
Accelerating Tabular Inference:
Training Data Generation with TENET

Enzo Veltri
enzo.veltri@unibas.it
University of Basilicata

Potenza, Italy

Donatello Santoro
donatello.santoro@unibas.it
University of Basilicata

Potenza, Italy

Jean-Flavien Bussotti
j�avien.bussotti@gmail.com

EURECOM
Biot, France

Paolo Papotti
paolo.papotti@eurecom.fr

EURECOM
Biot, France

ABSTRACT

Tabular Natural Language Inference (TNLI) involves machine learn-

ing models that assess whether structured tabular data supports or

contradicts a hypothesis formulated in natural language. TNLI mod-

els typically require large sets of training examples, which are costly

to produce manually. In this demonstration, we present Tenet, a

system for the automatic generation of training examples for TNLI

applications. Existing TNLI training approaches either depend on

costly human annotation or generate simplistic examples that lack

data diversity and complex reasoning. In contrast, Tenet can start

from a small set of manually annotated examples to automatically

generate a large and diverse training dataset. Tenet is based on the

idea that SQL queries are the right tool for obtaining rich and com-

plex generated examples. To ensure data variety, evidence-queries

extract cell values from tables based on diverse data patterns. Once

the relevant data are identi�ed, semantic queries de�ne di�erent

ways to interpret it using SQL clauses. These interpretations are

then verbalized as text to create annotated examples for TNLI. This

demonstration o�ers an interactive experience where users will

be able to select evidence from tabular data, inspect and re�ne

generated queries, and observe how Tenet transforms structured

data into natural language hypotheses. By engaging with di�erent

scenarios, users will see how Tenet enables the rapid creation of

high-quality TNLI datasets, leading to inference models with perfor-

mance comparable to those trained on manually crafted examples.

PVLDB Reference Format:

Enzo Veltri, Donatello Santoro, Jean-Flavien Bussotti, and Paolo Papotti.

Accelerating Tabular Inference:

Training Data Generation with TENET. PVLDB, 18(12): 5303 - 5306, 2025.

doi:10.14778/3750601.3750657

PVLDB Artifact Availability:

Source code, data, and/or other artifacts: https://github.com/dbunibas/tenet.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750657

TENETName Age City
 t1  Mike 47 SF
 t2  Anne 22 NY
 t3  John 19 SF

Claim: "Mike is older than Anne"
Label: Supports
Evidence cells: {t1.Name:
"Mike", t2.Name: "Anne", t1.Age:
47, t2.Age: 22}

Claim: "Mike and Anne come
from the same city"
Label: Refutes
Evidence cells: {t1.Name:
"Mike", t2.Name: "Anne", t1.city:
"SF", t2.City: "NY"}

Training data
TNLI

Application

Test data

Example A Example B

Table: Person

Figure 1: Given a table and selected cells, Tenet creates train-

ing examples for TNLI: Example A’s hypothesis is contra-

dicted by the data; Example B’s is supported.

1 INTRODUCTION

Recently, a new class of applications has emerged in Natural Lan-

guage Processing (NLP) that focus on inference with structured

data as evidence, i.e., tabular natural language inference (TNLI),

which includes tasks such as computational fact-checking [3–5].

The most e�ective TNLI solutions are supervised and rely on

manually curated datasets [1, 3]. However, these datasets present

three major limitations. (i) They primarily cover generic topics us-

ing tables fromWikipedia, making them unsuitable for domains that

fall outside its coverage. (ii) Their scale and variety are signi�cantly

smaller than those available for textual Natural Language Infer-

ence. For instance, approximately 80% of the examples in ToTTo (a

widely used TNLI dataset) describe tabular data without incorpo-

rating mathematical expressions such as max, min, count, or value

comparisons. (iii) They contain biases and inaccuracies that can

negatively a�ect TNLI model learning.

