a means for fostering data gener-
alization by incorporating samples that resemble even more testing data compared
to what is available in training data. However, it is important to empirically quan-
tify this effect by measuring, for instance, the distance between augmented and test
samples. In other words, we aim to quantify up to which extent augmented samples

are better at mimicking test samples compared to the original data.

Augmentation-vs-Train. The performance of a feature extractor greatly depends on
how well the feature extractor separates different classes in the latent space. Data
augmentations play a role in shaping intra/inter-class relationships created by the
feature extractor in the latent space. For instance, an augmentation that generates
samples far away from the region of a class can disrupt class semantics—the augmen-
tation is introducing a new behavior/mode making it hard for the classifier to be
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effective. At the same time, however, expanding the region of a class can be a benefi-
cial design choice—augmentations that enable a better definition of class boundaries
simplify the task of the classifier. Understanding such dynamics requires empirical
observations, for instance, by comparing the distance between the original training
data and augmented data. In other words, we aim to verify if augmentations yield-
ing good performance are in a “sweet spot”: they create samples that are neither too
close (i.e., introduce too little variety) nor too far (i.e., disrupt class semantics) from
original samples.

3.4.4 Combining augmentations (G4)

To address G1, each trained model is associated to an individual augmentation.
However, in CV it is very common to combine multiple augmentations (Chen et
al., 2020). Hence, we aim to complement G1 by measuring the performance of three
different policies augmenting mini-batches based on a set A’ C A composed of top-
performing augmentations based on the G1 benchmark: the Ensemble policy uni-
formly samples one of the augmentations in A’ independently for each mini-batch
sample; the RandomStack policy randomly shuffles A" independently for each mini-
batch sample before applying all augmentations; finally, the MaskedStack policy uses
a predefined order for A’ but each augmentation is associated with a masking prob-
ability, i.e., each sample in the mini-batch independently selects a subset of augmen-
tations of the predefined order.

3.5 Experimental settings

3.5.1 Datasets

To address our research goals we considered the datasets summarized in Table 3.4.

MIRAGE-19-HALF (Aceto et al., 2019c¢) is a public dataset gathering traffic logs from
20 popular Android apps collected at the ARCLAB laboratory of the University of
Napoli Federico II. Multiple measurement campaigns were operated by instrument-
ing 3 Android devices handed off to ~300 volunteers (students and researchers)
for interacting with the selected apps for short sessions. Each session resulted in
a pcap file and an strace log mapping each socket to the corresponding Android
application name. Pcaps were then post-processed to obtain bidirectional flow logs
by grouping all packets belonging to the same 5-tuple (srcIP, srcPort, dstIP, dstPort,
L4proto) and extracting both aggregate metrics (e.g., total bytes, packets, etc.), per-
packet time series (packet size, direction, TCP flags, etc.), raw packets payload bytes
(encoded as a list of integer values) and mapping a ground-truth label by means of
the strace logs.
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) Flows per-class Pkts
Name Classes Curation .

all min  max p mean

none 122k 1,986 11,737 5.9 23

MIRAGE-19-HALF * 20
>10pkts 64k 1,013 7,505 7.4 17

none 59k 2,252 18,882 8.4 3,068

MIRAGE-22 9
>10pkts 26k 970 4,437 4.6 6,598

Enterprise-100 100 none 29M 501,221 5,715 87.7 2,312

o : ratio between max and min number of flows per-class—the larger the value, the higher the imbalance;

*: Despite being advertised of having traffic from 40 apps, the public version of the dataset only contains 20 apps.

TABLE 3.4: Summary of datasets properties.

MIRAGE-22 (Guarino et al., 2021a) is another public dataset collected by the same re-
search team and with the same instrumentation as MIRAGE-19-HALF which targets 9
video meeting applications used to perform webinars (i.e., meetings with multiple
attendees and a single broadcaster), audio calls (i.e., meetings with two participants
using audio-only), video calls (i.e., meetings with two participants using both audio
and video), and video conferences, (i.e., meetings involving more than two partici-

pants broadcasting audio and video).

Enterprise-100 is instead a private dataset collected by monitoring network flows
from vantage points deployed in residential access and enterprise campus networks.
For each flow, the logs report multiple aggregate metrics (number of bytes, packets,
TCP flags counters, round trip time statistics, etc.), and the packet time series of
packet size, direction and IAT for the first 50 packets of each flow. Moreover, each
flow record is also enriched with an application label provided by a commercial DPI
software directly integrated into the monitoring solution and supporting hundreds
of applications and services.

Data curation. Table 3.4 compares different dataset properties. For instance, the
datasets MIRAGE-19-HALF and MIRAGE-22 are quite different from each other despite
being obtained via the same platform. Specifically, MIRAGE-19-HALF gathers around
2x more flows than MIRAGE-22 but those are 100 x shorter. As expected, all datasets
are subject to class imbalance measured by p, i.e., the ratio between maximum and
minimum number of samples per class. However, Enterprise-100 exhibits a larger
class imbalance with respect to the other two datasets. Last, while Enterprise-100
did not require specific pre-processing, both MIRAGE-19-HALF and MIRAGE-22 required
a curation to remove background traffic—flows created by netd deamon, SSDP, An-
droid google management services and other services unrelated to the target An-
droid apps—and flows having less than 10 packets.
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Data folds and normalization. As described in Sec. 3.4.1, each flow is modeled
via a multivariate time series x consisting of D = 3 features (packets size, direc-
tion, and IAT) related to the first T = 20 packets (applying zero padding in the tail
where needed). From the curated datasets we created 80 random 70/15/15 train/-
validation/test folds. We then processed each train+val split to extract statistics that
we used for normalizing the data and to drive the augmentation process. Specif-
ically, we computed both per-coordinate (d,t) and global (i.e., flattening all flows
time series into a single array) mean and standard deviation for each class—these
Y

statistics provided us the s

and Tables 3.1-3.3). For IAT, we also computed the global 99th percentile across all

) and U'Z H needed for the augmentations (see Fig. 3.1

classes q3,. Given a multi-variate input x, we first clip packet size values in the
range [0,1460] and IAT values in the range [le-7, 75]. Due to high skew of IAT
distributions, we also log10-scaled the IAT feature values.” Last, all features are

standardized to provide values x, ) € [0,1].

Model architecture and training. We rely on a 1d-CNN based neural network ar-
chitecture with a backbone including 2 ResNet blocks followed by a linear head
resulting in a compact architecture of ~100k parameters. (see Fig. 3.3 and Table 3.5
for details). Models are trained for a maximum of 500 epochs with a batch size
B=1,024 via an AdamW optimizer with a weight decay of 0.0001 and a cosine anneal-
ing learning rate scheduler initialized at 0.001. Training is subject to early stopping
by monitoring if the validation accuracy does not improve by 0.02 within 20 epochs.
We coded our modeling framework using PyTorch and PyTorch Lightning and ran
our modeling campaigns on Linux servers equipped with multiple NVIDIA Tesla
V100 GPUs. We measured the classification performance via the weighted F1 score
considering a reference baseline where training is not subject to augmentations.

TABLE 3.5: Model architecture printout (MIRAGE-19-HALF, 20 classes)

Layer (type) Output Shape Param #
Convld-1 [-1, 64, 20] 576
BatchNorm1d-2 [-1, 64, 20] 128
Conv1d-3 [-1, 64, 10] 12,288
BatchNorm1d-4 [-1, 64, 10] 128
Conv1ld-5 [-1, 64, 10] 12,288
BatchNorm1d-6 [-1, 64, 10] 128
Convld-7 [-1, 64, 10] 4,096
BatchNorm1d-8 [-1, 64, 10] 128
Conv1d-9 [-1, 128, 5] 24,576
BatchNorm1d-10 [-1,128, 5] 256
Convld-11 [-1, 128, 5] 49,152

2We did not log-scale packet sizes values as we found this can reduce accuracy based on preliminary
empirical assessments.
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BatchNorm1d-12 [-1, 128, 5] 256
Convld-13 [-1, 128, 5] 8,192
BatchNorm1d-14 [-1, 128, 5] 256
AdaptiveAvgPool1d-15 [-1,128,1] 0
Linear-16 [-1, 20] 2,580

Total params: 115,028
Trainable params: 115,028
Non-trainable params: 0
Input size (MB): 0.00
Forward/backward pass size (MB): 0.09
Params size (MB): (.44
Estimated Total Size (MB): 0.53

3.6 Results

In this section, we discuss the results of our modeling campaigns closely following

the research goals introduced in Sec. 3.3.

3.6.1 Augmentations benchmark (G1)

We start by presenting the overall performance of the selected augmentations.
Specifically, Table 3.6 collects results obtained by applying augmentations via Inject
with Njyjet = 1 (i-e., each original sample is augmented once)® and sampling uni-
formly the magnitude a ~ U[0,1]. Table 3.6 shows the average weighted F1 score
across 80 runs and related 95th-percentile confidence intervals.

Reference baseline. We highlight that our reference baseline performance on the
datasetsMIRAGE-19-HALF and MIRAGE-22 are qualitatively aligned with previous litera-
ture that used those datasets. For instance, Table 1 in (Guarino et al., 2021a) reports
a weighted F1 of 97.89 for a 1d-CNN model when using the first 2,048 payload bytes
as input for MIRAGE-22; Figure 1 in (Bovenzi et al., 2021) instead shows a weighted
F1 of ~75% for 100 packets time series input for MIRAGE-19-HALF. Notice however
that since these studies use training configurations not exactly identical to ours, a
direct comparison with our results should be taken with caution. Yet, despite these
differences, we confirm MIRAGE-19-HALF to be a more challenging classification task
compared to MIRAGE-22. However, we argue that such a difference is unlikely de-
pending only on the different number of classes (MIRAGE-19-HALF has 20 classes while
MIRAGE-22 only 9). This is evident by observing that Enterprise-100 yields very

3Since we train the reference baseline with a batch size B=1024, when adding augmentations we
instead adopt B=512 (which doubles via injection).
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FIGURE 3.3: Model architecture.

high performance despite having 10x more classes than the other two datasets. We
conjecture instead the presence of “cross-app traffic” such as flows generated by li-
braries/services common across multiple apps from the same provider (e.g., apps
or services provided by Google or Facebook) and/or the presence of ads traffic,* but
the datasets raw data is not sufficiently detailed to investigate our hypothesis.

Takeaways. While the classification tasks complexity is well captured by models perfor-
mance, it does not necessarily relate to the number of classes or dataset size. These effects are
visible only when studying multiple datasets at once, but unfortunately a lot of TC studies
focus on individual datasets.

Augmentations rank. Overall, all augmentations are beneficial except for Hori-
zontal Flip which, as we shall see in Sec. 3.6.3, breaks class semantics. As expected,
not all augmentations provide the same gain and their effectiveness may vary across
datasets. Specifically, sequence and masking better suit our TC tasks.

For a more fine-grained performance comparison, we complement Table 3.6 results
by analyzing augmentations rank via a critical distance by following the procedure
described in (Demsar, 2006). Specifically, for each of the 80 modeling runs we first
ranked the augmentations from best to worst (e.g., if augmentations A, B, and C
yield a weighted F1 of 0.9, 0.7, and 0.8, their associated rankings would be 1, 3, and
2) splitting ties using the average ranking of the group (e.g., if augmentations A, B,
and C yield a weighted F1 of 0.9, 0.9 and 0.8, their associated rankings would be
1.5, 1.5, and 3). This process is then repeated across the 80 runs and a global rank
is obtained by computing the mean rank for each augmentation. Last, these aver-

ages are compared pairwise using a post-hoc Nemenyi test to identify which groups

4MIRAGE-22 focuses on video meeting apps which are all from different providers and ads free by
design.
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Augmentation MIRAGE-19-HALF  MIRAGE-22  Enterprise-100
Baseline None 75.43+10 9492+ 07 92,43+ 33
Constant WrapUp 0.61+.12 0.36+.09 -0.02+.15
Amplitude Gaussian Noise 0.89-+.11 0.24+.09 0.15+.14
Gaussian WrapUp 1.01+13 0.74+ .09 0.24+ 12
Spike Noise 1.66+.12 0.91+.09 0.93+.13
Sine WrapUp 0.63+.11 0.25+.09 -0.06+.16
Masking Bernoulli Mask 2.55+12 1.29-+.09 1.25+.16
Window Mask 2.37+13 1.08-.09 1.18+.16
CutMix 2.65+.13 1.40-+.10 -0.21+.10
Dup-FastRetr 3.23+13 1.56-+.09 0.83+.15
Dup-RTO 2.89:13 1.33::.09 091+.15
Horizontal Flip -0.71+.11 -0.52+.09 -0.88+.15
Interpolation 0.44+12 0.53+.10 -0.61+.14
Sequence  Packet Loss 0.88+.12 0.66-:.09 0.60-+ 22
Permutation 3.67+.13 1.97+.09 0.89-+.08
Perm-RTO 3.15+.12 1.54+ .09 0.88+.12
Perm-FastRetr 2.11+12 1.00+.09 0.74+ 26
Translation 4.40+.13 2.02+.09 0.95+ .15
Wrap 4.11+13 2.09+.08 0.57+.12

The top-3 best and worst augmentations are color-coded.

TABLE 3.6: Augmentations benchmark (G1).

of augmentations are statistically equivalent. This decision is made using a Critical
Distance (CD) CD = g, \/Im , where g, is based on the Studentized range
statistic divided by v/2, k is equal to the number of augmentations compared and N
is equal to the number of samples used. Results are then collected in Fig. 3.4 where
each augmentation is highlighted with its average rank (the lower the better) and
horizontal bars connect augmentations that are statistically equivalent. For instance,
while Table 3.6 shows that Translate is the best on average, Fig. 3.4 shows that {Trans-
late, Wrap, Permutation, Dup-FastRetr} are statistically equivalent. We remark that
Fig. 3.4 refers to MIRAGE-19-HALF and MIRAGE-22 but similar considerations hold for
Enterprise-100 as well.

Recall that our training process is subject to an early stop mechanism. Interestingly,
we observed that augmentations yielding better performance also present a longer
number of training epochs (see Fig. 3.5). This hints that effective augmentations fos-
ter better data representations extraction, although some CV studies also show that
early stopping might not necessarily be the best option to achieve high accuracy in
some scenarios. An in-depth investigation of these training mechanisms is however

out of scope for this chapter.

Takeaways. Augmentations bring benefits that, in absolute scale, are comparable to what
is observed in CV literature (Miiller and Hutter, 2021). Our benchmark shows that TC
sequencing and masking augmentations are better options than amplitude augmentations.
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FIGURE 3.4: Augmentations rank and critical distance (G1).

This is in line with previous literature that implicitly discarded amplitude augmentations.
Finally, despite performance ranks may suggest more efficient augmentations (e.g., Transla-
tion or Bernoulli mask), agreement between datasets seems more qualitative than punctual
(e.g., masking is preferred to sequencing for Enterprise-100, but the reverse is true for the
other two datasets).

Sensitivity to magnitude. Most of the augmentations we analyzed are subject to
a magnitude a hyper-parameter (see Tables 3.1-3.3) that is randomly selected for
the results in Table 3.6. To investigate the relationship between classification perfor-
mance and augmentation magnitude we selected 3 augmentations among the top
performing ones {Translation, Wrap, Permutation} and three among the worst per-
forming {Gaussian Noise, Sine WrapUp, Constant WrapUp}.> For each augmenta-
tion, we performed 10 modeling runs using magnitude « = 0.5 and we contrasted
these results with the related runs from the previous modeling campaign. Specif-

ically, by grouping all results we obtained a binary random-vs-static performance

5We excluded HorizontalFlip as it hurts performance and Interpolation since it does not depend
from a magnitude.
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FIGURE 3.5: Comparing performance improvement and training

length.

comparison which we investigated through a Wilcoxon signed rank sum test that

indicated no statistical difference, i.e.,

the selection of magnitude is not a distinctive

factor to drive the augmentation performance. The same conclusion holds true when

repeating the analysis for each individual augmentation rather than grouping them

together.

Takeaways. Although we do not observe any dependency on the augmentation magni-
tude x, augmentations performance can still be affected by their tuning (as will be discussed
further in Sec. 3.6.3). Unfortunately, this tuning process often relies on a trial-and-error
process, making it challenging to operate manually.

3.6.2 Training batches composition (G2)

Correctly mixing original with augmented data is an important design choice.
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FIGURE 3.6: Comparing Replace, Inject and Pre-augment batch creation
policies (G2).

Batching policies. To show this, we considered the three policies introduced in
Sec. 3.4.2: Replace (which randomly substitutes training samples with augmented
ones), Inject (which expands batches by adding augmented samples), and Pre-
augment (which expands the whole training set before the training start).® Batch-
ing policies are compared against training without augmentations making sure that
each training step has the same batch size B=1,204.” Based on Sec. 3.6.1 results, we
limited our comparison to {Translation, Wrap, Permutation} against {Sine WrapUp,

Constant WrapUp} as representative of good and poor augmentations across the

®Based on our experience of using code-bases related to publications, we were unable to pinpoint
if any of those techniques is preferred in CV literature.

For instance, when Ninjeet = 1, a training run needs to be configured with B=512 as the mini-
batches size doubles via augmentation.
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Majority classes Minority classes
Cls samp. Pre Rec weight F1 Pre Rec weight F1

with 83.90+21 81.01+21 82.36+.14 56.63+338 60.78+26 58.18+.21
No Aug  without 81.60+23 82.93+.19 82.16+.12 62.29+48 58.02+38 59.78+27

diff 2.30+32 -1.92+28  0.20+20 -5.66+60 2.76+46 -1.60+35

with 89.12+.09 84.26+.11 86.43+.08 60.71+24 68.64+.17 63.65+.19
Translation  without 85.36+.14 86.73+.10 85.86+.09 69.69+25 64.14+25 66.20+.22

diff  3.77+0¢ -2.48+.02  057+.02 -898+.04 4.50+.09 -2.55+.05

TABLE 3.7: Impact of class-weighted sampler on MIRAGE-19-HALF
(G2).

three datasets under study. We configured Replace with Pypjsce € {0.3,0.5,1}, In-
ject with Njyject € {1,2,4,8} and augmented each training sample 10 times for Pre-
augment. Fig. 3.6 collects the results with lines showing the average performance
while shaded areas correspond to 95th percentile confidence intervals. Overall, top-
performing augmentations (@ marker) show a positive trend—the higher the vol-
ume of augmentations the better the performance—while poor-performing augmen-
tations (x marker) have small deviations from the baseline (dashed line). Based on
performance, we can order Replace < Pre-augment < Inject, i.e., the computationally
cheaper Pre-augment is on par with the more expensive Replace when Pyepiace = 1

but Inject is superior to both alternatives.

Takeaways. On the one hand, Inject shows a positive trend that perhaps continues beyond
Ninject > 8.5 On the other hand, the performance gain may be too little compared to the
computational cost when using many augmentations. For instance, Niyject = 8 requires 3x
longer training compared to Nipjecs = 1.

Class-weighted sampling. TC datasets are typically imbalanced (see Table 3.4). It
is then natural to wonder if/how augmentations can help improve performance for
classes with fewer samples, namely minority classes. Although the batching policies
discussed do not alter the natural distribution of the number of samples per class,
alternative techniques like Random Over Sampling (ROS) and Random Under Sam-
pling (RUS) allow to replicate/drop samples for minority /majority classes (Johnson
and Khoshgoftaar, 2019). A class-weighted sampler embodies a more refined version
of those mechanisms and composes training mini-batches by selecting samples with
a probability inversely proportional to the classes size—each training epoch results
in a balanced dataset. When combined with augmentations, this further enhance

minority classes variety.

The adoption of a class-weighted sampler seems a good idea in principle. Yet, the
enforced balancing in our experience leads to conflicting results. We showcase this

8The limit of our experimental campaigns were just bounded by training time and servers avail-
ability so it is feasible to go beyond the considered scenarios.
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FIGURE 3.7: Investigating train, augmented and test samples rela-
tionships (G3).

in Table 3.7 where we show Precision, Recall, and weighted F1 for 20 runs trained
with/without a weighted sampler and with/without Translation (selected as repre-
sentative of a good augmentation across datasets). We break down the performance
between majority and minority classes and report per-metric differences when using
or not the weighted sampler. The table refers to MIRAGE-19-HALF but similar results
can be obtained for the other datasets. Ideally, one would hope to observe only
positive differences with larger benefits for minority classes. In practice, only the
Recall for minority classes improves and overall we observe a poorer weighted F1
(-0.26 across all classes). By investigating misclassifications, we found that majority
classes are more confused with minority classes and when introducing augmenta-
tions those effects are further magnified.

Takeaways. Paying too much attention to minority classes can perturb the overall classifier
balance, so we discourage the use of class-weighted samplers.
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3.6.3 Latent space geometry (G3)

Table 3.6 allows to identify effective augmentations bringing significant benefits in
terms of model performance. However, to understand the causes behind the perfor-
mance gaps we need to investigate how original, augmented, and test samples relate
to each other.

Augmented-vs-test samples. We start our analysis by taking the point of view of
the test samples. Specifically, we investigated which type of points are found in
the “neighborhood” of a test sample. To do so, we started creating “true anchors”
by projecting both the original training data and 5 augmentations of each training
sample—these anchors are “proxy” of what is presented to the model during train-
ing. Then we projected the test samples and looked for the closest 10 anchors (based
on cosine similarity) of each test sample. Finally, we counted how many of the 10
anchors share the same label as the test samples. Results for each augmentation
are reported in Fig. 3.7 for MIRAGE-19-HALF and MIRAGE-22 (similar results holds for
Enterprise-100) as a scatter plot where the coordinates of each point correspond to
the average number of anchors with the correct label found and their average cosine
similarity with respect to the test sample. Each augmentation is color-coded with
respect to its weighted F1 score.

Despite both metrics vary in a subtle range, such variations suffice to capture multi-
ple effects. First of all, considering the layout of the scatter plot, we expected good
transformations to be placed in the top-right corner. This is indeed the case as pre-
sented in Fig. 3.7 (a-b) where darker colors (higher weighted F1) concentrate in the
top-right corner. However, while MIRAGE-22 (Fig. 3.7(a)) shows a linear correlation
between the two metrics, MIRAGE-19-HALF (Fig. 3.7(a)) shows outliers, most notably
Horizontal Flip, Interpolation, and Constant Wrapup.

Fig. 3.7 (c-d) complement the analysis by showing results when considering only
augmented samples as anchors. Differently from before, now Horizontal Flip and
Interpolation are found to be the most dissimilar to the test samples—this is signal-
ing that augmentations are possibly disrupting class semantics, i.e., they are intro-

ducing unnecessary high variety.

Last, for each test sample we looked at the closest augmented anchor and the closest
original sample anchor with the same label. The average ratio of those pairwise
distances is centered around 1—augmented samples “mimic” test samples as much

as the original samples do.

Takeaways. Top-performing augmentations do not better mimic test samples compared to
original samples. Rather, they help training the feature extractor f(-) so that projected test
samples are found in neighborhood of points likely to have the expected label.
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FIGURE 3.8: Comparing original and augmented samples in the la-
tent space (G3).

Augmented-vs-original samples. We complement the previous analysis by inves-
tigating original x and augmented x’ samples relationships. Differently from before,
for this analysis original samples are augmented once. Then all points are projected
in the latent space f(x) and f(x') and visualized by means of a 2d t-SNE projec-
tion.” We also compute the Kernel Density Estimation (KDE) of the Euclidean dis-
tance across all pairs. Figure 3.8 presents the results for 2 top-performing (Translate,
Wrap) and 4 poor-performing (Constant Wrapup, Interpolation, Sine Wrapup, Hor-
izontal Flip) augmentations for MIRAGE-19-HALF. Points in the t-SNE charts are plot-
ted with alpha transparency, hence color saturation highlights prevalence of either

90Our model architecture uses a latent space of 256 dimensions (see Table 3.5) which the t-SNE rep-
resentation compresses into a 2d space.
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Augmentation MIRAGE-19-HALF MIRAGE-22

Baseline No Aug 75.43+.10 94.92 07
Translation 4.40+.13 2.02+.09

Single Wrap 411+13 2.09+ 08
Permutation 3.67+.13 1.97+.09

Ensemble 444+ 12 2.18+.09

RandomStack 4.17+12 2.18+.09

. MaskedStack (p = 0.3) 445+ .13 2.26+.09
Combined MaskedStack (p = 0.5) 4.60+.15 2.244.09
MaskedStack (p = 0.7) 4.63+.14 2.18+.10

TABLE 3.8: Combining augmentations (G4).

augmented or original samples.

Linking back to the previous observations about Horizontal Flip and Interpolation,
results now show the more “aggressive” nature of Interpolation—the t-SNE chart is
split vertically with the left (right) side occupied by augmented (original) samples
only and the Euclidean distance KDEs show heavier tails. By recalling their defini-
tion, while it might be easy to realize why Horizontal Flip is a poor choice—a client
will never observe the end of the flow before seeing the beginning, hence they are
too artificial—it is difficult to assess a priori the effect of Interpolation. Overall, both
augmentations break class semantics.

At the opposite side of the performance range we find augmentations like Sine
WrapUp and Constant WrapUp. From Fig. 3.8 we can see that both introduce little-
to-no variety—the Euclidean distance distributions are centered around zero. That
said, comparing their t-SNE charts we can still observe a major difference between
the two transformations which relates to their design. Specifically, Constant WrapUp
is applied only to IAT and introduces negligible modifications to the original sam-
ples. Conversely, Sine WrapUp is applied on either packet size or IAT. As for Con-
stant WrapUD, the changes to IAT are subtle, while variations of packet size lead to
generating an extra “mode” (notice the saturated cluster of points on the left side of
the t-SNE plot). In other words, besides the design of the augmentation itself, iden-
tifying a good parametrization is very challenging and in this case is also feature-
dependent.

Compared to the previous, Translate and Wrap have an in-between behavior—the
body of the KDEs show distances neither too far nor too close and the t-SNE charts
show a non-perfect overlap with respect to the original samples. Overall, both these

augmentations show positive signs of good sample variety.

Takeaways. Effective transformations operate in a “sweet spot”: they neither introduce too
little variety—traditional policies like Random Ouver Sampling (ROS) and Random Under
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Sampling (RUS) (Johnson and Khoshgoftaar, 2019) are ineffective—nor they break classes
semantic by introducing artificial “modes”.

3.6.4 Combining augmentations (G4)

We conclude our analysis by analyzing the impact of combining different augmenta-
tions. For this analysis, we selected 3 top-performing augmentations and compared
their performance when used in isolation against relying on Ensemble, RandomStack
and MaskedStack (see Sec. 3.4.4). Table 3.8 collects results obtained from 80 modeling
runs for each configuration. Overall, mixing multiple augmentations is beneficial

but gains are small, i.e., <1%.

Takeaways. While one would expect that mixing good augmentations can only improve
performance, we note that also CV literature is split on the subject. If on the one hand
combining augmentations is commonly done in training pipelines, recent literature shows
that such combinations bring marginal benefits (Miiller and Hutter, 2021).

3.7 Conclusions

In this chapter we presented a benchmark of hand-crafted DA for TC covering
multiple dimensions: a total of 18 augmentations across 3 families, with 3 policies
for introducing augmentations during training, investigating the classification per-
formance sensitivity with respect to augmentations magnitude and class-weighted
sampling across 3 datasets with different sizes and number of classes. Overall, our
results confirm what previously observed in CV literature—augmentations are bene-
ficial even for large datasets, but in absolute terms the gains are dataset-dependent. While
from a qualitative standpoint, sequence and mask augmentations are better suited
for TC tasks than amplitude augmentations, no single augmentation is found supe-
rior to alternatives and combining them (via stacking or ensembling), even when se-
lecting top-performing ones, marginally improves performance compared to using
augmentations in isolation. Last, by investigating the models latent space geometry,
we confirm that effective augmentations provide good sample variety by creating samples
that are neither too similar nor too different from the original ones which fosters bet-
ter data representations extraction (as suggested by the longer training time).

Despite the multiple dimensions covered, our work suffers from some limitations.
Most notably, it would be desirable to include the larger and more recent datasets
like CESNET-TLS22 (Luxemburk and Cejka, 2023a) and CESNET-QUIC22 (Luxemburk
et al., 2023a), but such expansion requires large computational power.'? Still related
to using large datasets, we can also envision more experiments tailored to investi-
gate the relationship between datasets size and augmentations. For instance, one

0For reference, models trained on Enterprise-100 can take up to 6 hours. Since CESNET datasets
contains 100x the number of samples of Enterprise-100, performing a thorough exploration of the
DA design space is extremely resource demanding.
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could sample down a large dataset (e.g., by randomly selecting 1% or 10% of the
available samples) and investigate if augmentations result more effective with the
reduced datasets. In particular, since Inject shows a positive trend with respect to its
intensity Nj,jec We hypothesize that by augmenting a small dataset one can achieve
the same performance as using larger datasets—showing these effects are clearly
relevant for TC as collecting and releasing large datasets is currently a pain point.
Last, our campaigns rely only a CNN-based architecture while assessing DA with
other architectures (e.g., Transformer-based for time series (Wen et al., 2023)) is also

relevant.

Ultimately, DA modeling campaigns as the one we performed require operating
with a grid of configurations and parameters—it is daunting to explore the design
space by means of brute forcing all possible scenarios. While domain knowledge
can help in pruning the search space, it can also prevent from considering valuable
alternatives. For instance, recall that Xie et al., 2023b suggest to use augmentations
inspired by TCP protocol dynamics. According to our benchmark, these augmenta-
tions are indeed among the top performing ones, yet not necessarily the best ones—
navigating the search space results in a balancing act between aiming for qualitative
and quantitative results.

We identify two viable options to simplify the design space exploration. On the
one hand, re-engineering the augmentations so that their parametrization is discov-
ered during training might resolve issues similar to what observed for Sine Wrap
(see Sec. 3.6.3). On the other hand, a more efficient solution would be to rely on
generative models avoiding the burden of designing hand-crafted augmentations.
More specifically, we envision a first exploration based on conditioning the gener-
ative models on the latent space properties learned via hand-crafted DA (e.g., the
distance between original and augmented samples should be in the “sweet spot”).
Then, we could target the more challenging scenario of training unconditionally and

verify if effective representations are automatically learned.

Overall, while our experimental results demonstrate the effectiveness of hand-
crafted DA, they likely represent a lower bound on achievable performance. Further
improvements could be realized through more advanced techniques, such as con-
trastive learning to enhance feature representations (chapter 4) and generative mod-
els to create more diverse and realistic augmentations (chapter 8). This motivates
the exploration of data-driven augmentation strategies in the following chapters.
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Chapter 4

Contrastive learning for few-shot

learning

4.1 Introduction

Following our systematic evaluation of hand-crafted DA in the traditional super-
vised setting (Chapter 3), this chapter investigates how such augmentations can be
integrated into contrastive learning frameworks to tackle a challenging setting: FSL.
While FSL is not strictly required for TC, it is highly desirable in practice, due to
the high cost of large-scale data collection and annotation. Therefore in real-world
scenarios, being able to train effective classifiers from just a few labeled examples
becomes especially valuable. To make learning feasible under such constraints, con-
trastive learning with suitable augmentations can help — provided the augmenta-

tions are well designed to reflect meaningful variations in the data.

FSL involves a training set in which only a small number of labeled samples for the
target classes are available. In the remainder of this chapter, we refer to the small
labeled dataset for the target task as D. Since training a model directly on a small
dataset typically leads to poor performance, the FSL setting often relies on a two-
stage training strategy. First, a base model is pre-trained on a large-scale dataset D’
to learn generalizable representations. Then, this model is fine-tuned on the smaller
task-specific dataset D. Essentially, the effectiveness of learning from few samples
largely depends on the quality of the representations learned during pre-training.

There are two typical ways to construct the pre-training dataset D’ for FSL, under

the constraint that labeled samples from the target classes must be excluded, as their

inclusion would violate the FSL assumption:
(i) alarge collection of unlabeled samples from the target classes

In this case, although there is no distribution shift between D and D’, since
no label is available in D’, the pre-training stage must rely on unsupervised

learning.

(ii) alarge collection of labeled samples from non-target classes
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In this case, the pre-training stage is able to leverage supervised learning
thanks to the class labels, but faces a distribution shift during fine-tuning on
the target classes that are unseen in the pre-training dataset D’. This requires
the learned model to generalize well to novel classes introduced only in the

second stage.

In this chapter, we address these two challenging cases sequentially, using con-

trastive learning. We begin by introducing the foundation of contrastive learning,

including the implementation of the critic and the construction of positive and neg-

ative sample pairs( Section 4.2). The former includes the mathematical loss for-

mula, the link between the loss and MI estimation, and the NN design and train-

ing paradigm in practice; while the latter details how to use DA functions and class

labels to build views from a real batch for computing the loss. Then, to investigate

the effectiveness of contrastive learning and augmentation in FSL, we conduct two

targeted experimental studies, each addressing one of the two previously described

challenging cases:

(i)

(i)

Self-supervised contrastive learning on flowpic ( Section 4.3)

We replicate and extend an existing study (Horowicz et al., 2022) on self-
supervised contrastive learning using the 2D flowpic representation. Given
that contrastive loss heavily relies on DA in the self-supervised case ( Sec-
tion 4.2), this experiment serves as a testbed to assess the effectiveness of dif-
ferent hand-crafted augmentations in the self-supervised pretraining. The re-
sults on few-shot fine-tuning confirm the value of this approach. Moreover,
our statistical analysis reveals that Change RTT and Time Shift significantly
outperform other augmentations, underscoring the importance of selecting se-

mantically meaningful transformations.

Comparing self-supervised and supervised contrastive learning for adaptation
to novel classes ( Section 4.4)

For FSL on new target classes, we shift to the time series representation and
investigate contrastive learning in a classic N-way-K-shot scenario, where N
refers to the number of target classes and K refers to the number of samples per
target class, i.e. the fine-tuning task specific dataset D contains N x K samples
in total. Since the pre-training dataset D’ is labeled, we have the opportunity
to compare self-supervised and supervised contrastive loss for pre-training,
together with other existing FSL approaches reviewed in Section 4.4.1. We find
that supervised contrastive pre-training on D’ followed with fine-tuning the
linear classifier head with a cosine distance-based loss on the target dataset D
yields the best performance, by effectively leveraging both data and labels for
improved generalization to unseen target classes.
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Through these two complementary studies, this chapter demonstrates how
augmentation-aware contrastive learning can substantially enhance traffic classifi-
cation performance in data-scarce regimes. By investigating both self-supervised
pretraining on flowpic and supervised transfer learning on time series, we show
that carefully designed augmentations enable contrastive methods to generalize ef-
fectively in few-shot learning scenarios.

4.2 Preliminaries: contrastive learning

In this section, we will review the principles behind contrastive learning, followed
by the literature of contrastive learning in traditional classification tasks within both
CV and TC.

As presented in Section 2.2.3, a NN classifier is typically a composition of a feature
extractor and a classifier head. Especially in the contrastive learning literature (Oord
etal., 2019a; Khosla et al., 2020), the classifier head is usually the last linear layer that
outputs classification logits, and the feature extractor refers to all layers before the
classifier head. In this context, the feature extractor trained with contrastive loss
learns how to project the input data into a latent space to group samples of the same
class and distance them from other classes samples, and the linear classifier head
serves to probe and evaluate what the representations learned by the feature extrac-
tor contain. Relying on such geometrical separations, a simple linear classifier suf-
fices to identify classes. Unlike CE loss that jointly trains feature extractor and linear
classifier with loss computed at the output of the final linear layer and therefore such
geometrical properties in the latent space are implicitly learned, contrastive learning

aims to explicitly enforce geometrical properties in the latent space by means of DAs.

Mathematically speaking, the idea behind contrastive learning is to train only the
feature extractor such that it can yield an embedding that separates (contrasts) sam-
ples from two different distributions — the joint distribution and the product of
marginals. Given a dataset consisting of N pairs (Z)é, vé)ilil,
tains two different views of the same class (either created through DA or grouped by

where each pair con-

class labels), the goal is to learn to contrast "positives" pairs from the joint distribu-
tion x = (v}, 0) ~ p (v1,v2), versus "negative" pairs from the product of marginals

y = (vﬁ,vé) ~ p(v1) p (02).

To realize this contrasting goal, a subset of data S = {x,y1,y2,...,yx} is selected,
containing 1 positive pair and k negative pairs. A "critic" function (a discriminating
function) hy(-) is then trained to assign a high value to the positive pair and low
values to all the negative pairs, by optimizing the following loss:

hg(x)

. 4.1
6(x) + 2;21 ho (v;) &)

»Ccontrast = _IE: 10g I
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Without loss of generality, the first pair x = (v9,09) in S is assumed to be positive

and all others y; = (vjl, vjz) ,j =1,2,...,k are negative, then equation 4.1 becomes

he (09,79
Leontrast = —E log ( 1 2)

S e (o)) -

Consequently, this involves with 2 subtasks: implementing the critic /y(-) and con-
structing the subset S.

4.2.1 Implementation of the critic

The critic hy(-) is implemented with a NN, namely an encoder fy(-) parametrized
by 6. To extract compact latent representations of v1 and v, these two views are first
passed through the encoder fy(-) to extract the normalized latent representations
z1 = fo(v1)/ ||fo (v1)|l, 22 = fo (v2) / ||fo (v2)||, so that all vectors lie on the same
unit hyper-sphere. Then, their cosine similarity are computed as score, whose range
is scaled by a hyper-parameter temperature t: hg (v1,v2) = exp (z1 - 22/ 7).

Regarding to the hyper-parameter temperature 7, in practice 7 is usually lower than
1. The reason of this choice is that, with x € [—1, 1] being the cosine similarity, the
gradient of f : x — f(x) =7 is f'(x) = e 1. For x ~ 0 (i.e. hard positives and hard
negatives that have z; - z; ~ 0), this gradient becomes f'(x) =~ %, which is larger
when 7 is smaller. In other words, smaller T (cold temperature) can help the model

learn from hard pairs more efficiently.

Estimator of MI. On the one hand, note that with (i) softmax defined as a func-
tion that turns a list of raw scores s into a probability distribution p in which p; =

softmax; (s) = Lﬁ, and (ii) CE loss defined as a function that measure the differ-

):;'(:o e
ence between the ground-truth distribution y (typically a one-hot vector with value

of 1 for the correct class and 0 for all other classes) and the predicted distribution p

— CE(y,p) = — X yilog (pi) = —10g (Pcorrect class ), Lcontrast can also be considered
as a softmax CE loss of classifying the correct positive pair out from the given set S,
ho (09,09)
Z}‘:o hy (0]1 ,vé) '
lowing this mindset, Chen et al., 2020 termed Lcontrast as normalized temperature-

where Peorrect class = P(pos = 0| S) is predicted as softmaxg (s) = Fol-

scaled cross entropy loss (NT-Xent).

On the other hand, since the ground truth probability peorrect class = P(pos = 0 | S)
should depict the fact that the positive pair coming from the joint distribution
p(v1,v2) is the first pair (v,09) while the k negative pairs coming from the prod-
uct of marginals p (v1) p (v2) are the latter k pairs (v]i,vj) ,j=12,...,kin S, this

ground truth probability can be written as
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By comparing this ground-truth with the prediction, Oord et al., 2019b shows that

the optimal value for the critic hy (v1,v2) is proportional to (i.e. up to a multiplica-
tive constant) the ratio %. This ratio is known as point-wise MI, where the

definition of MI between two RV V; and V, is [(Vy; V) = {log ((U)l 2&)2)} .
Furthermore, by substituting the critic in equation 4.2 with its optimal value
p(v1,02)
p(o1)p(o2)”
an lower bound of -MI:

hy (v1,v2) o it could be proved that the expectation in equation 4.2 is

Eggrtl rast — —Elo ;
trast o 108 vk (ijvjz)
i
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5 I p (01,99
p (01, %3)
> —Elog | ——v— v | +log(k)
s 7)) p(v2)
= —1(v1;v2) + log(k).

We now present several remarks on equation 4.3. First, the inequality in equation 4.3
also holds for critics / that are worse the optimal critic #*, since i has a worse (higher)
Leontrast > L%, which makes I (v1;v7) > log(k) — L&« > log(k) — Leontrast -
Second, equation 4.3 signifies that minimization of contrastive loss is actually a max-
imization of MI between different views of the data. Third, a larger number of nega-
tive pairs k is beneficial, since it not only makes the approximation of the expectation
with its empirical mean in equation 4.3 more accurate, but also makes log (k) larger

and therefore log(k) — Leontrast Serves as a tighter lower bound of I (v1;v;). Finally,
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this lower bound on MI log(k) — Lcontrast cannot be larger than log(k), meaning that
this bound will be loose when I (v1;v;) > log(k) — a limitation that reflects the
high-bias nature of this MI estimator. As a preview, unlike Lcontrast , the generative
MI estimators introduced in the next chapter do not have this limitation.

NN Design and training. Regarding to the NN implementation in practice, the
encoder fy(-) is actually the classifier’s feature extractor f(-) followed by a small
non-linear projection head g(-) (typically a MLP with one hidden layer and ReLU
non-linear activation). During training, the contrastive loss Lcontrast i computed on
the outputs of the projection head, since (Chen et al., 2020) empirically found that the
hidden layer before the nonlinear projection head provides more informative repre-
sentations than the outputs of the projection head, and empirically attributed it to the
fact that contrastive loss encourages the projection head’s outputs invariant to views
of the same real sample, where views are obtained by applying different DA trans-
formations (see details in Sec. 4.2.2). In this way, transformation-sensitive features
like color and orientation in CV are removed in the minimization of contrastive loss,
while these information may be useful for downstream classification task. However,
with a nonlinear projection head g(-), these information are extracted and preserved
in the layer before it.

After the contrastive learning phase, this projector head g(-) is discarded, and only
the well-trained feature extractor f(-) is kept. To obtain the final end-to-end classi-
fier, a simple classifier head (e.g. a linear layer) h(-) is trained on top of the frozen
feature extractor f(-) with labeled dataset (where this labeled dataset can be small
thanks to the powerful representation extraction capacity of the feature extractor).
Overall, the more powerful the representation, the lower the number of samples re-
quired for training the classifier head. At inference, test accuracy is used as a proxy
for representation quality.

