
The Polymorphism Maze:
Understanding Diversities and Similarities in

Malware Families

Antonino Vitale1�[0009−0002−8452−4532], Simone Aonzo1[0000−0001−9547−3502],
Savino Dambra2[0000−0002−0988−9366], Nanda Rani3[0000−0003−1255−5284],

Lorenzo Ippolito15[0009−0008−7978−6777], Platon Kotzias4[0000−0003−3375−6069],
Juan Caballero5[0000−0003−2962−1348], and Davide

Balzarotti1[0000−0001−5957−6213]

1 EURECOM, France
{Antonino.Vitale, Simone.Aonzo, Davide.Balzarotti}@eurecom.fr

2 GenDigital, France
savino.dambra@gendigital.com

3 Indian Institute of Technology Kanpur, India
nandarani@cse.iitk.ac.in

4 BforeAI, USA
platon@bfore.ai

5 IMDEA Software Institute, Spain
juan.caballero@imdea.org

Abstract. In this work, we explore the complexities introduced by poly-
morphism in malware families, a tactic used by malware authors to alter
the appearance of their code and evade detection mechanisms, result-
ing in a growing volume of unique malware samples. We examine 66,160
malicious Portable Executable (PE) files grouped into 743 families from
three popular malware datasets. Our research addresses three key ques-
tions: measuring structural component-level differences between PE files,
identifying prevalent polymorphic techniques affecting multiple compo-
nents, and pinpointing component-level causes of polymorphism.
We introduce a methodology for component-level structural comparison
of PE files and apply it to investigate the diversity and similarity of sam-
ples within a family, considering factors such as packing and truncation.
Our study reveals that polymorphism in malware is driven by multiple
overlapping factors, extending beyond just the use of packing tools. These
findings highlight the complex nature of malware families and inform
future research, improving our understanding of malware variations and
their implications.

Keywords: Malware Polymorphism · Static Analysis · Malware Simi-
larity

1 Introduction

What is a malware family? Despite decades of research and thousands of papers
on malware, the scientific community lacks a precise definition. One possible

2 A. Vitale et al.

definition is that a malware family consists of different malicious samples (i.e.,
different by file hash) derived from the same code base, analogous to how a
program is defined in the benign case. Samples within a family are expected to
share common characteristics, behaviors, and attribution to the same authors [1].

However, malware authors often adopt a wealth of techniques to introduce
polymorphism (e.g., by re-packing samples) so that the same malware family
version produces a large number of variants that are derived from the same
source code but differ in their representation, i.e., have a different file hash.
Polymorphism can also be introduced in other ways. For example, file infectors
inject their code into other benign executables. Because of this, polymorphism is
often cited as the main reason behind the large number of new malware samples
routinely collected and analyzed by the security industry [16].

In summary, many reasons can be behind the differences (namely, polymor-
phism) between samples within the same family. What is more important is
that these differences are not just a curiosity, but they also impose severe conse-
quences for the analysis, detection, and classification of malware. For instance,
we expect AntiVirus (AV) signatures to capture not a single sample but an en-
tire family (or a part of it). Similarly, we expect ML models trained to recognize
a given family to succeed when tested on new samples that belong to the same
family. But this ability to generalize largely depends on why samples differ in
the first place. Small differences in the PE header do not have the same impact
as re-packing the code with a different protector.

This paper aims to provide the first comprehensive exploration of the reasons
behind the polymorphism in the samples belonging to the same malware fam-
ily. For this, we leverage three malware family datasets (the recently-proposed
dataset by Dambra et al. [15], the MOTIF dataset [3], and the Malicia dataset [33]),
building a superset composed of 66,160 samples split into 743 families. Our anal-
ysis involves a static examination of malware samples to understand the syntactic
variations within samples belonging to the same malware family. Static analysis
is preferred for examining such syntactic characteristics, whereas dynamic anal-
ysis is necessary for assessing behaviors. However, in our dataset, the behavioral
similarities among the samples are already captured by the family labels assigned
to the samples. More specifically, our work is organized to answer the following
three Research Questions:

RQ1: How can we measure the structural differences among multiple sam-
ples from the same family? At first, in Section 3, we break down the PE file
format in a number of disjoint components, that fully cover the whole PE file
format structure and content. Then, given two executables, we design a struc-
tural comparison approach to precisely locate their differences and similarities
at the component level. We implement our approach in an open-source tool we
named PEdiff [4].