The problem of the lack of labeled examples has been treated

in the literature for NLI. If some examples are given (warm start

setting), existing NLI augmentation methods can be used in the

TNLI setting: the text part of the example can be rewritten with

augmentation w.r.t. the (�xed) data. While these methods increase

the number of training examples, they do not enhance the variety

and complexity of the examples. Ultimately, this results in aminimal

impact on the accuracy of a TNLI task.

In this demonstration, we present a novel GUI built on top of

Tenet [2], enabling the rapid creation of ad-hoc training datasets for

TNLI model training. Figure 1 provides an overview of our method.

5303

https://doi.org/10.14778/3750601.3750657
https://github.com/dbunibas/tenet
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750657
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Starting with an existing table, the user selects a set of cells, named

evidence1. Tenet then uses this evidence and its relationships

within the table to generate a training set suitable for training an

inference model. Our GUI helps the user navigate the three key

steps of generating a TNLI training example.

Data Evidence. One intuition behind Tenet is that tabular data

inherently contains rich information suitable for generating new

training examples. The user begins by selecting an initial set of seed

cells, such as the yellow-highlighted cells in the Person table in Fig-

ure 1. Based on these seed cells, Tenet generalizes the underlying

pattern by generating evidence queries (e-queries). These queries

identify additional sets of cells that follow the same pattern within

the table. Each extracted set of cells serves as evidence to generate

a TNLI training example. For instance, the system automatically

extracts cells Mike, Anne, SF, and NY, which are then used as evi-

dence to generate Example A. This automated process ensures that

generated examples maintain logical consistency with the original

pattern. If more tables are available, the same e-queries are applied

to them to generate examples at scale.

Textual Hypothesis. Once the data is identi�ed, the next step is

to generate a textual statement (or hypothesis) for the annotated

example. Given a set of cells, we create semantic queries (s-queries)

that select the data evidence identi�ed by the e-queries. Indeed, a set

of cells can be identi�ed by multiple s-queries, e.g., an s-query with

a condition p1.age>p2.age or p1.city<>p2.city. Our intuition is that

each s-query describes the evidence using speci�c conditions (e.g.,

selections with constants) or constructs (e.g., aggregates). Given

an s-query, we use it to generate a textual hypothesis through

a prompting method that leverages the human-like generation

capabilities of large languagemodels (LLMs). This approach ensures

a diverse set of factual hypotheses— such as ‘Mike is older thanAnne’

in Example B in Figure 1 — while maximizing evidence coverage

and minimizing hallucinations. The GUI facilitates the exploration

of s-queries applicable to the generated evidence. By default, all

s-queries are executed for a given set of cells to get several examples.

Inference Label. Each generated example requires an associated

label. While Supports examples naturally arise when the hypothesis

aligns with the evidence in the table, generating Refutes examples

requires a controlled injection of errors into the data evidence. For

instance, in Figure 1, we change the City value of C2 from “NY”

to “SF”. Applying text generation to this “noisy” table produces

hypotheses that contradict the original clean data, such as ‘Mike

and Anne come from the same city’.

This demonstration extends the original system by introducing

8) an intuitive user interface that enables the fast generation of large

training datasets with minimal user e�ort; 88) a method for users to

explore and validate the generated training dataset to improve its

quality; 888) extended support for both closed and open LLMs. In

the following, we �rst describe our solution (Section 2). Then, we

illustrate how users engage with Tenet, using pre-loaded tables

or providing new ones (Section 3). We also demonstrate how the

generated training data improves the quality of target applications.

1User selection is not needed in the system, as automatic selection leads to high quality
examples [2]. Human interaction is enabled for a better demo experience.

Tables C

Data
Evidence

 Generation

Error
Injection

Hypothesis
Text

 Generation
evidence e

e e'
TENET

Existing examples T

queries
Q

LLM M
TNLI

application
A

Training
data D

Figure 2: Tenet overview: Existing examples are optional.

Supports any LLM and TNLI task (e.g., tabular fact-checking).

Figure 3: Evidence graphs derived from Example A in Fig. 1.