4.2.2 Construction of the subset

To construct a subset of data S containing 1 positive pair and k negative pairs, where
k should be large to make Lcontrast as @ more accurate estimation of MI (details in
Sec. 4.2.1) but also in a reasonable size to allow for tractable computation, the ap-
proximation of S is typically achieved by augmenting a batch of N real data points.
Specifically, for each real data point, we augment it twice using two hand-crafted
DA sampled from a pool of DA functions. This ends up with turning the real batch

2.2 N N1 _ fon o
103 01,03 } = {0] bue1,Nic1,2) containing all

into a multiviewed batch {0}, v%, v
the 2N augmented data points, where n € [1, N| is the index of the real data point
from which v was created, and i € [1,2] is the index of one of the two augmented
views of this real data point. In the following, we will index the samples in this

multiviewed batch uniformly withi € I = {1...2N}.



4.2. Preliminaries: contrastive learning 53

Latent space g
projectﬁm P
Ul e
oL
L

Original input Transformed Views Latent space geometry

oy -
Y @

Augmentations

FIGURE 4.1: Contrastive learning principles.

Self-supervised contrastive loss. In unsupervised setting where no ground-truth
class label is available, given an anchor v, indexed with a € I, its positive counter-
part is the other augmented view v, originating from the same real data point as
the anchor v,, and its negatives are all the other 2(N — 1) = 2N — 2 samples in the
multiviewed batch, indexed with {i € I\{a,p}. So, each anchor v, has 1 positive
counterpart and 2N — 2 negative counterparts, and therefore the denominator has
2N — 1 terms (the positive and negatives) in total. In other words, the contrastive
loss aims at distinguishing (contrasting) augmented pair from the same real sample
from augmented pairs from different real samples. In this case, equation 4.2 can be
written as

1 -1 exp (za - 2p/7T)
Eself — ﬁzelf - - 1o p 44
1] aXe:I 1| ; & Y ier (o) P (24 -2/ 7) @4

which is named as SimCLR (Chen et al., 2020).

Figure 4.1 sketches the principles behind the technique. Input samples are trans-
formed into “views” using augmentation functions. Then views are compared us-
ing a “contrastive game”: a given view (an anchor) is compared in the normalized
latent space against other views of the same real data (positive samples) and all the
other views in the batch (negative samples). The contrastive loss aims at pushing
an anchor closer to its positives and distancing it from negatives. Figure 4.1 depicts
one specific configuration of (anchor, positive, negatives) but as illustrated in equa-

tion 4.4 all possible permutations are computed during training.

In £%¢!  views of the same image form "their own class". With artificial labels de-
rived automatically by leveraging DA, £ is called self-supervised contrastive loss.
Although it creates a "supervised-style" task from the unsupervised setting, this task
is harder than the true supervised task because in £5!f negative samples can be of
the same underlying class of the anchor. However, this task complexity is expected

to foster the extraction of better representations.
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Supervised contrastive loss. Insupervised learning, the availability of class labels
provides the possibility to modify the loss such that it distinguishes (contrasts) aug-
mented pairs from the same class against those from different classes. To realize this
goal, contrastive loss is generalized to include an arbitrary number of positive pairs
belonging to the same class. In practice, Khosla et al., 2020 found that the following
supervised contrastive loss (namely SupCon) performs well:

[£su su exp (z;-2,/T
ouIt) = |I| Z'Coultj,a = |I‘ Z Z O p( P ) (4.5)

a€l aeI pep Zzel\{a} exp (za - zi/T)

where P(a) = { pe\{a}: by, = f/a} is the set of indices of all positives in the mul-
tiviewed batch belonging to the same class as the anchor v,. Compared to self-
supervised contrastive loss (equation 4.4), this supervised variant encourages the
encoder to produce tightly clustered representations for all samples belonging to the
same class, leading to a more robust clustering in the latent space.

4.2.3 Related work

CV literature.  Contrastive learning is a very active research area in ML. As ex-
plained in Section 4.2.2, across variants, the self-supervised contrastive loss SimCLR
(Chen et al., 2020) is the most popular method. SupCon (Khosla et al., 2020) ex-
tends SimCLR for a supervised setting by simply considering as positive samples also
all other augmented version of samples belonging to the same class of the selected
anchor—it moves from self-similarity to class-similarity. Furthermore, we note that
contrastive learning has many variants besides these most popular forms. For ex-
ample, triplet loss only involves with one positive and one negative, and Bootstrap
Your Own Latent (BYOL) (Grill et al., 2020)) does not use negative samples but ap-
plies two encoders ane encourages one encoder’s output of one view to match the
other encoder’s output of the other view.

TC literature. = The work using contrastive learning for TC is more limited. In
(Horowicz et al., 2022), authors applied contrastive learning in a “few-shot learn-
ing settings” without episodic training. More specifically, authors trained a self-
supervised model using SimCLR and with a flowpic input representation—packet
time-series are transformed into images representing the evolution of traffic over
a time window; hence transformation is possible by either manipulating the time
series (e.g., time shift) or the related image (color jittering, occlusion, etc.)—and
transferred it to the supervised classification task using just a few labeled samples.
In (Zhao et al., 2022b) instead, authors adopt BYOL (Grill et al., 2020) to a similar
problem setting as in (Horowicz et al., 2022) — pre-training on augmented data with
contrastive loss and fine-tuning on a few samples. The authors relied on the same

dataset as in (Horowicz et al., 2022) but adopted packet time series as their input
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(rather than flowpics), leveraging the data transformations proposed by (Rezaei and
Liu, 2019) and a ResNet18 architecture. Overall, (Towhid and Shahriar, 2022) shows
comparable performance with respect to (Horowicz et al., 2022). Worth also of men-
tion is (Rezaei and Liu, 2019) where authors used augmentations similar to the one
used in (Horowicz et al., 2022), yet no contrastive learning was applied. Last, a
few more recent studies investigated contrastive learning on raw packet bytes as in-
put (Meng et al., 2022; Zhao et al., 2022b) and compared it against transfer learning
and meta-learning Guarino et al., 2023, highlighting its recent relevance.

4.3 Self-supervised contrastive learning on flowpic

Supervised learning requires large labeled datasets. As they are notoriously diffi-
cult to share and labeling is costly, the ability to learn from as few labeled samples
as possible is particularly appealing. In this direction, to analyze contrastive learn-
ing and DAs’ effect in the unsupervised setting, in this section we aim at replicat-
ing Horowicz et al., 2022, which in the remainder of this section we will also refer
to as REF-PAPER or Horowicz et al.. In REF-PAPER, Horowicz et al. quantify the
performance of classification tasks when using only up to 100 training samples yet
increasing the training dataset with synthetic samples created with DA functions.
Horowicz et al. consider both a supervised and an unsupervised setting, the for-
mer with CE serve for finding the most effective augmentations, which are then
applied on the latter using the popular self-supervised contrastive learning approach
SimCLR (Chen et al., 2020) that starts from pre-training a model in an unsupervised
setting and later fine-tunes it to address a target task using a small number of la-
beled samples. Rather than using packet time series, Horowicz et al. use a flowpic
input representation, i.e., a 2d summary of a network flow dynamics (visualized in
Sec. 2.1).

Overall, we identify two DA and CT related contributions from the REF-PAPER: (i)
a benchmark of the effect on the performance of CNN models across 7 DAs (includ-
ing DA techniques applied to either flowpics (e.g., rotation) or to the packets time
series (e.g., altering inter-arrival times) from which the flowpics are then computed),
tested on two mid-sized datasets—UCDAVIS19 (Rezaei and Liu, 2019), which contains
5 classes with up to ~1,000 samples per class, and ISCX (New Brunswick, 2016),
which were processed and combined to obtain 10 classes with a few flows each.
The REF-PAPER shows that simple DAs can indeed be beneficial even when using a
few samples (with authors preferring time series transformations over image-related
ones). (ii) an evaluation of SimCLR and its sensitivity to the number of samples used

during fine-tuning. These are interesting findings worth reproducing.

More specifically, during the replication of the REF-PAPER by employing the same
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methodologies and data, we aim to achieve the following research goals: (G1) re-
producing the benchmarking of the proposed DA techniques for flowpics as a pre-
liminary selection step for their use in contrastive learning, in which we aim for a
quantitative reproduction (G1.1) and a qualitative reproduction (G1.2) of the aug-
mentations ranks; (G2) reproducing the SimCLR-related results with special atten-
tion to their internal details (e.g., use of dropout, projection layer size, training set
size and impact of the combination of augmentations used). We note that, since the
REF-PAPER does not provide confidence intervals nor perform any kind of statistical
analysis of their results, GI and G2 not only reproduce the original results but also

add a layer of statistical significance to them.

Given the replicability and reproducibility goals clarified, in Sec. 4.3.1, we present
our experimental protocol. Then in Sec. 4.3.2 - Sec. 4.3.4, we detail the analysis and
results for the research goals sequentially. Finally, we conclude this section with final
remarks in Sec. 4.3.5. Details that we believe to be needed to make the section self
contained are deferred to App. A.

4.3.1 Experimental protocol

We closely followed the configurations and scenarios from the REF-PAPER which
we complemented with ablation studies and modeling campaigns. In this section
we provide a summary of the main aspects of REF-PAPER.

DL architectures. We adopted the same CNN-based networks of the REF-PAPER,
namely a LeNet5 (Lecun et al., 1998) for mini-flowpic and a larger version of it for
full-flowpic.! The printout of the networks is reported in App. A.

DA. Next to applying no augmentation, we adopted the 6 augmentations used
in the REF-PAPER—3 packet time series transformations (Change RTT, Time Shift
and Packet Loss) and 3 image transformations (Rotation, Horizontal Flip, and Color

jitter)—with the same hyper-parameters (see (Horowicz et al., 2022) for details).

Training steps. As in the REF-PAPER, we compared two DL modeling techniques:
fully supervised training and SimCLR + fewshot fine-tune training. For the former, sam-
ples are augmented before starting the training. For the latter, given a labeled dataset
and a selected augmentation function, each sample is processed to create 2 views of
it using the Change RTT and Time shift transformations. Both views are created
when forming the mini batches used during training. First, a representation of the
dataset is learned by pre-training a model via SimCLR, contrasting pairs of augmented
“views” of a sample. Then, a new model is formed by freezing the pre-trained rep-
resentation and combining it with a classifier layer which is fine-tuned based on a
few labeled samples. As in the REF-PAPER, we use Change RTT and Time Shift as

IThe terminology in the REF-PAPER overloaded as mini- and full-flowpic also refer to the resolution
of the flowpic created.
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Name Partition Filter Classes Fl'ows Pkts
all min  max p  mean
pretraining 6,439 592 1915 3.2 6,653
(Rezaei and Liu, 2019) UCDAVIS19 human none 5 83 15 20 1.3 7,666
script 150 30 30 1.0 7,131
none 122,007 1,986 11,737 5.9 23

_10- (*) % 7 ’
(Aceto et al., 2019¢c) MIRAGE-19-HALF n.a. > 10pkts 20 64172 1,013 7.505 7.4 17
none 59,071 2,252 18,882 8.4 3,068
(Guarino et al., 2021b) MIRAGE-22 n.a. >10pkts 9 26,773 970 4,437 4.6 6,598
>1,000pkts 4569 190 2,220 11.7 38,321

none 17 34378 159 5591352 664
>10pkts 10 9,460 130 2,496 19.2 2,366
p : ratio between max and min number of flows—the larger the value, the higher the class imbalance;
(*) Despite being advertised of having traffic from 40 apps, the public version of the dataset only
contains 20 apps.

(Heng et al., 2021a) UTMOBILENET21  4-into-1

TABLE 4.1: Summary of datasets properties.

DA functions, yet we complement the analysis testing other augmentation pairs too.
Augmentations are used only during pre-training.

Datasets and Data curation. To address our goals we used the four datasets sum-
marized in Table 4.1. UCDAVISI9 is used in the REF-PAPER while we selected the
others because of their interesting and complementary properties with respect to
UCDAVIS19: (i) they are collected in similar setups — research projects related to mo-
bile traffic monitoring — (i7) they cover a larger number of classes and users behavior
— MIRAGE-19-HALF and UTMOBILENET21 are gathered from volunteering students in-
teracting with instrumented phones while MIRAGE-22 focuses on video meeting ser-
vices — and (iii) they are imbalanced — the p values in the table reflect the ratio be-
tween the number of samples of the largest and smallest class in a dataset; notice the
larger imbalance of the three datasets compared to UCDAVIS19, which is an expected
property of network traffic. More importantly, all these datasets provide per-packet
time series for the whole flows duration, which is a key requirement for composing
flowpic representations. For instance, we cannot use the larger AppClassNet (Wang
et al., 2022a) and CESNET-TLS22 (Luxemburk and Cejka, 2023a) datasets because they
only provide the packet time series for the first 20-30 packets of each flow.

As detailed in the table, UCDAVIS19 is pre-partitioned (and pre-filtered) by the au-
thors of the dataset to create a large set of samples for self-supervised training
(namely pretraining) and two smaller testing set partitions, namely script and
human.? Conversely, for the other three datasets we filtered out flows with less than
10 packets and removed classes with less than 100 samples. To replicate the setting
provided in UCDAVIS19, for MIRAGE-19-HALF and MIRAGE-22 we also first removed
TCP ACK packets from time series and then discarded flows related to background

2According to (Rezaei and Liu, 2019), both pretraining and script correspond to automated col-
lection of data, while human is gathered monitoring traffic when real users were interacting with the
selected 5 services.
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traffic.> The right-most column of the table details the average number of pack-
ets in a flow. Notice how UCDAVIS19 has very long flows while MIRAGE-19-HALF is
the dataset with shortest ones. To further focus on very long flows, we also created a
version of MIRAGE-22 with flows having more than 1,000 packets. Lastly, through our
curation we also created reference train/test splits for the datasets. Specifically, since
in the REF-PAPER the training dataset needs to have 100 samples, for UCDAVIS19 we
create 5 folds (the smallest class in the dataset has 592 flows) of 100 samples per-class
each. However, for the other datasets we opted for having 5 random splits each hav-
ing a random selection of 80% of samples for training (and the rest for testing).

4.3.2 Reproducing quantitative results of data augmentation

We start by reproducing results related to Tables 1-2 of REF-PAPER, which contrast
different augmentations applied in a supervised setting (G1.1).

Approach. As from Sec. 4.3.1, we created k splits from UCDAVIS19 dataset by sam-
pling without replacement groups of 100 samples for each class from the pretraining
partition. Then, a given set of 100 samples is split randomly s times, with each split
corresponding to a 80/20 train/validation split for training. Using these data, we
performed a campaign to test the 7 augmentations across k=5 splits each having
s=3 train/validation splits for a total of 105 experiments. This is repeated for the
three flowpic resolutions with the same training settings as in the REF-PAPER: static
learning rate at 0.001, early stopping on validation loss after 5 steps in which the loss
does not improve by more than 0.001, batch size of 32, performance measured via
accuracy, flowpic created from the first 15s of a flow.

Results.  Table 4.2 summarizes our results reporting the mean accuracy and re-
lated 95% CI for each scenario. We complement the evaluation of the REF-PAPER by
reporting a new test set corresponding to all pretraining samples not belonging to a
selected 100 samples split (i.e., what would be called a test set in a traditional eval-
uation). As, to the best of our understanding, these samples have been discarded in
the REF-PAPER, we refer to this test set as leftover.

Overall, we obtained lower performance than what was reported in REF-PAPER.
While differences are modest on script, we observe a reduction of over 20% on
human. Notice that no gap appears when comparing script with leftover. The
gap is (slightly) reduced when using a higher resolution flowpic but the lower per-
formance on human (and the larger confidence intervals with respect to script and
leftover) suggests the presence of a hidden problem with this predefined test set.
To understand the reason of this gap, we conjectured that its root case might lie in
the data itself.

3Traffic is collected on mobile phones with labeling ground-truth provided by netstat. One mea-
surement experiment generates traffic logs for a specific target app. We processed such logs so that
traffic of apps and services different from the target app (e.g., netd deamon, SSDP, Android gms) is
removed as it represents “background” traffic.
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Test on script Test on human Test on leftover T
flowpic res 32 64 1500 32 64 1500 32 64 1500
No augmentation 95.64 +0.37 95.87 +0.29 94.93 +0.72 68.84 +1.45 69.08 +1.35 69.3241.63 95.78 +0.29 96.09 +0.38 95.79 +0.51
Rotate 96.31 +0.44 96.93 +0.46 95.69 +0.39 71.65 +1.98 71.08 +1.51 68.19 £0.97 96.74 +0.35 97.00 +0.38 95.79 £0.31
Horizontal flip 95.47 +0.45 96.00 +£0.59 94.89 £0.79 69.40 +1.63 70.52 +2.03 73.90 +1.06 95.68 +0.40 96.32 +0.59 95.97 £0.80
Color jitter 97.56 +0.55 97.16 +0.62 94.93 £0.68 68.43 +2.82 70.20 £1.99 69.08 +-1.72 96.93 £0.56 96.46 +0.46 95.47 +0.49
Packet loss 96.89 +0.52 96.84 +-0.63 95.96 £0.51 70.68 +£1.35 71.33 +1.45 71.08 £1.13 96.99 +0.39 97.25+0.39 96.84 +£0.49
Time shift 96.71 +0.60 97.16 +0.49 96.89 +0.27 70.36 £1.63 71.89 +1.59 71.08 £1.33 97.02 £0.50 97.51 +0.46 97.67 +£0.29
Change RTT 97.29 +0.35 97.02+0.46 96.93 £0.31 70.76 £1.99 71.49 +1.59 71.97 £1.08 98.38 £0.18 97.97 +0.39 98.19 £0.22

Each of our result is an aggregation of 15 experiments (5 splits x 3 seeds).

t We named “leftover” the samples from the pretraining partition not belonging to the 100 samples of a given split. Traditionally this would
correspond to the test set.

TABLE 4.2: Comparing data augmentation functions in a supervised

training. Values marked as “ours” correspond to the average accu-

racy across 15 modeling experiments and the related 95-th confidence
intervals.
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FIGURE 4.2: Average confusion matrices for the 32x32 resolution
across all experiments in Table 4.2.

To start verifying this assumption, the heatmaps in Fig. 4.2 break down the results
in Table 4.2 by showing the average per-class accuracy across the 105 runs for the
32x32 flowpic resolution. Specifically, we summed all the confusion matrices for
script and human and we normalized them by row. For human we observe multiple
sources of confusion with Google doc and Google search having the most evident clash.
Conversely, no specific issues can be detected for script.

We highlight that, while 32x32 and 64 x 64 experiments run in about 1 min, it takes
about 30min to run one experiment on 1500x1500. Given this computational cost,
motivated by the marginal performance gap across resolutions and as done by
Horowicz et al., in the remainder of this chapter we focus only on the 32x32 res-
olution.

To drill down, Fig. 4.3 collects an average flowpic per class across the original dataset
partitions and one training split. Recall that the horizontal axis of a flowpic corre-
sponds to time (time zero on the left) while the vertical axis corresponds to packet
sizes (zero length on the top). The first row in Fig. 4.3 corresponds to all flows avail-
able in the pretraining partition, while the second one corresponds to a training split,
i.e., an aggregation of 100 samples per class. We can clearly see that the reduction of

samples has a visual impact, but overall the first two rows are visually very similar.
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FIGURE 4.3: Average 32x32 flowpic for each class across dataset par-
titions.

The third and the fourth rows correspond to the script and human partition respec-
tively, i.e., they have 30 and ~15 samples per class. When comparing the last two
rows with the first two, we can clearly see differences which we further annotate
with rectangles. Notice how Google search is expected to have two vertical groups of
pixels around the left-axis and the center of the picture. Surprisingly, for human these
groups are “shifted” to the right (rectangle A). Moreover, notice how all splits but
human saturate the maximum packet size for Google search—there is a distinctive hor-
izontal line (around pixels on row 28) for human (rectangle B) while in the other cases
there are distinct dark lines at row 32. Interestingly, Fig. 4.3 also highlights macro-
scopic differences for Google music—vertical “stripes” of pixels are visible in all splits
but human (rectangle C). Yet, according to Fig. 4.2, this seems less of a problem. We
conjecture that this might be due to the stark difference between Google music and
the other services. In other words, despite the different behavior between the par-
titions, Google music is still very different from the other 4 classes (thus it might be
easier to classify).

Takeaway.  Given the strong evidence provided by our analysis, we concluded
that the human test split is affected by a data-shift. Yet, we cannot comment on the
reason why this was not detected in the REF-PAPER.*

4.3.3 Reproducing qualitative ranking of data augmentation

The original key question behind benchmarking the different augmentations was to
understand if, and by how much, they were beneficial with respect to not performing

4 Authors did not provide us comments about this aspect.



4.3. Self-supervised contrastive learning on flowpic 61

Script

No augmentation Color jitter
Horizontal flip L Change RTT
Rotate Time shift

Packet Loss

Human
CD
P
7 6 5 4 3 2 1
No augmentation —— L Rotate
Color jitter Time shift

Horizontal flip Packet Loss
Change RTT

FIGURE 4.4: Critical distance plot of the accuracy obtained with each

augmentation for the 32x32 and 64 x 64 resolutions. Augmentations

joined by a horizontal line are not statistically different. The lower

the ranking (closer to 1, the right side of the plot) the better the per-

formance. Transformations highlighted in bold are selected as the
best performing one in the REF-PAPER.

any augmentation, for which we opted for performing a statistical analysis (G1.2) of
our modeling campaign to understand if Change RTT and Time shift were the best
performing augmentations as reported in the REF-PAPER.

Approach. The CI values in Table 4.2 show clear overlaps between different aug-
mentations. To investigate our results, we compare each augmentation according to
the procedures presented in (Demsar, 2006). First, accuracy results are turned into
rankings (e.g., if augmentations A, B and C yield an accuracy of 0.9, 0.7 and 0.8, their
associated rankings would be 1, 3, and 2) with ties being assigned with the aver-
age ranking of the group (e.g., if augmentations A, B and C yield 0.9, 0.9 and 0.8,
their associated rankings would be 1.5, 1.5 and 3). This process is repeated across all
tested datasets and splits. Then, an average ranking value is extracted per augmen-
tation. These values are compared pairwise using a post-hoc Nemenyi test, which
compares these average rankings to decide if the performance difference between
augmentations is significant. This decision is made using a Critical Distance (CD)

in ranking equal to CD = g, k(g;\;l), where g, is based on the Studentized range

statistic divided by v/2, k is equal to the number of augmentations compared and N
is equal to the number of samples used.

Results.  Figure 4.4 displays the results of these comparisons. We combined the
32x32 and 64 x 64 resolutions as we did not find statistically significant differences
between them. In our case, with « = 0.05, k = 7 and N = 30 and g5 = 2.949 the
critical distance is CD = 1.644. The closer an augmentation is to the right side of
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the plot (a higher average rank), the better the performance. From our analysis for
the script partition, we cannot conclude significant differences within three groups,
which we sort by increasing performance: {No augmentation and Horizontal flip};
{Horizontal flip and Rotate}; {Rotate, Packet loss, Time shift, Change RTT and Color
jitter}. Similar groups exist also for the human partition. As annotated in Fig. 4.4,
Horowicz et al. selected Change RTT and Time shift as the best augmentations:
whereas these augmentations are in the best performing group both for script and
human, it is easy to gather that other transformations consistently appear in the same

(statistically relevant) group.

Takeaway. On the one hand, the Time shift and Change RTT transformations are
in the best performing group, a finding aligned with the ones in the REF-PAPER. On
the other hand, from a statistical viewpoint, they are not distinguishable from other
options, like Color jitter (for script) or Rotate (for human) or Packet Loss (for both).

4.3.4 Reproducing constrastive learning results

The second goal of our reproducibility study concerns the use of contrastive learning
and fine-tuning (G2). A few observations are needed to contextualize the modeling
campaign to perform.

Approach.  First of all, we need to select augmentations for SimCLR, where two
augmented views are obtained from each sample in a training mini-batch. Following
the REF-PAPER, we opted for applying the two transformations Time shift and Change
RIT in random order for every image in a mini-batch. Yet, given our ranking analy-
sis showed equivalence among multiple top performing transformations, we also
perform a small-scale ablation study considering three other pairs beside the pair
selected in the REF-PAPER. Second, with respect to the projection head used after
the feature extractor in the training of SimCLR, our ablation on the usage of dropout
and the dimension of the projected representation (results in Table 4.4) shows that
we can rely on a network without dropout (differently from the REF-PAPER) but we
confirm the original choice of a projection layer of 30 units.

Results.  First, we investigated to which extent alternative pairs of augmentations
affect the fine-tuning performance. Namely, we considered Time shift and Change
RTT next to Rotate and Color jitter, selected because they achieved good positions
in our ranking analysis. Then we formed groups by either pairing time series with
image transformations or pairing the image transformations. Results collected in
Table 4.3 show that, despite the punctual differences between pairs, our observation
on Table 4.2 and the ranking analysis (Sec 4.3.3) still holds—all pairs are qualitatively

equivalent.

Second, we expand the methodology used so far by quantifying the effect of us-
ing a (pre)training set larger than 100 samples. Specifically, we created 5 random
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1st augment. Change RTT* Packet loss Change RTT  Color Jitter

2nd augment. Time shift” Color jitter Rotate Color Jitter Rotate  Rotate
test on script 92.18+031  90.17+0.41 91.94+030 91.72+036 92.38+032 91.79+0.34

test on human 74.69+1.13 73.67+124 71.22+120 75.56+1.23 74.33+1.26 71.64+1.23

Each value is an aggreg. of 125 exp. (5 splits x 5 SImCLR seeds x 5 fine-tune seeds).
(*) pair of augmentations used in (Horowicz et al., 2022).

TABLE 4.3: Comparing the fine-tuning performance when using dif-
ferent pairs of augmentations for pretraining (32x 32 resolution, fine-
tuning on 10 samples only).

test on script test on human

Projection dimension ~w dropout w/o dropout w/ dropout w/o dropout

30 91.81 +038t 92.18 +0.31 7212 +1.374 74.69 +1.13
84 92.02 +036  92.54 4033 73.31 +1.04 74.35 +1.38
Each value is an aggr. of 125 exp. (5 splits X 5 SimCRL seeds x 5 fine-tune seeds).

The reference value for t from Horowicz et al., 2022 reports in the text (94.5% for 10 samples); for I no
specific values are reported but should be ~80% based on Fig. 4 of Horowicz et al., 2022.

TABLE 4.4: Impact of dropout and SimCLR projection layer dimen-
sion on fine-tuning (32 x 32 only, with 10 samples for fine-tuning train-

ing).

80/20 train/validation split using the full pretraining partition, i.e., the dataset re-
sult imbalanced with up to 1,532 training samples for the largest class and 473 for the
smallest. Table 4.5 reports the results of the modeling campaign in both a supervised
and contrastive learning settings. As expected, compared to Table 4.2 and Table 4.4,
enlarging the dataset is effective in improving performance in both settings. In par-
ticular, for contrastive learning the gain is smaller for script (+1.72% on average)
than for human (+5.76% on average)—the latent space created via contrastive learn-

ing is better at mitigating the data shift.

script human

No augmentation 98.37-+0.19 72.95+09
Rotate 98.47-+025 73.73+1.09
Horizontal flip 98.20+0.15 74.58-1.16
Color jitter 98.63:021 72.47+1.02
Packet loss 98.63+0.19 73.43+1.25

Time shift 98.60+022 73.25+1.17
Change RTT 98.33+0.16 72.47+1.04

SimCLR + fine-tuning 93.90+074 80.45+2.37

a

Supervised

TABLE 4.5: Accuracy on 32x32 flowpic when enlarging training set
(without dropout).

?Each value is an aggregation of 20 experiments (20 different seeds)
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Takeaway.  The transformations selected in the REF-PAPER constitute a good
enough choice, although image transformations cannot be fully ruled out based on
our assessment. This confirms that identifying the most suitable transformations
is tied to the input representation and datasets used, which remains an open prob-
lem. Moreover, while a very limited number of samples can be enough for training
models, the same scenarios can benefit from more data—the selected augmentations
alone are not a final replacement for real input samples.

4.3.5 Concluding remarks

In this section, the task we focused on is the FSL case (i), where the encoder is first
trained on abundant unlabeled samples S of target classes, then finetuned on a few
labeled samples S’ of target classes. To tackle this FSL setting in TC, we reproduced
and replicated the methodology of (Horowicz et al., 2022) which investigated self-
supervision via contrastive learning and DA. These methods are particularly appeal-
ing as they allow for learning from a few labeled samples instead of requiring large
amounts of labeled training data.

Summarizing our analysis, we have been able to qualitatively reproduce most of the
original results, so we confirm the interest in self-supervised contrastive learning
and DA. At the same time, our modeling campaigns found unexpected quantitative
discrepancies that we rooted in data shifts in the UCDAVIS19 dataset (undetected in
the REF-PAPER).

Another remarkable consideration can be gathered by contrasting our reproducibil-
ity vs replicability results. Indeed, the reproducibility results on UCDAVIS19 show
little statistical significance in the differences among the proposed DA techniques—
just by reproducing the study on UCDAVIS19 alone would therefore have not allowed
us to validate Horowicz et al.’s choices. Conversely, by replicating the methodology
on three additional datasets, we gathered evidence that finally validated Change
RTT and Time Shift as more beneficial than other augmentations for the flowpic in-
put representation.

4.4 Comparing self-supervised and supervised contrastive

learning for few shot learning

Building on Sec. 4.3, which confirmed the effectiveness of self-supervised contrastive
learning for the FSL case (i) — pretraining on unlabeled data, this section extends
the evaluation to both self-supervised and supervised contrastive learning in the
case (ii) — pretraining on labeled data of non-target classes. We note that instead
of sticking onto the flowpic representation adopted in Sec. 4.3 where the motivation
was to replicate the REF-PAPER, in this section we return back to packet time series
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learning

as input data representation which enables early classification and is more widely
adopted.

Recall that for this specific FSL case, despite all training samples are associated with
their own class labels (i.e., supervised), the data split is different from that in tradi-
tional supervised classification. To clarify these differences, we begin with a brief

introduction to commonly used notations for defining the training splits.

In FSL case (ii), the goal is to classify samples of new categories efficiently from few

samples only. Each few-shot task (also called target tasks) consists of a support set
Q|
j=1
containing | Q| samples to be classified. Note that S and Q share the same set of N

S={(x5,y3) }li'l containing | S| labeled samples and a query set Q = { (x?, y?) }

classes (i.e. Cs = Cg ), plus S contains K samples per class (also denoted as N-
way K-shot), and these two sets” samples are mutually exclusive (i.e., SN Q = ).
The goal is to train a classifier on S that could accurately predict the labels of Q
at inference. However, as K is much smaller in FSL compared to the training set
size in traditional supervised learning, it would be difficult to achieve good test
performance on Q if the classifier is only trained on the small S. To address that, in
the setting of FSL, during training we also have access to a large labeled base dataset
Dy, but there is no intersection between the base classes in D, and the novel classes
in S (or Q) (i.e. Cp, NCs = @). This leads to the challenge of FSL: what training
algorithm could effectively transfer knowledge from a large dataset of source classes
(i.e. source task Dy) to the sparsely annotated target new categories (i.e. target task

(5, Q)

In this section, we start with a discussion of the mainstream training algorithms in
this FSL context (Sec. 4.4.1). Then, to benchmark the FSL. methods on TC datasets
and investigate the impact of incorporating label information (as in supervised
contrastive learning) on the model’s ability to generalize from limited examples,
we state our research questions (Sec. 4.4.2) used when designing our experiments
(Sec. 4.4.3). We conclude by discussing our results (Sec. 4.4.4) and outlining the final
conclusions (Sec. 4.4.5).

44.1 Related work

Next, we will introduce the two main branches of FSL training paradigms — transfer
learning and meta-learning, each complimented with a review of CV and TC literature

as summarized in Table 4.6 and Table 4.7.

Transfer learning approaches.  As sketched in Fig. 4.5, transfer learning solve FSL

problem in two steps, involving (i) first train a conventional NN classifier (i.e. a

(source) o f(source)
0

feature extractor fy followed by a classifier head f,) f, on the source

data Dy, (ii) then adapt it to the few-shot target data S by training only a simple

linear or centroid classifier head fq(,mrgd) on the fixed representation yielded by the
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Approach Classifier Distance-based?
Transfer Learnin (Chen et al., 2019b) Baseline Linear @)
8 (Chen et al., 2019b) Baseline++ Cosine Sim. )
(Snell et al., 2017) ProtoNet Euclidean distance ()
Meta Learning (Sung et al., 2018) RelationNet MSE @)
(Finn et al., 2017) MAML Linear O
. . (Chen et al., 2020) SimCLR Linear [
Contrastive Learning (Khosla et al., 2020) SupCon Linear )

TABLE 4.6: Computer vision literature summary.

Data Classes

Reference Approach Year All Target Shots Inp.Type Inters?
Transf. (Rezaei and Liu, 2020) Razaei20 Multi-task learn. 18 5 5 na. 3PS [ )
Learn. (Sun et al., 2018) Sun18 TrAdaBoost 05 12 12 na. -FF ()
(Ouyang et al., 2021) FS-IDS ProtoNet 14 8 3 1:10 26FF ©
(Rong et al., 2021) UMVD-FSL ProtoNet 17,20 =76 5/20 1/5 784B @)
M (Yu and Bian, 2020) Yu20 ProtoNet 09,15 ~8 2/5 50 44FF [ )
Le?:n_ (Liang et al., 2022) OICS-VFSL ProtoNet 09,15 ~122/4/7 1:50 —FF )
(Zheng et al., 2020) RBRN RelationNet 12,16 ~15 — — —B ()
(Xu et al., 2020) FCNet RelationNet 12,17 =10 2 5/10 200B ©
(Zhao et al., 2022a) Festic RelationNet 18,19 =25 14 515 256B [ )
(Feng et al., 2021) FCAD MAML 17 43 13 5:220 33FF+8PS O

InpType: FF = flow features; B = payload bytes; PS = univariate packet time series; — = unspecified

Inters? target and base classes are Odisjoint or either @completely or ©partially overlapped.

TABLE 4.7: Traffic classification literature summary.

pretrained frozen feature extractor fe(some)

. Alternatively, in step (ii) one can fine-
tune all parameters at once, or use a hybrid policy unfreezing feature extractor after
a certain number of epochs. No matter the selected option, dataset partitions are
the same: (i) pretraining entirely scanned the source dataset D, and (ii) finetuning

enlists the target support set S whose categories are disjoint with respect to D,.

¢ CV literature: Transfer learning is the most adopted methodology across liter-
ature. In particular, while early meta-learning literature proves it is possible to
learn even from single samples (Snell et al., 2017), more recent literature (Chen
etal., 2019b; Tian et al., 2020) suggests transfering from models created on large
dataset (with many samples and many classes) yields better performance, es-
pecially when combined with fine-tuning with episodic training for the final

target task, i.e., they mix transfer learning with meta-learning.

A prominent example is Baseline (Chen et al., 2019b) which trains a Mspyrce

Training (source) @ Fine-tuning (target)
| 2145&739 10 11 I21'§‘J4h
rr:m . r r.rmr -
mf - . I [ val -
w- I — I Nl— —

iié’:i‘im
. z..f‘;p 7e{l..1 Z-f Ye{l2..15}

tSeaes. transfer.ae=" (-.Uu!’[‘r?.} (target)
(via fixed representation)

FIGURE 4.5: Transfer learning.
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model using a large dataset (many classes and many samples) and then
fine-tune a target task (from a disjoint set of classes) via episodic training.
Baseline++ (Chen et al., 2019b) is a variant of the same approach where the
parameters of the classifier are treated as class embedding. More in details,
both methods rely on a fully connected layer WEIR?*¢ where d and c repre-
sent the dimension of the latent space vectors and the number of target classes
respectively. Unlike Baseline that simply uses a standard CE classification
loss, Baseline++ relies on a cosine distance-based loss between W=[wy - - - w]
columns and latent space projections z of input samples—each column w; "em-
beds" a class.

¢ TC literature: Only (Rezaei and Liu, 2020; Sun et al., 2018) used transfer learn-
ing but none of the methods mentioned above. Namely, (Rezaei and Liu, 2020)
pre-trained a self-supervised multi-task model targeting flows duration and
bandwidth which was then transferred to a 5 classes task. Results show that
this transfer was under-performing with respect to training directly a single-
task model. Instead, (Sun et al., 2018) used TrAdaBoost (Dai et al., 2007), an
ensemble ML method using reversed boosting, considering a very old dataset.

Meta-learning approaches. While transfer learning relies on implicit tasks affinity;,
meta-learning is designed to explicitly push cross-tasks representation extraction. To
do so, during an epoch, rather than completing a scan of D}, by means of random

mini-batches, synthetic tasks (also called episodes) 7; are created by randomly sam-
pling a subset of N training classes C l-(tmm) and randomly sampling support samples
S; and query Q; samples for these selected classes, in which S; contains K samples
per class. Notice that while episodes are small batches of samples, by design they
differ from monolithic training mini-batches as they guarantee class balance — an
episode has (|S| + |Q|) samples for the (randomly selected) N classes (ways). Since
episodic training mimics the target task scenario on the source set, it is also known
as (N-way, S-shot) training, where support S; and query Q; acts as “micro-training”
and “micro-validation” set. Through dual sampling of task and data space, meta-
learning is enabled to construct a large number of auxiliary tasks related to unseen

tasks.

In practice, given a dataset, we first split it into source dataset Dj, and meta-test
set Dy.s+ with disjoint set of classes (i.e. Dy N Dyt = @), then Dy, is further di-
vided into meta-training set Dy,4;, and meta-validation set D,,;; with disjoint set of
classes (i.e. Dygin N Dygy = D). Training episodes are sampled from Dy,4;,,, while the
evaluation (being validation or testing) creates multiple models (one per episode,
where episode is sampled from D,,; or Dy.), so overall performance is an aggre-
gation of per-episode models performance. As in traditional monolithic training,
meta-validation facilitates both hyper-parameters tuning and over-fitting assess-
ment, while meta-testing yields the final performance. Note that meta-validation
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@ Meta-training @ Meta-validation @ Meta-testing
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FIGURE 4.6: Meta-learning.

and meta-testing still includes fine-tuning the models for the target tasks, by trans-

ferring the meta-learned source model feature extractor fe(

source .
) and fine-tune a clas-

sifier head specific for an episode, as pictured in Fig. 4.6. In a nutshell, meta-training

is designed to push representation learning through tasks variety.

¢ CVliterature: CV literature is ripe with meta-learning and FSL methods (Wang

et al., 2020c). In this study we focus on a small selection of methods based on
their extreme popularity.

ProtoNet (Snell et al., 2017) is the most well known metric-based meta-
learning approach. ProtoNet learns class prototype which geometrically cor-
responds to the mean centroid of a class in the latent space. Query samples are
then classified based on their euclidean distance with respect to class proto-
types. The idea of class prototypes inspired different meta-learning methods,
including Baseline(ClassEmb) (i.e., class embedding are semantically equiva-

lent to class prototypes).

RelationNet (Sung et al., 2018) is another popular metric-based meta-learning
method. While ProtoNet uses a closed form distance metric (i.e., euclidean
distance), RelationNet introduces the idea of “meta-learning” such distance.
Specifically, the classifier head f,(-) embodies a “relation” module trained to
provide a similarity score between support and query samples. Curiously, the
classification loss is based on Mean Squared Error (MSE) rather than softmax.

MAML (Finn et al., 2017) is the most popular optimization-based meta-learning
approach. Differently from ProtoNet and RelationNet which optimize model
parameters considering episodes in isolation, MAML uses a two-nested loops
process: the inner loop fine-tunes based on each individual episode; the outer
loop “re-weights” inner loop contributions across episodes via a second order

gradient of the classification loss.

TC literature: As from Table 4.7, several studies successfully applied these
methods on network traffic, mostly targeting normal-vs-attack classification
tasks in intrusion detection scenarios. While we consider those classifiers as
specific forms of TC, we find most of these studies violate the meta-learning prin-
ciple of dis-joining train/val/test partitions. Only (Rong et al., 2021; Feng et al.,
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2021) followed the expected protocol, while in all the other studies the parti-
tions overlapped either perfectly (e.g., meta-train a binary classifier normal-
vs-attack and meta-test on the same classes) or partially (e.g., normal and the
same attack classes traffic belongs to both meta-train and meta-test).

4.4.2 Research questions

TC literature favors meta-learning with respect to transfer learning (Table 4.7). Yet,
CV literature suggests to pay attention to the latter. Moreover, all previous TC lit-
erature on meta-learning provides positive results, but most of these studies violate
the meta-learning principle of dis-joining the classes in Dy4iy, Dyar and Dyese. Thus,
we claim the need to re-assess these methodologies under different settings.

Q1: Do the benefits, as observed in CV, of transferring from source models trained
on many samples and many classes apply to TC use-cases as well? Among the FSL
methods, is transfer learning yielding better performance compared to meta-learning?

For transfer learning’s pre-training stage specifically, since contrastive learning is
designed to facilitate better representation learning and has been shown to be suc-
cessful for time series (Yang et al., 2022c) outside the TC domain, we ask

Q2: Does using contrastive learning in transfer leraning’s pre-training assist in creat-
ing more general models also for TC? Is supervised contrastive learning superior to its
more traditional self-supervised version?

4.4.3 Experimental protocol

To address our research questions we relied on two publicly available datasets and
designed multiple modeling campaigns.

Datasets and dataset partitioning. The two considered datasets are
MIRAGE-19-ALL and AppClassNet. MIRAGE-19-ALL (Aceto et al., 2019d) encompasses
per-biflow traffic logs of 40 Android apps (20 in public and 20 acquired by asking
the authors) collected at the ARCLAB laboratories of the University of Napoli Fed-
erico II. It was collected by instrumenting 3 Android devices used by ~300 volun-
teers (students and researchers) interacting with the selected apps for short sessions.
AppClassNet (Wang et al., 2022b) is an anonymized commercial-grade dataset re-
leased by Huawei Technologies in 2022 and gathered from real residential and en-
terprise networks. The dataset encompasses the traffic of 500 applications for a total
of 10M biflows each represented by a time series of packet-size and direction of the
first 20 packets and, most important, labeled by means of a commercial and propri-
etary DPI tool.