RQ2: What are the polymorphic techniques that affect multiple components,
and what is their prevalence? In Section 4, we examine two main reasons for
cross-component differences: file truncation and packing. Truncation occurs when
the expected size of a sample is larger than the real size of the file on disk. Trun-

Understanding Diversities and Similarities in Malware Families 3

cation occurs due to errors during sample collection (e.g. samples extracted from
network traffic where packets were missing). Packing is a technique that com-
presses or encrypts code on disk and then recovers it at runtime. We measure
packing in two ways: by using state-of-the-art signature-based tools to reliably
detect known off-the-shelf packers and by implementing a machine learning (ML)
classifier proposed by Aghakhani et al. [6] to also identify custom packers.

RQ3: What are the many reasons of polymorphism at the component granu-
larity? In Section 5, we examine polymorphism in one or multiple components.
Our results show that two-thirds of the families have no common components
among their samples, meaning that all the PE components are at least slightly
different. On the other hand, for 12.8% of the families, we were able to pinpoint
the single reason behind the polymorphic variants.

In summary, we first developed a novel methodology for the structural com-
parison of PE files. Then, we highlighted the importance of two common elements
(packing, truncation) which are crucial for the construction of malware datasets.
We advocate for the community to conscientiously consider the elements they
wish to exclude or include in their studies, given the potential bias these de-
cisions may introduce. Lastly, we conducted a comprehensive measurement of
polymorphism across 743 malware families. This analysis provides valuable in-
sights for future research, enabling a targeted focus on the most prevalent trends
and the timely development of appropriate solutions.

Finally, the scientific significance of this work is particularly relevant in the
context of the design and evaluation of robust ML classifiers: we believe that their
(in)ability to generalize to different samples needs to be always corroborated by
an analysis of the variability of samples within the families in the dataset.

2 Dataset

We use three datasets of malware samples, each consisting of Windows PE exe-
cutables labeled with the family to which the sample belongs.

Dambra et al. [15]. We use their balanced dataset which contains 67,000 hashes
of 32-bit PE files that appeared in the VirusTotal (VT) feed between August 2021
and March 2022. The samples are equally divided among 670 malware families,
i.e., 100 samples per family. The family labels were obtained by processing the
VT reports using AVClass [42]. We download the hashes and family labels from
their repository [2] and then download the samples and their reports from VT.

MOTIF [25]. This dataset contains 3,095 PE malware samples from 454 fami-
lies. Samples and family labels come from threat reports published by 14 major
cybersecurity organizations between January 2016 and December 2020. We ob-
tained the list of sample hashes and family names from the MOTIF repository [3]
and then downloaded the samples from VT. MOTIF is largely imbalanced. Of
the 454 families, 131 (29%) have only one sample, while only 91 (20%) have at
least 10 samples.

4 A. Vitale et al.

Type Components

Metadata DOS Header, DOS Stub, Rich Header †, COFF Header, Optional Header,
Data Directories †, Section Table

Sections Entry Point Section, Resource Section †, Other Sections †

Extra Certificate Table †, Overlay †

Table 1: Components of a PE executable and their type. The dagger † indicates
an optional component.

Malicia [33]. The Malicia dataset contains 9,908 Windows PE malware samples
collected from drive-by downloads between March 2012 and February 2013 [33].
Labels for the samples were generated by clustering the samples using network
features and screenshots obtained during the sample’s execution, and the embed-
ded icon. We obtained the samples and family labels from the dataset authors.
Malicia is also largely imbalanced with 23 (43%) families having only one sample,
while only 13 (25%) have at least 10 samples.

Final dataset. We start with the Dambra et al. dataset and add families from
MOTIF and Malicia with at least 10 samples, which we consider the minimum
to analyze differences within a family. We exclude families already present in the
balanced dataset. For families with over 100 samples we randomly selected 100
samples. This procedure outputs 68,683 samples split into 746 families.

As we elaborate in Section 4.1, we identified truncated samples in the datasets.
We removed the truncated samples and also families with less than 10 non-
truncated samples. In the end, the final dataset used in this study comprises of
66,160 samples distributed in 743 families.