2 SYSTEM OVERVIEW

Problem Formulation. A textual hypothesis is a sentence in natu-

ral language. A Tabular Natural Language Inference (TNLI) applica-

tion takes as input a pair (table 2 ; textual hypothesis ℎ) and outputs

if ℎ is supported or refuted by 2 . Data evidence is a non-empty sub-

set of cell values from 2 , ranging from a small fraction [1] to the

entire table [3]. TNLI solutions rely on supervised models trained

on annotated examples. Our goal is to automate the generation of

this training data, reducing the need for costly manual annotation.

We address the example generation problem for a TNLI applica-

tion �, given the label space !, a corpus of tables � , and optionally,

a set of training examples ) for �. Each example consists of a

quadruple (ℎ, ;, 4, 2) with textual hypothesis ℎ, label ; ∈ !, set of

data evidence cells 4 contained in one relational table 2 in� . We as-

sume access to a large language model (LLM)" . We do not assume

access to the TNLI application � at hand.

In this demonstration, we present �rst the warm start version of

the problem, where some training examples for � are available and

used by Tenet. These examples may originate from an existing

annotated dataset or be provided by the user. In the cold start setting,

in which we do not assume available examples) , we allow the users

to select initial seed cells via the GUI.

Process. Tenet is designed around three main steps, as depicted in

Figure 2. Given a relational table 2 ∈ � , it �rst gathers the evidence

4 to produce a Supports example. Second, to generate a Refutes

example, it injects errors in table 2 to create its noisy version and

derive data evidence 4′. Third, a textual claim (hypothesis) ℎ is

generated for every data evidence 4 . The quadruple (data evidence

4 , textual claim ℎ, label Supports/Refutes, table 2) is a complete

example for training data � for the target TNLI application �.

Data Evidence Generation. Our intuition is that every example

contains data evidence 4ğ re�ecting a human-de�ned pattern. Users

can de�ne data evidence directly via the GUI if no examples are

available. Capturing these patterns allows us to e�ciently derive

additional sets of evidence. Given an existing example from ) , we

refer to it as the seed B . A complete example comes with its label ;ĩ ,

5304



the evidence set 4ĩ , a textual hypothesis ℎĩ , and the table used to

verify it 2ĩ . In the case of the demo, only 4ĩ is provided. Given the

set of cell values 4ĩ and table 2ĩ as input, we identify the evidence

query (or e-query) @ that outputs such 4ĩ among its results. The

e-query @ is generated through an evidence graph [2]. Each node

in the graph corresponds to a cell from 4ĩ , and a (directed) edge

across two nodes represents the relationship between their values,

e.g., equality, di�erence, greater than/less than. An example graph

derived from data evidence 4ĩ with tuples (Mike, 47), (Anne, 22) is in

Figure 3. The e-query @ can be derived from the evidence graph by

associating every tuple id across the nodes in the graph to a tuple

variable in @, and exploiting the edges relationship in the WHERE

clause. From the evidence graph in Figure 3, we generate e-query @:

q: SELECT c1.Name, c2.Name as Name2, c1.Age, c2.Age as Age2

FROM people c1, people c2

WHERE c1.Age > c2.Age AND c1.Name <> c2.Name

Executing e-query @ over the original table 2ĩ , we obtain more

data evidence 41, . . . , 4Ĥ following the data pattern in 4ĩ . Assume

another table 3Ĥěĭ has schema: player(name, weight, height). As

Name and Age from Figure 1 match the data types of player.name

and player.weight, respectively, the system generates e-query @′:

q':SELECT c1.name, c2.name as name2, c1.weight, c2.weight as weight2

FROM player c1, player c2

WHERE c1.weight > c2.weight AND c1.name <> c2.name

Query @′ selects cells from the new table ?;0~4A with the same

pattern of example C to generate new training examples. This

method generatesmultiple new e-queries, depending on the number

of available tables and compatible attributes.

In the cold start scenario, where no initial examples are provided,

Tenet enables users to directly select initial seed cells via the GUI.