Table 4.8 summarizes datasets properties. Defining the popularity of a class as its
number of samples, the table reports p measuring the datasets imbalance as the ratio
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MIRAGE-19-ALL AppClassNet

Data Num. Samples Num. Samples
Partition Classes All Max Min © Classes All Max Min e
Drrain 24 82k 82k 1.3k 6.3 320 9.8M 1M 958 1,044
Dyl 8 94k 13k 1.1k 1.2 80 60.5k 956 579 1.6
Direst 8 5.1k 904 361 25 100 474k 578 383 15
D 40 97k 82k 361 22.7 500 9.9M ~IM 383 2,611

p = ratio Max/Min samples per class

TABLE 4.8: Datasets summary.

between the most popular and least popular class. Unlike CV datasets, in TC the
imbalance is severe. Adhering to meta-learning protocols, we partition the datasets
by dis-joining train/val/test. To do so, we use class popularity resulting in D;4y
containing the largest classes pool—imbalance here still reflects network traffic sce-
narios and the large availability of data allows to address (Q1) —while D,,;; and Dyt
focus on unpopular classes—imbalance here is reduced, better reflecting the typical
FSL settings. We argue that such partitioning is preferable to both (i) artificially
random under-sampling to enforce a “few-shot” setting and (i7) randomly splitting
classes, obtaining scenarios where a target class has many samples. Conversely, we
aim at target tasks with a naturally reduced number of samples.

Input type.  All models are created using packet time series as input. Specif-
ically, for MIRAGE-19-ALL we consider 4 features (packet size, direction, IAT, and
TCP window-size®) for the first 10 packets; for AppClassNetwe consider 2 features
(packet size and direction) for the first 20 packets.®

NN Architectures. About the feature extractor, we used a CNN architectures con-
taining 4 CNN blocks (where each block is a convolution layer followed by a batch
normalization layer and a ReLU activation): and a fully connected layer of 500 units
(1.3M parameters).

FSL Approaches. We considered a total of 10 methods (Q1): 3 for transfer learn-
ing in the literature, 3 for meta-learning, and 4 for transfer learning with con-
trastive learning. The transfer learning and meta-learning methods we used are
reported in Table 4.6, however, for transfer learning, we modify original names to
better express their relationship and semantic: Baseline++ — Baseline(ClassEmb),
RFS-simple(NN) — Baseline(NN).”

For transfer learning with contrastive learning, we considered both self-supervised
(SimCLR) and supervised (SupCon) variants (Q2), for models with and without

S5For UDP traffic the time series is padded with 0.

6The reason for the different time series length resides in properties of the datasets: MIRAGE-19-ALL
contains many short leaved flows, thus using 10 packets reduces padding.

7We acknowledge that Baseline is a sub-optimal naming convention, but we kept it to preserve the
relationship with (Chen et al., 2019b).
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MIRAGE-19-ALL AppClassNet
Approach  5-shots 50-shots ~ 200-shots 5-shots 50-shots ~ 200-shots

Baseline 60.24-£0.57 82.26+0.41 88.72-£0.32 77.30+0.65 90.11+0.38 93.03+0.32
I::::f Baseline(ClassEmb) 59.98-£0.54 79.03+0.42 84.48+0.38 76.54+0.61 89.16+0.41 92.30-£0.32
' Baseline(NN) 65.48+0.56 86.41+0.36 92.84+0.24 76.93+0.61 90.18:0.39 93.77+0.29

MAML 57.104+0.58 70.68+0.44 73.97+0.44 61.93+0.71 75.57+0.60 78.27-+0.55
ProtoNet 62.62-£0.56 69.93-£0.41 72.09-£0.40 69.93+0.74 80.31+0.51 81.94-+-0.50
RelationNet 54.28+0.58 57.73+£0.51 61.60--0.47 68.65+0.74 77.24-0.59 75.09+0.57

Transf SimCLR 63.97+£1.01 79.26+0.76 81.52+0.63 77.88+2.05 91.10+1.16 91.65+1.11
with SupCon 64.72+0.83 86.55+0.50 91.00-£0.39 81.74+1.07 91.70-£0.64 93.3340.51
0
0

Meta.
Learn.

Contr. SimCLR(ClassEmb) 62.82+0.98 86.91+0.57 91.01+0.43 78.27+2.17 92.05+1.08 93.35+0.92
Learn. SupCon(ClassEmb) 66.42+0.84 87.01+0.48 91.87+0.37 81.05£1.09 93.75:0.53 95.94+0.44

TABLE 4.9: Comparing transfer, meta- and contrastive learning in
N-shots 4-ways classification (i.e. N training samples for each of the
4 target classes) (p.s. Query set is fixed as 15 samples per class)

Baseline’s class embedding (4 variants). We also randomly apply 4 transformations:
horizontal flip reverses the order of packets (1st become last, etc.); shuffle randomly re-
orders packets; tail-occlusion masks the second half of an input time series with zeros;
Gaussian noise adds noise sampled from a normal distribution € ~ N'(0,1) to each

time series value.

4.4.4 Results

Comparison between transfer learning and meta-learning. Transfer learning
methods are better performing than meta-learning (Q1). In particular, on
AppClassNetall methods are within a £1% gap, while for MTRAGE-19-ALL we observe
+8.36% between the best and worst performing methods with 200 shots. Recall
that most of these methods differ mostly for the classifier f,(-). In particular, on
AppClassNetwe can rank their performance as class embedding < linear layer < near-
est neighbor. However, on MIRAGE-19-ALL class embedding is the worst while nearest
neighbor has +4% gap compared to the 2nd performing classifier (logistic regres-
sion). This hints that the latent space representation learned on MIRAGE-19-ALL is
worse than the one learned on AppClassNetdespite the very different task complex-
ity (32-vs-400 classes)—a nearest neighbor classifier is more flexible than a linear
one, which possibly justifies the better performance on MIRAGE-19-ALL if classes are
not well separated; yet, a nearest neighbour classifier needs to carry training data
with the model in order to have labeled “anchors” to use for the classification.

Contrastive learning. As suspected, by leveraging label information, supervised
contrastive learning outperforms the traditional version—e.g., up to +10.35% and
3.98% on MIRAGE-19-ALL and AppClassNetrespectively (Q2). Moreover, while class
embedding where ineffective for transfer learning, they are beneficial for contrastive

learning.
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4.4.5 Concluding remarks

In this section, we focused on the challenging FSL classification on new classses with
few labeled training samples, we evaluated transfer learning, meta-learning and the
application of contrastive learning in transfer learning, using two publicly available
datasets with larger classes variety than in previous TC literature. Differently from
previous TC literature but aligned with previous CV literature, our results show
that meta-learning methods are the worst performing methods (Q1), while transfer
learning based on episodic fine-tuning is a better option—training with many sam-
ples (and many classes) is the best option to create Mg,,,c. models; these can then be
used to fine-tune Mg¢es models using 100s samples. Moreover, our findings high-
light that contrastive learning with DAs, especially supervised contrastive learn-
ing (SupCon), outperforms its self-supervised counterpart SimCLR and other methods
by effectively leveraging class label information to enhance representation learning
(Q2). These insights underscore the potential of contrastive learning techniques in

improving the accuracy and efficiency of encrypted TC.

Building on our investigation of contrastive learning for encrypted traffic’s few-shot
classification and considering that contrastive learning relies implicitly on maximiz-
ing MI between views or classes to learn effective representations (Sec. 4.2), in the
next part we will turn our attention to explicit MI estimation, using generative ap-
proaches rather than discriminative ones. Furthermore, we will explore the applica-
tion of MI on improving generation performance.
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Chapter 5

Introduction to generative models

Generative models are a class of machine learning models designed to learn the un-
derlying distribution of the data in order to generate new synthetic samples that re-
semble the original data. These models differ from discriminative models described
in Part I which focus on finding a mapping between an input with the related la-
bel. In other words, discriminative models learn to model the decision boundary
between different classes rather than the data distribution itself.

Some well-known examples of generative models include VAE (Kingma and
Welling, 2022) and GAN (Goodfellow et al., 2014). While these methods has proven
effective in generation tasks, in this part we focus on two specific types of genera-
tive models: Diffusion Models (DMs) and Rectified Flow (RF) models. DM are gen-
erative models that progressively add noise to data and then learn to reverse this
noising process to generate new samples, with recent models like SD2 (Rombach
et al., 2022) showcasing their ability to generate high-quality data. RF is a flow-
based generative model that minimizes the kinetic energy of the flow, and has been
adopted in several state-of-the-art (SOTA) models such as SD3 (Esser et al., 2024)
and Flux (FLUX, 2023) to enhance their performance. These models utilize stochastic
processes and flow matching techniques to generate high-quality samples, making

them increasingly popular in the generative modeling landscape.

This chapter provides the necessary background to understand the core principles
of DM and RF models, laying the foundation for their application in advanced gen-
erative tasks in the following chapters.

In Section 5.1, we first introduce the fundamentals of DM, starting from continuous
continuous time and covering both its forward and reverse processes. Then, we
move on to the discrete version, namely Denoising Diffusion Probabilistic Model
(DDPM), introducing the related forward and reverse Markov chains, along with the
training objective and guided generation technique Classifier-Free Guidance (CFG)

to enhance sample quality during sampling.

In Section 5.2, we move to the RF models starting from core concepts related to
Conditional Flow Matching (CFM), introducing the definition of flow, velocity field,
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and probability path, and discussing their relationship. We then discuss how to learn
a parametric velocity field that matches the ground truth using CFM, with a detailed
explanation of the associated loss function and condition signal. Finally, we explore
generation with a guidance signal, where labeled data allows for the generation of

conditioned samples, and introduce CFG in the context of CFM.

Through these sections, we will establish a deep understanding of diffusion models
and rectified flow models, enabling their application in complex generative tasks
and providing a solid theoretical foundation for the next chapter.

5.1 Preliminaries — diffusion model

A DM is a probabilistic generative model that pre-defines a forward process to grad-
ually add random noise to a set of data transforming its unknown distribution into
a simple known prior distribution (e.g., standard Gaussian), and then learns to de-
noise this process so that is possible to generate synthetic samples starting from a
random point selected from the known prior. Specifically, given a data distribution
p(x,0) at time t = 0, a prior distribution p(x, T) at time t = T, and a hand-designed
forward process that progressively transforms p(x,0) into p(x, T), to model the de-
noising reverse process in order to generate samples, a NN is optimized to approx-
imate the score function Vylog p(x,t), which is defined as the gradient of the log
probability density. Both the hand-designed forward process and the modeled re-
verse process can be implemented in two forms: as a continuous-time SDE or as
a discrete-time Markov chain (as shown in Fig. 5.1), where the latter’s limit, when
the step size is infinitely small, becomes the former. In this section, we will provide
a brief introduction to the basic principles of DM, clarifying the following points

sequentially:

1. Starting with the generalized continuous-time SDE formulation, we consider
a forward SDE with predefined drift and diffusion functions, along with its
corresponding Fokker-Planck Equation (FPE). From this, we derive the drift
and diffusion terms of the reverse SDE.

(a) Crucially, we show that if the score function at each time step ¢ is known,
the reverse SDE becomes fully specified, making it possible to generate

samples. This motivates the need to parametrize the score function.

(b) Additionally, we show that by introducing a specific hyperparameter, the
level of stochasticity in the reverse process can be controlled — allowing
it to operate either as a SDE or as a probability flow ODE, both of which

share the same marginal distributions.

2. Next, we consider the discretized version of a continuous-time forward SDE
with specified drift and diffusion — namely, the VP-SDE. We show that a pre-
defined discrete-time forward Markov chain converges to the continuous-time
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VP-SDE in the infinite-step limit, and we build a link between the added noise
and the score function.

From the discrete-time forward Markov chain, we then derive the transition
kernel of the corresponding reverse Markov chain, g (x¢—1 | x;), which be-
comes fully determined once the added noise is known. This motivates mod-
eling the added noise using a NN trained with an Mean Squared Error (MSE)
loss, thereby linking noise prediction to score-based modeling. Furthermore,
in the conditional generation setting, the predicted noise can be shifted to bet-

ter emphasize the conditioning signal.

Use variational lower bound

‘\ Q(Xt|xt 1) ,’
AN e

~o -

q(x¢—1|x¢) is unknown

FIGURE 5.1: The discrete-time Markov chain of forward (reverse) dif-
fusion process of generating a sample by slowly adding (removing)
noise. (Ho et al., 2020a)

5.1.1 Continuous version

Forward process. Consider an SDE of the form
dx = f(x, t)dt + g(x, t) - AW, (5.1)
with corresponding FPE

dp(x,t) = =V (f(x, )p(x, 1)) + %sz H(gx g (v )p(x 1), (5.2)

where p denotes the Probability Density Function (PDF) of the random process, and
: denotes the Frobenius inner product between matrices. For simplicity, we assume
g is position-independent and diagonal (i.e., g(x,t) = g(t), g’ (t)g(t) = g*(t)), then
the SDE Equation (5.1) becomes

dx = f(x, t)dt + g(t) - AWy, (5.3)

and the corresponding FPE Equation (5.2) simplifies to

Ap(x 1) = Vi (6(x Op(x 1) + 2202 plx 1) 54
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Now consider a probability flow ODE
dx = f(x,t)dt, where f(x,t):=f(x,t)— %gz(t)vx log p(x,t). (5.5)

with the corresponding FPE

up(x,t) = V- |[f0) — €O Valogp(nt) | pn)]| . 6o

Since the SDE and the ODE have the same marginal PDF evolution according to
their respective FPE, we aim to rewrite their FPE in a unified form, by introducing a
parameter 77 € [0,1]:

1—72 1
dip(x,t) = —Vix- | | £x,t) =Yg’ () Valog p(x, 1) | p(x,t) | +5  1°8%() V3:p(xt)

denote as g% (1)

denote as f; (x,t)

(5.7)
of which the original SDE’s FPE Equation (5.4) is a special case with 7 = 1, and the
ODE’s FPE Equation (5.6) is a special case with #7 = 0. The corresponding SDE for
general 7 is:

dx = £, (x, t)dt 4 g, (t) - AWy, (5.8)

which forms a family of equivalent SDE.

Reverse process. We start with rewritting the right-hand side of the forward pro-
cess” unified FPE Equation (5.7) as

Aplt) =~V (6 (v Dp(x, ) + 58103 plxt)
= Ve [ e )-8 ()W log p(x1)] plx )] - [(8(1)Vlog plx )p(x, )] +3€5(0V2: pla,)
= ~8}()Vx - (p(x,1)Vxlog p(x, 1))
2 Vap(x, t)
= 8 (Ve (ol )

=g (Vi p(x1)

(5.9)

1
Ve [ - @V logp( )] pe 0|~ 3 g V2 pan
2 ~——
denote as —py (x,T—t) denote as o7 (T—t)

= Vg, T = Dp(x, 1) — 203(T — V3 plx, 1)

Since the relation between the forward PDF p(x, t) and the reverse PDF g(x, T —t) is

{ plet) = q(x, T~ 1) 510
op(x, t) = —0r—g(x, T — 1),
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Injecting Equation (5.10) into Equation (5.9) leads to

Or—tq(x, T—t) = =V (uy(x, T—t)q(x, T—t)) + %ag(T —H)V2:q(x, T—t) (5.11)

Finally, denoting T — t as s turns Equation (5.11) to
1
05q(x,5) = =V - (y(x,5)9(x,5)) + 50,(5) V3 : 4(x,5) (5.12)
whose corresponding SDE is
dx = py(x,5)ds 4 0y (s)dWs. (5.13)

This SDE describes the reverse process: as s increases, t decreases. By leveraging
ds =d(T—t) = d(fi;t) dt = —dt, the reverse SDE Equation (5.13) can be rewritten

as

dx = —py(x,s)dt 4 0y (s)dWs. (5.14)

Since the original forward SDE Equation (5.3)’s drift f(x,¢) and diffusion g(t)
are pre-defined, we aim to express the reverse SDE’s drift y,(x,s) and diffusion
0y (s) with them. By leveraging Equation (5.9) and Equation (5.8), and denoting
V. log p(x,t) as the score function s of the forward process, we have

Hy(x,5) = g, (1) Vlog p(x, 1) — £ (x, 1)

= n°g* () Vxlogp(x,t) — |£(x,t) —

2

1 —
-8X(1)Vxlog p(x, 1)

= P (s — (1) + - g(1)s

2
= L 20)s — £(x 1)

ay(s) = gy(t) = ng(t).

(5.15)

From which we have two observations:

Remark 1. The introduced parameter y controls the amount of stochasticity during sam-
pling: in the case § = 1, the reverse process is SDE, which results in the same diffusion
process {xs }o<s<T as the forward-time SDE Equation (5.3) if the initial condition is chosen
as xs—o ~ pr; in the case 1 = 0, the reverse process is ODE, which is the time-reversal of
the forward-time ODE Equation (5.5) and therefore yields a deterministic process with the
same marginal densities.

Remark 2. If one can learn the score function s = V log p(x, t), then one can sample from
the distribution po by simulating the process xs forward in time s (i.e. x; backwards in time
t) with the reverse SDE (Equation (5.13)). In practice, s is approximated with a NN sg(x,t)
(namely a score-based model). This is at the core of score-based diffusion generative models.
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Furthermore, if we assume f(x, t) = f(t)x, then

i (x,5) = S g3 (t)s — f(t)x (5.16)
or(s) = ng(t) |

In the Variance-Preserving (VP) forward SDE, we assume f(t) = —% Bi, g(t) = /Bt
where Bt = Bmin + % (Bmax — Bmin)- Then Equation (5.16) becomes

{ i(x,5) = Bl Bis + LB (5.17)

or(s) = 1\/Br

5.1.2 Discrete version of VP-SDE (i.e. DDPM)

Building on the continuous VP-SDE, we now turn our focus to DDPM, a discrete
counterpart in the family of diffusion-based generative models. While VPSDE pro-
vides a continuous framework for modeling the forward and reverse dynamics of
the diffusion process, DDPM discretizes these dynamics to create a practical algo-
rithm for generative tasks. Specifically, DDPM(Ho et al., 2020a; Sohl-Dickstein et
al., 2015) is built upon two Markov chains. The forward chain is typically hand-
designed, which transforms the data distribution p4,, into a (simple) reference dis-
tribution p,e¢ (e.g., standard Gaussian), by gradually adding Gaussian noise over
T steps according to a predefined variance schedule B;. The reverse chain invert
this noising procedure using a denoising network €y to iteratively remove noise,
enabling data generation via ancestral sampling from an initial noise vector drawn
from the reference distribution. This discrete approach allows DDPM to effectively
model complex distributions through iterative sampling and optimization. This sec-
tion explores the key components of DDPM, including the discrete forward and re-

verse process, training objective, and conditional generation with guidance signal.

Forward process. To introduce the discrete forward process, we begin by consid-
ering its definition as a Markov chain and building link with the continuous forward

process:

Proposition 1. Given a discrete forward process defined as Markov chain
x; =+/1— Bixi_1+ +/Bi€i_1, wheree;_ 1 ~N(0,1),i=1,---,N, (5.18)
its limit at N — oo is the forward VP-SDE: dx = —1B(t)xdt 4+ /B(t)dW;

Proof. To obtain the limit of this Markov chain at N — oo, we define an auxiliary

continuous function B(t) whose t € [0,1], s.t. %ﬁ) = Bi. In other words, when
t=h with At = 4, B = w = B(t + At)At. So we can rewrite the Markov

chain as following and then use Taylor expansion:
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x(E+ M) = /1 — Bt + A At(E) + \/B(t + Ab)Ate(t
~ x(t) — fﬁ(t+At )Atx(t) + 1/ B(t+AL) Ate(t (5.19)
~ x(t) — E,B(t)Atx(t) + 1/ B(t)Ate(t)

where the approximate equality holds when At << 1. Therefore at the limit of At —
0, it converges to the foward VP-SDE: dx = —5B(t)xdt + /B(t)dW; O

A nice property of the above process is that we can sample at any arbitrary time step
in a closed form of perturbation kernel:

Proposition 2. The perturbation kernel of the discrete forward process is

p (x| x0) =N (V&ixo, (1 — ;) I) (5.20)

Proof. By leveraging the fact that the addition of two Gaussians N (0,07I) and
N (0,031) is still Gaussian N (0, (07 +03) I), and by denoting ay = 1 — B, & =
I—[é:l «s, we could rewrite x; as:

xXi = aixiog + /1 — wiei
= Vai(Vaixio+ /1 —aiq€i0) + V1 — e
= Vi@ 1xio + /a1 — ai_1€i0 + /1 — wiei
= Vairi_1xio + \/061'(1 —aio1) + (1 —aj)éi (5.21)
= aini_1xio + /1 — ajni_18; 2

= Vaixg + /1~ &e
from which we could derive the transition density as a Gaussian distribution:

p(xi ‘ xo) :N(@xo, (1—C_Ki) I). Il

Remark 3. Since the perturbation kernel of the discrete forward process is Gaussian, its
score function can be expressed as:

1 1 €
Vi 1 = — — V& = — 1—ae=—
x log p (x¢ | x0) Ty (2 — Varxo) g V1 me N
(5.22)
Reverse process.  Building on the discrete forward process, we now define its

corresponding discrete reverse process.
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Proposition 3. Given the defined discrete forward process, its corresponding discrete reverse
process is a Markov chain

~ L o 1—tXt
q(xe-1 | %) = N (i, (x¢),071) , where { Pf’;_ Ve (le‘B 1/175@6) (5.23)
P = 1a B

Proof. Using Bayes” Rule and the discrete version of forward process, we have

Xt X
q (xt_l ’ xt,xo) = q (xt ’ xt_l,xo) W (5.24)
2
1 (x¢ — \/DTtxtq)z (xp—1 — \/titflxo)2 (xr — \/&exo)
o« exp < 5 < B, + 1— & 1-a (5.25)
1 [ x2=2/apxexy+oxy | xp =2/ @_1xoxi1 + H1xg (% — \/Eé»txo)z
=exp|—5 + = - =
2 ,Bt 1-— Kp_1 1-— Kt
(5.26)
. 1 ot 1 2 2\/047 2\/5@_1
= exp 2 (,Bt + 1— 5‘1‘]) Xt—1 < ﬁt Xt + 1— &1 X0 | X1+ C (xt/ xO)
not involving x;_;
denote as 2 denote as e (x4,%0)
t t_ff
(5.27)
1 (31— iy (31, %0))
o« exp <—2 < 57 (5.28)

where by using the discrete forward process’ perturbation kernel Proposition 2 x; =
V&xg + /1 — &€ to replace xp with x;, one can make fi, xp-independent. Then, the
mean and variance can be expressed as Equation (5.23). O

Remark 4. At sampling, in practice the variance in Equation (5.23) is approximated as
52
o = P

Remark 5. To enable sampling and generate samples, one needs to learn the probability
Equation (5.23), in which the noise € needs to be modeled.

In practice € is approximated with a denoising network eg, which is optimized using a re-
weighted variational lower bound of the marginal likelihood:

£simple(e) = lEifwLI(O,T),xodi,,m,(ewj\/(O,I) [‘ |€ - eﬂ(mxo +V1-—ae, t) | ‘21| (5.30)

Furthermore, since the score function is a function of the noise € as shown in Equation (5.22),
modeling the noise is fundamentally equivalent to modeling the score function. This also

)
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links the discrete-time setting back to the continuous-time setting, as a similar variational
objective can be obtained in the perspective of continuous time (Song et al., 2021), whereby
the denoising network approximates the score function of the data distribution (Remark 2).

Remark 6. Conditional generation with guidance signal: the simple DDPM formulation
has been extended to guided generation (Ho and Salimans, 2021), whereby a guidance signal
p injects “external information” in the iterative denoising process. This requires a simple
extension to the denoising network such that it can accept the guidance signal: €q¢(x¢, p, t).
Then, during training, a randomized approach allows to learn both the guided and uncon-
ditional variants of the denoising network, for example by assigning a null value to the
guidance signal and mask a guidance signal with null value with certain probability. At
sampling time, a weighted linear combination of the guided and unconditional networks,
such as Eg(xt, p,t) = €o(xt, D, t) + v(€o(xt, p,t) — €o(xt,D,t)) can be used in model-
ing the reverse Markov chain Equation (5.23) to further emphasize the guidance, which is a
technique known as CFG.

5.2 Preliminaries — conditional flow matching

Although the diffusion/SDE-based generative models have achieved huge success
on real-world tasks like image generation, it has a key drawback: the high compu-
tational cost at inference. As an alternative, a simpler model namely RF has gained
popularity recently, which learns a probability flow ODE and aims at transporting
distribution p to g by following straight line paths as much as possible. An advan-
tage of sampling along nearly straight flows is that it can produce good results even
with a coarse time discretization. Mathematically, RF’s training loss is built upon the
conditional flow matching framework, which will be presented in this section.

Let x € R? denote a data point in the d-dimensional Euclidean space associated
with the standard Euclidean inner product, and X € R? a RV with continuous PDF
px : R — Rsg, where f]Rd px(x)dx = 1. We use the notation X ~ px to indicate
that X is distributed according to px.

The key concepts we consider within the framework of flow matching are:
1. flow : a time-dependent C” ([0,1] x RY,RY) mapping ¢: (£, x) — ()
2. velocity field : a time-dependent C” ([0,1] x RY,IRY) mapping u: (t,x) — u(x)
3. probability path : a time-dependent PDF (p:)o;<;

Given a source distribution p — e.g., standard Gaussian distribution N'(0, I), and the

data target distribution g, the goal of generative flow modeling is to build a flow ¢
that transforms Xy ~ p into X; := 91 (Xp) such that X ~ g.

In the following, we first clarify the link between these 3 concepts, then present
methods to realize this goal.
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5.2.1 Link between the 3 concepts

(a) Flow and Velocity Field:
First, it is essential to note that a flow is uniquely determined by a velocity field. This
relation is derived from the ODE:

(5.31)
Po(x) = x (flow initial conditions).

{shwt(x) — u (s(x))  (flow ODE)

This ODE, referred to as an initial value problem, describes how the flow evolves un-
der the influence of the velocity field with initial condition y(x) = x. The solution
to this ODE at any time ¢ gives the flow ;.

(b) Velocity Field generating a Probability Path:

Next, we consider a probability path p; that evolves over time. The velocity field u;
is said to generate p; if its flow @, which solves the initial value problem driven by
u;, satisfies the condition

X; == s (Xo) ~ pi, for t € [0,1), Xo ~ po. (5.32)

This means that the distribution of ;(Xy), where Xy ~ po, matches the distribution
pt. Recall that, given the distribution of X as po (i.e., Xo ~ po), and applying the
flow mapping ¢ to Xo, the resulting distribution of the RV ;(Xp) is referred to as
the pushforward of py by ¢;, denoted ;(-)#po (i-e., P:(Xo) ~ :(-)#po). Using this
notation, the condition Equation (5.32) can be equivalently written as p; = (- )#po.

(c) Continuity Equation:
Finally, a practical method for verifying whether a velocity field u; generates a prob-
ability path p; is to check if the pair (uy, p;) satisfies the Continuity Equation:

apt(x) +div (peur) (x) = 0. (5.33)
This equation expresses the conservation of probability and ensures that the evolu-
tion of p; under the flow generated by u; is physically consistent. It is important to
note that the correspondence between u; and p; is unique only up to divergence-free
fields.

By synthesizing the points (a), (b), and (c), we can visualize the links between the
probability path, the velocity field, and the flow, as illustrated in Figure 5.2.

5.2.2 Conditional flow matching: a tractable and valid loss

Building upon these links, given a prescribed! probability path p; that satisfies the
boundary conditions pp = p and p; = g, the goal of Flow Matching (FM) is to learn
a parametric velocity field u¢ that matches the ground truth velocity field u; known

Iprescribing makes the training supervised for all ¢ and therefore easier.
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probability path Continuity Equation velocity field

pe(+)

FIGURE 5.2: Links between the probability path, the velocity field
and the flow.

to generate the desired probability path p; (i.e., link (c)). Sampling is then achieved
by solving the initial value problem, with xo sampled from the source distribution
po (i.e., link (a)). In other words, based on the ODE, the original goal of modeling a
flow is now transformed into modeling a velocity field.

To model the ground-truth velocity field u;, in principle the NN just needs to be
optimized by minimizing the regression loss:

Lem(0) = By (o luf (x) — ur (x) |12 (5.34)

However in practice, this ground truth marginal velocity field u; is not tractable,
as it requires marginalizing over the entire training set — ie., ui(x) =
Jous (x| x1) pre (x1 | x) dxy. To bypass this problem, Lipman et al., 2023 develop
CEFM.

In CFM, rather than prescribing the marginal probability path p; that satisfies the
boundary conditions, we prescribe the conditional probability path p;(- | z) instead.
This involves (1) the choice of the conditional RV z that is independent of ¢, and (2)
the choice of conditional PDF p;(- | z) such that it not only satisfies the boundary
condition (i.e., its marginalized counterpart E; [p:(- | z)] equals to po at t = 0 and
Prarget at £ = 1), but also has a tractable u;(x | z) (obtained by solving Continuity
Equation), which serves as the ground truth in the training loss.

One popular choice for defining a conditional probability path is linear interpola-
tion. In this case, the two choices are: (1) z = (xo,X1) ~ Po ® Prarget, Where z rep-
resents the independent coupling of xo ~ po and X1 ~ Prarger, and (2) ps(- | z) =
5(1_t)xO+txl(x), where ¢ denotes the Dirac delta function. This choice satisfies the
boundary conditions, as shown by the following integrals:

[ palx [2)p(E) dz = [ 1, (x)p(z) dz = polx),

(5.35)
[P 12)pE) dz = [ 64, (x)p(2) dz = prarger(x).
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The corresponding conditional velocity field for this interpolation is u;(x | z) =
x1 — xg. Another popular choice is the Gaussian path, where the two choices are: (1)
z = X1 ~ Prarget, and (2) pi(- | z) = N (tx1, (1 — £)?I). This choice also satisfies the
boundary conditions, as shown by:

[p izt =0p)dz= [ po(x)p(z)dz = po(),

(5.36)
[ p 2t =Dp)dz = [ 6()p(=) dz = prga ()

The corresponding conditional velocity field for this Gaussian path is u;(x | z) =
n-—x
1-f-

Given a prescribed conditional probability path p;(x | z) with its marginalized coun-
terpart being p;(x), their associated velocity fields u(x | z) and u;(x) can be found
by solving their corresponding Continuity Equations. Additionally, the relationship
between u;(x | z) and u;(x) is demonstrated as follows:

V(x,t),u(x, t) =By [u(x,t,2)] (5.37)

Figure 5.3 summarizes the connections between the (tractable) conditional veloc-
ity field, the corresponding conditional probability path, and their (intractable)
marginal counterparts, for any given conditional random variable z.

choice (1) choice (2)  Continuity Equation
— o RN (x| 2)
VzeZ,p(x]|z)

choice (2) sat.: E: [*]
eq. (537) ]Ez|(x,t) []

A\l \4

Continuity Equation
pr(x) ~—————— w(x)

FIGURE 5.3: Links between (tractable) conditional probability path
and velocity field and their (intractable) marginal counterparts, for
any condition RV z.

With the link between conditional and marginal components clarified, now we come
to a revision of the training loss. CFM regresses against the tractable conditional
velocity field, with loss being

(5.38)

2
£CFM(9) = 1Et,zw;a(z),va(-\1,‘,,2) H

uf () — e (x| 2)

Here, the ground truth conditional velocity field u; (x | z) is tractable, as it only de-
pends on a single sample of z. Leveraging eq. (5.37), Lipman et al., 2023 proves
that the FM loss Equation (5.34) and the CFM loss Equation (5.38) are equivalent for
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learning purposes: since their gradients coincide, the minimizer of CFM loss is the
desired marginal velocity u;(x) useful at sampling.

On the one hand, we note that for a Gaussian source and independent coupling of
(x0, x1), the two choices for defining a conditional probability path — linear interpo-
lation and Gaussian path share the same CFM loss thanks to the expectation in Equa-
tion (5.38). In linear interpolation, the expectation over x ~ p(- | t,z) has no stochas-
ticity as it is a Dirac, therefore x can be directly replaced with x = fx; + (1 — t)xp; the
expectation over z = (X, x1) is the average with respect to p(z) = po(X0)Prarget (¥1),
so the CFM loss is

2

Lerm(0) = ﬂf pr (t) px, (x0) px, (x1) [”9 (tx1 4 (1 —t)xo) — (31 — XO)} dxo doxy dt.

(5.39)
In Gaussian path, given z = xj, the conditional distributio x ~ p(- | t,z) =
N (tx1, (1 —1t)%I) is equivalent to X = tx; + (1 — t)Xo, where Xo ~ N(0,I).
This equivalence leads to the ground-truth conditional velocity field: wu;(x |
z) = =5 = M = x1 — Xo. As a result, the expectation over
x is equivalent to the expectation over Xo: E,. p(|x) [(ue(x) — 1y (x| xl))z} =

Ex,~ ' (0,1) {(ue (txy + (1—1)Xo) — (x1 — XO))Z} . Injecting them back into the CFM
loss, we get

Lem(8) = /pT (t) / px, (x1) U px, (o) {uﬂ (tx1+ (1— Do) — (1 — xo)]z dxo] dxydt. (5.40)

Equation (5.39) and Equation (5.40) are equivalent, given that we assume Xy and X;
as independent. Given their equivalence, we will focus solely on the Gaussian path
in the following sections.

On the other hand, in the linear interpolation choice (1), where the condition RV
z = (xp, x1) is chosen, the joint probability distribution of z, denoted 77 1 (xo, x1), can
be any coupling that preserves the marginal distributions pg and prarget- What we
previously considered is the independent coupling 7 (X0, X1) = p(X0)Ptarget(x1)-
An alternative, non-independent coupling approach involves selecting a source
point, sampling from it, and generating a new target sample using a pretrained
model. This defines a new "line" between the source points and target samples, and
this process can be repeated multiple times to build a training set. A key property
of linear interpolation is that the kinetic energy of the marginal velocity u;(x) is not
greater than the kinetic energy of the original coupling 77y used to train the model.
This process is referred to as rectifying, and the trained velocity field u! is called the
RF, as described by Liu et al., 2022b.

Finally, an essential result known as the Instantaneous Change of Variables (Chen
et al., 2019a) is required for the following section. Given the Continuity Equation,
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the differential equation governing the evolution of the log-probability density is:
d .
7108 P (Pi(x)) = —div (ur) (¢ (x)) - (541)

5.2.3 Conditional generation with guidance signal

As we are interested in conditional generation, we define the guidance RVas Y ~ py,
with data samples y € ) C R¥. Given access to labeled target samples (x1,y), the
goal of FM is to train the parameters 6 of a single velocity field u¢ : R x R¥ — R? to
match the ground truth guided velocity field u;(- | y) known to generate the desired
guided probability path p;y (- | y) satisfying the boundary conditions p;_oy (- | ¥) =
p(-)and p_qy(- | ¥) = q(- | y), for all values of y. The guided version of tractable
CFM loss is Lcpm(0) = B (x,1,9)~moy, |4 (%1 [ Y) = (x1 = x0) H2 Furthermore, if the
model is trained with Gaussian paths, the CFG technique can be applied at sampling

to enhance the sample quality, for which during training y will be masked as null-
condition @ with probability pyncond, in order to train uf(- | @) to approximate the

unconditional velocity field u; generating the unconditional probability path p;.



89

Chapter 6

Mutual information estimation

6.1 Introduction

As explained in Chapter 5, both DDPM and RF can be extended to conditional gen-
eration, where the reverse sampling process is guided by a guidance signal. In
practical applications, one of its popular use-cases is generating images conditioned
on textual prompts. T2I generative models have reached an incredible popularity
thanks to their high-quality image synthesis, ease of use, and integration across a
variety of end-users services (e.g., image editing software, chat bots, smartphones
apps, websites). T2I models are trained on large-scale datasets (LAION project,
2024) to generate images semantically aligned with a user text input. Yet, recent bench-
marks (Huang et al., 2023; Wu et al., 2024) show that even SOTA DM models (e.g.,
Stable Diffusion XL (Rombach et al., 2022)) and RF models (e.g., Stable Diffusion
3 (Esser et al., 2024) and FLUX (FLUX, 2023)), despite achieving a new SOTA, still
suffer from a variety of alignment issues (subjects in the images might be missing,
or have the wrong attributes, such as numeracy, positioning, etc). To address this
issue, we aim to use a pre-trained generative model as a neural estimator for the
point-wise MI between the generated image and the prompt, and further use the
estimated point-wise MI to score and improve T2I alignment. In turn, this raises
three research questions: (1) How to estimate MI using a generative model? (2) Is
MI meaningful for T2I alignment? (3) How to use the MI estimates to improve T2I
alignment? In this chapter, we address the first research section by deriving MI esti-

mation formulas using DM or RF, and leave the latter two for Chapter 7.

In information theory, Ml is a key statistical metric that captures the non-linear de-
pendencies between RVs by quantifying their mutual dependence. Unlike simpler
measures like the correlation coefficient that only capture linear relationships be-
tween real-valued RVs, MI is more general, as it assesses how the joint distribution
of two RVs, X ~ Px and Y ~ Py, diverges from the product of their individual
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marginal distributions. Mathematically, MI is defined as

I(X;Y) = Dxw. (Pxy||PxPy)

= By)opa {bg <P1>Z)(:YC)(1%)] ©

where Dy, denotes the Kullback-Leibler (KL) divergence. Intuitionally, I(X;Y) mea-
sures the dependence between X and Y, or, the information about X (resp. Y') pro-
vided by Y (resp. X). Furthermore, as hinted in the expectation, while MI measures
the average information shared between two RVs, point-wise MI quantifies the de-

pendence in a specific pair (x, ).

MI has been widely applied in ML, particularly in representation learning and eval-
uation of discriminative models and generative models, where it helps to effectively
capture complex dependencies and enhance feature extraction. However, for many
problems of interest, precise computation of MI remains a challenging task, lead-
ing to the development of various estimation techniques. Since applying traditional
parametric and non-parametric methods (Nemenman et al., 2001; Gao et al., 2015) to
high-dimensional, real-world data is often impractical or infeasible, recent research
has shifted toward variational approaches and neural estimators for more scalable
MI estimation. In particular, the work by Song and Ermon, 2019a classifies recent
MI estimation methods into discriminative and generative approaches — discrimi-
native approaches (McAllester and Stratos, 2020) focus on directly estimating the ra-
tio between joint distribution and product of marginals, but these estimators present
tradeoffs between bias and variance in estimating variational bounds on mutual in-
formation (e.g., the contrastive loss Lcontrast detailed in Section 4.2.1 has low vari-
ance but high bias); generative approaches estimate the two marginal densities sep-
arately using generative models like VAE (Kingma and Welling, 2022), despite being
more scalable, they still face estimation accuracy challenges on high-dimensional or
complex data according to benchmark testing on synthetic distributions (Czyz et al.,
2023). Furthermore, to the best of our knowledge, while multiple MI neural estima-
tors have been proposed, no previous work considers estimating MI using the SOTA
generative models — discrete version of DMs (i.e., DDPM) or RF models.

In this chapter, we explore the problem of estimating point-wise MI using the pre-
trained generative model itself. Specifically, the generative models we considered
are DDPM and RF:

¢ DDPM-based point-wise MI estimator (Section 6.2)

Building upon MINDE (Franzese et al., 2024) that uses score-based continuous-
time DMs to estimate the KL divergence between two densities as a difference
between their score functions, we extend the work to a point-wise MI estima-
tor suitable for discrete-time setting, which have more interest for real-world

applications (e.g. text-to-image generation).
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* RF-based point-wise MI estimator (Section 6.3)

We introduce RFMI (Section 6.3.1), a novel RF-based point-wise MI estimator
leveraging the relation between the score function and the velocity field. Fur-
thermore, we demonstrate the validity of REMI empirically, considering a MI
estimation benchmark involving various challenging data distributions (Sec-
tion 6.3.2) where the true MI is known.

6.2 DDPM-based point-wise MI estimator

In this section, we aim to build a point-wise MI estimator that fits the recent ad-
vanced T2I diffusion models.

Regarding to the T2I diffusion model, following the common design for realistic and
high-dimensional image synthesis, we use pre-trained latent diffusion models oper-
ating on a learned projection of the input image data x( into a corresponding latent
variable zy which is lower-dimensional compared to the original data. Moreover,
the conditioning signal y is obtained from a pre-trained text encoder such as CLIP
(Radford et al., 2021).

Regarding to the MI estimator, we capitalize on a recent method (Franzese et al.,
2024), that relies on the theory behind continuous-time diffusion processes (Song et
al., 2021) and uses the Girsanov Theorem (Jksendal, 2003) to show that score func-
tions can be used to compute the KL divergence between two distributions. In what
follows, we use a simplified notation and gloss over several mathematical details to
favor intuition over rigor. Here we consider discrete-time diffusion models, which
are equivalent to the continuous-time counterpart under the variational formulation,
up to constants and discretization errors (Song et al., 2021).

We begin by considering the two arbitrary random variables z and y which are sam-
pled from the joint distribution piatent,prompt, Where the former corresponds to the
distribution of the projections in a latent space of the image distribution, and the lat-
ter to the distribution of prompts used for conditional generation. Then, following
the approach in (Franzese et al., 2024), with the necessary adaptation to the discrete
domain, the point-wise MI estimation can be obtained as follows:

1(2,3) = Eyeeion [1lle0(z,9,6) — en(z @01, = hes (62

Proof. Recall that in the definition of a discrete-time diffusion model, for the forward

process, we use the following Markov chain

T
q(zor,y) = q(z0,y) [ [9(ze | z1),  q(ze | ze1) = N(z65 /1 = Brzi—1, Be])  (6.3)
1

t=
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The backward process (with or without a conditioning signal y) evolves according
to

T T
po(zor) = p(zr) [ [pe(zi-1lz:), pe(zor|y) = p(zr) [ [pe(zi1lzey)  (64)

t=1 t=1

where pg(z;-1|zt) = N(zi-1; ne(zt), BtI), with pg(z¢) = ﬁ (zt — \/%eg(zt,t))

Similar expressions can be obtained for the conditional version.

Our goal here is to show that the following equality holds

E[KL{q(z0[y) || 9(20)]] = Ezy[l(z,y)], (6.5)

which is the condition that I(z, y) of Equation (6.2) should satisfy to be a valid point-

wise MI estimator.