3 Structural Comparison

While samples in a family differ in file hash, they may exhibit similarities, while
their differences may be concentrated on specific parts. To examine similarities
and differences within a malware family, we have designed a methodology for
structural comparison of executables. It first divides each executable into 12
disjoint components, described in Section 3.1, that fully represent the PE exe-
cutable format [30]. Next, it performs pairwise comparisons of all executables in
a family at the component level, categorizing components as unchanged, similar,
or different, as detailed in Section 3.2 We have implemented our methodology
into PEdiff [4], an open-source tool comprising 1K lines of Python code.

3.1 PE Components

We split each executable into 12 disjoint (i.e., non-overlapping) components that
capture its structure, depicted in Table 1. We grouped them into three parts:

Understanding Diversities and Similarities in Malware Families 5

the Metadata contains the first seven components, which do not carry the actual
content of the executable but define its structure and properties, the Sections
which contain the code and data of the executable, and the Extra, which consists
of components that are appended at the end of the file. Of the 12 components,
six are optional and may not exist.

Within the Metadata, the DOS Header and DOS Stub correspond to the
legacy MS-DOS information that is still present for compatibility. The COFF
header and Optional Header capture the homonymous PE headers. The Rich
Header is an undocumented component containing information about the tool
versions used to build the different object files in the executable [50]. The Data
Directories is an array of 16 entries, where each entry contains the start offset and
size of a data directory, including the export, import, resource, and certificate
tables. The Section Table is an array that defines the name, start offset and the
size of the sections that form the main body of the executable.

We identify three Sections components: The Entry Point Section is the sec-
tion that contains the AddressOfEntryPoint field of the Optional Header. The
Resources Section is a special section that contains a tree structure holding data
items such as strings, images, and icons. Finally, the Other Sections component
captures all other sections in the executable that do not contain the entry point
or the resources. This is the only component that does not necessarily correspond
to a contiguous sequence of bytes, since the order of the sections is defined in the
Section Table and the entry point and resources sections may not be the first or
last sections.

Executables may contain two optional Extra components. For signed exe-
cutables, the Certificate Table contains a digital signature and a list of X.509
certificates for validating the file’s integrity and the identity of the publisher.
The Overlay component captures data appended at the end of an executable.
This data is not described in the PE header, thus it is ignored by the loader.
However, it is accessible by reading it directly from the file on disk. The presence
of an overlay can be identified because the file’s expected size (i.e., the sum of
the start offset and size of the last section) is smaller than the real size of the
file on disk. Some tools consider the certificate table to be an overlay. However,
we consider it a separate component because its start offset and size are defined
in the Data Directories and thus its existence is known to the loader. For signed
samples, we consider that an overlay exists if and only if there is additional data
after the end of the certificate table.

3.2 Family Component Analysis

Given the samples in a family, our goal is to identify which components are
similar and different in the family. For this, we compare the contents of a com-
ponent across all pairs of samples in the family. For each component in each
pair of samples, we apply a pairwise similarity function to determine whether
the contents of the component across the two samples are similar or not, and
accumulate results across all pairs of samples.

6 A. Vitale et al.

Pairwise similarity. We experiment with three Boolean similarity functions
that given the content of a component in two samples determine whether the
component is similar. The first function computes the SHA256 hash of the se-
quence of raw bytes of the component6 and checks if both hashes are the same.
This is the strictest similarity function requiring both samples to have identical
content in the component. The second function computes instead the TLSH [34]
fuzzy hash over the components’ raw bytes. Fuzzy hashes output similar digests
when the inputs are similar. Among all the fuzzy hashes available in the wild,
we chose TLSH because it is the one that can produce a hash for the smallest
stream of bytes, given that the minimum size is 50 bytes. Thus, it can handle
most of the smallest components that are usually headers. Other fuzzy hashes
could require very large minimum sizes (e.g. SSDEEP requires at least 4KB to
compute the hash). TLSH returns a distance in the x ∈ [0,∞) range, which
we normalize (y = max{ 300−x