These seeds are used to automatically derive meaningful evidence

queries, ensuring e�ective bootstrapping and the rapid generation

of training examples even without any pre-existing labeled data

Textual Hypothesis Generation.Given a set of cells 4 , we want to

generate a textual hypothesis that describes them (data-to-text gen-

eration). Data evidence 4 can be described by several SQL queries

that identify it in the table. These queries are alternative ways to de-

scribe the data. By computing such queries, we immediately obtain

a semantic characterization that can be used to generate di�erent

textual hypotheses. Given a table 2 and data evidence 4 , a semantic

query (or s-query) over 2 returns exactly 4 . The goal is to achieve

diversity in queries for the same set of cells, in terms of variety at

the intensional level (over the data description). We identify several

s-queries that could be discovered by Tenet [2]. For example, an

s-query @1ĩ extends @ by adding constraints in theWHERE clause,

such as c1.Name=‘Mike’ AND c2.Name=‘Anne’. The purpose of @1ĩ
is to compare two individuals based on their age, with the condi-

tion c1.Age > c2.Age encoding the semantic meaning that Mike

is older than Anne. By further adding the constraints c1.Age >

19 AND c2.Age > 19 to @1ĩ , we obtain the s-query @2ĩ , which re-

�nes the comparison by �ltering the individuals considered to only

those older than 19 (where 19 is derived from the data). Moreover,

Tenet supports s-queries that take into account the selected cells

in relation to the entire dataset, allowing the formulation of global

hypotheses over the data. A single evidence could generate more

s-queries. Once the s-queries for each evidence 4 have been identi-

�ed, we use the discovered semantic associated with each query to

prompt the LLM" to generate the textual hypothesis. The prompt

contains the evidence 4 and the semantics to generate the textual

hypothesis thanks to the conditions in the WHERE clause. Figure 4

contains more examples obtained with s-queries.

Evidence: Cells for {Name, Age}
Sentences:
• John is the youngest
• Mike is the oldest
• The average age is 29.3
Label: Support

Evidence: Cells for {Name, Age, City}
Sentences:
• There are two persons from SF and one from NY
• Persons from SF on average are older than persons
from NY
Label: Support

Figure 4: Supports examples generated from data in Figure 1.

Label Generation. By construction, the evidence from the gener-

ated data re�ects the semantics expressed in the input table. Such

evidence leads to an example with a Supports label w.r.t. the data in

the table. However, applications also need examples with a Refutes

label, i.e., textual claims not supported by the input. We tackle this

problem through an error injection approach, perturbing the input

table to disrupt the original relationships among the cell values.

This new version is then used to identify a set of evidence again 4′

through the same e-query @, which leads to a textual hypothesis

that does not re�ect the semantics of the original (clean) table.

3 DEMONSTRATION

The demonstration is structured in two parts. First, we generate

examples for TNLI applications using the GUI. We then show how

such examples improve result quality in a target application.

3.1 Example Generation

At the beginning of the demo, the visitors will load an existing

scenario or create a new one with their own dataset.

Step 1. Figure 5 shows the evidence selection and new evidence

generation steps. The visitor, after loading the dataset, selects a set

of cells as evidence 4 . In Figure 5(1.1), the selection contains (Mike,

47) and (John, 59) from two tuples. Tenet generates the e-query @

and allows the user to set the number of Supports (Refutes) new

evidence to generate as shown in Figure 5(1.2).

Step 2. The visitor inspects the new data evidence generated using

@ through tabs. Figure 6 (2.1) shows a new evidence generated with

di�erent cells for a Support example: (Anne, 22) and (John, 19).

Figure 6 (2.2) shows a evidence generated for a Refutes example.

Indeed, John’s age has been changed from 59 to 47.

Step 3. Given the selected evidence, the visitor can apply one of

the possible s-queries available for such evidence. By default, all

s-queries that apply are executed to get more examples. Figure 6

(3) reports a generated example: the user selected, as a s-query, a

comparison over the attribute age. Then the user selected the num-

ber of sentences to generate and obtained the textual hypotheses.