In particular, we will show that
E[KL[q(z0|y) || 9(20)]] = Bryze [Kill€o(ze,y,t) — €o(z0, D, 1)|P], 1 = &7{
20ét(1 lXt)
(6.6)

To simplify our proof strategy, we consider the ideal case of perfect training, i.e.,
po(zo.T,y) = q(zo.1,y). Moreover, since q(z; | zi—1,Yy) = q(z: | z4—1), we can rewrite
the KL [g(z0|y) || 9(2z0)] term as follows

KL [q(z0 |y) || 9(z0)] (6.7)
=KL [q(z0.7 |y) || 9(z0:7)] (6.8)
= KL [po(zo.r | y) || po(zo.7)] (6.9)
= / pe(zor | y)log WdZO:T (6.10)
_ po(zi-1] 20, y)
—/PB zoT | Y) t;log po(zi1] 22) dzo.r (6.11)
T
= t; / po(zot—247 | Y) </ pe(zi—1|z1,y)log Wdzt1> dzo:—orT
(6.12)
T
=Y [ polz [ )KL [po(zi1 | 21,y) | polzi | 21)] d (6.13)
t=1
L 2
;5/ o(zt |y)llmo(zt) — po(ze, y)| dz: (6.14)
L
= 2;5/196 zt | y)|leo(z:) — €o(ze )| dz (6.15)

[KtHeg (20,D,t) — ez, 9, 1) } (6.16)
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=Eize [KtHGg(Zt, @, t) —eg(zs, y,t)||2} , K= Zat(‘[it— ) (6.17)

which allows to prove that the quantity in Equation (6.2) is indeed a valid point-wise
MI estimator. ]

Given a pre-trained diffusion model, we compute an expectation (over diffusion
times t) of the scaled squared norm of the difference between the conditional
€o(zt,y,t) and unconditional networks eg(z;, @, t), which corresponds to an estimate
of the point-wise MI between an image and a prompt. Intuitively, the difference be-
tween these scores quantifies how much extra knowledge of the prompt helps in
denoising the perturbed images. This is both a key ingredient and a competitive ad-
vantage of our method, as it enables a self-contained approach to alignment based

on the T2I model alone without auxiliary models or human feedback.

Experimental validation of a continuous-time version of Equation (6.2) on synthetic
MI estimation benchmarks and self-consistency tests are provided in (Franzese et al.,
2024).

6.3 RF-based point-wise MI estimator

6.3.1 RFMI: estimating MI with RF

Recall that the MI between two random variables X ~ px and Y ~ py can be defined
as the KL divergence between the joint distribution and the product of marginals:
I(X;Y) = Dxv (p(X,Y) prpy). Furthermore, let px|y(-|y) be the conditional distri-
bution of X given Y = y. Using the identity pxy)(x,y) = pxyy(x | y)py(y), it
clearly holds that I(X;Y) = Ey [Dxr (pxyllpx)], which indicates that the more the

distributions px|y and px differ on average, the greater the information gain.

In this section we introduce RFMI, a new method to estimate the MI between X and
the guidance signal Y leveraging conditional RF models (Esser et al., 2024; FLUX,
2023). To keep the notation concise and aligned with the notions in Section 5.2, we

will refer to px as g, and px|y(-|y) as q(-|y).

Consider the case of linear conditional flow @; (x | x1) = fx; 4+ (1 — t)x with x be-
ing samples of Gaussian prior Xy ~ p = N(0,I). This flow’s conditional velocity
field u;(- | x1) generates a Gaussian path py; (- | x1) satisfying poj; (- | x1) = p and
pip (- | x1) = éx,(+). The conditional pair (u:(- | x1), py1 (- | x1)) does not depend
from the guidance variable Y, while its marginal counterpart does, as (u¢(- | y) =
Jue (L x) pry (| y) dx, pry(-[y) = [P (- [ x1) g (x1 [ y) dxq). As a conse-
quence, by applying the Margmahzatlon trick, the guided velocity field u;(- | y) gen-
erates the guided probability path pyy (- | y), pyy(- | y) satisfies poiy (- | y) = p ()
and pyy(- | y) = q (- | y). Note that wheny = @ € {@} the marginal case is reduced
to unconditional generation: u;(- | @) = us, pyyey(- | @) = pr,and q (- | D) = q.
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Overall, we express MI using the guided and the unconditional marginal probability
paths at the endpoint t = 1 as

[(X;Y)=Ey [DKL (PX|YHPX)]
=Ey [/q(x | Y)log <q(;(lc)1/)> dx] (6.18)

/P1|Y(x1 | Y)log (W) dxl] .

In practice, we train a single conditional RF neural network uf (x | y), using the CFM

=Ey

loss, for all values y € {)),@}. Since the minimizer of CFM loss is u;(- | y), uf(x | y)
is a valid approximation of u;(- | y).

Next, we develop an expression of MI using u;(- | y) and u;, and use the conditional
RF model to estimate the MI between X and Y. To do so, we first express the score
functions associated to the marginal probability paths using the marginal velocity
fields. These two terms are related according to the following

Proposition 4 (Relation between velocity field and score function). For Gaussian
paths pyy (-] x1) = N (- | byxy,a?l), the relation between the conditional velocity field
ut(- | x1) and the score function V1ogpy (- | x1) of the conditional probability path
pi (- | x1) is derived as :

X+ (btat — btat) u—iVlog P (x| x7). (6.19)

b
w(x | x) = 4 :

=

This relation also holds for their marginal counterpart, both in the guided case and in the
unconditional case:

b . a
ur(x | y) = - x + (bay — byay) 7~V log poy(x | y)
Zt by (6.20)
. a
ur(x) = 33+ (b — i) 'V log pi(x).

See proof in Eq. (F.4) (Albergo and Vanden-Eijnden, 2023), Eq. (7) (Zheng et al., 2023).

Remark 7. In particular, for linear conditional flow with Gaussian prior, i.e. by = t, a; =
1—t, wehaveby =1, dy = —1, and Equation (6.20) becomes

tus(x —X
Vlogpy (x| y) = 1Y) )
_tug(x) —x (6.21)

Viogpi(x) = “47-
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We note that Equation (6.21) is only defined for t € [0,1). As t — 1, by taking the limit of
Equation (6.21) using I’'Hopital’s rule, the limit of score function is:

{gr;wog puy(x | ) =lim 3y (x | ) om
6.22

lim V log p(x) = lim —0su;(x).
t—1 t—1

Proof. Here our goal is to prove the limit case Equation (6.22), To simplify notation,
we present proof in the unconditional setting.

Consider the case of conditional flow at the form ¢; (x | x1) = asx + b;x1, where a;

x t=0
and b; are chosen to satisfy i, (x | x1) = , X is sample xp of RV Xy ~ p,
x1 t= 1

and x is sampled from the target distribution q. The marginalization trick shows
that i; generates a p; satisfying po = p and p; = q. Using the expression of marginal
probability flux (Eq. (14) in Albergo and Vanden-Eijnden, 2023), at t = 1, we have:

Ji=1(x) = /IRdXIRd [0¢pr (x0]x1)] [1=10 (x — Pr=1 (x0|x1)) po (x0) p1 (x1) dxodxs
= (e]r=120 + br|e=1x1) 6 (x — x1) po (x0) p1 (x1) dxodxy

RY x R4

= xopo (X0) dxo / iy ali=1pr (¥1) 6 (x — x1) dx;  + (6.23)

XQG]Rd 1€
»/X(JE]Rd Po (XO) de /xog][{d bt|t:1x1]91 (xl) ) (x — xl) dxl

= E[Xo]ﬂlpl (Xl) + blxlpl (Xl)
It follows that the marginal velocity field att = 1is

ur(x) = j1(x)/p1(x)

, (6.24)

= E[Xo]ill + bi1xq
If the conditional flow is linear, we have a; = (1 —t) and by = ¢, and therefore
iy = —1, by = 1. Furthermore, if Xy is the standard Gaussian, we have E[Xy] = 0.

This means that Equation (6.24) becomes u3(x) = 0 X (—1) +1 x x; = x1. Inserting
this equality into the numerator in Equation (6.21), both the denominator and the
numerator converge to 0 when t — 1:

(6.25)

t—1

tut(x)—xilxxl—xlzo
1-t—1-1=0
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By applying 1’'Hopital’s rule,

Viogpi(x)
_ Ot (tur(x) — x) = [O¢t]ur(x) + t[Arur(x)] — [0rx] = up(x) + £[Qpu (x)] — ue(x)
s a(l—t) =1

= lim[—atut(x)]
t—1
(6.26)
It is easy to show that the considerations above also hold in the guided case, whereby

the marginal items (i.e., the probability flux j;, flow i, velocity field u;, probability
path p; and target distribution g) are expressed in their guided form. O

Given the guided and unconditional ground truth marginal velocity fields u;(-|y)
and u;, it is possible to show that MI can be computed exactly, as done in the follow-

ing
Proposition 5 (MI computation). Given a linear conditional flow with Gaussian prior, the
MI between the target data X and the guidance signal Y is given by

/Pl\y(xl | Y)log (W) dxl]

— By | [ B [ (6 - G ClY) — (0 ]

I(X;Y) = Ey

(6.27)

This can be proven leveraging Equation (5.33), Equation (5.41), and Equation (6.21).

Proof. What needs to be proved in Equation (6.27) is the equivalence of the terms
inside the expectation. To keep notation concise, in the following we will rename
the guided pair (pyy (- | y), u:(- | y)) assimply (pf(-), u{(-)), and the marginal pair
(pe(+), u(-)) as (pE(-), uf(-)), so what needs to be proved becomes:

./Wpf%xl)log(;’;ggzg)dxl [ B |t (u ) = b)) e 629

To prove Equation (6.28), we start with expanding its LHS:

/ pi(x)1 g<P§§x§>dx (6.29)
@ (pég ;C )dx+/ at/ pt log< ;;((3) dxdt (6.30)
D04 / 3 / %) log (p?g;“;) duxdt 6.31)

(i / /le ot [pt ) log <Ztt Eig)} dxdt (6.32)
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9 [ ot 0] o (252 s [ ot 0] [t (250 )
@ @)

(6.33)

where (i) follows from the fundamental theorem of calculus; (ii) follows from the
fact that both pZ' (x) and pE (x) coincide with source distribution p at t = 0; (iii)
follows from switching differentiation (9;) and integration ( [r,) as justified by Leib-
niz’s rule; (iv) follows from using the Product Rule (i.e. (1-v)' = u'-v+u-v') on
o¢.

About the term (@) in Equation (6.29), using in sequential order (i) the Continuity
Equation on [9;p{! (x)], (ii) the Product Rule, (iii) the Divergence Theorem, and (iv)
the assumption that p* vanishes at infinity gives

o] )

k
2 [ [5Gt o] [rog (20 | an
(i) /}Rd (Ig{l(x)u{‘(x)) : {Vxlog (Z;; ((gﬂ dx — /1Rd Vi (Pfq(x)u{l(x) log <Z§ E;C))>> dx
# f () [vuton () o £, (ot oos (157 ) mis
[ (phuf ) - (Vslogpf (v) = Vilog pf (x)) dx =0
=E, |uf'(x) - (Vilog pft (x) — Vxlog pf (x))]
(6.34)

About the term @) in Equation (6.29), by using in sequence (i) Leibniz’s rule and
Continuity Equation on [9;p? (x)] , and (ii) the equality V - (ov) = p(V - v) + (Vp) -
v if v is a vector field and p is a scalar function, we obtain

pi (%)
[ v (]fa11og (W)dx (6.35)
= | [pi" (x)][2:10g (pf" (x)) — 31 log pf (x) ]dx (6.36)
at ;4 X at tB X
= Julrt IEH - e e
orp?
= [t ) = i () 25 638)
A
:/]Rd opit(x)dx — » l;tf((j; 0 pB (x)dx (6.39)
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B, [ ptwar [, B9 (e las (640
Do+ [ f; 5 () Vepf )+ p OV () dx (6
0+ [, D) vt )+ B v uf e (642)
= /IR (@) (Vpg(i()x) ub(x) + V- uf(x)) dx (6.43)
= [, pt ) ((Vilogpf (1)) - uf () + V- uf () v (6.44)
@ (6.45)

in which the last equality (iii) follows from Instantaneous Change of Variables:
recall that in Instantaneous Change of Variables (Equation (5.41)) % logp: (x) =
—div (u¢) (x), its RHS can be rewritten as — div (u;) (x) = —Vy - us(x); using the

chain rule, its LHS is equivalent to -3 log p; (x) = legdZ’(x) - BX = (Vylog pi(x)) -
ut(x). It follows that the Instantaneous Change of Variables yields (V, log pf(x)) -
uB(x) + Vy-ub(x) =0.

Finally, (i) injecting Equation (6.34) and Equation (6.35) back into Equation (6.29),
and (ii) expressing the score functions with velocity fields (Equation (6.21)) give:

pi (x)
/]Rd pf(x) log <p%(x)> dx

O [ [y [0 (Vg pf (1)~ Vilogpf () a

) Alx) B(x) (6.46)
(if) Apay [ HuE(x) —x  tug(x) —x
_/OIEptA[ut(x) [ - - Hdt
_ [ t o A B
=, E, 4 [1—tut (x) - (ut (x) — uy (x))} dt
i.e. Equation (6.28) is proven. O

Similarly, it is easy to show that, given an individual guidance sample Y = y , it is
possible to use Equation (6.1) to compute the point-wise MI as

1
I(X’y) = /0 ]EXt\Y=y |:1t_tut(Xt‘Y = ]/) : (ut(Xt‘Y = ]/) — ut(Xt)) dt. (6.47)

The integral in Equation (6.1) can be estimated by uniform sampling t ~ /(0,1).
However, in practice, since the denominator (1—t) — 0ast — 1, this estimator
has unbounded variance. To reduce variance, since the argument of the integral has
constant magnitude on average, it would be tempting to use importance sampling
where t ~ f(t) « 5. This ratio, however, is hard to normalize (as it integrates to oo).
As an alternative, we consider the following un-normalized density f. proportional
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to such ratio for most of its support, and then truncated to a constant for large t:

(6.48)

To implement such non-uniform sampling in practice, we use the inverse trans-
form sampling method, with the inverse Cumulative Distribution Function (CDF)
described in

Proposition 6 (Non-uniform sampling for importance sampling). The inverse CDF of
a PDF proportional to truncated t* is

LWt e fomi)
el = (6.49)
1+ In(1—t) + Zu] ue [%1} ,

in which W is the Lambert's W-function', and the normalizing constant is Z =
- 11’1(1 - te).

Proof. Our goal is to sample from a PDF proportional to ;- for most of its support.
For some large t. € [0,1], we define the following un-normalized density (Equa-
tion (6.48))

. = te(0te)

fe(t) = ; (6.50)
T tE[te]]

By integrating Equation (6.50) w.r.t. t, we get the cumulative function of the unnor-
malzied density

£(f) = —In(1—t)—t t €0, te) 651)
—In(1—te) + 75 (t=1) t€ [te,1]

Evaluating it at £ = 1 gives us the normalizing constant Z = E(t =1) =
—1In(1 — t.), from which we obtain the CDF F.(t) = sz(t) , and the inverse CDF that
we need for sampling (using the inverse CDF transform)

1+ W(—e2u-1 ue |0, il tete
O o
14+ 5 In(1 — o) + Zu] w e [0kt ]

in which W is the Lambert’s W-function.

Specifically, to solve the equation

—In(1—1¢t)—t

> =u (6.53)

1https ://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html
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we denote w := 1 —t and b := —Zu — 1 for simplicity, then Equation (6.53) be-
comes Inw = b + w, which could be rewritten as —we™® = —e?, therefore —w is the
Lambert W function W(—e"). We note that the Lambert W function can be solved
because Z > 0 and u > 0 give —el > —¢~1. Furthermore, since —e? < 0, both the
Wy and W_1 branches of the Lambert W function are defined; but since we are inter-
ested in the solution that remains in the range —1 < W(x) to make Equation (6.52)
well defined, Wj is the branch of interest. ]

Finally, given the parametric approximations of marginal velocity fields through
minimization of CFM loss, and the result in Proposition 5, now we are able to pro-

pose an MI estimator defined as
VY e ! t (.6 8 J
[(X;Y) ~ Ey 0 Ex, 1y 1t (X Y) - (0 (Xe]Y) — up (X2) t (6.54)

For the estimation of point-wise MI between generated image and guidance prompt,
in practice we found that using the velocity field calibrated by CFG as uf(X;|Y) in
Equation (6.54) leads to better performance than using the vanilla guided output
given by the model. Furthermore, for generating images at high resolution, to reduce
training’s computational cost and to speed up inference, it is common to apply RF
on a lower dimensional manifold (e.g. the compressed latent space of a pretrained
Variational Autoencoder). It is easy to show that the MI between images X and
prompts Y equals to that between images’ latents Z and prompts Y, i.e. I(X;Y) =
1(Z;Y).

An important property of our estimator is that it is neither an upper nor a lower
bound of the true MI, since the difference between the ground truth velocity fields
and their parametric approximation can be positive or negative. This property frees
our estimation method from the pessimistic results of McAllester and Stratos, 2020.

6.3.2 Experimental evaluation on MI estimation benchmark

In this subsection, we assess the quality of RFMI using a known benchmark (Czyz
et al., 2023) composed of 40 tasks with synthetic data generated from a variety of
known distributions where the true Ml is known, and venturing beyond the typical
Gaussian distributions to include harder cases (e.g., distributions with high MI or
long tails).

We consider four alternative neural estimators as baselines, namely MINE (Belg-
hazi et al., 2021), InfoNCE (Oord et al., 2019a), NW] (Nguyen et al., 2010) and DOE
(McAllester and Stratos, 2020). All methods are trained /tested using 100k /10k sam-
ples, where each sample is composed of two data points x and y concatenated as
input for the neural network.



6.4. Conclusion 101

over
estimate

ground truth- 0.2 0.4 0.3 04 04 04 04 1.0 1.0 1.0 10 03 10 13 10 04 1.0 06 16 04 10 1.0 10 1.0 1.0 1.0 1.0 10 1.0 02 04 02 03 02 04 03 04 17 03 04 o
MINE-02 04 02 04 04 04 04 10 10 10 10 03 10 13 10 04 10 06 16 04 09 09 09 08 0706 09 09 09 0000 01 01 01 02 02 04 17 03 04
InfoNCE- 0.2 0.4 03 04 04 04 04 10 10 10 1.0 03 10 13 10 04 10 06 16 04 09 10 10 08 08 08 09 1.0 1.0 02 03 02 03 02 04 03 04 17 03 04 05
DV-02 04 03 04 04 04 04 10 10 10 1.0 03 1.0 13 1.0 04 10 06 16 04 09 10 1.0 08 08 08 09 1.0 10 00 /0001 01 02 02 02 04 17 03 04
NwWj-02 04 03 04 04 04 04 10 10 10 10 03 10 13 10 04 10 06 16 04 09 10 10 08 08 08 09 10 10 0.0 0.0 00 06 01 01 02 04 17 03 04

DoE(Gaussian) - 0.2 0.5 03 06 04 04 0407 10 10 1.0 04 07 gKJ 10 06 0.9 %) 1.6 04 07 10 10 06 06 06 07 083
DoE(Logistic) - 0.1 0.4 02 0.4 04 04 04 06 09 09 10 03 07 K10 06 09 FEJ16 04 08 11 10 06 06 07 08 08 0. -05

RFMHours}'OZ 04 03 04 04 04 04 09 10 09 10 03 10 12 10 04 09 05 16 04 0.9 10 09 09 09 DS 0.9 10 09 ..
2D 3 h 03 a0 a0 0 0 e ) o ) Q0 G0 0 0 0 0 (\ ,,,,,, DA 13 N9, 1
x§\++*a\a‘a\ﬁ“sa‘\sa‘\s 58 aa\aa\a\a\a\a\a\ ((\g\\+0’\+under
\.\dfz\"f :\;’ \g“aa;; 3&3“‘“& %UWW‘N& \ﬂ,@e \1% o ﬂ%\ﬂe & m‘ \1" 5\1%\1“ %\1%@%0‘%\1%\1% k°° S DT N Leefee e > estimate
‘6 (\’0 x\
@(\@

-1.0

+ 2 *2
O qf: \m \m"w\ N “1‘:“16 (ROEAN \m\ ﬂ\“ “sa *N““ 1‘: H\“ “ AN \'\‘\ “15 \M\ v'\‘\ O .»,\7— r,\"’ 3\3 Gk \5 W \Ns\“qe e
NERICRNCKY W B X [ (e e d
[l * COY goY GrSe'te sg@% e Co I
N

\‘4
& \m O m\\mx \N\@

we % ele™ o

FIGURE 6.1: MI estimation results. Color indicates relative negative
bias (red) and positive bias (blue).

Figure 6.1 shows the ground truth MI and each method estimates, with colors reflect-
ing the difference between the MI estimate and the true value — the lighter the shade,
the smaller the estimation error. Overall, RFMI is on par or better than alternative
methods.

6.4 Conclusion

In this chapter, we focused on MI estimation by leveraging the theory of diffusion-

based and flow matching-based generative models.

On DMs, building upon the work of MINDE (Franzese et al., 2024), we extend its
computation of KL divergence and entropy of RVs using the score of data distribu-
tions to enable the computation of point-wise MI in the discrete-time setting, pro-

viding a more fine-grained analysis of MI at the individual data point level.

On RF models, we introduced RFMI, a novel RF-based MI estimator which provides
a unique perspective on MI estimation by leveraging the theory of FM-based gen-
erative models. To illustrate the effectiveness of REMI, we considered a synthetic
benchmark where the true MI is known and our empirical evaluation showed that
RFMI is on par or better than alternative neural estimators.

Given the point-wise MI estimator formulas derived, in Chapter 7 we will use them
to evaluate the amount of information “flowing” between natural text and images,
and further improve generative models” T2I alignment by using them to create a
synthetic fine-tuning set with a high degree of alignment.
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Chapter 7

Information theoretic text-to-image

alignment

7.1 Introduction

Generative models used for T2I conditional generation (Rombach et al., 2022;
Ramesh et al., 2022; Saharia et al., 2022; Balaji et al., 2022a; Gafni et al., 2022; Podell
et al., 2024) have reached impressive performance. In particular, DMs (Song and
Ermon, 2019b; Ho et al., 2020b; Kingma et al., 2021; Song and Ermon, 2020; Song
et al., 2021; Dhariwal and Nichol, 2021) and RF models (Esser et al., 2024; FLUX,
2023) generate extremely high-quality images by specifying a natural text prompt
that acts as a guiding signal (Ho and Salimans, 2022; Nichol et al., 2022; Rombach
et al., 2022). Yet, despite achieving a new SOTA, accurately translating prompts into
images with the intended semantics is still complex (Conwell and Ullman, 2022;
Feng et al., 2023a; Wang et al., 2023a). Issues include catastrophic neglecting (i.e.,
prompt elements are not generated), incorrect attribute binding (i.e., elements at-
tributes such as color, shape, and texture are missing or wrongly assigned), incorrect
spatial layout (i.e., elements are not correctly positioned), and a general difficulty in
handling complex prompts (Wu et al., 2024).

On the one hand, quantifying model alignment is not trivial. Various works (Hu et
al., 2023; Gordon et al., 2023; Grimal et al., 2024) propose different metrics, most of
which use complementary Visual Question Answering (VQA) models or Large Lan-
guage Models (LLMs) to create scores measuring and explaining alignment. More-
over, a recent work (Huang et al., 2023) introduces a comprehensive benchmark
suite to ease comparison among different metrics and modeling techniques via “cat-
egories”, i.e., a pre-defined set of attribute binding, spatial-related, and other tasks.

On the other hand, addressing T2I model alignment is even more challenging than
measuring it. Broadly, we can group the related literature into two main families:
inference-time and fine-tuning methods. For inference-time methods, the key intuition
is that the generative process can be optimized by modifying the reverse path of the
latent variables. Some works (Chefer et al., 2023a; Li et al., 2023b; Rassin et al.,
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2023) mitigate failures by refining the cross-attention units (Tang et al., 2023) of the
denoising network of SD (Rombach et al., 2022) on-the-fly, ensuring they attend to
all subject tokens in the prompt (typically directly specified as a complementary
prompt-specific input for the alignment process) and strengthen their activations.
Other inference-time methods (Agarwal et al., 2023; Liu et al., 2022a; Kang et al.,
2023; Dahary et al., 2024; Meral et al., 2024; Feng et al., 2023b; Kim et al., 2023; Wu et
al., 2023a; Zhang et al., 2024c; Zhang et al., 2024d), focus on individual failure cases.
These approaches (i) require a linguistic analysis of prompts, leading to specialized
solutions that rely on auxiliary models for prompt understanding, and (ii) result in
considerably longer image generation time due to extra optimization costs during
sampling.

Considering fine-tuning methods, some works (Wu et al., 2023b; Lee et al., 2023b)
require human annotations to prepare a fine-tuning set, while others (Fan et al., 2023;
Wallace et al., 2023; Clark et al., 2024) rely on Reinforcement Learning (RL), Direct
Preference Optimization (DPO), or a differentiable reward function to steer model
behavior. Recent methods use self-playing (Yuan et al., 2024; Xu et al., 2023a; Sun
et al.,, 2023; Wang et al., 2023b; Ma et al., 2023), auxiliary models such as vQA (Li
et al., 2023a; Jiang et al., 2024a) or segmentation maps (Kirillov et al., 2023) in a
semi-supervised fine-tuning setting. While these methods do not introduce extra
inference time costs, they still require human annotation (which is subjective, costly,
and does not scale well) and/or auxiliary models to guide the fine-tuning.

Complementary to both families are heuristic-based methods that rely on a variety
of “tricks”, such as prompt engineering (Witteveen and Andrews, 2022; Liu and
Chilton, 2022; Wang et al., 2023a), negative prompting (Negative Prompts 2022; Ma-
hajan et al., 2023; Ogezi and Shi, 2024), prompt rewriting (Mafias et al., 2024) or
brute force an appropriate seed selection (Samuel et al., 2024; Karthik et al., 2023).
While these methods can be beneficial in specific cases, they fundamentally shift the

alignment problem to users.

More important, the literature on T2I alignment primarily focuses on DM such as
SD2, while RF-related literature only tangentially considers the problem. For in-
stance, (Li et al., 2024a) extends SD3 with more modalities, (Dalva et al., 2024) en-
hances FLUX with a linear and fine-grained editing scheme of models’ attention
output, (Liu et al., 2024b) proposes a novel text-conditioned pipeline to turn SD into
an ultra-fast one-step model — while all these works present CLIP score evaluations,
they neither focus nor they are designed to address T2I alignment. At the same time,
the intrinsic different nature of the RF models architecture (e.g., SD3 replaces the U-
Net of SD2 with a DiT architecture and also add an extra text transformer) calls for
redesigning some of the mechanics of DM-based T2I alignment methods.

Overall, current approaches require extra information (human input, auxiliary mod-

els, and additional data) and/or are constrained to specific NN architecture. To the
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best of our knowledge, no previous work investigates self-supervised approaches for
T2I alignment, i.e., the use of a pre-trained model to generate images given a specific
set of prompts, and select the most aligned ones to prepare a fine-tuning set, without
using auxiliary models but instead using the pre-trained model itself to compute a
score signaling if the generated images align with the text prompt. In this work,
we investigate this strategy from an information theoretic perspective, by using MI
to quantify the non-linear prompt-image relationship. In particular, building upon
the point-wise MI estimation formulas using pre-trained DM or RF as neural esti-
mators that we developed in Chapter 6, by applying them on the generated image
and the prompt, this chapter focuses on the two remaining research questions: (2) Is
MI meaningful for T2I alignment? (3) How to use the MI estimates to improve T2I
alignment?

To tackle these two research questions, our method unfolds as follows. First, tak-
ing the DDPM-based MI estimator as an example, we study if and how MI can be
used as a meaningful signal to improve T2I alignment, without relying on linguis-
tic analysis of prompts, nor auxiliary models or heuristics. We then proceed with a
self-supervised fine-tuning approach, whereby we use point-wise MI to construct a
fine-tuning set using synthetic data generated by the T2I model itself. On this con-
structed dataset, we use the recent adapter presented in (Liu et al., 2024a) to fine-tune
a small fraction of weights injected in the T2I model denoising network.

In summary, this chapter presents the following contributions:

1. We empirically study the point-wise MI estimator defined in Chapter 6 be-
tween natural prompts and corresponding images considering both qualita-
tive and quantitative approaches. Specifically, taking the DDPM-based MI es-
timator as an example, we show that MI provides a meaningful indication of
alignment with respect to both alignment metrics (BLIP-VQA and HPS) as well
as a users study (Section 7.2).

2. We design a self-supervised fine-tuning approach, called MI-TUNE, that uses
a small number of fine-tuning samples to improve the pre-trained T2I model
alignment with no inference-time overhead, nor auxiliary models other than

the generative model itself (Section 7.3).

3. We perform an extensive experimental campaign using a recent T2I bench-
mark suite (Huang et al., 2023) and SD-2.1-base as base DM obtaining sizable
improvement compared to six alternative methods. On the same benchmark,
we also demonstrate the validity of our MI estimator, taking SD-3.5-Medium
as base RF (Section 7.5).

Those benefits hold also when considering more complex tasks (based on Dif-
fusionDB (Wang et al., 2022¢)) and alternative base DM (namely, SDXL (Podell
et al., 2024)). Moreover we study the trade-off between T2I alignment and im-
age quality that has been overlooked in the literature. Specifically, while the
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well-known FID, FD-DINO and CMMD metrics suggest a modest image quali-
ty /variety deterioration as a consequence of alignment objectives, optimizing
the Classifier Free Guidance (CFG) hyper-parameter of the fine-tuned model
at generation time, enables finding a “sweet spot” between T2I alignment and

image quality. (Section 7.6)

7.2 Is mutual information meaningful for alignment?

To the best of our knowledge, MI has never been evaluated as a meaningful signal for
T2I alignment. As such, in this section we perform both qualitative and quantitative
analyses to investigate this aspect, taking DDPM-based MI estimator as an example.

Qualitative analysis. Starting with a qualitative analysis, we select a set of
simple prompts to probe color, texture, and shape attribute binding from T2I-
CompBench (Huang et al., 2023) using SD (Rombach et al., 2022) (specifically SD-
2.1-base) to generate the corresponding images. We then measure the well-known
BLIP-VQA (Huang et al., 2023) and Human Preference Score (HPS) (Wu et al., 2023d)
alignment metrics as well as point-wise MI estimates. BLIP-VQA uses a large vision-
language model to compute an alignment score, by casting questions against an
image to verify that the prompt used to generate it is well represented. HPS is an
elaborate metric that uses an auxiliary pre-trained model, blending alignment with
aesthetics according to human perception, which are factors that can sometimes be
in conflict. Figure 7.1 collects some examples and related metric scores revealing a
substantial agreement among all measures: all metrics decrease from left to right in

the figure, as prompt-image alignment deteriorates.

Color binding;:
“A blue car and

a red horse”

BLIP-VQA =0.93
HPS =0.319
MI = 36.28

BLIP-VQA =0.05
HPS = 0.258
MI = 14.67

BLIP-VQA =0.17
HPS =0.312
M = 22.05

BLIP-VQA =0.06
HPS = 0.263
MI = 15.44

Texture binding;:
“A fabric dress and
a glass table”

BLIP-VQA =0.07
HPS =0.295
MI =9.34

BLIP-VQA =0.12
HPS = 0.231

BLIP-VQA =0.90
HPS = 0.257
MI=44.6

Shape binding:
“A round bag and
a rectangular

wallet” |

BLIP-VQA =0.82 BLIP-VQA = 0.64 BLIP-VQA =0.27 BLIP-VQA =0.24 BLIP-VQA =0.01
HPS = 0.262 HPS =0.247 HPS = 0.262 HPS =0.216 HPS =0.160
MI=18.61 MI=17.16 MI=14.84 MI=12.50 MI=11.57

FIGURE 7.1: Qualitative analysis of MI as an alignment measure (all
metrics decrease from left to right). See also Appendix B.8.
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Quantitative analysis. To quantitatively measure the agreement between MI and
well-established alignment metrics, we use all 700 prompts from T21-CompBench
and use SD (again, SD-2.1-base) to generate 50 images per prompt. We use point-
wise MI to rank such images and select the 1st, 25th, and 50th. For these three
representative images, we compute BLIP-VQA and HPS scores and re-rank them ac-
cording to both metrics. Last, we measure agreement between the three rankings
using Kendall’s T method (Kendall, 1938), and average results across all prompts.
Results indicate good agreement between MI and BLIP-VQA (T = 0.4), and a strong
agreement between MI and HPS (T = 0.68).

To strengthen our analysis, we also perform a users study eliciting human prefer-
ence (see Appendix B.1.1 for details). Given a randomly selected prompt from T2I-
CompBench that users can read, we present the top-ranked generated image (among
the 50) according to MI, BLIP-VQA and HPS, in a randomized order. Users can select
one or more images to indicate their preference regarding alignment and aesthetics,
for a total of 10 random prompts per user. From the 102 surveys from 46 users, we
find that human preference for prompt-image pairs goes to MI for 69.1%, BLIP-VQA
for 73.5% and HPS for 52.2% of the cases, respectively.

Relevant literature. Overall, our analyses support our intuition by which MI is a
meaningful signal for alignment (and possibly aesthetics too), setting the stage for our
T2I alignment method. Our intuition is also supported by recent studies investigat-
ing the information flow in the generative process of diffusion models. Specifically,
Kong et al., 2024 estimates pixel-wise mutual information between natural prompts
and the images generated at each time-step of a backward diffusion process. They
compare such “information maps” to cross-attention maps (Tang et al., 2023) in an
experiment involving prompt manipulation — modifications of the initial prompt
during reverse diffusion — and conclude that MI is much more sensitive to informa-
tion flow from prompt to images. In a similar vein, Franzese et al., 2024 compute
MI between prompt and images at different stages of the reverse process of image
generation. Experimental evidence indicates that MI can be used to analyze various
reverse diffusion phases: noise, semantic, and denoising stages (Balaji et al., 2022b).
While previous studies do not explicitly focus on alignment, they indirectly support
our intuition that MI estimated using a diffusion model gauges the amount of infor-
mation a text prompt conveys about an image (and vice-versa) which is key for T2I
alignment.

7.3 Self-supervised fine-tuning with MITUNE

The T21 alignment problem arises when user’s intentions, as expressed through nat-
ural text prompts, fail to materialize in the generated image. Our novel approach
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aims to address alignment using a theoretically grounded MI estimation, that ap-
plies across various contexts. To improve model alignment, we introduce a self-
supervised fine-tuning method. Leveraging the T2l model itself, we estimate MI and
generate an information-theoretic enhanced fine-tuning dataset. While our focus in
this chapter is on T2I alignment, our framework remains extensible to other modali-
ties.

In summary, given a pre-trained diffusion model (e.g., SD-2.1-base (Rombach et al.,
2022) or sSDXL (Podell et al., 2024)) or rectified flow model (e.g., SD3 (Esser et al.,
2024) or Flux.1 (FLUX, 2023)), we leverage our point-wise MI estimation method to
select a small fine-tuning dataset set of information-theoretic aligned examples.

Our self-supervised alignment method relies on the pre-trained model only to pro-
duce a given amount of fine-tuning data, which is then filtered to retain prompt-
image pairs with a high degree of alignment, according to pair-wise MI estimates
obtained using only the pre-trained model. We begin with a set of fine-tuning
prompts ), which can be either manually crafted, or borrowed from available
prompt collections (Wang et al., 2023a; Huang et al., 2023). Ideally, fine-tuning
prompts should be conceived to stress the pre-trained model with challenging at-

tribute and spatial bindings, or complex rendering tasks.

As described in Algorithm 1, for each prompt y*) in the fine-tuning set )V, we use the
pre-trained model to generate a fixed number M of synthetic images. Given prompt-
image pairs (y(),z1)), j € [1, M], we estimate pair-wise MI and select the top k pairs,
which will be part of the model fine-tuning dataset S. Finally, we augment the pre-
trained model with adapters (Hu et al., 2021; Liu et al., 2024a), and proceed with
fine-tuning.

We study the impact of the adapter choice, and whether only the denoising net-
work or both the denoising and text encoder networks should be fine-tuned (Ap-
pendix B.4.2). Moreover, we measure the impact of the number of fine-tuning rounds
R to the pre-trained model, i.e., we renew the fine-tuning dataset S using the fine-
tuned model, and re-fine-tune it using Algorithm 1 (Section 7.6).

Our efficient implementation combines latent generation and point-wise MI compu-
tation, as shown in Algorithm 2 and Algorithm 3 for DM and RF respectively. Since
MI estimation involves computing an expectation over denoising times t, it is easy
to integrate the MI estimation into the same generation loop. Moreover, the function
is easy to parallelize to significantly speed up the fine-tuning set S composition.
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Algorithm 1: mi-Tune

Input : Pre-trained model: fy = €y (resp. ug) for DM (resp. RF), Prompt
set: )

Hyper par :Image pool size: M; Top MI-aligned samples: k

Output : Fine-tuned fyp« = €y (resp. ug-) for DM (resp. RF)

// Fine-tuning set

S+ ]

for y(i) in) do

forje{1,---,M} do
// Generate and compute MI
20, 1(z0), y()) = PointWisemr (fp, y1))
// Append samples and MI
S[y'"].append (z1),1(z1), y())

end

// Retain only Top-k elements

S[y"] = Top-k(S[yD])

8 end

9 return fy- = FineTune(fy, S)

Algorithm 2: Point-wise MI Estimation - DM

Input : Pre-trained model: €g; Prompt: y
Output : Generated latent: z; Point-wise MI: I(z,y)

Function PointWiseMI (€y, y):

// Initial latent sample

zr ~N(0,I)fortinT,..0do

// MI estimation (eq. (6.1))

1z,y) += [illeo(z 1, 1) — eolz1, @, 1))
// Noise sample

w~N(,I)ift >1,elsew =0

// Sampling step

end
return z, [(z,y)

7.4 Experimental protocols

7.4.1 Benchmark and metrics

Benchmark. On DM, we compare all techniques using T21-CompBench (Huang
et al., 2023), a benchmark composed of 700/300 (train/test) prompts across 6 cat-
egories including attribute binding (color, shape, and texture categories), object
relationships (2D-spatial and non-spatial associations), and complex composition
tasks. These prompts were generated with predefined rules or ChatGPT (OpenAl,
2024). We also assess MI-TUNE performance on more realistic prompts by sampling
5,000/1,250 (train/test) prompt-image pairs from DiffusionDB (Wang et al., 2022c),
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Algorithm 3: Point-wise MI Estimation - RF

Input : Pre-trained model: uy; Prompt: y
Hyperparam: Step size: At
Output : Generated clean latent: z; Point-wise MI: I(z, y)

Function PointWiseMI (ug, y):

// Initial latent sample

zo ~N(0,1)

I(z,y) =0

fortin0,...,1do
// MI estimation (eq. (6.47))
1(z,y) += tua(zo,y,t) - (a(z0,y,t) — o(21,@, 1))
// Denoising step
zi+ = up(zs, y, t) At

end

return z, [(z,y)

a large-scale dataset composed of complex human-crafted prompts paired with the
corresponding images generated from a SD model.

On RF, we evaluate our method on T2I-CompBench++ (Huang et al., 2023), an
improved version of T2I-CompBench, composed of 700/300 (train/test) prompts
across 8 categories including attribute binding (color, shape, and texture categories),
object relationships (2D-spatial, 3D-spatial, and non-spatial associations), numeracy
and complex composition tasks. As Huang et al. (2023) recently found, Stable Diffu-
sion 3 already “saturates” performance on certain categories (see Table XIII in Huang
et al., 2023): then, we focus our evaluation only on categories having an alignment
score lower than 0.7, namely the 4 categories shape, 2D-spatial, 3D-spatial, and nu-

meracy.

Alignment Metrics. Evaluating T2I alignment is difficult as it requires a detailed
understanding of prompt-images pairs, and many metrics have been proposed, e.g.,
CLIP (Hessel et al., 2021; Radford et al., 2021), MINIGPT-4 (Zhu et al., 2024), and
human evaluation. In this chapter we use BLIP-VQA (Huang et al., 2023), HPS (Wu
et al., 2023c) and UniDet (Zhou et al., 2022a). While BLIP-VQA computes a score
with a questions-answers approach — a given prompt is decomposed and each part
is transformed into a question for an auxiliary VQA model; then, answers are ag-
gregated into a single score — only based on alignment, HPS includes both alignment
and aesthetics — this is enabled by an auxiliary model pre-trained using human-
annotated data. As in (Huang et al., 2023), the 2D-spatial category is evaluated using
the UniDet object detection model.

For the experiment on DM, we complement these metrics with a user study. We
randomly select 100 prompts per category, and generate 10 pictures per prompt for
each method we consider in our evaluation. Then, we run surveys composed of 12
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rounds (2 for each category), each showing to the user a randomly selected prompt
and a randomly selected image for each method, randomly arranged in a grid. At
each round, users need to select zero or more images they consider aligned with
the prompt. Overall, we collected 42 surveys from 5 users, from which we com-
puted the total percentage of times each method was selected for each category (Ap-
pendix B.1.2).

Image quality metrics. Assessing performance only considering alignment met-
rics can hide undesired effects. Intuitively, a strong adherence to a given prompt
reduces the generative process “degrees of freedom” and this trade-off might not be
visible even to a trained eye. To investigate these dynamics we compute FID (Heusel
etal., 2017), FD-DINO (Oquab et al., 2024) and CMMD (Jayasumana et al., 2024) scores
— FID favors natural colors and textures but struggles to detect objects/shapes dis-
tortion, while FD-DINO and CMMD favor image content. Following (Imagen-Team
et al., 2024), rather than using the T21-CompBench test set, we compute the metrics
using 30k samples of the MS-COCO-2014 (Lin et al., 2015) validation set.

7.4.2 MI-TUNE fine-tuning

Base models. We mainly run our benchmark using SD-2.1-base and SD-3.5-M as
base model for DM and RF respectively, but we also report results of the application
of MI-TUNE on a variant of DM at higher resolution (namely SDXL) to demonstrate
its flexibility.

Fine-tuning sets. Both T21-CompBench and its enlarged version T2I-CompBench++
contain 700 training prompts for each category. When using MI-TUNE, we generate
M =50 images for each prompt using the pre-trained model, compute their point-
wise MI, and select the top k = 1! (sensitivity to M and k in Appendix B.4.1). For
the 2D-Spatial category, we also compose fine-tuning sets generating images from
SPRIGHT (Chatterjee et al., 2024) — a DM optimized for this (more challenging) cat-
egory and fine-tuned from SD-2.1 (a higher resolution version of SD-2.1-base). Last,
we also contrast MI-TUNE fine-tuning set composition against (i) using HPS rather
than MI for image selection,? (ii) using both MI-selected and real-pictures and (iii)
images from DiffusionDB.

Fine-tuning weights. In this chapter, fine-tuning corresponds to injecting
DoRA (Liu et al., 2024a) (resp. LoRA (Hu et al., 2021)) adapters for DM (resp. RF)

I'We remark that, albeit in a different context, this selection resembles an image retrieval task (Krojer
et al., 2023)

2We exclude BLIP-VQA for the fine-tuning set composition to avoid biasing the evaluation (Huang
et al., 2023).
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(rank and scaling factor « are set to 32) only into the attention layers and fully con-

nected layers of the denoising network, whereas other layers are frozen.?

Other hyperparams search. On DM, we consider up to R € [1,3] rounds of fine-
tuning i.e., using as base model the one obtained from previous round and apply
Algorithm 1, and Classifier Free Guidance (CFG) € [2.5,7.5]. For each fine-tuned
model we then compute all alignment and image quality metrics. On RF, due to the
computational cost, we only finetune R = 1 round using the pre-trained base model,
and apply Classifier Free Guidance (CFG) = 4.5. More fine-grained hyperparams

details and computational costs considerations in Appendix B.2.

7.4.3 Alternative methods

As introduced in Section 7.1, the literature on T2I alighment primarily focuses on
DM methods like SD2, while RF-related works neither focus on nor are designed to
address T2I alignment. Therefore, in the benchmark evaluation, we only consider
the alternative methods for DM.

Inference-time methods. Pre-trained model alignment can be improved at inference
by optimizing the latent variables z; throughout the numerical integration used to
generate the (latent) image. This process steers model alignment with an auxiliary
loss based on attention maps and fine-grained linguistic analysis of the prompt (e.g.,
additional input is used to explicitly indicate which words to focus on). In this fam-
ily, we consider 3 methods: Attend and Excite (A&E) (Chefer et al., 2023b), Struc-
tured Diffusion Guidance (SDG) (Feng et al., 2023b) and Semantic-aware Classifier-
Free Guidance (SCG) (Shen et al., 2024).

Fine-tuning methods. Alternatively, a pre-trained model can be fine-tuned with
adapters (Hu et al.,, 2021) optimized via a variety of RL or supervision methods.
Specifically, we consider 3 approaches: Diffusion Policy Optimization with KL reg-
ularization (DPOK) (Fan et al., 2023), Generative mOdel finetuning with Reward-
driven Sample selection (GORS) (Huang et al., 2023) and Hard-Negatives Image-
Text-Matching (HN-ITM) (Krojer et al., 2023). Notice that since results in the liter-
ature for both families do not necessarily refer to same base models, to guarantee a
fair comparison, we adapted and evaluated all methods on sSD-2.1-base.

3LoRA adapters (Hu et al., 2021) and fine-tuning also the CLIP-based text encoder do not provide
performance improvements (Appendix B.4.2). Likewise, creating a multi-category model by “merg-
ing” different per-category models or using a fine-tuning set composed with images from all categories
do not provide performance gains (Appendix B.4.3).
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7.5 Benchmark results

7.5.1 T2I-CompBench on DM

Table 7.1 reports the alignment results on T2I-CompBench. To simplify its reading,
the bottom part of the table summarizes (i) the absolute gain with respect to the SD-
2.1-base model for each of the best methods in each family and (ii) the percentage
gains of MI-TUNE with respect to the alternative method for each category. We also
summarize performance as averages across categories for each metric.

Despite performance varies, MI-TUNE achieves a new state of the art across all cat-
egories/metrics, often by a sizable margin. While this is more evident for BLIP-
VQA and Human, the literature shows that HPS has natural small variations (see
Appendix B.3), hence MI-TUNE gains are significant also for this metric.

Table 7.1 results are obtained generating fine-tuning sets from SD-2.1-base for all
tasks but 2D-Spatial. For this category, we were able to obtain (at best) BLIP-
VQA=15.93 and HPS=28.13. Conversely, generating the fine-tuning images from
SPRIGHT resulted beneficial. We can link this result to the self-supervision nature
of MI-TUNE. On the one hand, our methodology is not bounded to a specific model.
On the other hand, the filtering operated via point-wise MI estimation can benefit
from “pre-alignment” — MI-TUNE can strengthen existing alignment but might not
be sufficient to “induce” it. Notice that all competitors suffer from this trade-off
too as no single winner emerges. In particular, despite A&E and GORS are the most
frequent best method in their family (winning in 10-out-of-18 scenarios), all competi-
tors show less consistent performance across categories and metrics than MI-TUNE.
For instance, for attribute binding (color, shape and texture), fine-tuning methods
under-perform according to BLIP-VQA and Human, but the performance gaps are
very close considering HPS. Yet, MI-TUNE achieves consistently higher performance
across all categories, outperforming alternative fine-tuning methods by a large mar-
gin.

Raw alignment performance apart, it is important to highlight MI-TUNE key dif-
ferences compared to the alternative fine-tuning methods. DPOK uses RL with a
reward model (pre-trained with human-labeled real images) to define a prompt-
image alignment score to guide the fine-tuning, HN-ITM uses a contrastive learning
approach based on an ad-hoc dataset with real positive (good alignment) and neg-
ative (poor alignment) prompt-image pairs, and GORS composes a fine-tuning set
generating images from the diffusion model and selecting them based on BLIP-VQA.
While GORS is very close in spirit to MI-TUNE, its performance is “biased” — the
filtering criteria overlaps with the final evaluation strategy — as explicitly acknowl-
edged by its authors (Huang et al., 2023). Overall, while both DPOK and GORS still
require external assistance, MI-TUNE generates images and selects them using the
target model itself, i.e., it is the first fully self-supervised model for T2I alignment to
the best of our knowledge.
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BLIP-VQA HPS Human (user study)
Method Color Shape Texture 2D-Sp. Non-Sp. Compl. (avg) Color Shape Texture 2D-Sp. Non-Sp. Compl. (avg) Color Shape Texture 2D-Sp. Non-Sp. Compl. (avg)
sp-2.1-base 49.65 42.71 49.99 15.77 66.23 50.53 (45.81) 27.64 24.56 24.99 27.50 26.66 25.70 (26.17) 29.76 11.90 40.48 35.71 66.67 29.76 (35.71)
= A&E 61.43 47.39 64.10 51.69 (51.17) 28.44 25.88 28.42 (26.56) 31.95 15.48 52.38 (38.06)
= SDG 15.48
= SCG 16.31 66.60 24.85 26.98 26.03 40.48 69.05 39.29
DPOK 45.63 17.19 (47.98) 28.20 24.99 28.12 (26.57) 70.24 38.10 (38.49)
E GORS 53.59 54.47 67.47 52.28 25.56 26.88 26.07 34.52 48.81 36.90 (38.49)
HN-ITM 19.05

MI-TUNE 65.04 50.08 65.82 18.51 67.77 54.17 (53.56) 29.13 25.57 26.20 ©28.50 27.15 26.70 (27.21) 46.43 25.01 53.19 4524 73.81 46.43 (48.35)

best Infer. Bbase 11.78 4.68 14.11 054 037 116 (544) 080 029 089 092 032 033 (0.59) 219 358 11.90 477 238 9.53 (5.72)

best FTBbase 3.94 292 448 142 124 175 (2.62) 056 043 057 062 022 037 (0.46) 476 715 833 119 357 834 (5.56)
mI-TUNEEbase 15.39 737 15.83 274 154 3.64 (7.75) 149 101 121 100 049 1.00 (1.03) 16.67 13.11 12.71 9.53 7.14 16.67 (12.64)
(

MI-TUNEBbests  3.61 2,69 172 132 030 1.89 (1.92) 0.69 058 032 008 0.17 0.63 (041) 1191 596 081 476 357 714 (5.69)
MI-TUNE%best  5.88 5.68 2.68 7.68 044 3.62 (4.33) 243 232 124 028 0.63 242 (1.55) 34.5031.29 155 11.76 5.08 18.17 (17.06)

A BB indicates the absolute difference between A and B; A % B corresponds to the percentage difference (A - B) / B; t: Fine-tuning
set obtained

from SPRIGHT rather than SD-2.1-base; Human scores do not sum to 100 in each category as users can select multiple methods for
each question.

TABLE 7.1: T2I-CompBench alignment results (%) on images gener-
ated by DM. Gray highlighted style when MI-TUNE outperforms all

competitors; for under-performing methods per-family;
Green heatmaps show per-category absolute gains w.r.t. the base
model.

Category Shape 2D-spatial 3D-spatial Numeracy
(BLIP-VQA) (UniDet) (UniDet)?> (UniDet)

SD3.5-M 57.96 31.31 38.81 61.15
MI-TUNE 61.78 33.92 42.28 64.00

abs. difference 3.82 2.61 3.47 2.85
relative gain 6.59 8.34 8.94 4.66

TABLE 7.2: T2I-CompBench alignment results (%) on images gener-
ated by RF with CFG=4.5

7.5.2 T2I-CompBench on RF

We applied MI-TUNE (Algorithm 1) on Stable Diffusion 3.5-Medium Esser et al., 2024
(SD3.5-M)® and extended Huang et al. benchmark to include this latest RF-based
T2I model. Table 7.2 collects the results, with absolute difference and percentage
gain between SD3.5-M and MI-TUNE summarized at the bottom. As expected, MI-
TUNE improves the T2I alignment of SD3.5-M by a sizable margin across all the 4
challenging categories. Qualitative visualization examples are shown in Figure 7.2.

We highlight that our approach MI-TUNE is not sensitive to the NN architecture or
the type of data, so it could be integrated beyond T2I task and into other disciplines
where DM or RF is adopted for conditional generation.

3From a preliminary investigation we observed a x4 computational costs for FLUX (FLUX, 2023)
so we could not collect results in time for the submission.

2For prompts depicting 3D-spatial relation, T2I-CompBench++ leverages UniDet (Zhou et al.,
2022b) for object detection and Dense Vision Transformer (Ranftl et al., 2021) for depth estimation.
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SD3.5-M MITUNE SD3.5-M MITUNE SD3.5-M MITUNE

s

(Shape) “a round bag and a square box” “a tall oak tree and a short sapling
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L" ‘} " . ‘
(2D-spatial) “a vase on the right of a cat” “a airplane on the top of a horse”

e
v

A
/

(Numeracy) “four sinks and two tents” “three ships sailed alongside one swan” “one person and three cats”

FIGURE 7.2: Qualitative examples from Table 7.2 (same seed used for
a given prompt).

7.6 Ablation studies

In this section, we ablate our method MI-TUNE on DM, considering the trade-off
between alignment and image quality-variety, and alternative prompt sets and base
models.

Alignment/image quality-variety trade-offs. MI-TUNE results in Table 7.1 are ob-
tained from a grid search across multiple fine-tuning rounds R and CFG values. In
fact, we observe different trade-offs between alignment and image quality across
different configurations. We exemplify this in Figure 7.6, for the Color category.
The figure highlights two opposite dynamics: T2I alignment benefits from multiple
fine-tuning rounds (higher BLIP-VQA) but can introduce image artifacts and reduce
measured diversity (higher FID). While this trade-off is neither mentioned nor quan-
tified in the literature of the considered methods, it is to be expected — strictly abid-
ing to a prompt impacts the “generative pathways” at sampling time. Interestingly,
lowering CFG (typically set to 7.5) counterbalances these dynamics and enables a
“sweet spot” — as the model better aligns to a category thanks to fine-tuning, one
can alleviate the guidance scale dependency at generation. Table 7.3 complements
this analysis by showing FID, FD-DINO and CMMD scores for all categories, as well
for sD-2.1-base and three state of the art models — while all metrics indeed suggest
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a possible reduction in image variety considering SD-2.1-base, MI-TUNE scores are
comparable with other state-of-the-art models (see Figure 7.3 for example images).

SD-2.1-base  DPOK GORS HN-ITM A&E SDG SCG MI-TUNE

(Complex) “The white mug is on top of the black coaster.”

FIGURE 7.3: Qualitative examples from Table 7.1 (same seed used for
a given prompt). More examples in Appendix B.5.
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SDXL MI-TUNE SDXL MI-TUNE

R

(Color) “A green apple and a brown horse” “A black jacked and a brown hat”

(Shape) “A big lion and a small mouse” “A circular mirror and a triangular shelf unit”

FIGURE 7.4: Qualitative examples from Table 7.5 (same seed used for
a given prompt). More examples in Appendix B.6.

SD-2.1-base  Fine-tuned using MI-TUNE
DiffusionDB  im-
ages

(Human prompt) “Child’s body with a radioactive jellyfish as a head, realistic illustration, backlit,

intricate, indie studio, fantasy, rim lighting, vibrant colors, emotional”
. v '

(Human Prompt) “Digital neon cyberpunk male with geordi eye visor and headphones portrait
painting by donato giancola, kilian eng, john berkey, j. c. leyendecker, alphonse mucha”

FIGURE 7.5: Qualitative examples from Table 7.6 (same seed used for
a given prompt). More examples in Appendix B.7.

o '@ Flkound
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FIGURE 7.6: Hyper-params search.
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TABLE 7.3: Comparing image quality/variety scores.

MI-TUNE (R=2, CFG=2.5)
DALLE-3¥ IMAGEN-3% spxL¥

Metric sD-2.1-base Color Shape Texture Spatial Non-sp. Comp.  (avg)

FID({) 171 221 168 173 188 16.8 20.6 (18.7)  20.1 17.2 13.2

FD-DINO())  229.1 279.0236.9 250.4 251.7 231.9 255.6 (250.9) 2844  213.9185.6

CMMD(])  0.641 0.6810.634 0.694 0.669 0.709 0.671 (0.680) 0.894  0.8540.898
Results from 30k samples of MS-COCO-2014 validation set; f results from (Imagen-Team et al., 2024)

Fine-tuning set composition. The strategy to select prompt-image pairs for the
fine-tuning set has a large design space beyond the use of MI. In Table 7.4, we re-
port (for two categories for brevity) alignment performance using two alternative
strategies. Specifically, using HPS rather than MI degrades performance.* Results
when composing the fine-tuning set by mixing Mi-selected and real images selected
from the cCc2M dataset (Changpinyo et al., 2021) are instead inconsistent (BLIP-VQA

steadily degrades but HPS signals an improvement in some scenarios).
TABLE 7.4: FT set selection.

BLIP-VQA HPS

Strategy Color Shape Color Shape

MI only 65.0450.08 29.1325.57

HPS Ol’lly 59.4346.87 n.a. n.a.

MI+Real(0.25) 61.3448.47 29.16 25.87
MI+Real(0.5) 61.6349.50 29.38 25.92
MI+Real(0.9) 59.8348.92 28.60 25.60

SDXL and DiffusionDB. We complete our evaluation by presenting results obtained
applying MI-TUNE on SDXL in Table 7.5, and considering an alternative scenario
closer to real user application using DiffusionDB in Table 7.6 to complement the syn-
thetic nature of T21-CompBench. As expected, “vanilla” SDXL significantly outper-
forms SD-2.1-base, yet MI-TUNE enables sizable improvements on SDXL alignment
(see Figure 7.4). For the realistic alignment use case in Table 7.6, we select prompt-
images pairs from DiffusionDB and we contrast alignment when fine-tuning using
the images already paired with prompts against MI-selected ones. We use SD-2.1-
base as base model and report only HPS scores® in Table 7.6. Overall, fine-tuning
with DiffusionDB images improves the base model, yet MI-TUNE enables superior

performance (see Figure 7.5).

We compute only BLIP-VQA to avoid evaluation bias (Huang et al., 2023).
5The higher prompt complexity does not well suit BLIP-VQA text decomposition (see Ap-
pendix B.7.1).
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TABLE 7.5: Alignment (%) using SDXL.

BLIP-VQA HPS

Method Color Shape Texture 2D-Sp. Non-Sp. Comp. Color Shape Texture 2D-Sp. Non-Sp. Comp.

(ref) SDXL 60.7849.70 55.78 21.02 68.16 52.68 28.4724.99 25.8528.50 26.64 25.90
sD-2.1-base 49.6542.71 49.99 15.77 66.23 50.53 27.6424.56 24.99 27.50 26.66 25.70

MI-TUNE 69.66 55.86 66.74 22.18 72.17 57.74 29.0325.90 27.1529.57 27.56 26.70

mr-tuNeB(re)  8.88 6.16 1096 1.16 4.01 5.06 0.56 091 1.30 1.07 0.92 0.80
MI-TUNE % (ref) 14.6112.39 19.65 5.52 5.88 9.61 197 3.64 5.03 3.75 3.45 3.09

TABLE 7.6: DiffusionDB.

Model HPS
SD-2.1-base 23.99
DiffusionDB 24.35
MI-TUNE 25.32
MI-TUNE H base 1.33

MI-TUNE B DiffusionDB  0.97

7.7 Conclusion

T21 alignment emerged as an important endeavor to steer image generation to follow
the semantics and user intent expressed through a natural text prompt, as it can
save considerable manual effort. In this chapter, we presented a novel approach to
improve model alignment, that uses point-wise MI between prompt-image pairs as a
meaningful signal to evaluate the amount of information “flowing” between natural
text and images. We demonstrated, both qualitatively and quantitatively, that point-
wise MI is coherent with existing alignment measures that either use auxiliary vQA
models or elicit human intervention.

We presented MI-TUNE, a lightweight, self-supervised fine-tuning method that uses
a pre-trained T21 model such as diffusion-based SD2 or rectified flow-based SD3 to
estimate MI, and to generate a synthetic set of aligned prompt-image pairs, which is
then used in a parameter-efficient fine-tuning stage, to align the T2I model. Our
approach does not require human annotation, auxiliary VQA models, nor costly
inference-time techniques, and achieves a new state-of-the-art across all categories/-
metrics explored in the literature, often by a sizable margin. These results carry on
in more complex tasks, and for various base models, illustrating the flexibility of
MI-TUNE.
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Part 111

Generative modeling of packet
series for traffic classification
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Chapter 8

Generative modeling of network
traffic data

8.1 Introduction

In Part I,our investigation began with hand-crafted augmentations for packet series
(Part I). While these augmentations showed empirical effectiveness for traffic classi-
fication, they suffer from limited robustness: no single transformation consistently
performs the best across datasets, and the hyperparameter searching space — in-
cluding the intensity of individual augmentations and their combinations —is large
and hard to tune. In short, it is challenging to manually design hand-crafted aug-
mentations for packet series that both introduce substantial variability and preserve
class-discriminative features. In Part II, we turned to conditional diffusion models
for text-to-image synthesis, where the model was able to generate diverse, realistic
images that are also semantically aligned with the given text prompt. Motivated by
these findings in the two parts, it is natural to ask whether similar diffusion-based
approaches can be effective in networking domain, which leads to a natural ques-
tion: can class-conditional diffusion models capture the distribution of packet series
in a way that preserves both fidelity and class semantics? Furthermore, can such
models generate meaningful diversity beyond the training set, making it effective

for downstream classification augmentation?

In this chapter, we investigate the generative modeling of packet series. We begin
by reviewing relevant literature from both networking and ML communities. Our
survey of networking literature reveals its sparsity in terms of experimental datasets
and input representations. This motivates our first research objective: to build a
benchmark that includes curated datasets, standardized processing pipelines, and
implementations of existing methods. On the ML side, since the input data to the
ML model is composed by the sizes of the first 30 packets multiplied by their direc-
tions (-1 for outgoing and —1 for incoming), we examine works on diffusion-based
synthesis for both tabular and time series data. These studies guide us to our evalua-
tion strategy: while assessing the overall fidelity is important, the evaluation should



124 Chapter 8. Generative modeling of network traffic data

also reflect our ultimately goal of generating synthetic samples that are useful for
downstream classification. This leads to our second research objective: to establish
a comprehensive evaluation protocol comprising (i) class-agnostic fidelity, (ii) class-
conditional fidelity, and (iii) augmentation utility.

With the research goals clarified, we consider three generative baselines originally
developed for networking, tabular, and time series data, respectively, along with
three hand-crafted augmentations introduced in Part I. In addition, we propose
DDPMS4, a diffusion-based method with an advanced NN architecture for cap-
turing the sequence patterns in packet series. We use XGBoost as the downstream
classifier to evaluate the quality of the synthetic data, as it performs comparably to
ResNet but trains significantly faster. Based on a multifaceted evaluation, we sum-

marize our main findings as follows:

¢ Our method, DDPMS4, achieves the best performance among all evaluated
generative models in both downstream classification utility and class-agnostic
fidelity. This demonstrates that the synthetic data produced by DDPMS4 not
only preserves class-relevant semantics but also aligns well with the real train-
ing data distribution. Although a performance gap remains compared to train-
ing on real data because the generated data does not sufficiently cover rare or
low-density patterns present in the original distribution, we believe this gap
can be further reduced in future work by modifying the scheduler to capture

the characteristics of packet series data.

¢ Beyond optimizing in-distribution fidelity, we find that naive sampling from
generative models is ineffective for data augmentation in downstream clas-
sification, whereas hand-crafted augmentations perform well. This suggests
that accurately modeling the training data distribution alone is insufficient,
generative models must be redesigned to actively promote diversity useful for
downstream classification beyond what is included in the real training data.

¢ To develop generative models that introduce additional variety while preserv-
ing class semantics, it is essential to first understand what constitutes class-
relevant semantics. In our short packet series, features are not as visually in-
terpretable as in CV and do not exhibit clear trends or seasonal patterns. Our
analysis of hand-crafted augmentations suggests that simple metrics like L2
distance in the input space do not reliably capture semantic similarity. There-
fore, more sophisticated approaches are needed to capture class-relevant pat-

terns, which is a necessary foundation for improving downstream utility.

In the remainder, we begin by reviewing relevant literature from both TC and ML
communities (Section 8.2). We then outline our research goals and introduce the
baseline methods included in our study (Section 8.3). Following this, we present
our proposed method DDPMS$S4, a diffusion model based on DDPM scheduler and
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a transformer-like architecture where the attention mechanism is replaced by Struc-
tured State Space for Sequence Modeling (54) — a recent alternative to attention
that scales linearly and excels at modeling long-range dependencies (Section 8.4).
We then describe our experimental setup (Section 8.5) and report the evaluation re-
sults. We first discuss the replication of NetDiffusion — a diffusion-based baseline
that fine-tunes a pre-trained text-to-image model specifically for synthetic network
traffic generation, and analyze potential reasons for its poor generative performance
(Section 8.6). Given its specialized design and comparatively lower performance, we
analyze it separately from the main benchmark. Subsequently, we evaluate the re-
maining methods in terms of their utility for downstream classification (Section 8.7)
and their class-agnostic fidelity (Section 8.8).

8.2 Related work

Networking traffic synthesis has evolved from traditional statistical models to deep
generative approaches. We begin by reviewing works within the networking com-
munity, covering both traditional approaches (Section 8.2.1) and more recent gen-
erative models (Section 8.2.2), in which the latter facilitates data sharing, support
diverse data representations, and bring attention to evaluate the trade-offs among
fidelity, privacy, and diversity.

We then turn to relevant ML literature. Among the various branches of generative
modeling, our task — modeling 1-D packet sequences of continuous values — is
most related to tabular synthesis (Section 8.2.3) and time series synthesis (Section 8.2.4),
so we review these two. Tabular data is 1-D (a single row), where the main challenge
lies in jointly handling heterogeneous numerical and categorical features, typically
for tasks like generation from scratch and imputation. In contrast, time series data
is generally 2-D (features x timesteps, which reduces to 1-D in the univariate case),
and the focus is on modeling temporal dependencies for tasks such as generation,
imputation, and forecasting.

8.2.1 Traditional networking traffic synthesis

Traditional methods for generating synthetic network traffic can be grouped into
two families: network simulators, which create virtual network environment to
study synthetic traffic flows within, and packet generators, which create/replay real
packets and inject them into real networks.

Network simulators are at the core of computer network design, as testified by the
many tools developed by industry and academia over the past decade. (Patil et
al., 2016; Adeleke et al., 2022). Traditional popular ones are discrete event driven
simulators (e.g., NS-3 (Riley and Henderson, 2010), OSTINATO (OSTINATO - Traf-
fic Generator for Network Engineers n.d.), SEAGULL (SEAGULL - Multi-protocol traffic
generator n.d.), OMNET++(Varga, 2010), DONS (Gao et al., 2023)) enabling detailed
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packet-level control through component a catalog of network components and APIs,
ideal for custom scenarios but requiring complex setup. More recently, ML-assisted
network simulators (e.g., MimicNet (Zhang et al., 2021), RouteNet-Fermi (Ferriol-
Galmés et al., 2023), DeepQueueNet (Yang et al., 2022b)) have been proposed, using
discriminative models to map raw packets input to aggregate network performance
metrics (e.g., latency, flow completion time, throughput). These tools offer more
scalable simulation by abstracting the monitoring of (sub)network dynamics with-
out custom event-driven code (Zhang et al., 2021), at the cost of reduced fine-grained

control.

Packet generators (e.g., MoonGen (Emmerich et al., 2015), DPDK-pktgen (Turull et
al., 2016) or commercial tools from companies like IXIA (IXIA - High-Volume Traffic
Generator Products Catalog n.d.) and NEOX (NEOX - Valkyrie Stateless Ethernet Traffic
Generation and Analysis up to 800Gbps n.d.) offer a practical alternative to simulations
by replaying pcap traces or generating synthetic packets on the fly based on some
input configurations. These tools complement network simulators and are mainly
used to “stress test” real environments and validate their load-handling capabilities.

8.2.2 Generative traffic synthesis

Traditional traffic generation tools usually tailor very specific needs, but they are
rigid solutions not generative in nature as their require domain knowledge, and
can require replaying previously collected real traces. With the success in com-
puter vision of Generative Adversarial Networks (Goodfellow et al., 2020) first and
Diffusion Models (Ho et al., 2020c) more recently, the networking research com-
munity started to investigate how to take advantage of generative models for net-
work traffic-related tasks. In Table 8.1 we categorize multiple properties of the most
prominent literature.

Easing data sharing. Access to (good) data is paramount in any research field but,
differently from the machine learning research, networking research suffers from
scarcity and up to date public datasets (Claffy et al., 2021). This issue, together with
the desire of fine-grained controlling of traffic dynamics, motivates the abundance of
the network traffic simulation methodologies mentioned above. At the same time,
this data scarcity is linked to costly data gathering — collecting and labeling fine-
grained data (e.g., pcap traces) is an engineering challenge — and privacy — net-
work operators are reluctant to collect and share data (even when anonymized) to
safeguard both end-users privacy and (in)direct business value related to the data.
To mitigate these problems, a wave of recent works (Yin et al., 2022; Lin et al., 2020b;
Jiang et al., 2024b; Sivaroopan et al., 2023c; Xu et al., 2021; Sivaroopan et al., 2024)
propose the adoption of generative ML arguing that [...] sharing the model reveals
more information than a finite number of synthetic data samples. Thus, we posit that in
practice stakeholders will be more likely to share synthetic data rather than the models |[...]
(Yin et al., 2022). In other words, the generative model should have “high fidelity”
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by creating synthetic datasets (i) encoding the statistical properties of private data,
(if) enabling comparable performance to the private data when used on a down-
stream task, but (iii) being privacy preserving by avoid synthesis of training sample
“replicas”. This line of research includes multiple proposal across different families
of generation modeling techniques including GAN (Lin et al., 2020b; Yin et al., 2022;
Sivaroopan et al., 2023c), DMs (Jiang et al., 2024b; Zhang et al., 2024b; Sivaroopan
et al., 2024), VAE (Aceto et al., 2024) and also traditional statistical approaches likes
gaussian mixture of models (Xu et al., 2021).

Data representation. We argue that most of the innovation in this literature come
from the input representation rather than the mechanics/dynamics/architecture of the
training process. This is also due to the varied set of network-data format available.
Indeed, despite network protocols and communications are well standardized, the
way traffic is “logged” vary and can be broadly split into four major formats: tabular

per-flow records, raw pcaps files, packet series and events sequence.

Per-flow logs are a very common abstraction level for summarizing network traffic
by gathering by aggregating all packets related to a “flow”, e.g., packets sharing the
same 5-tuple (ipSrc, srcPort, ipDst, dstPort, 14proto, and computing aggregate stats
(number of packets, sum of bytes, timestamps, duration, etc.) resulting then in struc-
tured tables. Over the last years, this type of input flourished into “tabular learning”
in ML research, focusing on how to handle numerical and categorical features. For
instance, NetShare (Yin et al., 2022) models a group of records at the same time with
a mechanism similar to PacGAN packing (Lin et al., 2020a); STAN (Xu et al., 2021)
models spatial-temporal dependencies via a CNN feature extractor relating a given
record with a “context” of previous records; NetDiffus (Zhang et al., 2024b) chains
two DMs to first model a sequence of (application, timestamp) pairs which is then
used as conditioning for the second DM focusing on generating individual record.

Raw pcaps are at the opposite side of spectrum with respect to tabular data as they
gather raw bytes transmitted for each packet. Synthesizing raw pcaps is a signif-
icantly more challenging task than modeling tabular per-flow logs, as it requires
capturing low-level, packet-wise behavior rather than aggregated flow-level statis-
tics. In fact, beside capturing spatial (packet header fields) and temporal (semantic
of fields across packets), attention to syntax is key as a single bit error can break the
entire semantic of the packet. As packets are well standardized data structures, the
modeling can still relies on tabular-like methods, e.g., both NetShare (Yin et al., 2022)
and NetDPSyn (Sun et al., 2024) combines numerical and categorical features en-
coding similarly to tabular modeling. Alternatively, packets can viewed as images.
For instance, NetDiffusion (Jiang et al., 2024b) fine-tunes stable diffusion on images
composed by 1-hot encoding the raw packet fields (namely, an nPrint (Holland et al.,
2021) input representation), while PacketCGAN (Wang et al., 2020b) “folds” the raw
bytes series to form squared black and white image.
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Packet series are an intermediate form of representation with respect the previous
two as they retain per-flow information, but those are represented as a time series
of individual packet properties (e.g., the size, direction, inter arrival time of the first
N packets of the flow). Packet series are the most common raw format used in TC,
yet they are less explored than the previous two representation. To the best of our
knowledge, only CVAE (Aceto et al., 2024) and NetDiffus (Sivaroopan et al., 2024)
adopted them combined with two very different postprocessing methods. Specifi-
cally, NIDS-CVAE introduces a binning process on the series values to increase pri-
vacy guarantees — the packet feature distribution are first segmented it into B uni-
form bins to obtaining B non-uniform feature value ranges; then real feature values
are replaced to the corresponding bin index (1-hot encoded); last, as the trained con-
ditional VAE synthesizes bin index sequences, the authors sample a uniform value
from the feature range of values associated to the bin. In contrast, NetDiffus trans-
forms series into GASF (Wang and Oates, 2015) images, i.e., an invertible transfor-
mation that encodes space and time relationships between every pair of values in
the series which are used to train a different diffusion model for each class.

Last, we define event sequences logs as collections or records without necessarily a
strict tabular format, nor aggregate statistics. An example of this are control plane
logs which CPT-GPT (Jonny Kong et al., 2024) models using a Transformer-based
architecture with an ad-hoc feature embedding to capture the specific vocabulary
and time dependencies.

Fidelity-vs-Privacy. While high fidelity to real network data is desired in synthetic
data generation, the real data often contains sensitive information related to end-
users or business operations, raising privacy concerns. To mitigate these risks, meth-
ods such as NetDPSyn (Sun et al., 2024) and NetShare (Yin et al., 2022) adopt formal
privacy-preserving techniques like Differential Privacy (DP), introducing a trade-off
between fidelity and privacy.

Fidelity-vs-Variety. A more subtle tradeoff not well addressed by the literature re-
lates to an alternative goal for the application of generative models, namely data
augmentation. In this case, the generative models is used to create extra data to com-
plement available training data and improve the performance of a downstream task.
The most common scenario is boosting the number of samples for minority class in
a classification task.

For instance, ODDS (Jan et al., 2020) addresses a benign-vs-malicious classification
task in an intrusion detection system combining an autoencoder, clustering and
GANSs models. Intuitively, as benign samples are more “stable” compared to ma-
licious ones, an autoencoder is trained with benign data only so to create create a
latent space where benign data would well cluster while malicous data would result
in outliers. To identify these cluster structures, DBSCAN and empirically chosen
distance threshold are applied in the latent space to separate high-density clustered
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Name Dataset fSample type Model input Generate for Generator Downstream task

public *samples bytes series tabular other fidelity augment  family condit.  type  method
NIDS-CVAE(Aceto et al., 2024) v 15k - v - ad-hoc v - VAE - class ML
CPT-GPT (Jonny Kong et al., 2024) - 73M - - - 4 ad-hoc v - Transformer - n.a. n.a.
NetDPSyn (Sun et al., 2024) v 3M 4 - v - ad-hoc v - iterative algo. - class,regr ML

NetDiff (Zhang et al., 2024b) v 5M - - v - series v - v class ML/DL
NetDiffusion (Jiang et al., 2024b) - 20k v - - image/nPrint v v DM v class ML

NetDiffus (Sivaroopan et al., 2024) - 10k - v - - image/GASF v v DM - class ML,DL

SyNIG (Sivaroopan et al., 2023c) - 10k - v - image/GASF v v GAN - class ML/DL
NetShare (Yin et al., 2022) v n.a. v - v - series v - GAN - n.a. n.a.
STAN (Xu et al., 2021) v 3M - - v - series v - auto regressive v/ n.a. n.a.
DoppelGANger (Lin et al., 2020b) v 100k - v - - series v - GAN+RNN - n.a. n.a.

PacketCGAN (Wang et al., 2020b) v 10k v - - raw bytes - v GAN v class ML/DL
ODDS (Jan et al., 2020) - 23M - v - - values frequency - v GAN - class DL
WGAN-TTUR (Ring et al., 2019) v 20M - - 4 - ip2vec+norm v - GAN - n.a. n.a.

“approximate values; t bytes: a sample corresponds to raw packet bytes; tabular: a sample is a netflow-like record collecting aggregate statistics,
timestamps, labels, etc. for a individual flow; series: a sample is a uni/multi-variate series; others: a sample is another form of network event.

TABLE 8.1: State of the art methods for network traffic.

regions from low-density regions. Then, two GANSs are trained separately: one on
the clustered benign samples and the other on the identified outliers. Once trained,
the second GAN generates samples exclusively from these outlier regions to enhance
coverage of rare malicious behavior. Other studies (Jiang et al., 2024b; Sivaroopan et
al., 2024; Sivaroopan et al., 2023c; Wang et al., 2020b) investigated the performance
when boosting minority classes as well but we argue that this happen in a more
“opportunistic” fashion rather than being cored in the method design as for ODDS.

8.2.3 Generative tabular data synthesis

As previously mentioned, network data is often structured in tabular format and
present traits observed in generic tabular modeling such as the presence of hetero-
geneous columns — numerical counters (e.g., number of bytes and packets in a flow)
and categorical fields with predefined alphabet (e.g., the protocol type of a flow is
usually only TCP or UDP) — multi-modality — column values distributions are usually
not Gaussian but rather present multiple modes and long tails (e.g., TCP packet sizes
are at least bimodal as ACK packets are mixed with data packets) — small/mid-sized
cardinality — tabular dataset are usually significantly more contained compared im-
age and text-related generative models (e.g., public dataset hardly go beyond 1M
samples compared to the billion of samples of image datasets like LAION'). To ad-
dress the above challenges, over the last couple of years we witnessed an increas-
ing interest in the application of DM on tabular data coupled with advancement in
multinomial synthesis for effective modeling of categorical columns. This rapid evo-
lution is well portraited in recent surveys (Li et al., 2025). In the following we focus
only on the prominent works summarized in Table 8.2 to offer a broad view on the
design options.

Input representation. Preprocessing plays a crucial role in tabular data synthesis
due to the coexistence of categorical and numerical features. While standard tech-
niques such as one-hot encoding for categorical variables and Min/Max or quantile
scaling for numerical features are widely used (Kotelnikov et al., 2023), alternatives

Ihttps://laion.ai/blog/laion-5b/
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Name Latent Diffusion Model (DM) Neural Network Generation 4D

DM cat noise  NFE model cond. trick4scratch imput.

TabDDPM

(Kotelnikov et al., 2023) DDPM U Search MLP v - na. 16
(Lee et al. 12023a) DDPM u 50 2 UNet - - na. 17
(Johcoeulr:f’lxrxle:rtgﬁfef:?g? al., 2024) VPSDE/CFM Asctn 50  #C x NFEXgb - - RePaint 27
(Zhang‘;ﬁ{nmua) v EDM na. 20 MLP N B RePaint 6
(Shi Eﬁig]fifzfom - VESDE (LN) [MASK] 50 Tr(asfﬁff:trgl‘e%l%l’ - Restart RePaint+CFG 7

NFE: number of function evaluations
LN: feature-wise learnable noise schedule o (t)

TABLE 8.2: Diffusion models for tabular data: from TabDDPM to
recent advances

have been proposed. For example, CTGAN (Xu et al., 2019) applies a Gaussian Mix-
ture Model to decompose numerical columns into two components: a standardized
continuous value and a one-hot encoded mode indicator. A similar decomposition
strategy appears in networking literature Doppel GANger (Lin et al., 2020b) which
introduces an per-sample scaling method, yet this was used for modeling time se-
ries rather than tabular records. Going beyond input encoding, TabSyn (Zhang et al.,
2024a) proposes projecting the transformed features into a continuous latent space
using B-VAE, which helps unify heterogeneous feature types into a shared repre-
sentation. In this setting, the coefficient B controls the weight of the KL divergence
term during training. By gradually increasing 8, TabSyn relaxes the Gaussian prior
constraint in early stages, improving the expressiveness of the latent space for down-

stream diffusion modeling.

Scheduler and score modeling. With the exception of early methods like CTGAN
and VAE, which face challenges such as training instability, mode collapse, or re-
strictive latent assumptions, recent tabular synthesis approaches increasingly adopt
diffusion models thanks to their stability and flexibility in handling mixed-type data
distributions. TabDDPM (Kotelnikov et al., 2023) is (one of) the first method intro-
ducing a diffusion-based approach where a single network handles both numerical
and categorical features — numerical features are corrupted with Gaussian noise
and trained using MSE loss as in standard discrete-time DDPM, while categorical
features are corrupted by mixing the one-hot vector with a uniform distribution and
trained using cross-entropy loss. Notably, TabDDPM is the only method in this line
of work that conditions the neural network on an external class label, while the sub-
sequent work considers class label as an additional categorical column and generate
unconditionally. By introducing diffusion modeling tailored to mixed-type tabular
data, TabDDPM paved the way for later methods that have extended in various an-
gles. For instance, CoDi (Lee et al., 2023a) extends this by using separate networks
for numerical and categorical features, conditioning them on each other at every
timestep and aligning their representations via an additional contrastive loss. Forest-
Diffusion (Jolicoeur-Martineau et al., 2024) replaces NN with XGBoost regressors as
a lightweight, interpretable, and CPU-efficient alternative for score approximation,
using a continuous-time scheduler (VPSDE or CFM) but with predefined noise levels
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t, enabling the training of one model per noise level. TabDiff (Shi et al., 2025) retains
a unified network but applies a continuous-time Variance Exploding (VE) SDE with
feature-wise learnable noise schedules to numerical features, allowing each numer-
ical feature to adapt its own noise dynamics for more precise modeling. Addition-
ally, categorical noise is implemented by extending the one-hot vector with an extra
[MASK] dimension representing the noised state, inspired by recent advances in
discrete diffusion for language modeling. TabSyn also uses a continuous-time EDM

where the noise level is linear w.r.t. time.

Generation from scratch. For generation from scratch, most methods follow the
standard denoising process, except TabDiff, which adopts a stochastic restart sam-
pling strategy (Xu et al., 2023b), where each sampling step consists of a stochastic
forward transition that injects noise — Gaussian noise for continuous columns and
masked values for categorical ones — followed by a deterministic reverse denois-
ing step. This design aims to combine the exploratory benefits of stochastic forward

transitions with the low discretization error of deterministic reverse steps.

Imputation. Imputation aims to predict the unknown part of a sample based on
the known observable part. While this task is meaningful for tabular data, it was
not considered by early methods like TabDDPM and CoDi. In 2024, ForestDiffusion
and TabSyn began to address imputation by emplying a pretrained unconditional
model with the RePaint approach — originally developed for image inpainting —
during sampling, where the reverse step is a mixture of the known part’s forwarding
and the unknown part’s denoising. TabDiff later integrates classifier-free guidance
(CFG) to the RePaint process, but this requires training an extra model to estimate
the unconditional distribution of the unknown part, and in their experiments the

unknown part was limited to a single column — the class label.

Evaluation. Synthetic data is typically evaluated along three dimensions, each mo-
tivated by a distinct goal. i) Fidelity reflects how well the synthetic data captures the
real data distribution. This includes low-order metrics, such as marginal distribu-
tions of individual columns, and high-order metrics that assess global sample-level
structure — e.g., fidelity and coverage based on distances, and discriminative scores
that measures how easily a classifier can distinguish real from synthetic samples. ii)
Privacy measures how close synthetic samples are to real training data, with Dis-
tance to Closest Records (DCR) used to assess potential information leakage. iii)
Downstream utility evaluates whether synthetic data is useful for tasks like classifi-
cation/regression (utility test) and missing value imputation (if supported). Despite
its importance, data augmentation has not been considered in existing work.

8.2.4 Generative time series synthesis

For time series data, a key application of generative models is imputation, where

missing values are predicted based on observed parts. Forecasting can be seen as a
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Name Neural Network Diffusion Model (DM) Cond. Guidance
Backbone Cond. Noisy Inp DM Prior

(Tashirgggl” 2021) Transformer  (xgpsy M)  (xhyy, 0-pad) DDPM N(0,1) :

SSSD (Alcaraz and Strodthoff, 2022) S4 (Yobss M) (xtars Xops) DDPM N(0,1) -

(Naﬁgﬁeeﬁfj 3024) UNet (TS—Img) - (*{ars Xobs) EDM N(0,1) -
(Kollovizhlgezitflfal., 2023) S4 - or (Xgps, M) xt DDPM N(0,1) Asym. Laplace pg (Xops | x*)
(Konovgf leotvgl 2025) s4 - or (Xops, M) xf CFM  n4. guﬁfé%ﬁg;samphn o Asym. Laplace pp (xops | x')

(L e{“ﬁ?g’é%b) MLP Rtar = f(Xops) Xl DDPM N(%tar, 1)
(Ye gsa[liigozs) MLP (%tar g (Xobs)) x{ar DDPM N(%tar, § (Xobs)) -

Xobs: Observed part

Xtar: Missing target part to be imputed

X = (Xops, Xtar): concatenation of observed part and missing part

M: binary mask indicating which parts are observed and which are missing
GP(0,K): Gaussian process (GP) with a kernel function K(t, )

f: pre-trained Transformer for forecasting Xtar)

§: pre-trained MLP for predicting variance Var ( SlidingWindow (Yy))

TABLE 8.3: Diffusion models for time series data.

special case of imputation, where the missing portion is not randomly distributed
but instead corresponds to the continuous segment at the end of the sequence, rep-
resenting “future" values to be forecasted.