Both generated sentences (‘John is younger than Mike as Mike’s age

is 48 and John’s age is 47’, ‘John is younger than Mike’) are Refutes

examples w.r.t. the original data in Figure 5.

Step 4. Finally, the visitor can export the generated examples

as a training dataset for the target application. We also provide

a Python API to automatically generate the training set without

using the user interface.

5305



1.1

1.2

Figure 5: The user selects a set of cells (1.1) and Tenet gener-

ates the evidence query (1.2). Positive (negative) evidence is

used for Supports (Refutes) training examples.

In the current implementation, Tenet supports both GPT and

any open model as LLM for the text generation step. During the

demonstration, the visitor could select the LLM and experiment

with the di�erences in the generated sentences.

3.2 Target Application: Fact-Checking

We present an experimental evaluation of the generated training

examples on Feverous [1], a fact-checking dataset. The original

dataset contains training and test sets of manually written exam-

ples. Every example consists of a table, a textual hypothesis, the

data evidence (a subset of the table), and a Supports/Refutes label.

For each example, we generate the evidence query 4ħ from the data

evidence. Then we select all the tables in Feverous with the same

attribute names used in 4ħ , we name them 2><?0C81;4 . We apply

4ħ to every 2><?0C81;4 table and we use the subsequent steps in

the Tenet pipeline. We select 100 training examples from Feverous

and train the end-to-end Feverous baseline [1] achieving an accu-

racy of 0.597. Next, we apply our approach by deriving e-queries

from the original evidence and applying them to 2><?0C81;4 tables,

automatically generating approximately 4,000 additional training

Figure 6: The user could inspect the generated new evidences.

2.1 (2.2) reports a new positive (negative) evidence. The user

applies one of the proposed s-queries to generate the text (3).

examples. Training the same end-to-end Feverous baseline on the

expanded dataset yields an accuracy of 0.644, representing an 8%

improvement with no additional user e�ort. The same experiment

can be reproduced with the examples generated starting from the

data annotations from the audience during the demo.

This use case also shows that Tenet e�ciently scales with the

number of tables by using SQL query generation and execution.

SQL enables the system to handles large volumes of data and varied

schemas, limiting the interaction with LLMs to their inference for

sentence generation.

The demonstration further illustrates Tenet ’s scalability to

complex table schemas and its adaptability across diverse domains.

Users can explore additional scenarios, such as generating TNLI

examples from �nancial statements (comparing revenues across

periods) or medical databases (verifying patient clinical records).

This �exibility underscores Tenet’s broad applicability and value

for di�erent types of structured datasets.

REFERENCES
[1] Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull, James Thorne, Andreas

Vlachos, Christos Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. 2021.
FEVEROUS: Fact Extraction and VERi�cation Over Unstructured and Structured
information. In NeurIPS (Datasets and Benchmarks). 1–13.

[2] Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti. 2023.
Generation of Training Examples for Tabular Natural Language Inference. Proc.
ACM Manag. Data 1, 4 (2023), 27.

[3] Vivek Gupta, MaitreyMehta, Pegah Nokhiz, and Vivek Srikumar. 2020. INFOTABS:
Inference on Tables as Semi-structured Data. In ACL. Association for Computa-
tional Linguistics, 2309–2324.

[4] Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer.
2020. Scrutinizer: A Mixed-Initiative Approach to Large-Scale, Data-Driven Claim
Veri�cation. Proc. VLDB Endow. 13, 11 (2020), 14.

[5] Preslav Nakov, David Corney, Maram Hasanain, Firoj Alam, Tamer Elsayed, Al-
berto Barrón-Cedeño, Paolo Papotti, Shaden Shaar, and Giovanni Da San Martino.
2021. Automated Fact-Checking for Assisting Human Fact-Checkers. In IJCAI.

5306


	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration
	3.1 Example Generation
	3.2 Target Application: Fact-Checking

	References