Given an observed part x,ps, the objective is to infer the missing part xr, ie., to

model the conditional distribution p(Xtar | Xops)-

While some early methods use VAEs and GANSs, and recent ones explore autore-
gressive models including pretrained LLMSs, this chapter focuses more on diffusion
models for time series, with diffusion-based time series imputation work summa-
rized in Table 8.3.

Unlike in tabular data, directly applying RePaint at inference to an unconditional
model — where the predicted noisy observed part is replaced by the forward-
diffused version of x’, _ at each reverse step — leads to unsatisfactory results for time
series according to the experiments in Alcaraz and Strodthoff, 2022, as it disrupts
temporal dependencies and introduces inconsistencies in the evolving sequence. To
better incorporate conditional information from x,g, the literature proposes follow-

ing strategies:

1. Conditional Architecture: The denoising network is explicitly conditioned
on the information given by x,ps. In early work (Tashiro et al., 2021; Alcaraz
and Strodthoff, 2022; Kollovieh et al., 2023; Kollovieh et al., 2025), this condi-
tioning input is simply the concatenation of the clean observed part x,,s and
a binary mask M indicating which parts are observed and which are missing.
In recent work (Li et al., 2024b; Ye et al., 2025), instead of directly using x,ps,
the condition signal is a learned embedding from a pretrained network that
encodes X,pg, such as a Transformer that predicts £y from xgps.

2. Condition by Classifier Guidance: In most of the literature, diffusion is ap-
plied exclusively to the missing part of the data during both training and in-
ference. That is, the neural network receives inputs in which only the missing
portion xi,, is noised, and the training loss is computed only over this part so
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that the model learns to denoise x,r specifically. In practice, to ensure con-
sistent input dimensions, some methods concatenate x!,. with either the clean

Xobs OF zero-padding.

In contrast, to support multiple downstream tasks with a single model, some
recent works model the entire time series x using a task-agnostic unconditional
model. Conditional generation is then enabled through classifier guidance.
Specifically, they assume pg(xqps | X') as an asymmetric Laplace distribution,
whose score function can be analytically computed using the denoising output
€g(x!, t) and the observed part Xps-

3. Conditional Prior: Recent works replace the standard isotropic Gaussian prior
with priors informed by xps, allowing generation to start from a more infor-
mative and easier endpoint. TSFlow (Kollovieh et al., 2025) employs Gaussian
Process (GP) priors GP (0, K), where the kernel K(t,7’) is designed to capture
temporal patterns (e.g., periodicity), and prior sampling is further conditioned
on xps using classifier guidance. TMDM (Li et al., 2024b) introduces a Gaus-
sian prior whose mean is set to the predicted £i,; generated by a pretrained
Transformer that takes xps as input. NSDiff extends this idea by replacing the
unit variance of the prior Gaussian with a learned one predicted by another
pretrained network that takes x5 as input.

Besides how the conditional information from the observed part x, is integrated,
there are other variations across related work. For example, regarding the archi-
tectural backbone, SSSD finds that S4 outperforms Transformer previously used in
CSDJ, and the S4-based architecture is adopted in subsequent works such as TSDiff
and TSFlow. ImagenTime, on the other hand, employs a U-Net backbone to process
an image representation of the time series, arguing that image format handles both
short- and long-term time series more efficiently. As for the noise scheduler, most
works adopt DDPM, while ImagenTime uses EDM and TSFlow employs CFM.

8.3 Research goals

By contrasting the networking Table 8.1 with the ML about tabular data Table 8.2
and time series data Table 8.3, we gather the following observations which lead to

our research goals:

Observation 1: Sparsity. Both ML and networking literature offer a variety of op-
tions, but we argue that networking literature is sparse with respect to multiple di-
mensions. First of all, while the networking datasets used are larger than the com-
mon datasets used in ML, the data scarcity is evident with studies having only up
to 3 datasets in networking, which restricts the ability to assess model generaliza-
tion across diverse traffic types and deployment scenarios. Moreover, networking
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literature tends to do not reuse datasets from previous publications preferring in-
vestigation of complementary scenarios often resulting in apple-vs-oranges com-
parisons between different works. In contrast, the ML community benefits from a
well-established set of benchmark datasets that are consistently reused across stud-
ies. New proposals are evaluated on the consistent datasets, enabling rigorous and
fair comparisons. This culture of standardized evaluation — both in terms of data
and accompanying code — remains largely absent in networking research.

We also observe a preference to focus on input representation in networking rather
than tapping into the rich design options for the modeling itself. The availability of
multiple input formats for network data is likely contributing to this separation, but
at the same time we argue that little attention has been placed on ablating the impor-
tance of each representation. For instance, considering works based on input series,
NIDS-CVAE (Aceto et al., 2024) does not ablate the importance of the binning strat-
egy presented, while NetDiffus (Sivaroopan et al., 2024) does not consider training
directly on input series rather than GASF. Yet, NetShare was evaluated on both tab-
ular and raw packet bytes — the evaluation can result opinionated rather than based

on a common “protocol”.

Overall, this fragmented landscape makes it difficult to compare different methods.
At the core of the problem there is a lack of a reference benchmark, covering both
data and code, for evaluating new proposals. ML literature is significantly more ma-
ture in this regard as, beside usually evaluating methods across a variety of datasets,
often the repositories associated to literature publications are benchmark on their

own as they incorporate the code of the alternative methods used for comparison.

Research goal 1: Benchmark. To address this fragmented landscape, our first goal
is to build a unified benchmark for network traffic modeling. This benchmark will
include a curated suite of datasets, standardized pre-processing and post-evaluation
pipelines, and a set of baseline methods. By providing both data and code in a repro-
ducible framework, we aim to enable fair comparisons, support rigorous empirical
evaluations, and promote methodological clarity in this emerging intersection be-

tween machine learning and networking.

Observation 2: Going beyond fidelity. While any generative method needs to be
assessed for fidelity, we argue that there is the need for going beyond the mere gen-
eration. Indeed, many networking proposal do not consider an actual downstream
task (except for small ablation or toycases scenarios) and only episodically investi-
gate generation for augmentation (Jiang et al., 2024b; Zhang et al., 2024b; Xu et al.,
2021; Wang et al., 2020b). Conversely, ML literature always includes at least an utility
test that assesses the downstream classification effectiveness of generated data, yet
still augmentation test — where synthetic data is used to enhance real data for classi-
fier’s training — has almost never been considered in diffusion-based tabular/time-
series generation. In other words, as many of the proposal only tackle generation
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for “ease of sharing”, we argue that the integration of generative methods to solve a
specific downstream task is still lacking in the literature.

This is partially justified considering that the fidelity-vs-variety is a design problem
cored into contradicting requirements. In fact, training a generative model entails
learning the (unknown) distribution of a training set and the model aims at being
as close as possible to the training set without memorizing it — maximum fidelity
- but using it for augmentation requires complementing the training data with out
of distribution data useful for a downstream task — additional task-specific variety.
That said, we believe that both aspects should be integral part of the evaluation of
generative models which, beside task-agnostic fidelity should also integrate a con-
crete downstream task. Where possible, the evaluation should also include hand-
crafted augmentations to verify if the generative models offer superior performance of
“cheaper” ways of integrating additional variety in the original data.

Research goal 2: Evaluation metrics. We aim to establish a comprehensive evalu-
ation protocol for generative models in networking, moving beyond fidelity alone.
Specifically, given that our target downstream task is TC where x being the input
packet series and y being the target label, we define three key evaluation axes: (i)
class-agnostic fidelity, which assesses how well the model captures the overall data
distribution p(x); (ii) class-conditional fidelity, or utility test, which evaluates how
effectively the model captures the conditional distribution p(x | y) and supports
downstream classification; and (iii) augmentation utility, which measures whether
generated data can provide additional useful variety beyond that embedded in real
training data and enhance classification performance. This multi-part evaluation
helps fairly assess the usefulness of generative methods in network traffic classifica-
tion.

8.3.1 Baselines

Based on the different branches of related work and our research goal of establish-
ing a comprehensive evaluation protocol, we select a set of baseline methods cover-
ing both generative models and hand-crafted augmentations. The three generative
approaches we consider are NetDiffusion (Jiang et al., 2024b), which is designed
for packet-level traffic synthesis using pre-trained text-to-image diffusion; TabD-
DPM (Kotelnikov et al., 2023), a tabular data diffusion model; and ImagenTime, a
time series generative model operates image-transformed inputs. Notice that Ima-
genTime is conceptually similar to NetDiffus (Sivaroopan et al., 2023b) which uses
GASF rather than delay embedding; yet we did not consider NetDiffus in our bench-
mark because its design is uncoditional (although we think it could be adapted to
our usecase). Similarly, we exclude also NetDiff (Zhang et al., 2024b) because it relies
on flow summary statistics and, while an adaptation is possible, this would require
significant redesign. To support the evaluation in terms of utility and augmenta-

tion effectiveness,, we also include three hand-crafted augmentations — Translate,
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Wrap, and Gaussian that performed well in Part I. In this section, we introduce and
compare their key properties.

The 3 generative model baselines are originally designed for tabular data, time se-
ries, and network pcap data, respectively:

1. TabDDPM applies quantile transformation for input scaling. It adopts a
DDPM scheduler, with the neural network implemented as a conditional MLP
in which the class label and timesteps are added only to the noisy input before
the first MLP layer. We follow the processes used by the original authors to
search the hyperparameters separately for each dataset using Optuna.

2. ImagenTime converts a univariate 1-D packet time series of length 30 into a
squared 2-D matrix using delay embedding, with an embedding size of 16 and

a delay step of 1:
X1 X2 X3 ... X15 Xi6
X2 X3 X4 ... X16 X17
. . . - . . 16x16
XImg — : : : .. : : S ]R . (81)
X115 X16 X17 ... X29 X30
| X166 X17 X18 ... X30 0 ]

An example of the converted image is shown in Figure 8.1. It is then
unsqueezed along the last dimension, resulting in a 3-D image Xmg €
R16x16x1 The input is first scaled using min-max normalization from the range
[—1500,1500] to [0, 1], and then standardized to have a mean of 0.5 and a stan-
dard deviation of 0.5, following common practice for preparing image inputs
for neural networks. The model uses a continuous-time EDM scheduler and
a U-Net architecture with Conv2D layers, where the class label and timestep
are injected into each layer as conditioning signals. As illustrated in Figure 8.2,
the model is trained to reconstruct the clean image from a noisy input image.
At inference, a clean image is generated by iteratively denoising through the
reverse process. Finally, the generated image is transformed back into the time
series domain since the delay embedding mapping is invertible. Sampling is
performed using only 20 denoising steps (consistent with the original paper’s
setting), which is 5 times fewer than TabDDPM and DDPM$S4 (both use 100).
To compensate, we scale up ImagenTime’s model size to be 6 times larger, en-
suring comparable representational capacity.

3. NetDiffusion (Jiang et al., 2024b) targets the generation of raw pcap traces
representing each packet with an nPrint (Holland et al., 2021) encoding, i.e.,
a 3-level bit sequences based on a predfined superset of packet header fields.
Given a raw sequence of bytes, if a header fields is found in the sequence,
its value is one-hot encoded, otherwise the related bits are set to -1. NetDif-
fusion is vertically stacking 1,024 nPrint encoding into a 2D matrix mapping
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FIGURE 8.1: ImagenTime delay embedding.
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FIGURE 8.2: ImagenTime pipeline.

the 3-level bits to the red, green and blue channels of a picture, as shown in
the leftmost panel of Figure 8.3. The resulting images are paired with text
prompts (e.g., “pixelated network traffic type-0”) and used to fine-tune the
LoRA weights of Stable Diffusion 1.5. Sampling involves two steps: Control-
Net (Zhang et al., 2023) is applied using a Canny edge mask derived from a
training nPrint image to provide structural guidance during generation, fol-
lowed by ad-hoc correction rules to ensure syntactic validity at both packet
and flow levels. NetDiffusion was originally evaluated on a private dataset of
4 video streaming services, thus we consider a public dataset providing similar
services, namely UNSW24, which is described in Section 8.5.

The 3 hand-crafted augmentations selected from Part I, among which 2 are top-

performing time sequence transformations (Translate and Wrap), and 1 does am-

plitude change (Gaussian). Here, we briefly recap their definition:

1. Translation shifts a segment of the time series left (simulating packet drops) or

right (simulating duplication or retransmission). The shift length 7 is sampled
asn ~ U[1,N], where N = 1 + argmax;{a; < a} and 4; € {0.15,0.3,0.5,0.8}.
A direction b € {left, right} and a start index t ~ U[0, T| are also sampled. If
left, the feature values are shifted left by n steps from ¢, and zeros are padded
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FIGURE 8.3: Example of NetDiffusion: canny edges are extracted

from the original Nprint image, serving as additional control signal

when using ControlNet. Post-generation heuristics are applied to re-
fine field details for protocol conformance.

in the tail. If right, values are shifted right and padded with the original value
atx (dt)-

2. Wrap augments a time series by randomly applying one of three operations —
interpolation, drop, or no change — to each time step x. ;). For each time step,
one of the three actions is selected with probabilities Piterpolate = Parop = 0.5a
and Pno change = 1 — & Interpolation replaces the value with the average of
itself and the next step; drop removes the step. The process continues until the
output reaches length T, padding if needed.

3. Gaussian adds independent Gaussian noise to each time step, where the stan-
dard deviation of the noise is proportional to the standard deviation of all sam-
ple values at that time step.

8.4 Our method

8.4.1 Diffusion scheduler

As explained in Chapter 5, DDPM models continuous data (x; € R") as a Markov

chain with Gaussian forward and reverse transition kernels:

{ q(x¢ | xe-1) =N (x5 1/1T = Bexe—1, Bel)

po (xi—1 | xt) =N (xt—l}\/ljj (xt = ij—&ee (xt,t)) ,ot)

where a; := 1 — B4, & := [];<;a; and the model €4 (x4, t) is trained to predict the
actual noise component € that was used to generate the noisy sample x;. Under
the variational lower bound (ELBO) framework, the training objective can be sim-
plified to a weighted sum of MSE between the predicted and actual noise across
all timesteps ¢, effectively turning the optimization into a denoising score matching
problem:

Lsimple —F

t — X0,€,

—eg (xt, 1) |I5 (8.2)
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DDPM$4 neural network architecture

8.4.2 Neural network architecture

x <«

In Figure 8.4, we present the architecture of the denoising neural network, which is
a DiT (Peebles and Xie, 2023) variant where attention is replaced by S4 (Gu et al,,

2022) to better capture temporal dependencies in the input sequence. Overall, the

backbone consists of five DiT layers, and the estimated noise eg (x4, t) is produced

by the final linear layer and used in the training objective Equation (8.2).

Condition block.

1. Class label c: An embedding table of shape (Njasses, @) is learned from scratch,

where d is the embedding dimension. This is practical since our conditioning
is based on a small number of discrete class labels, rather than free-form text
prompts with much higher variability.

. Time t: to represent a scalar timestep ¢ as a 1D vector () € R, we use si-
d/

nusoidal position encoding: y(t) = /2 where w; =

i
d
2.,

d [cos (t- w;),sin (t - w;)]

10000

This encoding has two advantages: i) in diffusion models, low-frequency
components capture the overall denoising stage (e.g., early vs. late), while
high-frequency components distinguish fine-grained timestep differences, en-
abling precise behavior across the trajectory. ii) It allows the model to reason
about the relative difference between two timesteps ¢; and t,, since the in-
ner product of their embeddings depends only on t; — t2: (v (t1),7 (t2)) =

Y (sin (wjty) sin (witp) + cos (wit1) cos (witz)) = Y1t 4 cos (w; (11 — £2)).

The sinusoidal timestep encoding is passed through two linear layers with
SiLU activation in between, and the resulting timestep embedding is added
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to the class embedding to condition the network blocks.
Main block.

1. Conditioning via Adaptive LayerNorm-Zero (adaLN-Zero): In standard Lay-
erNorm LN(x) = - =F + B, the scale y and shift f are learnable static param-

g

eters. InadalLN, oy and B are instead dynamically regressed from the condition-
ing inputs: AdaLN(x | ¢) = 7(c) - == + B(c). These conditioning scale and
shift parameters are the same for all positions (packets) in the input sequence
(packet series), enabling efficient conditioning without introducing position-
specific complexity.

Additionally, a dimension-wise gate factor « is also regressed from the condi-
tioning inputs, to scale the output of a residual block before it’s added to the
skip connection: output = x + « - F(x). Initialized to zero, this gate makes all
blocks to initially behave like an identity function, which stabilizes early train-
ing and allows the model to gradually learn meaningful residual contributions

as needed.

Overall, adaLN-Zero provides fine-grained control over how conditioning in-
fluences each block, both through adaptive pre-normalization and by regulat-
ing how much residual output is added to the main signal path.

2. S4: In continuous time, a state space model (SSM) maps an input signal u(t) to
a latent state x(t), which is then projected to an output signal y(t):

{ x'(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

To apply this model to a discrete input sequence u = (uy = u(kA))g=12,.
sampled from the underlying continuous signal u(t), by using the Euler ap-
proximation and assuming the input remains constant over a small step size
A, we have the discretized SSM:

Xy = Zxk_l + Euk (8.3)
Y = Cxx + Duy
where the discrete system matrices are defined as:
-1
—(1-54) ' (1+34)
— A AT
= SA) AB (8.4)

(-
(-
C
D

Sl Ol =
|

Furthermore, although Equation (8.3) defines a recurrent formulation which is
fast at inference, it is slow to train because the hidden state at each time step de-
pends on the previous one, introducing a sequential dependency. To accelerate
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training, assuming the initial state xo = Bug, Equation (8.3) can be computed
in closed-form as a convolution, where the output y; is a convolution of the

input sequence u with a SSM kernel K:

yx = (K * 1) + Duy, where K = (@, CAB, ..., ﬁ"*lﬁ) cRE (85)

This convolution form of discrete SSMs enables parallel computation across
time steps, allowing efficient GPU acceleration and faster training compared

to sequential recurrence.

In practice, the state matrix A is fixed using a HiPPO formulation, rather than
trained from a random intialization. HiPPO is designed to track the input his-
tory by projecting it onto Legendre polynomials, enabling the hidden state to
store a compressed summary of the past. This enables the model to remember
long sequences. It also helps prevent the vanishing and exploding gradient
problems, which can happen in linear systems due to the exponential form of
their solutions. Finally, the Diagonal Plus Low-Rank (DPLR) reparameteriza-
tion of the HiPPO matrix A allows efficient computation of its discretized form

A without requiring matrix inversion, enabling efficient kernel computation.

8.5 Experiments

8.5.1 Datasets and curation

Dataset Raw samples Curated samples
name environment traffic classes samples classes all largest (%) smallest (%) *imbalance
UNSW24 testbed manual 4 10.6k 4 6.6k 3k (45.14) 443 (6.67) 6.8
Mirage22 testbed manual 10 59.1k 9 115k 2.9k (25.66) 655 (5.71) 45
UTMOBILENET21  testbed  synthetic 17 344k 9 5.6k 1.5k (27.26) 223 (3.96) 6.9
50  2.IM 164.6k (7.66) 9.1k (0.42) 18.1
CESNET-TLS22 real network  real 198  141.7M 100 2.4M 164.6k (6.84) 2.6k (0.11) 63.4
135  2.5M 164.6k (6.70) 505 (0.02) 325.9
1.5M 190.1k (12. 4k (0.2 9
CESNET-QUIC22 real network  real 105 153.2M S0 . 90.1k (12.90) 34k (023) 2
81  1.5M 190.1k (12.48) 548 (0.04) 347.0
50 9.3M 1.7M (18.78)  45.7k (0.49) 38.1
Ent . | network 1 3126 279M 100 10.8M 1.7M (16.12)  21.3k (0.20) 81.6
real networ rea ,
nherprise 300 122M 17M (1432) 2.1k (0.02) 839.8
500 12.4M 1.7M (14.06) 649 (0.01) 2,682.5

*ratio between largest and smallest class.

TABLE 8.4: Dataset properties.

Table 3.4 summarizes the properties of the datasets we consider in our experiments.

UNSW24 (Wang et al., 2024) gathers traffic (available in raw pcap format) of 4 video

streaming services (namely YouTube, Amazon Prime, Netflix and Disney+) when
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using native apps on various devices (laptops, mobile devices, PlayStation consoles)
in a controlled environment.

Mirage22 (Guarino et al., 2022) gathers traffic of 9 video meeting Android apps us-
ing 3 instrumented devices in a test-bed setup, covering scenarios like webinars,
audio/video calls, and video conferences. Each session was post-processed into a
bidirectional flow log containing both aggregate metrics and per-packet time series,
and label was obtained from strace logs that map sockets to app names.

UTMOBILENET21 (Heng et al., 2021b) gathers traffic of 9 Android apps obtained by
synthetically controlling 3 devices via Android Debug Bridge (ADB) interface from a
laptop. Unlike Mirage22, the dataset lacks strace logs and is released as per-packet
csv logs obtained running tshark on the collected pcap.

CESNET-TLS22 (Luxemburk and Cejka, 2023b) and CESNET-QUIC22 (Luxemburk et al.,
2023b) are two large scale datasets collected from CESNET?2, the Czech Republic’s
national research and education network. CESNET-TLS22 includes 2 weeks of traffic,
while CESNET-QUIC22 spans 4 weeks and captures a major data shift, with hundreds
of apps using the two different transport protocols. Each flow (offered as CSV) in-
cludes aggregate stats, packet time series for the first 30 packets, metadata from TL-
S/QUIC handshakes (e.g., SNI, JA3), and a service label derived via ad-rule-based
processing.

Enterprise is a private dataset collected from residential and enterprise networks,
capturing flow-level logs with aggregate metrics (e.g., bytes, packets, TCP flags,
RTT) and packet time series (size, direction, IAT). Each flow is enriched with an
app label using commercial DPI software covering hundreds of apps.

The datasets were preprocessed before training, involving 3 key aspects:

Input extraction and data filtering. We process all datasets to extract per-flow
packet series and represent each flow as a 1D univariate array by multiplying the
size and direction of its first 30 packets. TCP flows without a valid 3-way handshake
are discarded, while we keep UDP flows expect DNS traffic identified based on stan-
dard port numbers. For the three small datasets (UNSW24, Mirage22, UTMOBILENET21),
we remove classes with fewer than 200 flows, and for larger datasets, the threshold
is raised to 500. In the case of CESNET-QUIC22 and CESNET-TLS22, which span mul-
tiple weeks of traffic, we use only the first day to avoid time-related variability —
this day is sufficiently large and representative. As shown in Table 8.4, this curation
is significantly reducing the number of flows in each dataset, but those are “mice”
flows as the filtering retain 98% of the bytes in each dataset.

Datasets ground-truth. To train models we need to define a label for each flow. At
the same time, some of the datasets considered are generated from mobile devices
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FIGURE 8.5: Class imbalance comparison among Enterprise,
CESNET-QUIC22 and CESNET-TLS22.

which notoriously create “background” traffic which, if not removed, can create la-
bel conflicts (e.g., traffic for the OS or generic services appear across different exper-
iments of different apps introducing confusion). The three large datasets raw data
include reliable labels from real-world environments so there is extra curation to
be operated. Conversely, the small datasets require ad-hoc processing. For UNSW24,
we rely on the TLS SNI fields (extracted when processing the raw pcap) verifying
that it was related to the name of the expected name of the app encoded in the
pcap file names. For Mirage22, raw logs have a column reporting the application
associated to each flow that was retrieved using OS-level strace, so we use this
information to remove background traffic defined as any flow associated to an ap-
p/service different from the app reported in the file name of each experiment. Last,
for UTMOBILENET21 the labels rely solely on experiment filenames, i.e., we are unable

to remove any background due to lack of information.

Datasets imbalance. Real-world large datasets, as shown in Table 3.4, exhibit higher
class imbalance (ratio between the most and least popular class) than test-bed small
ones due to collection constraints. To simulate progressively harder classification
tasks, we segment the large datasets in “tiers”, each with increasingly greater class
imbalance. Figure 8.5 illustrates this imbalance by comparing the absolute sam-
ple counts per class across entire datasets (left), and the normalized distributions
within the top-50 (center) and top-100 (right) classes. Notice how when focusing
on the most frequent classes the distributions are fairly similar across datasets, but
Enterprise shows a very long tail, indicating a broader and more imbalanced class

distribution.

8.5.2 Hyperparameters and training details

Table 8.5 provides an overview of the hyperparameters. DDPMS4 is optimized us-
ing the AdamW optimizer with a learning rate of 7.5 x 10~#, scheduled with 10%
linear warmup followed by cosine decay to 0. Training runs for 300 epochs. We use
a large batch size of 4096 and apply gradient clipping with a threshold of 0.5 for
stability. The network architecture includes 5 residual layers with 512 channels and
a time embedding dimension of 128. Diffusion is performed over 100 steps using a
cosine beta schedule. The same hyperparameters are used for all datasets, as they
serve as reliable defaults that perform well across all tested cases. Regarding to the
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Hyperparam. DDPMS4 TabDDPM ImagenTime
LR 75x 1074 1x10° 1x10*
LR scheduler warmup+cosine infinite cosine constant
Optimizer AdamW AdamW AdamW
Weight decay 0 0 1x107°
Batch size 4096 4096 1024
Epochs 300 300 300
Grad. clip thresh. 0.5 n.a. 1.0
#Layers 5 search in [2,4,6, 8] 3 resolution levels
#Feat. in backbone 512 x 30 search in [256,512,1024,2048] U-Net
#Feat. of time emb. 128 128 128
NFE 100 search in [50,100, 500, 1000] 20

DM DDPM(cosine ;) DDPM(cosine B;) EDM

TABLE 8.5: Hyperparameters

baseline generative models TabDDPM and Imagen, their hyperparameters are also
noted in Table 8.5, from which we could tell their similarities and differences.

To ensure robust evaluation, we apply 5-fold stratified cross-validation with random
splits of 80%/10%/10% for training, validation, and testing, respectively; hyperpa-
rameters are tuned on the validation splits, and final performance is reported on the
test splits. To provide confidence in the results, we report the mean and standard
deviation over 3 random seeds per fold, resulting in 15 runs per experiment. For
evaluation, from each method, we build a synthetic dataset matching the size of the
real training set — by generating new samples conditioned on class labels sampled
from the real training label distribution (for generative models) or by applying aug-
mentations once per sample (for hand-crafted methods).

8.6 Replication of NetDiffusion

As a representative attempt to apply pretrained image diffusion models (Stable Dif-
fusion) to network traffic, NetDiffusion (Jiang et al., 2024b) offers an interesting point
of comparison. As the original evaluation was based on private datasets, we adapt
its pipeline to the publicly available UNSW24 dataset, enabling a reproducible and fair
comparison. In this section, we discuss the replication results of NetDiffusion.

As the datasets used in Jiang et al., 2024b are not public, for this analysis we rely only
on UNSW24 for which we have raw pcap and with traffic similar to what used in the
original paper, namely video streaming services. The authors consider 1024 packets
for each flow as a 1024x1088 nPrint/pixel image, where each row corresponds to a
packet and each column to a header bit. Since UNSW24 dataset is small (only up to 443
samples for the smallest class when considering flows with more than 30 packets)
and filtering for flows with > 1,024 packets would result < 1,000 samples for all
classes, we opt for considering flows with > 100 packets (leaving 351 samples for
the smallest class while all the others have > 1,500). To match the 1024-rows format
used in the original paper, we replicate these 100 rows nine times and then pad the
remaining rows with “vacant” placeholders (set to -1). While this approach would
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not be effective to create real flows, it enable us to fine-tune SD1.5 using the approach
of NetDiffusion.

We train a LoRA adapter on Stable Diffusion 1.5 for two days on an NVIDIA H100
GPU (i.e., more than twice the computational budget useed for the other methods in
our benchmark). Since neither the paper nor the official GitHub repository specifies
any hyperparameter, we adopt a constant learning rate of 5 x 10> and a batch size
of 10 (the maximum supported by the GPU) with 5 gradient accumulation steps (so
effectively 50 samples before operating an update). We also experimented with a
learning rate of 1 x 1073, which just resulted in faster convergence but no substan-
tial performance improvement, as shown in Figure 8.7 and Figure 8.8. At sampling,
we apply a Canny-based ControlNet to the fine-tuned LoRA adapter, with prompt
guidance scale and canny guidance scale being 3 and 1 respectively. We do not apply
images down scaling neither for finetuning nor at sampling time. The canny edge in-
put obtained from the real sample and the corresponding sampled image are shown
in Figure 8.6. Although the training loss decreases, visual inspection of the sampled
image suggests that the LoRA adapter only learns the overall three-color distribu-
tion to some extent, while prior knowledge from the pretrained SD1.5 still persists
— for example, the fish-scale patterns that should not be present. This indicates that
the model fails to capture the key semantics. That said, this outcome is expected,
given the significant domain shift between nPrint images and the pretraining data
of SD.

After obtaining a generated image, NetDiffusion applies a sequence of manually de-
signed post-processing rules to align the generated image with detailed transport-
and network-layer protocol rules at both inter- and intra-packet levels, despite the
paper’s ablation results showing that the performance remains unchanged with or
without these rules. The effect of each post-processing rule on the generated im-
age is illustrated in Figure 8.6. While these rules do make the overall image more
visually similar to real traffic, they remain insufficient for preserving the most crit-
ical semantics to downstream classification — specifically, the size and direction of
the first 30 packets. Specifically, NetDiffusion is “overwriting” packets directions by
constructing a 2-state markov chain modeling the “state” of the source IP field based
on the real nPrint sample used for the ControlNet signaling, i.e., given a packet at
time t, what is the probability that the probability that the following packet has the
same IP address or the direction is reversed. Since there are only 2 possible IPs, this
result in a markov chain with 2 states and 4 transitions (srcIP—srclIP, srcIP—dstIP,
dstIP—srcIP, dstIP—dstIP). While this approach can guarantee that for a long flow
the overall distribution of the direction is reasonably close to the expected one, when
considering the first few packets of a flow the distortion can be significant (e.g., it is
very unlikely that the first 3 packets of a TCP flow resemble the expected directions
of the 3-way handshake).

Finally, we map generated nPrint back to packet series representation, focusing on
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FIGURE 8.6: Example of NetDiffusion set of postprocessing rules ap-
plied sequentially (left column first, top to bottm). After selecting a
real image from the dataset (top-left picture) and extracting the edges
via a canny filter (2nd image in the left column), a sample is extracted
(3rd image in the left column) and the rules are applied sequentially.

the size and direction of the first 30 packets. The resulting visualization for 200 sam-

ples per class are shown in Figure 8.8, where the four columns correspond to: real

training data, synthetic samples generated by our DDPMS4 model, and NetDiffu-

sion outputs with and without ControlNet. It is evident that the samples generated

by DDPMS54 closely resemble the real data and successfully preserve class-relevant

semantics. In contrast, NetDiffusion samples differ clearly from the real data and

show little distinction between classes. In particular, we observe that packet sizes

are clipped to 1500. In fact, despite multiple rules focus on having header field syn-

tactically correct (e.g., when “cleaning” the TCP options, the IP total length field is

adjusted accodingly), the underlying base values are not learned properly by SD1.5,

so a rule simply clips them to the expected MTU=1500.
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FIGURE 8.7: Example of NetDiffusion sampling (with ControlNet).

Overall, despite our best efforts, we have not being able to use NetDiffusion effec-
tively so we excluded it from our benchmark.

8.7 Classification evaluation

Since classification is our target task, our primary goal is to assess how effectively
synthetic data supports downstream classification. To do this meaningfully, we first
need to decide which classifier to use, and establish baseline performance on real
data to understand dataset difficulty and characteristics. We therefore begin this sec-
tion by comparing a ML classifier (XGBoost) and a DL model (ResNet), both trained
on real data. While this comparison is almost always ignored in TC literature which
tends to focus only on DL solutions, our results instead show that the two models
can provide similar classification performance but have different tradeoffs consid-
ering training costs. Moreover, by using multiple datasets we observe that dataset
cleanliness and class imbalance can play a significant role. Since our primary goal
is general classification performance, we choose XGBoost for its significantly faster
training time and use it to evaluate the synthetic data performance (Section 8.7.1).

To assess the effectiveness of synthetic data for downstream classification, we con-
sider two settings: the utility test, where a classifier is trained only on synthetic
data to evaluate whether it can substitute real training data (Section 8.7.2); and
the augmentation test, where synthetic data is combined with real data to evaluate
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FIGURE 8.8: Qualitative comparison of packet time series generated
from UNSW24.

whether it provides additional variability that improves classification performance
(Section 8.7.3). Each subsection presents the corresponding metrics and results.

8.7.1 Base classifier

Most of TC literature only focus on DL classifiers, yet most of ML literature on gener-
ative tabular data consider ML models. To embrace both points of view we contrast
XGBoost against a ResNet-based model with 1D-CNN blocks.

Classifiers configuration. For XGBoost, we search the best hyper parameters via
Optuna (Akiba et al., 2019) considering the grid reported in Table 8.6. Specifically,
we performed 30 trials on a single split and evaluated the performance on the valida-
tion set, guiding the search to maximize the classification weighted F1. Conversely,
for ResNet we experienced a significantly longer training time, so we resorted to
run small-scale experiments (without Optuna) to explore architectural choices, batch
sizes, and learning rate schedules. We settled on two variants which we simply name
ResNet (one block of size 64 followed by one of 128) and ResNet(2x) (two blocks of



8.7. Classification evaluation 149

Name Range

n_estimators LogUniform[50, 300]
learning_rate LogUniform[0.1, 1]

max_depth Uniform[4, 10]
min_child_weightUniform[1, 50]
subsample Uniform[0.5, 1]
lambda Uniform[0, 3]

TABLE 8.6: XGBoost classifier Optuna search hyper params.

ResNet learning rate scheduler.

- ResNet batch size
Name Weighted F1 (with infinite cosine LR).
Infinite Cosine  97.09 +0.04 Batch size Weighted F1
Linear annealing 96.30 +0.03 512 97.09 +0.04

Cosine annealing96.31 +0.04
Constant (0.001) 95.44 +0.11
Exponential 95.93 £0.04

1024 96.96 £0.05
10240 96.10 £0.03

TABLE 8.7: ResNet classifier hyper params.

64 followed by two of 128), to assess the effect of increased model capacity. We
trained the ResNet models using AdamW with a batch size of 512 and adopted the
Infinite Cosine scheduler (Singh et al., 2025), a composite learning rate policy com-
bining warmup, cosine decay, and exponential annealing. Models were trained for
200 and 400 epochs (ResNet and ResNet(2x), respectively) without early stopping,
as the schedule was designed to operate over the full number of epochs. Table 8.7
reports some results about the different config for a single seed for one split (just to

provide a qualitative sense).

Table 8.8 collects the performance of the base classifiers across multiple dimensions.
The results reflect 15 models (5 splits with 3 training seeds for each split).

Weighted F1 Macro F1 Model size [k] Train time

Dataset Tier XGB ResNet ResNet(2x) XGB ResNet ResNet(2x) XGB ResNet ResNet(2x) XGB ResNet ResNet(2x)

uNSW24 * 99.56 99.15 99.30 99.38 98.71 98.78 10 115 238 s 2m 5m
Mirage22 * 96.17 93.07 93.18 96.16 92.88 93.02 37 118 241 25 1m 6m
UTMOBILENET21 * 87.67 84.77 84.47 83.00 79.87 79.75 44 118 241 3 1Im 5m
50 98.85 97.80 98.53 98.64 97.27 98.19 974 144 268 Im 1h 12h

CESNET-TLS22 100 98.44 97.30 98.18 97.64 95.99 97.25 3,054 176 300 4m  1h 14h
* 9826 97.10 98.05 96.62 94.81 96.37 4126 199 322 6m 1h 14h

50 91.75 90.32 91.70 88.81 86.72 88.79 4136 144 268 2m  45m 3h

CESNET-QUIC22 " g4 79 89.37 90.86 82.61 80.66 83.17 5078 164 288 3m  36m 3h
50 97.58 95.95 97.52 96.26 93.60 96.10 7,309 151 268 3m 11h 19h

Enteropies 1009630 94,55 96.27 94.24 91.33 94.02 15160 176 300 8Sm  8h 22h
TEETPTISC 300 92.62 91.51 94.07 83.87 80.59 85.76 5553 304 428 22m  10h 25h

* 9248 91.12 93.87 78.88 75.94 81.86 10,894 433 556  4lm  14h 26h

TABLE 8.8: Performance of ML and DL base classifiers.

Small datasets. On UNSW24, performance is saturated across models. On Mirage22
and UTMOBILENET21, ResNet has about -3% gap w.r.t. XGBoost, even when increasing
the training budget. UTMOBILENET21 shows the lowest performance and the highest
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variability across runs, suggesting it is a very “noisy” dataset. In terms of training
complexity and model size, XGBoost trains faster and yields compact models with
moderate depth and estimator count.

Large datasets. Considering the large datasets we observe a mix of scenarios. Fo-
cusing on datasets up to 100 classes, Classifiers achieve similar performance on
CESNET-TLS22 and Enterprise datasets, yet both CESNET-QUIC22 tiers seem harder
tasks, resulting in lower scores. As expected, the long tail of Enterprise signifi-
cantly complexity the the task as evident from the -15/20% drop of the macro F1
between top-50 and all 500 classes.

While ResNet is consistently under performing compared to XGBoost, using larger
neural networks allows to recover the gap but the weighted-vs-macro F1 comparison
enables a few observations. For instance, XGBoost and ResNet(2 x) offers a compa-
rable weighted F1, but the macro F1 is showing a +2/3% advantage for ResNet(2x).
Results also highlight an evident trade-off between model size and training time.
Given the large number of samples, Optuna tends to prefer XGBoost configurations
with n_estimators very close to the allocated budget. In other words, the search
is suggesting that “the more the capacity, the better the classification performance”.
This results in incredibly large models, hardly useful for any practical deployment
(unless, perhaps, in the presence of on-device hardware accelerations). As from Ta-
ble 8.9, investigating all XGBoost Optuna trials? we find configurations resulting in
smaller models with respect to the absolute best and within a 1% classification per-
formance gap from the best, yet those models are not as compact as ResNet models.

At the same time, ResNet models have a significantly higher training cost. This
is due to the very different training dynamics of the two algorithms. Specifically,
training XGBoost on GPU requires pinning the whole dataset to the GPU as the
algorithm does not support training in batches. Conversely, for training ResNet we
used the traditional DL approach of sending individual batches to the GPU, which
introduces system overheads. Likewise, using a batch size of 512 (selected as result
of a grid search) contributes to the overhead given the large size of the datasets.

Max Weighted Weighted F1 Model size [k]
F1 penalty i .
CESNET-QUIC22CESNET-TLS22EnterpriseCESNET-QUIC22CESNET-TLS22Enterprise
none 90.94 98.27 92.53 5,075 4,128 10,880
-0.5% 90.60 97.89 92.24 2,709 2,082 8,760
-1.0% 90.04 97.41 91.85 1,761 774 7,427

TABLE 8.9: Investigating XGBoost model size -vs- performance.

Takeaways. From the results we gather the following observations. First of all,
we argue there is a significant value in integrating ML baselines when evaluating

ZResults in Table 8.9 only qualitatively match Table 8.8 results as the Optuna trials are run on a
single split and are assessed on the validation split, while the models are finally evaluated across 5 test
splits.
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classifiers. Unfortunately, most of the TC literature is focusing on small datasets
and do not take in consideration ML models. Our analysis instead suggests the
need to reverse this trend: while small datasets can be useful to ease prototyping,
they should not be the primary tool for studying new DL algorithms/models unless
proven to beat off-the-shelf ML solutions.

Second, model evaluation should consider a broader scope of metrics not just mere
classification performance. For instance, in our analysis we intentionally investi-
gate the model capacity to show that both XGBoost and ResNet can be configured
to be equivalent/better/worse than each other. A less often investigated aspect is
the trade-off between model size and training cost. Without knowing the computa-
tional budget available in environment where the models are expected to run (e.g., a
network monitoring environment may or not integrate an hardware accelerator) it is
difficult to optimize models. For instance, on large datasets, ResNet offers efficient
inference due to its compact size, but it requires significantly longer training time.

Ultimately, given the significantly faster training speed, in the following we rely on
XGBoost.

8.7.2 Class-semantics fidelity (utility test)

In this subsection, we evaluate whether synthetic data alone can capture the class-
conditional structure well enough to support accurate classification. In other words,
we aim to answer the question: Does the synthetic data accurately model the class-
conditional distribution for effective classification?

Metric. One of the most common approaches to assess the class-semantics fidelity
of a generative model is to train a model with synthetic data (obtained from gen-
erative models or via hand-crafted augmentations) and evaluate it with real data.
In our case, we use TC as the downstream task by training an XGBoost classifier
using solely synthetic samples and evaluating it on test split of real data. To better
highlight differences, we measure the performance gap of training the downstream
classifier on synthetic data with respect to real data. The smaller the gap, the better
the generative model has effectively captured the class-conditional patterns in the
real data, reflecting its ability to preserve task-relevant semantics. Notably, to the
best of our knowledge, this utility test is the only evaluation metric that makes use
of the class labels y.

Given the class imbalance in our TC datasets, we report both weighted and macro
F1 scores. As an upper bound reference, we also include the F1 score of a classifier
trained only on the real data.

Results. Utility test results (Table 8.10) are based on 5-fold cross-validation, with
each fold repeated using 3 different seeds. Synthetic dataset is at the same size of
the real training set. Similarly, we transform each training sample three times to
obtain the datasets related to hand-crafted augmentations. We report the absolute
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Weighted F1 Gap 1 Macro F1 Gap 1
Ref/real Fake/generated Fake/hand-crafted Ref/real Fake/generated Fake/hand-crafted

Dataset Tier XGB  DDPMS4 TabDDPMImagenTimeTranslate Wrap Gaussian XGB  DDPMS4 TabDDPM ImagenTimeTranslate Wrap Gaussian
UNSW24 * 99.56021 -0.45030 -0.72 -0.34 0.15 -0.41057 -15.91 99.38 -0.65 -0.87 -0.40 0.03 -0.8805 -12.31
Mirage22 * 96.1702¢ -1.77 03 -3.94 -4.60 -0.25 -1.69 -7.58 96.16 -1.94 -4.34 -4.92 -0.24 -1.69 -8.31
UTMOBILENET21 * 87.67 1s -1.81120-3.40 -4.73 -1.08 -5.58 007 -14.12 83.00 -1.94 -3.50 -5.96 -1.25 -6.81071 -16.94
50 98.850.02 -1.040.05 -3.98 -2.85 -0.19 -1.20004 -11.93 98.64 -1.30 -491 -3.58 -0.22 -1.400.05 -13.52
CESNET-TLS22 100 98.44 0.2 -1.27 0.01 -4.72 -3.28 -0.08 -1.08 0.0+ -11.84 97.64 -1.81 -6.52 -4.53 -0.11 -1.500.00 -14.15
* 9826003 -1.30 005 -5.00 -3.65 -0.13 -1.26001 -12.96 96.62 -2.23 -8.13 -6.26 -0.30 -2.44010 -15.33
CESNET-QUIC22 50 91.75005 -3.05007 -8.80 -4.63 -0.93 -3.480.00 -16.58 88.81 -4.5102> -12.84 -7.08 -1.51 -5.05020 -22.13
*90.79 005 -3.27 007 -9.37 -5.00 -1.08 -3.73007 -17.42 82.61 -5.8202: -17.71 -9.97 -2.32 -6.89021 -24.75
50 97.58001 -2.31 003 -5.07 -6.28 -0.62 -2.45002 -17.70 96.26 -3.56 -7.80 -9.63 -0.88 -3.5500: -21.33
Enterprise 100 96.300.0> -3.100.02 -7.03 -8.43 -0.78 -3.51002 -20.24 94.24 -4.780.03 -10.88 0.09 -13.06 -1.10 -4.95007 -26.81
P 300 92.62 003 -3.54 006 -8.730.11 -10.50 -1.14 -4.89007 -28.51 83.87 -7.59010 -18.89 0.16 -22.89 -2.14 -9.47 0.1 -39.83
* 9248005 -3.94003 -9.690.12 -11.30 -0.79 -4.290.05 -30.51 78.88 -9.32017 -23.68 022 -27.53 -2.20 -10.90 021 -42.30
avg across *94.16.0 10 -2.09 035 -5.35 -4.94 -0.53 -2.83020 -16.42 89.44 -3.65 -9.71 -9.17 -1.04 -4.930.43-19.99

Negative utility test = training with synthetic data underperforms compared to training with real data.

TABLE 8.10: Ultility test of generative models and hand-crafted aug-
mentations.

weighted /macro F1 as from Table 8.8 as reference and the gap (i.e., generated F1 —
real F1) on synthetic data, so higher values indicate better performance.

The key observations are described below:

1. Compared to real training data, all types of synthetically generated data —
whether generated or hand-crafted — result in negative scores. This is to be
expected as modeling is imperfect and some patterns present in the real data

are not fully captured, leading to some information loss.

Despite DMs have shown incredible generalization capability, our results are
in line with findings from ML literature, i.e., even in the best case, the gener-
ated data is still a few percentage point behind real data. This can be justified
considering that (i) DMs capacity is fundamentally limited by the information
available in the real data they're trained on, and (ii) perfectly estimating the
score function without error is very challenging. Therefore, it is reasonable to
consider the performance of a classifier trained on real data as an upper bound.
With this in mind, DDPMS4-generated data achieves competitive weighted F1
scores on real test data, with an average -2% performance gap. This indicates
that class-dependent patterns are largely preserved in the synthetic packet se-
quences and generalize well to unseen samples. Compared to generative base-
lines such as TabDDPM and ImagenTime, DDPMS4 consistently outperforms
them across all the datasets, demonstrating a stronger ability to model the con-
ditional distribution.

For hand-crafted transformations, it is important to underline that (i) the inten-
sity of the transformation depends on both the designed rules and their config-
uration and (i7) differently from generative models, the rules operated directly
on real samples so the less an original sample is altered, the higher the utility
score will be — at the extreme, an identity mapping would yield the same per-
formance as using real training data. Based on this, the utility test performance
is ranking translate > wrap > gaussian, matching our benchmark in Part I, which
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is justified based on the properties of these transformations. Specifically, Trans-
late and Wrap are time-domain transformations that tend to preserve many of
the original original values, while variations occurs by “shifting” values left or
right, adding zeros (which are out of distribution values in our cases as packet
sizes in our datasets capture what observed as IP level) or, for Wrap, interpo-
lating consecutive values. In contrast, the gaussian transformation operates on
amplitude, altering the value distribution across all packets. More specifically,
the configuration used for Gaussian results in variation of £20-30 bytes for
each packet. This seems small in absolute scale, yet the results show that this
perturbation is sufficient to disrupt class semantic.

2. Comparing weighted and macro F1 scores, the performance gap between syn-
thetic and real data is larger for macro F1 in both generated and hand-crafted
cases. This suggests that class imbalance makes it harder to model tail classes,
leading to greater information loss for minority classes. Moreover, as more tail
classes are included in a dataset, the gap tends to be larger.

Extended analysis: Scaling in Number of Generated Data. Since generative models
can produce unlimited samples, we test the scalability of our DDPMS4 by increasing
the number of generated examples for utility test, as shown in Figure 8.9.

We considered Mirage22 as it representative for the small datasets, but it is also the
least imbalanced dataset, and relatively easy to model according to the an XGBoost
trained on real data. DDPMS4 provides very good utility test, but we obtain a notice-
able +2% improvement when expanding the synthetic samples up to 15x original
training set size. This suggests that the stochastic variation introduced by sampling
more data can help recover underrepresented patterns.

Conversely, on the large, more imbalanced, and more challenging dataset
CESNET-QUIC22-50, we also observe only a +1% improvement, and adding more syn-
thetic data does not allow to recover the gap with respect to the upper bound. On
the one hand, this confirms that generating more samples is beneficial — although
low-density regions get generated with low probability, increasing the number of
synthetic samples raises the expected number of samples falling into these regions,
making it more likely that the synthetic dataset includes these rare but informative
patterns. On the other hand, increasing the number of samples alone is insufficient
to eliminate the gap, as it does not address systematic errors introduced by imperfect
score estimation in the reverse diffusion process. These errors can lead to biased gen-
eration in specific regions of the data space, limiting the overall fidelity and utility
of the synthetic data.
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FIGURE 8.9: Scaling in number of generated data - utility test
Relative Weighted F1 1 Relative Macro F1 1
Ref/real Fake/generated Fake/hand-crafted Ref/real Fake/generated Fake/hand-crafted
Dataset Tier XGB  DDPMS4 TabDDPMImagenTimeTranslate Wrap Gaussian XGB  DDPMS4 TabDDPMImagenTimeTranslate Wrap Gaussian
UNSW24 * 99.56021 -0.1202: -0.10010 0.03 0.37 0.2901: 0.040% 993805 -0.16 03 -0.10 025 0.10 0.46 0.3102: 0.10
Mirage22 * 96.17 02 0.0702 -0.49 03 -0.00 0.58 0.51 046 -0.93020 96.16 035 -0.02 021 -0.55 057 -0.03 0.57 0.51 00 -1.10
UTMOBILENET21 * 87.67 %1 0.4909: 0.08 07> -0.47 1.01 0.360:4-0.7807: 83.00224 0.89 12> 05807 -0.28 1.55 0.77 045 -0.73
50 98.85 00> -0.13 00> -0.86 007 -0.35 0.06 -0.18 002 -0.93 00 98.64 005 -0.16 005 -1.01 0.0 -0.41 0.10 -0.18 001 -1.05
CESNET-TLS22 100 98.44 00> -0.04 0.0> -0.68 0.0 -0.11 0.23 0.11002 -0.53 002 97.64 001 -0.00 0.05 -0.89 0.05 -0.06 0.38 0.24001 -0.59
*98.2600: -0.02 003 -0.77 003 -0.16 0.25 0.1200-0.6200: 96.62 009 0.10 005 -1.11 007 -0.11 0.53 0.41 005 0.76
50 91.75 005 -0.03 000 -1.63 007 0.06 0.72 0.28007-0.70 000 88.81 015 -0.05015 222012 0.15 1.07 0.57 010 -0.80
CESNET-QUIC22 " 90179 1. -0.04 010 -1.86 0.0 -0.05 0.64 01000 -0.94 001 8261015 039022 -2.8602 013 1.55 0.69 1% -1.13
50 97.58 001 -0.49 002 -0.99 001 -0.42 -0.12 041001 051001 9626002 -0.76 0.0+ -1.48 0.0> -0.60 0.14 053002 0.74
Ent ... 100 96.30 00> -0.67 002 -1.41 001 0.52 -0.05 0.64 002 -0.81 00> 94.24 005 -1.02 003 -2.08 0.5 -0.74 -0.01 -0.7300% -1.11
MLETPrISe 300 92.62 005 -0.71 010 -1.93 000 -1.17 0.11 -0.79 005 -1.34 010 83.87 005 -1.020.15 -3.26 0.1+ -1.55 0.89 -0.55 007 -1.54
avg across *94.18 0.0 -0.06 0.7 -0.85 0.1 -0.30 0.49 0.10020 -0.76 020 90.27 05+ 0.03 035 -1.22 032 -0.29 0.93 0.3502: -0.86

TABLE 8.11: Augmentation test.

8.7.3 Additional variety beyond the real training data (augmentation test)

We complement the utility test by evaluating the benefit of using synthetic data
alongside real training data during training. By training the classifier on the con-
catenation of real training data and synthetic data, we aim to answer the question:
Does synthetic data add useful variability beyond real data, such that combining
them improves classification performance?

Metric. In addition to training a classifier solely on synthetic data, we also evaluate
performance when training classifier on the concatenation of real and synthetic data.
This setup, referred to as the augmentation test, aims to assess whether the synthetic
samples provide additional variability beyond the real training data and improve
downstream classification.

Results. Table 8.11 presents the augmentation test results, where the classifier is
trained on the concatenation of fake data and real data. Results are gathered using
the data generated for the utility test, hence Table 8.11 reflects an aggregation of 15
runs for each dataset. From the results we gather the following observations:

1. Even the best generated data only occasionally improves performance, and the
gains are generally marginal. In most cases, adding generated data alongside
real data actually reduces F1 scores. This suggests that generative models in-
troduce noise by failing to fully capture the real class-conditional distribution.
As a result, the synthetic data may conflict with real examples, which distorts
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the training data distribution and degrades test performance. The drop is more
noticeable in macro F1 than in weighted F1, indicating that modeling minority
classes is more challenging and therefore this negative impact is more severe.
Among the generative models, DDPMS4 is on par with ImagenTime, while
TabDDPM is the worst across all datasets.

2. In contrast, by incorporating useful domain knowledge into the design, hand-
crafted augmentation can be more reliable. Translate consistently brings sig-
nificant improvements across all datasets, confirming its effectiveness. Wrap is
also beneficial on small datasets but provides smaller gains; on large datasets,
it tends to lower weighted F1 while improving macro F1, suggesting that it in-
troduces variety for minority classes at the cost of slightly disrupting majority
class patterns. Gaussian, which performed poorly in the utility test (indicating
it breaks class-relevant structure), causes the most significant drop in the aug-
mentation test as well — an expected outcome. Overall, the ranking translate
> wrap > gaussian aligns with the findings from Part I.

Extended analysis: Scaling in Number of Generated Data. As in the utility test, we
expand the number of generated samples in the augmentation test to assess potential
gains. Results are shown in Figure 8.10.

On the small dataset Mirage22, since the generative model is trained solely on real
training data, the amount of information it can capture is inherently upper-bounded
by that data. As a result, adding more synthetic samples cannot exceed this informa-

tion ceiling, and the performance remains on par with training on real data alone.

On the large dataset CESNET-QUIC22- 50, increasing low-quality synthetic data harms
performance, as more samples lead to lower weighted F1 scores. This indicates
that when generation quality is not good enough, adding more data amplifies noise
rather than improving learning. By evaluating classification accuracy on the real
training data, we find that the classifier trained on real data plus 16x synthetic data
performs 3% worse than the one trained with only real plus 1x synthetic data. This
suggests that when the model underfits the real data — as we will show in the next
section, where fitting is noticeably worse on large datasets than on small ones —
excessive imperfect synthetic samples can overwhelm the real data signal, leading
the classifier to fit a distorted distribution biased by the synthetic data.

8.7.4 Concluding remarks

This section evaluated generative models and hand-crafted transformations for TC.
We have shown empirically that class-conditional generative models can produce
synthetic data that preserves most class-relevant semantics and effectively supports
downstream classification. Our method, DDPMS4, achieves the best performance
among all generative models considered. While a gap remains compared to training
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FIGURE 8.10: Scaling in number of generated data - augmentation
test

on real data due to imperfect score estimation, we believe this gap can be further
reduced in future work.

While diffusion models are primarily designed to optimize in-distribution fidelity,
results show that for effective data augmentation in downstream classification, they
must be re-engineered to include a complementary mechanism that promotes diver-
sity beyond the training distribution, as relying solely on accurate modeling of real
training data to yield additional useful variety is unrealistic — generation does not
provide a “free lunch". This points to a clear future work direction: designing gen-
erative models that incorporates task-relevant variability alongside realism to better
support downstream classification.

While we already started to investigating this path, the key for an effective genera-
tive model for augmentation resides in in having the right “signaling” from a classi-
fier. In other words, the effectiveness of hand-crafted transformations for augmen-
tation remains unclear for packet series, primarily due to the lack of understanding
of class semantics. In computer vision, humans can easily identify class-relevant
features (e.g., a cow’s face for the class “cow”), which supports the design of trans-
formations that preserve such features while removing irrelevant cues (e.g., blurring
background texture). In contrast, for packet series, it is unclear which segments or
timesteps encode class-relevant information, making it challenging to design princi-
pled transformations or draw analogies to generative augmentation strategies. This
highlights an important direction for future research: better understanding class se-
mantics to enable more effective and interpretable augmentation methods.

8.8 Similarity evaluation

While the previous section evaluated synthetic data based on downstream classifica-
tion performance, this section complements that analysis by assessing how well the
synthetic data matches the whole training distribution, independent of class labels
— that is, from the perspective of the unconditional distribution. We examine sev-
eral complementary metrics: the discriminative score (real/fake distinguishability)
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(Section 8.8.1), a-precision and B-recall (high-order sample-level fidelity and cov-
erage) (Section 8.8.3), and feature-wise and pairwise distribution estimation (low-
order distribution-level alignment) (Section 8.8.2). These metrics assess similarity
without relying on class labels, providing a broader picture of how well the syn-
thetic data captures the structure of the real data.

8.8.1 Realism via real/fake discrimination (discriminative score)

This subsection evaluates the realism of synthetic data by testing how well a clas-
sifier can distinguish real samples from synthetic ones. The evaluation targets the
distribution p(x) of the data itself, without considering class semantics. The ques-
tion we aim to answer is: How difficult is it to tell apart real data from synthetic
data?

Metric. We train an XGBoost model for binary classification to distinguish between
the original and synthetic data in a supervised setting. The discriminative score is
defined as DS = accuracy - 0.5 on the test set. A score close to 0 is better, indicating
that the synthetic data is difficult to distinguish from the real data.

Results. In Table 8.12, we report the results of using XGBoost for binary classifica-
tion to distinguish real from synthetic data. The discriminative scores vary signif-
icantly across generative methods, indicating this metric’s superior discriminative
power. Moreover, the ranking of methods is consistent across all datasets, suggest-
ing stable relative performance. Main insights are as follows:

1. The proposed DDPMS4 consistently outperforms all other generative mod-
els and hand-crafted augmentations across all datasets, and achieves notably
low discriminative scores on small datasets. This indicates that DDPMS4-
generated data closely aligns with the real data distribution and is particularly
difficult to distinguish from real samples, highlighting its strong capacity for
generating high-fidelity synthetic data.

2. Notably, ImagenTime-generated data is surprisingly easy to distinguish from
real data, with discriminative scores approaching the worst possible value (0.5)
across all datasets. However, its utility test score in downstream classification
remains competitive, especially on small datasets and CESNET datasets. This
suggests that while the overall distribution of the generated data deviates sig-
nificantly from the real one, it still captures class-relevant features that are use-
tul for classification. In fact, a classification model only needs to learn the con-
ditional distribution p(label | input), not the full data distribution p(input).
So, even if p(input) is not faithfully reproduced, as long as p(label | input)
remains informative, the synthetic data can still be beneficial. For example,
teaching a student to recognize cats using only Al-generated images — though
slightly unnatural — still works if the images include key features like ears
and whiskers, because the student only needs to learn to identify cats, not
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to judge realism. Similarly, classifiers focus on label-relevant signals rather
than authenticity. In summary, ImagenTime’s samples, while so statistically
different from real data that a binary classifier can easily detect the distribu-
tional shift, preserve enough discriminative information to support classifica-
tion tasks. From this perspective, the utility test and discriminative score are

complementary, each capturing a different facet of data quality.

. Among the three hand-crafted augmentations, Translate achieves the highest

utility score and the lowest discriminative score, indicating relatively good
alignment with real data. However, its discriminative score is still not close to
zero, suggesting that it may not be as minimally altering as intended—possibly
due to artifacts like zero padding. Gaussian, which introduces large-amplitude
perturbations, performs the worst in both utility and discriminative metrics,
often reaching a saturated score of 0.5. Wrap achieves slightly lower utility
than Translate but still results in a high discriminative score. One possible
explanation is that while Wrap may preserve some label-relevant features, it
alters the temporal structure in a way that makes the data statistically easier to
distinguish from real samples, similar to what we observe with ImagenTime.
However, further analysis would be needed to confirm the exact source of this

behavior.

The 3 hand-crafted augmentations have much higher discriminative scores
than the best generative method, as expected — these transformations are de-
signed to introduce detectable shifts that preserve label-relevant features, not
to fool a class-agnostic discriminator. Among them, Translate achieves the best
utility and lowest discriminative score, suggesting relatively good alignment
with the real data distribution. Gaussian performs poor in both metrics. Wrap
shows a contradictory behavior: its utility score is only slightly lower than
Translate’s, yet it has a much higher discriminative score — a pattern also ob-
served with ImagenTime. This may be due to temporal distortions introduced
by Wrap that, while preserving label-relevant information, introduce statistical
artifacts that make the data easier to distinguish from real samples.

8.8.2 Low-order distribution-level similarity (feature-wise density esti-

mation and pairwise features correlation estimation)

This section focuses on evaluation metrics that consider individual features or fea-

ture pairs in isolation — specifically, feature-wise density estimation and pairwise

correlation. Given that these metrics ignore higher-order dependencies across fea-

tures, we aim to explore: Are these low-order distribution-level statistics reliable

for evaluating synthetic packet series quality?

Metrics. For this analysis, we rely on metrics commonly adopted in the tabular

data generation literature. This is motivated by the fact that a univariate packet
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Discriminative score |

Fake/generated Fake/hand-crafted

Dataset Tier DDPMS4 TabDDPM ImagenTimeTranslate Wrap Gaussian
UNSW24 * 670 12> 11.84 073 49.87 32.84 047 50.00 0.00 49.92
Mirage22 * 659 115 23.42 077 4552 2690 03 49.95 006 47.32
UTMOBILENET21 * 12.33 105 22.33 041 49.37 32.23 079 50.00 000 49.31
50 13.25 0.15 26.41 050 46.94 2891 0.05 50.00 0.00 47.65
CESNET-TLS22 1601306 30 27.05 019 46.69 2896 0.05 50.00 0.00 47.30
* 1272 031 2622 050 47.08 2892 005 49.88 000 47.40
50 13.10 033 30.99 025 49.83 29.66 0.07 49.99 000 49.95
CESNET-QUIC22 %" 1595 ;17 31.65 030 49.85 29.57 005 49.99 000 49.94
50 9.50 041 21.59 035 49.30 31.26 009 50.00 0.00 49.70
Erterorice 100 954 020 23.46 015 4896 31.00 0.05 49.99 000 49.37
P 30010.03 0.0 22.41 017 48.79 30.71 0.07 50.00 0.00 49.15
* 10.08 011 23.89 027 48.67 30,65 005 49.99 000 49.18
avg across *10.82 24.27 48.41 30.13 49.98 48.85

TABLE 8.12: Discriminative score (%)

time series can be viewed as a table row, where each packet corresponds to a col-
umn. Specifically, we apply feature-wise density estimation, which assesses how
closely the distribution of each single feature is matched, and pairwise features cor-
relation estimation, which evaluates the similarity of linear correlations between fea-

ture pairs. Detailed formulations are given below.

¢ Feature-wise density estimation: to assess how well the synthetic data pre-
serves the marginal distribution of individual continuous feature x, we use the
Kolmogorov-Smirnov Test (KST). This test measures the distance between the
real and synthetic distributions (denoted as pr(x) and ps(x) respectively), by
tirst computing the Cumulative Distribution Function (CDF) for each distribu-

tion

and then calculating the upper bound of the discrepancy between the CDFs of
the real and synthetic data:

KST = sup |Fr(x) — Fs(x)|
A smaller score indicates that the synthetic data more accurately captures the

feature-wise (i.e., per-variable) distributional properties of the real data.

e Pairwise features correlation estimation: we use Pearson correlation coefficient
to assess the linear correlation degree between a pair of continuous features.
Given two continuous features x and y, it is defined as:

~ Cov(x,y)

Py %0y

where Cov is the covariance, and ¢ is the standard deviation.

Then, the quality of correlation estimation is measured by averaging, over all
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Feature-wise density estimation 1 Pairwise features correlation estimation 1
Fake/generated Fake/hand-crafted Fake/generated Fake/hand-crafted
Dataset Tier DDPMS4 TabDDPMImagenTimeTranslate Wrap GaussianDDPMS4 TabDDPMImagenTimeTranslate Wrap Gaussian
UNSW24 * 84.93020 97.87 029 86.02 83.14 76.9100: 80.74 99.2300999.28 0.2 99.38 96.57 96.60 005 99.85
Mirage22 * 96.30007 93.940.1 96.32 93.86 91.0501¢ 94.11 99.4800:95.760.16 99.29 98.08 97.62006 99.78
UTMOBILENET21 * 97.86005 97.75007 86.55 92.44 85.75001 86.53 99.1200:98.61 0.05 99.20 97.11 95.45 006 99.89
50 92.160.01 98.87 0.07 93.55 89.48 88.44 000 88.03 99.9200199.67 0.0s 99.80 98.15 98.37 0.00 99.88
CESNET-TLS22 10091.76 0.00 98.88 0.10 93.47 89.21 88.18 0.01 87.89 99.9200299.720.09 99.84 98.12 98.310.00 99.88
* 91.74000 98.820.07 93.74 89.18 88.17 000 87.85 99.910.0099.69 0.01 99.82 98.12 98.320.00 99.88
CESNET-QUIC22 50 99.250.02 98.61 000 91.23 96.11 93.66 001 89.05 99.9300099.71 001 99.84 98.53 98.47 0.00 99.91
*99.28005 98.59 005 92.24 96.12 93.69 001 89.03 99.9300099.73 0.2 99.84 98.54 98.49 000 99.91
50 98.81001 99.080.03 86.74 93.94 88.45 000 84.68 99.8700199.76 0.01 99.54 96.61 95.90 000 99.90
Enterprise 1009893001 989800, 86.24 94.03 88.58 000 84.48 99.8500099.66 007 99.60 96.89 96.30 000 99.90
P 30098.99 001 99.05 007 86.50 94.07 88.64 000 84.48 99.8600199.77 0.05 99.65 97.14 96.69 0.00 99.90
*99.00000 98.99002 85.20 94.07 88.64 000 84.46 99.8700199.74 005 99.68 97.17 96.73 0.00 99.90
avg across *95.75 115 98.29 1.1 89.82 92.14 88.35:.15 86.78 99.7402¢99.26 112 99.62 97.59 97.27 105 99.88

TABLE 8.13: Low-order distribution-level evaluation (%)

feature pairs (x, y), the differences between the Pearson correlation coefficients
in the real data pR(x,y) and the synthetic data p°(x, y):

Pearson Score = %IEW oR(x,y) — 05 (x,v)

Since p € [—1, 1], dividing the absolute difference by 2 ensures the final score
lies in [0,1]. A smaller score indicates that the synthetic data better preserves

the correlation structure of the real data.

Results. Table 8.13 presents the results of low-level density estimation, including

both feature-wise and feature-pair metrics. The main observations are as follows:

Although the metrics theoretically range from [0, 1], all methods achieve a feature-
wise density estimation score above 84% a pairwise feature correlation score above
95%, and almost no difference between the datasets tiers, indicating that these met-

rics are not sensitive enough to meaningfully distinguish between models.

Importantly, the feature-wise density score only evaluates how well each individ-
ual feature p(x;) is modeled, without accounting for interactions between features.
In contrast, the discriminative score — obtained from a binary classifier trained on
full packet sequences x = (x1,...,x39) — reflects how well the model captures the
joint distribution p(x), including inter-feature dependencies. While most methods
score well on the feature-wise metric, their discriminative scores show substantial
differences in how well they model the full sequence. This difference matters, be-
cause a model can match individual feature histograms yet still miss to preserve the
relationships between features. Therefore, we focus our analysis on discriminative
scores for distribution-level evaluation, rather than drawing conclusions from these
lower-order density metrics that only capture individual or pairwise feature statis-
tics and may overlook important structural differences.
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8.8.3 High-order sample-level similarity (x-precision and S-recall)

This subsection evaluates whether synthetic data matches real training data at a
sample level by measuring L2 distances of (real, synthetic) points pairs in the input
space. The distances are then also sued to compute a-precision and B-recall scores
to assess fidelity and coverage. Overall, we aim to answer the following question:
Does the synthetic data match the real training data with respect to high-order

sample-level metrics?

Metrics. As outlined in (Alaa et al., 2022), the quality of synthetic data should
be evaluated from two complementary perspectives: fidelity, which assesses how
closely the generated samples resemble real data, and coverage, which evaluates
whether the generated data cover all the modes of the real dataset. To this end,
the authors propose a-Precision and p-Recall to measure fidelity and diversity re-
spectively.

Given a synthetic dataset S = {xj }iep1,m and a real training dataset R = {x] }ic(1,4)
(where m = n?), the metrics are defined as following:

e a-Precision: First, we compute real data’s empirical center: u" = 1y 7,

n i=1
and the Euclidean distances from each real point to the real center u":
17 = ||x} — p"[|o. For each quantile level « € [0,1], we compute the ra-
dius R} = Quantile,({r/}? ;). This means that the Euclidean ball B =
{x € R?| ||x — p'[]2 < R} contains approximately an a proportion of the real
data points, i.e.,, P(x € B,) = a. Intuitively, this region B}, centered at " with
radius R}, can be interpreted as the a-support of the real data distribution, en-
compassing the most “typical"/“normal" real samples, while real points out-
side B}, are considered “outliers"; the parameter a controls the fraction of data

considered “normal.”

Then, a-precision at level « is defined as the proportion of synthetic points that
lie within a-support region B, of the real data distribution:

1 m
P@)=—Y 1 (5 -1l < R).
j=1

By conditioning on «, this metric deems a synthetic sample to be of a high
fidelity not only if it looks “realistic”, but also if it looks “typical". If the syn-
thetic and real densities are equal P° = P’, we would expect P(«) = « for all
a € [0,1].

3In practice, both datasets are upper-bounded by 15,000 samples to limit computational cost. For
hand-crafted augmentations, the down-sampling indices for the real training set and the augmented
set are kept identical to preserve the one-to-one correspondence between each real sample and its aug-
mented version. For generative models, since samples are generated from scratch rather than derived
from real inputs, there is no one-to-one correspondence between real and synthetic data. Therefore,
the real and synthetic datasets are down-sampled independently.
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* pB-Recall: As a preliminary step, For each real sample x], we find its nearest
synthetic neighbor x;} among S, and its nearest real neighbor x% among R\
{x7}. Denote their respective distances to the real anchor x/ as d} = ||x] — x.||2,
&5 = [l — x3. |

= Lj=1

Euclidean distances from each nearest synthetic neighbor x]i to the synthetic

center p': 1} = Hx]f’f — u®||2. For each quantile level g € [0,1], we compute the
radius Ry = Quantileg ({r{}1_,)-

First, we compute synthetic data’s empirical center: y = Ly xj, and the

Then, B-recall at level B is defined as the proportion of real points for which:
(i) its nearest synthetic neighbor is closer than its nearest real neighbor, and (ii)
its nearest synthetic neighbor is within the B-support region of the synthetic
distribution:

R(,B):%Zl(dfgd{ A< RY).
i=1

n
The first condition ensures that the synthetic data offers a closer approximation
to the real point x} than the real data itself, reflecting strong local fidelity. The
second condition ensures that this nearest synthetic neighbor lies within the
B-support of the synthetic distribution, meaning it belongs to a region where
synthetic samples “typically” concentrate. Together, these conditions ensure
that x} is not only covered by a synthetic point, but that such coverage is pro-
vided by a “typical"/“representative” synthetic sample. In this sense, p-recall
at level 3 reflects the proportion of real samples effectively captured within the
B-support of the generative distribution. If the synthetic and real densities are

equal P* = P’, we would expect R(B) = B for all B € [0,1].

While P(«) and R(p) are functions of « and B, respectively, and these curves reveal
fine-grained information about a model’s fidelity and coverage, it is often more con-
venient to summarize performance using a single number. To this end, Alaa et al,,
2022 quantifies the deviation from ideal precision and recall using the mean absolute
deviation of each curve from the identity line:

AP(@) = [ P@) ~aldn, AR(E)= [ IR(B) - Bl

Since AP(a) and AR(p) lie in the range [0, 3], they are rescaled to the range [0, 1] by
defining
IP, =1—2AP(x), IRg=1—2AR(B),

with higher values indicating better alignment between the generative and real dis-
tributions. If P, = P,, IP, = IRg = 1.

Results. In Table 8.14, we report the scores of a-precision and p-recall. In Table 8.14,
we present the fine-grained curves of a-precision and B-recall on small and large
datasets.
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The key findings are as follows:

a-precision T B-recall

Ref/real Fake/generated Fake/hand-crafted Ref/real Fake/generated Fake/hand-crafted

Dataset Tier XGB ~ DDPMS4 TabDDPMImagenTimeTranslate Wrap Gaussian XGB  DDPMS4 TabDDPMImagenTimeTranslate Wrap Gaussian

UNSW24 * 97.060.:0 97.27 049 96.74 050 99.02 77.51 75.7405: 99.00 51.89 61.850.15 55.25071 42.07 30.60 5.65022 48.22
Mirage22 * 96.94171 9518052 94.35055 98.64 98.28 97.530.00 98.36 54.10 69.69 032 66.050.43 48.54 45.12 22.300.4¢ 59.96
UTMOBILENET21 * 96.840¢: 97.02121 97.15042 98.90 97.87 95.110.15 98.97 59.11 61.000.11 54.76 050 38.72 24.74 8.92020 45.95
50 99.57 016 98.79 075 99.33 022 97.30 98.25 97.70022 99.58 50.18 4714045 43.37 055 44.72 49.03 18.340%2 75.50

CESNET-TLS22 100 99.260:> 99.11025 99.28 021 97.19 98.25 97.6501: 99.59 50.59 46.03 011 43.47 027 44.14 49.24 18.84022 75.91
* 99.3800: 98.74 050 98.28 051 98.02 98.37 97.71021 99.53 50.00 46.30 000 43.68 021 43.86 49.40 18.57 031 76.98

CESNET-QUIC22 50 99.34015 98.02021 99.10051 98.24 98.12 98.81011 99.11 49.40 47.86 010 44.96 057 45.78 48.07 2494051 86.97
* 98.61 040 98.51 050 98.48077 98.36 98.19 98.530:1 99.13 48.89 47.39 025 44.57 00 46.31 48.20 24.73 055 87.81

50 99.23020 99.300:36 99.20039 98.98 98.24 95.64 010 98.37 53.57 47.88032 4242021 43.29 39.07 15.35033 62.10

Enterprise 100 99.48 005 98.920.41 99.320.10 99.05 98.44 95.33 050 98.29 52.57 47.38 010 4122061 43.58 40.59 16.24005 64.84
STPTIS® 30099201 98.960 99.211 10 98.94 98.15 95.38021 98.38 52.11 48.03 07 43.04 055 44.59 40.94 17.300.05 66.87
*99.02015 99.390.19 99.29 0.01 98.90 98.37 95.27 021 98.39 52.83 48.08 017 41.20 0.3 44.50 42.00 17.30000 67.84

avg across *98.66 115 98.27 120 98.31 152 98.46 96.50 95.03 ¢.05 98.89 52.10 51.55740 47.007.15 44.17 42.25 17.38 553 68.25

TABLE 8.14: High-order sample-level evaluation (%)

1. All the generative models have almost saturated a-precision, with only sub-
tle differences across methods and datasets. This indicates that the generated
samples consistently exhibit high fidelity, i.e., they tend to lie within the high-
density regions of the real data distribution, as measured by a-precision using

quantile-based distance thresholds from the real data centroid.

2. Across all methods and datasets, B-recall is substantially lower than a-
precision, indicating that while synthetic samples tend to lie in high-density
regions of the real data distribution, they do not sufficiently cover the full sup-
port of the real distribution. In other words, the generative models produce
data that looks realistic but fail to capture the full diversity of the real dataset.

3. Different generative models vary more significantly in B-recall than in a-
precision, highlighting that coverage is a more discriminative property across
models. Among them, DDPMS4 consistently achieves the highest pB-recall
scores across all datasets. Given that broad coverage of the real distribution is
a crucial factor for improving downstream classification utility, this provides
a compelling explanation of why DDPMS4 also achieves the highest utility

scores.

4. On the other hand, we observe some inconsistencies for hand-crafted aug-
mentations. For example, Translate on Enterprise datasets, despite achieving
slightly lower a-precision and significantly lower p-recall than DDPMS4, con-
sistently outperforms DDPMS4 on both the utility test and augmentation test.
Gaussian, however, despite achieving the highest B-recall on large datasets,
has the worst classification utility among all methods. This indicates that a-
precision and B-recall do not capture the full picture of generalization. In
particular, these metrics do not penalize methods that create near-duplicates
of training data by adding small noise, and they do not care whether the
noise preserves class semantics or not. In addition, the considered metrics do
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not necessarily reward methods that generate novel, class-consistent examples
that deviate from the original data and introduce additional variety but still

preserve semantic meaning.

Fundamentally, both a-precision and B-recall are class-agnostic: they operate
purely on the geometry of the data space without considering class labels. As
a result, they fail to detect whether generated samples introduce inter-class
confusion or reinforce class-separability. Overall, these limitations help ex-
plain why Translate, despite poor distributional alignment, achieves higher
utility: it introduces task-relevant, label-preserving variation that improves
classifier generalization. Conversely, they also help explain why Gaussian,
despite achieving high p-recall by broadly covering the data space, performs
poorly in classification: it perturbs real samples in a way that can easily distort

class semantics and increase ambiguity near decision boundaries.

These findings highlight the need for evaluation metrics that go beyond geo-
metric fidelity and distributional coverage — ones that explicitly account for
semantic consistency and task relevance, especially in class-conditional set-
tings.

Extended analysis. In B-recall, each real training sample is matched to its nearest
synthetic sample. Here, we do the opposite: for up to 10,000 synthetic samples, we
take each synthetic sample as a query and find its nearest neighbor from the entire
real training set, recording both the distance and the index of the selected real sam-
ple. We then plot the Cumulative Distribution Function (CDF) of these distances,
and the CDF of how often each real sample is selected as the nearest neighbor.

We use two small datasets (UTMOBILENET21 and Mirage22) and three large ones
(CESNET-QUIC22-50, CESNET-TLS22-50, and Enterprise-50). Results are shown in Fig-
ure 8.11. As a reference, we also show the distribution obtained using real test sam-
ples as queries instead of synthetic ones.

We highlight the following key findings:

1. Among the hand-crafted transformations, Gaussian amplitude perturbation
yields distances mostly in the range [0.01,0.03], consistent with its high B-recall
score. However, its poor performance in the utility test suggests that adding
ii.d. Gaussian noise to each feature — despite a small overall L2 difference —
breaks inter-feature dependencies and disrupts the joint feature distribution.
Furthermore, since XGBoost relies on threshold-based splits, such small per-
turbations can lead the model to learn decision paths that fail to generalize to
clean test data, resulting in misclassification.

On the other hand, for Translate, its distance CDF consistently lies below the
reference CDF of the real test data, indicating that it introduces noticeable dif-
ferences, yet it achieves the best performance in the utility test. Combined with
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the close CDF and poor utility score of Gaussian, this suggests that smaller
L2 distances do not necessarily imply preserved class semantics, and larger
distances do not imply semantic disruption. Overall, input-space L2 distance
captures structural similarity but fails to reflect whether the underlying class
information is retained — a conclusion consistent with a-precision and p-recall

results.

2. For DDPMS4 on small datasets, although its synthetic samples are very close
to their nearest real training neighbors, around 50% of the real training sam-
ples are selected more than once as nearest neighbors. Since the number of
synthetic samples matches the small real training set, this means roughly half
of the real samples are never selected. This pattern indicates that the model
tends to overfit to easy modes in the data while missing to capture harder or
less frequent ones.

On large datasets, the distance distribution shows that DDPMS4-generated
samples are generally farther from real training samples compared to real test
samples, as reflected by the DDPMS4 CDF curve lying below that of the real
test set. However, DDPMS$S4 still performs best among all methods, as shown
by its CDF being the leftmost. Regarding real index frequency, nearly all real
training samples are selected only once as nearest neighbors, suggesting there
is no significant overfitting when the dataset is large. Instead, the main issue

appears to be underfitting, likely due to the greater complexity of the data.

8.8.4 Concluding remarks

Capturing the full picture of synthetic data quality requires multiple and diverse
metrics, including fidelity, diversity, and semantic utility. This section comple-
mented the class-conditional utility evaluation by assessing the quality of uncon-
ditional distribution modeling—that is, how well the generated data aligns with the
overall real data distribution, regardless of class labels. Using multiple metrics from
tabular data synthesis literature, the analysis reveals several key insights.

As a starting point, we highlight two important aspects: (1) unconditional fidelity
is not equivalent to conditional fidelity — a dataset can be globally unrealistic yet
still useful for classification if it preserves label-relevant semantics; (2) unconditional
distribution modeling relates to both fidelity, which measures how closely synthetic
samples resemble real ones, and coverage, which assesses how well the synthetic data

captures all the diversity of the real training set.

Capturing these two aspects requires multiple complementary metrics, yet it is not
very common to find prior works providing a comprehensive view, especially in
networking literature. Specifically, point (1) is assessed via the discriminative score,
which captures global distinguishability, while point (2) is evaluated using sample-
level similarity metrics such as a-precision and p-recall. Regarding (1), we observe
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FIGURE 8.11: Closest real training record statistic.

that methods like ImagenTime and Wrap perform poorly in discriminative evalu-

ation yet effectively support classification, indicating they retain class-relevant fea-

tures despite global distributional differences. Similarly, Translate produces syn-

thetic samples that are distant from real data in input space but achieve the best per-
formance in utility and augmentation tests. This further shows that L2 distance in
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input space does not reliably reflect semantic preservation. Regarding (2), DDPMS4-
generated data achieves around 98% a-precision but 52% p-recall, suggesting it cap-
tures well high-density/easy-modes, while missing to cover low-density /harder-
modes. This gap in coverage helps explaining the utility test gap of synthetic versus
real training data.

Still, among the three generative models, DDPMS4 consistently performs best across
all similarity metrics on all datasets. Meanwhile, its B-recall scores on large datasets
are noticeably lower than those on small datasets, indicating that further improve-
ment is needed in the likelihood estimation to better fully cover more complex
packet series distributions.

Finally, low-order distribution-level metrics commonly used in tabular data synthe-
sis often saturate and do not capture the full-sequence structure of packet series,
making them inadequate for our setting.
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Chapter 9

Discussion and future work

In Chapter 8, aiming toward automated DA for TC, we investigated generative mod-
eling of packet series. Specifically, we adopted a discrete-time DDPM framework
and designed a Transformer-based architecture where attention is replaced by S4
to model temporal dependencies in univariate time series. The resulting model,
DDPMS4, was evaluated on multiple TC datasets with varying sizes and class im-
balance degrees. Evaluation covered classification utility, augmentation effective-
ness, and class-agnostic fidelity and coverage. While DDPMS4 outperforms all other
generative baselines, its utility and augmentation scores remain inferior to the best-
performing hand-crafted method, Translate. By using the multi-facet evaluation for
probing, we identify the following key limitations:

1. Collapse error: high fidelity but limited coverage of low-density regions

The generated data appears similar to real samples but covers only a limited
portion of the real distribution, concentrating on high-density regions while
missing low-density ones. Here, the missing low-density regions refer not only
to general less frequent modes such as points near class boundaries, but also
to minority classes, as indicated by the larger gap in macro F1 compared to
weighted F1 across all datasets.

Furthermore, on small datasets, we observe signs of memorization, suggesting
the generative model overfits to high-density regions. This aligns with prior
findings on DMs, which generally achieve better mode coverage than GANs
by explicitly modeling the full data distribution through iterative denoising
but may still exhibit imperfect coverage in practice, especially when model ca-
pacity is large relative to the data size (Karras et al., 2022). Additionally, Biroli
et al., 2024 theoretically identifies three regimes in diffusion model’s reverse
process: from white noise, to class separation, and last collapse to memoriza-
tion. Specifically, if the score function is estimated perfectly, the model will
collapse to a training point at late timesteps, meaning it can only memorize

training samples.

2. Additional meaningful variety for augmentation does not come for free



170 Chapter 9. Discussion and future work

At first glance, one might expect that a well-trained diffusion model, due
to its inherent stochasticity, would naturally provide useful data augmenta-
tion. However, our experiments show that even our best-performing diffusion
model fails to improve downstream classification performance. Why does this
happen? According to information theory, the information a generative model
can learn is fundamentally limited by the information contained in its training
data. Therefore, even in an ideal case where the model learns the data distri-
bution perfectly without collapse, it can merely memorize the training set, but
cannot introduce genuinely new information beyond what is already present
in the real training data.

This raises a natural question: why are generative models widely used for DA
in traditional ML domains like CV? First, diffusion models in vision are of-
ten pretrained on internet-scale datasets (e.g., LAION), giving them access to
knowledge far beyond the target classification task. Second, in images, class-
relevant and irrelevant patterns are easier to distinguish, enabling the design
of prompt-based augmentations with pretrained text-to-image models. In con-
trast, for packet series, we lack both large-scale pretrained models and a clear
understanding of class-semantic subsequence patterns, making effective gen-
erative augmentation much more challenging.

With the key problems now clarified, new opportunities and challenges emerge for
future research. We highlight several of them below.

First, having a broader coverage is essential. For larger coverage, we could:
1. Augment the training data size via hand-crafted DA:

Increasing the training set can help mitigate overfitting and collapse errors.
One approach is to apply hand-crafted augmentations, such as the Translate
function, which has proven effective. Aiming to mimic the transformation, we
trained a diffusion model solely on translated data. However, this led to higher
training loss and reduced downstream utility, suggesting that the transformed
distribution is more complex and harder to model, thereby reducing fidelity.
To address this, we propose providing augmentation parameters (e.g., start in-
dex, translate direction, translate steps) as additional conditioning inputs to
the NN. This enriches the conditioning context, helping the model better cap-
ture the structure of the augmented data.

2. More conditioning context via imputation:

Another way to improve coverage is through imputation. Rather than always
modeling the entire time series given only the class label, we could train the
model to reconstruct the missing part of a sequence conditioned on the class
label, the observed part, and a binary mask. This shifts the task to modeling
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p(missing part|class label, observed part, mask), which provides more infor-
mative context and makes distribution to learn easier, as our preliminary re-
sults showed that it can improve utility test performance. In particular, during
generation, real training samples from low-density regions can be combined
with randomly selected masks to define the observed part. This provides
meaningful context, enabling the model to generate more accurate comple-
tions of rare or underrepresented patterns.

3. Reinforcement fine-tuning with coverage-based rewards:

Improving coverage through reinforcement fine-tuning requires a reward sig-
nal that promotes coverage among generated samples. Since coverage rp is
evaluated over a generated set Xg relative to real data set X;, assigning rewards
to individual generated samples is nontrivial. To assign per-sample rewards
from a set-level coverage metric, monotonicity of rp is required. Under this
condition, the marginal contribution of each generated sample x, € Xg can
be defined as 7p(xg; Xr) = rp(Xg; Xs) — rp(Xg \ {x¢}; X¢). For computation ef-
ticiency, rp could be analytical metrics such as Maximum Mean Discrepancy
(MMD) (Miao et al., 2024), B-coverage, or mutual information, which support

efficient and scalable fine-grained rewards.

Then, to further improve sampling efficiency for DA, it is desirable to guide gener-
ation toward low-density regions, where the downstream classifier is more likely to
struggle. In contrast, passively following the original distribution tends to produce
samples mostly fall into high-density areas. To address this, we can apply guidance
in the reverse process to push generation toward low-density regions. The central
question is: what kind of guidance can effectively achieve this?

At the current reverse step t, after predicting an estimate £y from x;, we can feed
%o into either a pre-trained classifier or back into the diffusion model to assess its
likelihood. This helps identify whether %y lies in a high- or low-likelihood region,
and several strategies can be used:

1. High cross-entropy based on the classifier’s output: if £y leads to a high cross-
entropy loss when passed through a pre-trained classifier, it likely lies in a
region where the classifier is uncertain or prone to errors.

2. Distance from class prototypes in the classifier’s embedding space: samples
that lie far from class prototypes tend to be ambiguous and harder to classify,

making them valuable for augmentation.

3. Low likelihood based on noise estimation error of the diffusion model: diffuse
%o to a noisy version x;, then let the diffusion model predict the added noise.
A large noise estimation error suggests that the sample lies in a low-likelihood

region of the learned data distribution.
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4. Low likelihood measured by re-denoising distance in the diffusion model:
compute the distance between %((x;) and the re-denoised output after strong
noise perturbation to a large timestep s (e.g. s = 0.8T) (Um and Ye, 2024;
Zhang and Zou, 2024): d (& (x¢),sg (&0 (&s (x¢)))). A smaller distance means
the model can still recover the original sample after adding strong noise, sug-
gesting the sample comes from a region the model knows well, i.e., a high-
likelihood region. A larger distance means the model struggles to recover the
sample, indicating it lies in a region the model hasn’t learned well, i.e., a low-
likelihood region.

Still, selecting guidance hyperparameters is a challenge, as they should be effective
while adhering to the manifold of p(x;).

Overall, these directions open new possibilities for improving generative data aug-
mentation in TC. Through richer conditioning, reinforcement-based objectives, or
principled guidance, future work can achieve better coverage and enhance the effec-
tiveness of generative models for downstream use.
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Appendix A

Appendix for Chapter 4

A.1 Layout of DL Network Architectures

We list here our implementation of the network architectures for the 32x32 flowpic
resolution (see also Fig.7 in Horowicz et al., 2022). The Listings A.1-A.5 are ob-
tained via the torchsummary python package. For code flexibility, our architectures
are designed to use Pytorch nn.Identity() modules to mask out layers that are
not needed from a given architecture. When this masking is applied, our training
framework takes care of recreating the network optimizers to reflect the architecture
modifications.

LISTING A.1: Supervised network (with dropout).

flowpic_dim: 32
num_classes: 5
with_dropout: True

Layer (type) Output Shape Param #
Conv2d -1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0
MaxPool2d -3 [-1, 6, 14, 14] 0
Conv2d -4 [-1, 16, 10, 10] 2,416
RelU-5 [-1, 16, 10, 10] o
Dropout2d -6 [-1, 16, 10, 10] 0
MaxPool2d -7 [-1, 16, 5, 5] o
Flatten-8 [-1, 400] o
Linear -9 [-1, 120] 48,120
ReLU-10 [-1, 120] o
Linear-11 [-1, 84] 10,164
ReLU-12 [-1, 84] 0
Dropoutid-13 [-1, 84] 0
Linear -14 [-1, 5] 425

Total params: 61,281

Trainable params: 61,281
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.23

Estimated Total Size (MB): 0.36

LISTING A.2: Supervised network (without dropout).

flowpic_dim: 32
num_classes: 5
with_dropout: False

Layer (type) Output Shape Param #
Conv2d -1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0
MaxPool2d -3 [-1, 6, 14, 14] 0
Conv2d -4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0
Identity -6 [-1, 16, 10, 10] 0 <-- masked
MaxPool2d -7 [-1, 16, 5, 5] [
Flatten-8 [-1, 400] 0
Linear -9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0
Linear-11 [-1, 84] 10,164
RelLU-12 [-1, 84] 0
Identity-13 [-1, 84] 0 <-- masked

Linear-14 [-1, 5] 425
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Total params:
Trainable para
Non-trainable

Input size (MB

Forward/backward pass size (MB):

Params size (M

Estimated Total Size (MB):

61,281
ms: 61,281
params: 0
): 0.00

B): 0.23

flowpic_dim: 3
num_classes: 5
projection_lay

2

er_dim: 30

LISTING A.3: SimCLR pre-train (small projection layer).

with_dropout: False
Layer (type) Output Shape Param #
Conv2d -1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] o
MaxPool2d -3 [-1, 6, 14, 14] 0
Conv2d -4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0
Identity -6 [-1, 16, 10, 10] 0
MaxPool2d -7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear -9 [-1, 120] 48,120
RelU-10 [-1, 120] 0
Linear -11 [-1, 120] 14,520 <- proj layer 1
RelU-12 [-1, 120] 0
Identity-13 [-1, 120] 0
Linear -14 [-1, 30] 3,630 <- smaller proj layer
Total params: 68,842
Trainable params: 68,842
Non-trainable params: 0
Input size (MB): 0.00

Forward/backward pass size (MB):

Params size (M

Estimated Total Size (MB):

B): 0.26

flowpic_dim: 3
num_classes: 5
projection_lay

2

er_dim: 84

LISTING A.4: SimCLR pre-train (large projection layer).

with_dropout: False
Layer (type) Output Shape Param #
Conv2d -1 [-1, 6, 28, 28] 156
RelLU-2 [-1, 6, 28, 28] [
MaxPool2d -3 [-1, 6, 14, 14] [
Conv2d -4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0
Identity -6 [-1, 16, 10, 10] 0
MaxPool2d -7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear -9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0
Linear-11 [-1, 120] 14,520 <- proj layer 1
RelLU-12 [-1, 120] 0
Identity-13 [-1, 120] 0
Linear -14 [-1, 84] 10,164 <- larger proj layer
Total params: 75,376
Trainable params: 75,376
Non-trainable params: 0
Input size (MB): 0.00
Forward/backward pass size (MB): 0.13

Params size (M

Estimated Total Size (MB):

B): 0.29

flowpic_dim: 3
num_classes: 5
projection_lay

2

er_dim: 30

with_dropout: False
Layer (type) Output Shape  Param #
Conv2d -1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] [
MaxPool2d -3 [-1, 6, 14, 14] 0
Conv2d -4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0
Identity -6 [-1, 16, 10, 10] 0
MaxPool2d -7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear -9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0
Identity-11 [-1, 120] 0 <- masked
Identity-12 [-1, 120] 0 <- masked
Identity-13 [-1, 120] 0 <- masked
Linear-14 [-1, 5] 605 <- final classifier
Total params: 51,297
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Trainable params: 51,297
Non-trainable params: O

Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.20

Estimated Total Size (MB): 0.33
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Appendix B

Appendix for Chapter 7

B.1 Details on user study

Our user studies are based on small focus groups participants only, with (lightly)
guided discussions led by a moderator. In those campaigns we elicited feedback
from users regarding the comparison of different alignment metrics, aiming to un-
derstand if MI is a plausible choice. Although launching large-scale survey cam-
paigns would be desirable, this would require a completely different organization
and implementation with respect to what what we adopted for this work.

The survey web app. Beside punctually comparing alignment metrics Section 7.2
and methods Section 7.5, we designed a web app to collect subjective feedback, in the
form of mini surveys, from real users. Each survey is composed of multiple tests,
each showing a prompt and a set of images generated from it. Under the hood, the
web app corresponds to a jupyter notebook with ipywidgets! for UI controls, ren-
dered via the voila® framework and deployed live via a docker-ized HuggingFace
space. Via the web app we run campaigns to compare alignment metrics and to compare
alignment methods.

Figure B.1 shows an example screenshot of the alignment metric comparison sur-
vey Section 7.2. As from the example, users are free to select from 0 to up to 3
images for each prompt. However, to stress users subjectivity, we intentionally did
not provide guidelines on how to handle “odd” cases (e.g., if the prompt asks for a
picture of “an apple”, but the picture show more than one apple). Last, each survey
is saved as a separate CSV with the timestamp of its creation which also serves as
unique identifier of the survey, i.e., neither a user identifier nor cookies are required

by the web app logic, so users’ privacy and anonymity is preserved.

B.1.1 Comparing alignment metrics

In the first surveys campaign we aimed to understand how users perceive images

pre-selected by BLIP-VQA, HPS and MI. Specifically, we run surveys composed of 10

Inttps://ipywidgets.readthedocs.io/en/stable/
’https://voila.readthedocs.io/en/stable/using.html


https://ipywidgets.readthedocs.io/en/stable/
https://voila.readthedocs.io/en/stable/using.html
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soe T - 1 o 0 4

"a green bench and a red boat"

= Click to remove + Click to select = Click to remove

Progress: 710

FIGURE B.1: Web app screenshot example of the alignment metric
comparison survey.

Metric Campaign answers (%)

MI BLIP-VQA HPS Academic users Random users Students avg

O O O 14.7 16.9 25.0 18.9
O O [ 1.8 14.0 2.7 6.2
O ( O 10.4 22.0 41 12.2
O ( (] 4.0 74 36 5.0
[ J O O 4.0 10.6 09 5.2
[ J O ( 6.0 25 23 3.6
[ J ( O 18.7 10.6 16.8 154
(] ( (] 40.4 16.0 44.6 33.7
[ J 69.1 39.7 64.6 57.8
[ 73.5 56.0 69.1 66.2

[ 52.2 39.9 53.2 48.2

®(selected)  O(not selected) (indifferent to the selection)

TABLE B.1: User study about comparing alignment metrics.

tests, each showing a prompt and the related best image among 50 generations (us-
ing sD-2.1-base) as ranked according to each metric separately (Section 7.2). Each
of the 10 prompts is randomly selected from a pool of 700 prompts for the T2I-
Combench color category, and at each test the order in which the 3 pictures is shown

is also randomized.

We run surveys across three user groups: Academic users (5 members) are representa-
tive of highly informed and tech savvy users, who are familiar with how generative
models work; Random users (25 members) are representative of illiterate users who
are not familiar with computer-based image generation; Students (16 members) are
representative of masters’ level students who are familiar with image generation
tools, and who have attended introductory-level machine learning classes.

Overall, we collected 102 surveys (45, 35 and 22 surveys across 3 days for Academics,
Random users and Students respectively) which we detail in Table B.1. The top
part of the table breaks down all possible answers combinations. The results, al-
though with some differences between user groups, clearly highlight that the three
alignment metrics we consider in this work are roughly equivalent, with MI and
BLIP-VQA being preferred over HPS. For the Academics and Students groups, all

the three images are considered sufficiently aligned with the prompt in almost half
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Alignment Category (%)
Methodology Model Color Shape Texture 2D-Spatial Non-spatial Complex
none SD-2.1-base  29.76  11.90 40.48 35.71 66.67 29.76
A&E ©31.95 ¢1548 ©52.38 32.14 65.48 30.95
Inference-time SDG  26.19 ©15.48 38.10 38.10 61.90 29.76
SCG 2024 11.90 33.33 040.48 ©69.05 ©39.29
DPOK 2381 16.67 ¢47.62 34.52 ©70.24 ©38.10
e 00 XD B BD X0 08 A2
MI-TUNE 4643 25.01 53.19 45.24 73.81 46.43

TABLE B.2: Users study comparing alignment methods. Bold shows
best performance; oshows the best method per-family.

of the cases (40.4% and 44.6% respectively). Interestingly, random users select only
one of the three images about 10 x much more frequently than the other two groups
(on average 14.2% for real users while 5.4% and 3% for Academics and Students re-
spectively). We hypothesise that being previously exposed (or not) to the technical
problems of image generation from the alignment perspective, or simply being lit-
erate (or not) about machine learning can influence the selection among the three

pictures.

The bottom part of the table summarizes the answers for each individual metric. De-
spite the general preference for BLIP-VQA, the results corroborate once more that MI
provides a meaningful alignment signal (possibly compatible with aesthetics too).

Finally, we recall that our goal in this section is to study whether MI is a plausi-
ble alignment measure, rather than electing the “best” alignment metric. Indeed,
this analysis does not indicate the final performance of alignment methods, which
instead we report in Table 7.1.

B.1.2 Comparing alignment methods

In this second survey campaign we aimed to understand how users perceive im-
ages generated by the 8 methods we considered in our study, i.e., “vanilla” SD,
A&E (Chefer et al., 2023b), SDG (Feng et al., 2023b) and SCG (Salimans and Ho, 2022)
DPOK (Fan et al., 2023), GORS (Huang et al., 2023), HN-ITM (Krojer et al., 2023) and
our method Mutual Information Fine Tuning (MI-TUNE) (when used with a single

round of fine-tuning).

To do so, we run surveys composed of 2 tests for each T2I-Combench category (12
rounds in total). Each test shows a prompt and the 8 pictures generated using a
different method. For each category, we randomly selected 100 prompts from T2I-
Combench test set to pre-generate the pictures. At run time, the web app randomly
selects 2 prompts for each category, and also randomly selects images from the re-
lated pool. Last, it randomly arranges both the tests (so that categories are shuffled)
and the methods (so that pictures of a method are not visualized in the same position

in the visualized grid).
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Table B.2 collects the results of a campaign with 42 surveys. Specifically, the table
shows the percentage of answers where the picture of a given method was selected
(no matter if other methods were also selected) — theses results are integrated in right
side of Table 7.1 and are duplicated here for completeness.

B.2 Experimental protocol details

Diffusion model. ~We report in Table B.3 all the hyper-parameters we used for our

experiments.
Name Value
Trainable model UNET
Trainable timesteps t ~ U(500,1000)
PEFT DoRA (Liu et al., 2024a)
Rank 32
« 32
Learning rate (LR) le—4
Gradient norm clipping 1.0
LR scheduler Constant
LR warmup steps 0
Optimizer AdamW
AdamW - B¢ 0.9
AdamW - B, 0.999
AdamW - weight decay le—2
AdamW - e le—8
Resolution 512 x 512
Classifier-free guidance scale 7.5
Denoising steps 50
Batch size 400
Training iterations 300
GPUs for Training 1 x NVIDIA A100

TABLE B.3: Training hyperparameters on SD-2.1-Base.

Next, we provide additional details on the computational cost of MI-TUNE. In our
approach, there are two distinct phases that require computational effort:

The first is the construction of the fine-tuning set S based on point-wise MI. As a
reminder, for this phase, we use a pre-trained SD model (namely SD-2.1-base at a
resolution 512 x 512) and, given a prompt, conditionally generate 50 images, while
at the same time computing point-wise MI between the prompt and each image.
This is done for all the prompts in the set ). Specifically for T2I-Combench, each
category training set has 700 prompts, and for each prompt we generate 50 images
from which we select the one with highest MI. The generation of the 700x50 fine-
tuning set requires roughly 24 hours, i.e., about 2min per-prompt on a single A100-
80GB GPU - the 50 images are generated together (as they roughly require 50GB of
the 80GB available VRAM), while each prompt is processed sequentially.

The second is the parameter efficient fine-tuning of the pre-trained model. Using
the configuration discussed above, MI-TUNE requires 8 hours when using a single
A100-80GB GPU.
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Section 7.5

Rectified flow model. Table B.4 includes all the hyper-parameters we used for our

experiments.
Name Value
Trainable model MMDIT
PEFT LoRA
Rank 32
o 32
Learning rate (LR) 5¢e—6
Gradient norm clipping 0.005
LR scheduler Constant
LR warmup steps 400
Optimizer AdamW
AdamW - B¢ 0.9
AdamW - B, 0.999
AdamW - weight decay le—4
AdamW - € le—8
Resolution 1024 x 1024
CFG scale 45
Denoising steps 100
M 50
k 1
Global batch size 240
Training iterations 2000

TABLE B.4: Training hyperparameters on SD-3.5-Medium.

To construct a fine-tuning set S based on point-wise MI, we use the pre-trained
SD3.5-M and, given a prompt, conditionally generate 50 images with CFG = 4.5 at
resolution 1024 x 1024, while at the same time computing point-wise MI between the
prompt and each image latent. Only the image with the highest MI is kept. This pro-
cess is done twice for all the 700 fine-tuning prompts ) defined by T2I-Combench.
Given the constructed fine-tuning set, we finetune SD3.5-M for 2000 iterations with
LoRA adaptation.

Note that (i) there is no overhead at image generation time: once a pre-trained model
has been fine-tuned with MI-TUNE, conditional sampling takes the same amount of
time of “vanilla” SD and (i7) the time to process the workloads scales down (almost

linearly) with the number of GPUs used according to our observations.

B.3 HPS scores range

Wu et al. (2023a) report a detailed benchmark of their metrics across 20+ models
in the HPS-v2 GitHub repository https://github.com/tgxs002/HPSv2. These de-
tails are hidden by default when loading the repository home page and need to
be explicitly “opened” expanding collapsed menus (e.g., » v2 benchmark). To ease
discussion, in Table B.5 we report an extract of these benchmarks focusing on Sta-

bleDiffusion as other models are out scope for our study.
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Benchmark Model Animation Concept-Art Painting Photo (avg)
SDXL Refiner (0.9)  28.45 27.66 27.67  27.46 (27.80)
) SDXL Base (0.9) 28.42 27.63 27.60 2729 (27.73)
v
SD (2.0) 27.48 26.89 26.86 27.46 (27.17)
SD (1.4) 27.26 26.61 26.66 2727 (26.95)
SDXL Refiner (0.9)  33.26 32.07 31.63 2838 (31.34)
51 SDXL Base (0.9) 32.84 31.36 30.86 27.48 (30.63)
V2.
SD (2.0) 27.09 26.02 25.68  26.73 (26.38)
SD (1.4) 26.03 24.87 2480 25.70 (25.35)

TABLE B.5: HPS benchmark across multiple Stable Diffusion models
extracted for HPS-v2 GitHub repo.

Results refer to two benchmark and are visually split between sD and SDXL. The
columns Animation, Concept-Art, Painting and Photo are different images style,
while (avg) reflects average by row.

Both versions of the benchmark present similar takeaways which we can summa-
rize in two main observations. Specifically, (i) different versions of the same model
present < 0.5 differences and (i7) SDXL outperforms SD of about +1 point — the vari-
ation of HPS scores is extremely contained even if these models are different genera-
tions apart.

Our HPS scores in Table 7.1 present similar properties, but other literature (e.g., Table
2in Zhao et al., 2024) present similar evidence.

B.4 Additional results and ablations

B.4.1 Ablation: Fine-tuning set selection strategies

Fine-tuning set selection strategy. It is important to stress that creating a fine-tuning
dataset using the very same metric used for the final evaluation can artificially intro-
duce a bias as stated in (Huang et al., 2023): “calculating the rewards for GORS with
the automatic evaluation metrics can lead to biased results”.

The selection strategy to compose the fine-tuning dataset is directly related to align-
ment scores and different fine-tuning methods opt for different choices. Specifi-
cally: HN-ITM uses an ad-hoc dataset with real positive and negative pairs; GORS
uses a synthetic dataset with no selection, but the fine-tuning loss of each sample
is weighted by BLIP-VQA DPOK synthesizes new images at each training iteration
since it is an online RL fine-tuning approach, and uses a pre-trained human prefer-
ence model for reward. Table 7.1, in the main paper, shows alternative fine-tuning

strategies based on synthetic generated data using a variety of selection scores:
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GORS and DPOK are the closest methods to MI-TUNE from this point of view, yet
generally underperforming compared to it.

TABLE B.6: For completeness, we perform an experiment
FT set selec- where we fine-tune based on a dataset selected
tion.

via HPS scores. Results in Table B.6 (same as Ta-

BLIP-VQA ~ HPS  ple 7.4, but duplicated here for simplicity) show

Strategy Color Shape Color Shape that selecting fine-tuning samples based on MI

MI only 65.0450.08 29.13 25.57 outperforms such an alternative strategy, using

HPS only 59.4346.87 na na BLIP-VQA.
MI+Real(0.25) 61.3448.47 29.16 25.87 Next, another natural question to ask is whether

MI+Real(0.5) 61.6349.50 29.3825.92 the self-supervised fine-tuning method we sug-
MI+Real(0.9) 59.8348.92 28.6025.60 gest in this work is a valid strategy. Indeed,
instead of using synthetic image data for fine-

tuning the base model, it is also possible to use

real-life,
captioned image data. Then, we present an ablation on the use of real samples, along
with synthetic images, in the fine-tuning procedure. In Table B.6(bottom) we report
the experimental results obtained by composing the fine-tuning dataset by imposing
the ratio of images generated by the SD model to x, and the ratio of real images taken
from the CC12M dataset (Changpinyo et al., 2021) to (1 — x), where in both cases we
select the candidate images to be used in the fine-tuning set S using MI. So, for
example, MI+Real(0.25) indicates that we use 25% of real images. Interestingly, we
observe the following trend. Complementing the synthetically generated samples
with few real ones does not benefit alignment (lower BLIP-VQA) but might have a

positive effect for aesthetics (higher HPS).

Fine-tuning set size. We continue by reporting an ablation on the fine-tuning set S

size.

Specifically, based on Algorithm 1, two parameters determine both the quality and
the associated computational cost related to the fine-tuning set S: the number of
candidate images M, and how many k are selected to be included in S.

Hyper-params  Category

Mk  Color  Shape
30 1 58.12 47.48

50 7 59.31 47.26
50 1 61.57 48.40

100 1 60.12 47.80
500 1 59.28 46.79

TABLE B.7: BLIP-VQA alignment results on T21-CompBench’s Color
and Shape categories varying size and composition of fine-tuning set.
Results obtained using R=1.
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Table B.7 shows that the best performance is obtained selecting 2% images (1 im-
age out of 50). We repeated the finetuning experiments on the categories Color
and Shape by varying the selection ratio in the ranges {7/50,1/30,1/100,1/500}.
Results indicate that the best selection ratio is the middle-range corresponding to
the baseline MI-TUNE. We hypothesise that higher selection ratios pollute the fine-
tuning set with lower quality images, while a more selective threshold favours im-
ages which have the highest alignment but possibly lower realism. Additionally,
we remark that the number M of candidate images has a negligible impact, above
M = 50, whereas fewer candidate images induce degraded performance. Hence, the
value M = 50 is, in our experiments, a sweet-spot that produces a valid candidate
set, while not imposing a large computational burden.

B.4.2 Ablation: Fine-tuning model adapters and modalities

In this Section, we provide additional results (Table B.8) on MI-TUNE, concerning
which part of the pre-trained SD model to fine-tune. In particular, we tried to fine-
tune the denoising UNET network alone and both the denoising and the text en-
coding (CLIP) networks. The baseline results are obtained, as described in the main
paper, with Do-RA (Liu et al., 2024a) adapters. Switching to Lo-RA layers Hu et al.,
2021 incurs in a performance degradation, a trend observed also for other tasks in
the literature (Liu et al., 2024a). Interestingly, joint fine-tuning of the UNET back-
bone together with the text encoder layers degrades performance as well, which
has also been observed in the literature Huang et al., 2023. Even if, in principle, a
joint fine-tuning strategy should provide better results, as the amount of information
transferred from the prompt to the image is bottle-necked by the text encoder archi-
tecture, we observed empirically more unstable training dynamics than the variant
where only the score network backbone is fine-tuned, resulting in degraded perfor-
mance.

Model Category

Color Shape

MI-TUNE DoRA 61.57 48.40

MI-TUNE LoRA 58.25 48.27

MI-TUNE UNet+Text(joint) 57.88 47.79

TABLE B.8: BLIP-VQA alignment results on T21-CompBench’s Color
and Shape categories finetuning different portions of the model.

B.4.3 Ablation: Combining categories into a single model

The design space for T2I alignment improvement has many options and this should
call not only to investigate alignment performance but also operational and com-
putational costs. For instance, fine-tuning methods require to create ad-hoc models
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while one can argue that a single/multi-purpose model might be a more lean and

general solution.

This calls for investigating if /how different task-specific fine-tuned models can be
combined into a single model to address the different tasks at once. For the T2I-

Combench, we considered two design options:

1. Weights merging: the DoRA weights of the 6 distinct per-category models are

“merged” doing their arithmethic means forming a new “meta” model.

2. Joint optimization: we create a new “meta” model by running a single fine-

tuning process but using the union of the category-specific fine-tuning set.

61.5 - 48.5
48.4
61.0 18.3
% 605 8482
© 5 48.1
60.0 - 48.0 1
479
50.51 - , . . _ | ar8d , : . : .
00 02 04 06 08 1.0 00 02 04 06 08 1.0
A A

FIGURE B.2: Weights merging: A x Color + (1.0 — A) x Shape.

To start from a reference example, Fig. B.2 reports the BLIP-VQA obtained when
testing on the color and shape test sets on the merged model obtained of the two
task-specific models. The hyper-parameter A is used to balance the merging. For
instance, at A = 0, the performance on color (left plot) are obtained using the shape-
only model. Overall, the results show that these two categories are (partially) con-
flicting across all A values. Yet, a performance trade off might be sufficient in some

scenarios.

MI-TUNE Color Shape Texture 2D-Spatial Non-spatial Complex
variants +(BLIP-VQA) +(BLIP-VQA) =(BLIP-VQA) =4 (UNIDET) +(BLIP-VQA) = (BLIP-VQA)
from table 7.1 61.57 48.40 58.27 18.51 67.77 53.54
Model weighting 58.50 48.23 58.22 16.72 68.28 54.35

Joint optimization 60.35 47.73 57.96 18.44 69.68 54.88

TABLE B.9: Benchmarking strategies for combining models.

We then extended the analysis across all categories using a simple arithmetic mean
for model merging, i.e., all models have the same weight. Results are reported in Ta-
ble B.9 using MI-TUNE as reference. Overall, for most categories, the single “meta”
model has degraded performance and neither weights merging nor joint optimiza-

tion are the best alternative across all categories.
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B.5 Qualitative examples for T21-CompBench using SD-2.1-

base

B.5.1 Color prompts

SD-2.1-base  DPOK GORS HN-ITM A&E SDG SCG MI-TUNE

a green banana and a red suitcase

FIGURE B.3: Qualitative examples for Color from Table 7.1 (same
seed used for a given prompt).
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B.5.2 Shape prompts

sD-2.1-base  DPOK GORS HN-ITM A&E SDG SCG MI- TUNE

7
i

I A% A= _’ =

a big whale and a small olphin

FIGURE B.4: Qualitative examples of the Shape category from Ta-
ble 7.1 (same seed used for a given prompt).
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B.5.3 Texture prompts

sD-2.1-base  DPOK GORS HN-ITM A&E SDG SCG MI-TUNE

a rubber tire and a plastic bottle

FIGURE B.5: Qualitative examples of the Texture category from Ta-
ble 7.1 (same seed used for a given prompt).
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B.5.4 2D-Spatial prompts

sD-2.1-base  DPOK GORS HN-ITM A&E SDG SCG MI-TUNE

a sheep on the left of a lamp ﬂ

FIGURE B.6: Qualitative examples of the 2D-Spatial category from
Table 7.1 (same seed used for a given prompt).
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B.5.5 Non-Spatial prompts

sD-2.1-base  DPOK GORS HN-ITM A&E SDG SCG MI-TUNE

A man is holding a soldermg iron and repairing a broken electronic device.

TEEAR

A person is holdmg a penc1l and sketchmg a portrait.

"~ Achild is playmg with a toy constructlon set and building a tower.

FIGURE B.7: Qualitative examples of the Non-spatial category from
Table 7.1 (same seed used for a given prompt).
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B.5.6 Complex prompts

sD-2.1-base  DPOK GORS HN-ITM A&E SDG SCG MI-TUNE

The striped rug was on top of the tiled floor.
JASEY Wiy 80 R

The striped rug was on top of the tiled floor.

*—gat |

Te;eek black laptop sat on the clean w

S j

The black chair was on the left of the white table.

FIGURE B.8: Qualitative examples of the Complex category from Ta-
ble 7.1 (same seed used for a given prompt).
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B.6 Qualitative examples for T21-CompBench using SDXL

SDXL  MI-TUNE SDXL  MI-TUNE SDXL MI-TUNE SDXL  MI-TUNE

Color
prompts.
a red backpack and a blue ared bowland a blue train  a blue bench and a green bowl
chair
Shape
prompts.
a big lion and a small mouse a circular mirror and a a tall skyscraper and a short
triangular shelf unit cottage
Texture
prompts.
a fabric bag and a glass vase  a fabric hat and a glass mirror a fabric jacket and a glass plate a leather jacket and a glass vase
2D-Spatial g | ]
prompts. : g I
a0 e LY
a bee on side of a couch a bicycle on the bottom of a girl a bird on the top of a balloon a candle on the top of a chicken
Non-
Spatial ; ‘ﬁ.!‘
prompts. . :
A dog is chasing after a ball A gardener is pruning a A person is looking at a A person is looking at a
and wagging its tail beautiful bonsai tree display of vintage clothing and sculpture garden and
admiring the fashion appreciating the artwork
‘ '»
Complex
prompts. < I

The black chair is on top of the  The black pencil was next to  The blue mug is on top of the The bright yellow banana
blue rug the green notebook green coaster contrasted with the dull brown

apple

FIGURE B.9: Qualitative examples from Table 7.5 (same seed used for
a given prompt).
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Model HPS
SD-2.1-base 23.99
DiffusionDB 24.35
MI-TUNE 25.32
MI-TUNE H base 1.33

MI-TUNE B DiffusionDB  0.97
A H B shows the abs. difference between A and B.

TABLE B.10: DiffusionDB.

B.7 Fine-tuning with DiffusionDB dataset

B.7.1 Selecting images and BLIP-VQA prompts decomposition

In this section, we provide additional details about using prompts created by real
users, i.e., DiffusionDB.

Dataset properties. DiffusionDB was collected scraping the StableDiffusion discord
channels “[...] We download chat messages from the Stable Diffusion Discord channels
with DiscordChatExporter, saving them as HTML files. We focus on channels where users
can command a bot to run Stable Diffusion Version 1 to generate images by typing a prompt,
hyperparameters, and the number of images [...]” (Wang et al., 2022c). The scraped data is
then packaged into parquet files (containing metadata such prompt, image filenames
and hyperparams) and zip files (containing the actual images in WebP format) and

made available on HuggingFace.

Fine-tuning with DiffusionDB. We fine-tune sD-2.1-base on 1,250 prompts ran-
domly sampled and compare two different scenarios. A first dataset is composed
using images provided by DiffusionDB itself. As each prompt in DiffusionDB is
paired to (about) 4 generated images we obtain a 5,000 prompt-image pairs refer-
ence dataset. For the second dataset, we use the 1,250 prompts to generate M = 50
images for each prompt and selecting the k = 1 image with the highest MI. We re-
peat this procedure 4 times to construct a complementary fine-tuning dataset with
prompt-image 5,000 pairs. We fine-tune SD-2.1-base on each of the two datasets
with pre-trained loss, then test on 500 DiffusionDB prompts (again, randomly se-
lected and disjoint from the training set prompt-image pairs) generating 10 images

for each test prompt.

Table B.10 (which is duplicating here Table 7.6 for simplicity) shows the results. Fine-
tuning either using the DiffusionDB images or MI-TUNE can improve HPS score
alignment with respect to the SD-2.1-base baseline. Yet, MI-TUNE improves upon
using directly DiffusionDB images, i.e., using MI is very competitive compared to

(expensive) manual labeling.

BLIP-VQA prompts decomposition. Our evaluation considers only HPS as we find
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that the higher prompt complexity does not well suit the BLIP-VQA prompt decom-
position. Recall that BLIP-VQA requires to split the prompt into “noun phrases”,
each used to create a VQA for the BLIP model. Specifically, BLIP-VQA uses spaCy’s
English pipeline en_core_web_sm to extract noun phrases from the prompt which re-
sult complex when the prompt is complex. Below we report some examples related
to extracting first three noun phrases extracted from human prompts.

Examples of good/easy segmentations:

¢ concept art of a silent hill monster. painted by

¢ anthropomorphic shark, digital art,

¢ geodesic landscape, john chamberlain, , tadao ando, 4k
Examples of segmentations with missing /broad subjects:

¢ a realistic architectural visualization of a sustainable mixed - use post -

mordern post - growth walkable people oriented

¢ arealistic wide angle painting of a vintage cathode ray tube, in ,in and
advanced state of decay, psychedelic mushrooms all around, in a post apoca-

lyptic city, ghibli, daytime, dynamic lighting

* render of dreamy beautiful landscape, dreamy, by herbaceous plants, ,
large scale, detailed vintage photo hyper realistic ultra realistic photo realistic
photography, unreal engine, high detailed, 8 k
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B.7.2 Qualitative examples for DiffusionDB

SD-2.1-base

Fine-tuned using MI-TUNE

DiffusionDB images

((((a cute blue hedgehog with big gold ring and blue
lightning in green grassland. ) ) ) ), big gold ring!, blue fur,
clear sky, extremely detailed, fantasy painting, by jean -

baptiste monge!!!!

concept art, pretty girl sitting on street, braids blue and green,
singular, junichi higashi, isamu imakake, intricate, balance,
ultra detailed, full far frontal portrait, volumetric lighting,
cinematic lighting + masterpiece

cosmic lovecraft giger fractal random antihero portrait, pixar
style, by tristan eaton stanley artgerm and tom bagshaw.

an anthropomorphic owl, serious looking wearing mechan-
ical sunglasses and grey suit, by kawacy, trending on pixiv,
anime, furry art, trending on furaffinity, mafia member.

crystal big pear in a nest, transparent, with light glares, reflec-
tions, photo realistic, photography, photorealism, ultra real-
istic, intricate, detail, rim light, depth of field, unreal engine,
dslr, rtx, style swarovski, dior, faberge.

SD-2.1-base

Fine-tuned using MI-TUNE
DiffusionDB images

=

a closeup photorealistic photograph of mark zuckerberg eat-

ing money. film still, vibrant colors. this 4 k hd image is

trending on artstation, featured on behance, well - rendered,

extra crisp, features intricate detail, epic compo
. i

the eifel tower gets hit by an asteroid, multiple asteroids are
in the air, paris in the background is burning, apocalyptic,
highly detailed, 4 k, digital paintin, sharp focus, tending on
artstation

anthropomorphic wolf with glasses wearing a lab coat, trend-
ing on artstation, trending on furaffinity, digital art, by
kawacy, anime, furry art, warm light, backlighting, cartoon,
concept art.

rami malek as an angel in a golden toga, gray background,
alphonse mucha, rhads, ross tran, artstation, artgerm, octane
render, 1 6 k.

FIGURE B.10: Qualitative examples from Table 7.6 (same seed used
for a given prompt).
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B.8 Qualitative analysis of MI as an alignment measure

Figure B.11 is expanding Figure 7.1 to include qualitative examples for all categories

o Rl 3

BLIP-VQA = 0.93 BLIP-VQA = 0.40 BLIP-VQA =0.17 BLIP-VQA = 0.06 BLIP-VQA = 0.0
HPS =0.319 HPS =0.310 HPS =0.312 HPS =0.263 HPS = 0.258
MI = 36.28 MI = 24.56 MI = 22.05 MI=15.44 MI = 14.67

in T21-CompBench.

4

Color binding:
“A blue car and

a red horse”

Texture bind-
ing:
“A fabric dress
and :
a glass table”

3 i - LA = 3 2 =
BLIP-VQA = 0.90 BLIP-VQA = 0.46 BLIP-VQA =0.17 BLIP-VQA = 0.12 BLIP-VQA = 0.07

HPS = 0.257 HPS =0.213 HPS = 0.201 HPS =0.231 HPS = 0.295

MI =44.6 MI =28.1 MI =19.86 MI=15.41 MI = 9.34
8
&

Shape binding;:
“A round bag and
a rectangular
wallet”

BLIP-VQA = 0.82 BLIP-VQA = 0.64 BLIP-VQA = 0.27 BLIP-VQA = 0.24 BLIP-VQA = 0.01
HPS = 0.262 HPS = 0.216 HPS = 0.160
MI =18.61 MI = 12.50 MI =11.57

Spatial relation:

“a man on
the top of
a turtle” : / e
UNIDET = 1.00 UNIDET = 0.90 UNIDET = 0.79 UNIDET = 0.68 UNIDET = 0.00
HPS = 0.301 HPS = 0.288 HPS = 0.272 HPS =0.231 HPS = 0.180

. MI = 36.41 MI =9.93 MI=4.90 MI = 4.81
Non-spatial re- [ Y :

lation: -
“A dog is chasing = %
after a ball and

wagging its tail”

BLIP-VQA = 0.97 BLIP-VQA = 0.96 BLIP-VQA = 0.92 BLIP-VQA = 0.88 BLIP-VQA = 0.09
HPS = 0.290 HPS =0.258 HPS = 0.251 HPS =0.236 HPS = 0.152
M1 =15.82 MI=11.39 MI=8.99 MI=7.88 MI = 5.02

Complex
prompt:

“The red hat
was on top of
the brown coat”

BLIP-VQA = 0.91 BLIP-VQA = 0.61 BLIP-VQA = 0.50 BLIP-VQA = 0.28 BLIP-VQA = 0.08
HPS = 0.259 HPS = 0.237 HPS = 0.212 HPS = 0.204 HPS = 0.189
MI=18.18 MI = 6.36 MI = 5.43 MI = 5.27 MI = 4.06

FIGURE B.11: Qualitative analysis of MI as an alignment measure (all
metrics decrease from left to right).
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Comparing distributions and M1 rank - Related to results in Section 7.2

B.9 BLIP-VQA, HPS and MI score distributions

Ml image rank

15 20 25 30 35 40 45 50

0.8

0.6 4

CDF

0.44

0.24

0.0 —F T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

BLIP-VQA

= . T T T T T
0 10 20 30 40 50 60 70
Mi

FIGURE B.12: CDF of alignment scores. Color reflect images rank
based on ML

The analysis presented in Section 7.2 shows that BLIP-VQA, HPS and MI relate to
each other. However, two aspects not discussed in Section 7.2 are (i) the support of
each metric and (i) how the distribution of the scores compare between well and
poor aligned images. In this ablation we address both aspects using the following
protocol.

We considered all 700 training prompts for the color category (the consideration
presented in this ablation extends to the other T2I-CompBench categories too), we
generated 50 images for each prompt, and computed the 3 metrics for each of the 50
images. Last, for each prompt, we rank the images based on MI (1:highest, 50:lowest)
—overall we obtained a 700 prompts x 50 images x 4 (3 metrics + 1 rank) tensor.

We then investigated if/how the MI rank affects the distribution of the scores for
BLIP-VQA and HPS. Intuitively, given the highest-ranked (viz lowest-ranked) images
based on MI, also BLIP-VQA and HPS should show very high values (viz low val-
ues). In practice, we first reordered the scores of the three metrics for each prompt
based the MI rank and then we derived 50 distributions for each metric, one for each
column in the tensor collecting the scores of each metric. Figure B.12 shows the

obtained distributions color coded based on the MI rank.

Considering the metrics support, we can notice a few differences among the three
metrics. Specifically, BLIP-VQA is in the [0,1] range and for all rank values, the whole
support is always used. Conversely, despite HPS is also in the [0, 1] range,® the
actual support is more skewed — this corroborates the discussion presented in Ap-
pendix B.3. Last, while MI is unbounded, the scores are mostly contained in the
[0-40] range.

Considering the relationship between the rank and the scores, all metrics show very

similar patterns. Specifically, all distributions are very smooth no matter the rank.

3HPs is defined as the cosine similarity between image and text embeddings, similarly to CLIP.
As such, theoretically, the score is in [-1, 1] range. However, in practice, and for the T21-CompBench
dataset, the score is effectively only in the [0, 1] range.
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Moreover, as expected, for all metrics the distributions smoothly shift horizontally
with respect to their rank — the color gradient separates very well red/high rank,
yellow /middle rank, blue/low rank.

The kendal T analysis reported in Section 7.2 considers the 1%, 25%, 50th image for a
prompt, selected by ranking the images based on their MI score. This is consistent
with the analysis presented in Figure B.12 and based on the figure we argue that our
selection of 3 pictures (having the highest, mid, lowest scores for each prompt) is a
reasonable choice for the results reported in Section 7.2 as they are representative of

the spectrum of values observed by the metrics.
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