3 , 0}) to a similarity in the y ∈ [0, 100] range as
suggested by other works [36, 47]. The component values are considered similar
if the TLSH similarity was ≥ 90, as proposed by Oliver et al. [34]. This func-
tion is more lax because it considers the component values to be similar even
if they are not identical, as long as the raw byte differences are small. Pagani
et al. [36] showed that TLSH can remain robust when small modifications are
introduced in the code; however, they also observed that compiling the exact
same source with seemingly minor tweaks (such as slightly different compiler
flags) can result in anything from negligible differences to extensive ripple ef-
fects in the final executable. Therefore, we compute the code similarity using
the popular BinDiff [18] tool, which disassembles both executables (using IDA
Pro 8.1 in our setup) and uses graph isomorphism and heuristics to match their
functions. It returns a similarity value in [0, 1]. The advantage of BinDiff is that
it disassembles the code and thus can ignore differences in the data between code
blocks and handle some code reordering. But, it only measures code similarity,
so we only apply it to the Entry Point Section component. We determine that
the Entry Point Section of two samples is similar if their BinDiff similarity is
> 0.85, as suggested by Egele et al. [17].

Family components. To determine if a component is similar, different, or
missing across a family we use Algorithm 1. It takes as input the 10 ≤ n ≤ 100
samples that belong to a family, a similarity function, and a threshold t. For each
component c, it initializes to zero two counters: Cc

d and Cc
p. The first captures the

number of pairs a component differs and the other the number of pairs where the
component is present. For each of the n(n−1)/2 pairs of samples in the family, it
compares each of the 12 components. If a component c is present in both samples
and is similar, it increments both counters for the component; if present in only
one sample, the counters are not modified; and if the component is absent in
both, it increments Cc

d. Once all pairs of samples have been analyzed, counters
are normalized by dividing them by the number of pairs. For each component,
if Cp ≥ t and Cd ≥ t, the component is deemed similar (present and consistent
6 For the Other Sections component, we sort the sections according to their offset,

concatenate their raw bytes, and compute the SHA256 of the resulting buffer.

Understanding Diversities and Similarities in Malware Families 7

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Threshold

0

100

200

300

400

500

600

Fa
m

ilie
s

SHA256 - None in common
SHA256 - 1-3 common
SHA256 - Others
TLSH - None in common
TLSH - 1-3 common
TLSH - Others

Fig. 1: Number of families with none, 1-3 or more than 3 common components
by varying the threshold, and using SHA256 or TLSH.

in most samples), if Cp < t and Cd < t, the component is present with varying
values and is classified as different, and if Cp < t and Cd ≥ t, the component is
often missing and thus should be ignored as there is not enough information.

Threshold selection. Requiring a component to be similar across all pairs of
samples (i.e., t=1.0) is too strict, e.g., some samples could have wrong family
labels. Instead, we evaluate lower threshold values that allow a fraction of pairs
to differ. Figure 1 presents the number of families with none, few (1-3), or many
(>3) common components while varying the threshold t for both SHA256 (solid
lines) and TLSH (dashed lines). The results show clear differences between both
pairwise similarity functions. Using SHA256, raising the threshold increases the
number of families with no similar components gradually from 405 at t=0.6 to
510 at 0.9, while the number of common components gradually decreases in op-
posite fashion. In contrast, using TLSH the number of families with no common
components remains fairly constant around 20 and only starts to increase at
high thresholds. Our manual analysis shows that using TLSH is problematic
with small data components (i.e., PE headers in Metadata) where component
similarity is determined even when important fields differ. Thus, we conclude
that using the stricter crypto hash is more appropriate to analyze polymor-
phism. While changing the threshold of the crypto hash affects a relatively small
subset of families, too low a threshold reduces confidence that components are
truly shared, while too high a threshold increases the risk of discarding slightly
different but essentially similar data. For the experiments in Section 5 we use the
SHA256 pairwise similarity with a threshold of 0.75 which we have observed to
strike a good balance by tolerating small differences without overlooking mean-
ingful commonalities.

8 A. Vitale et al.

4 Cross-Component Analysis

Before proceeding to the analysis of individual components, we analyze different
sources of variability that are not specific to a component but may instead affect
the entire PE file structure: file truncation and packing.

4.1 Truncation

Millions of malware samples are collected and shared daily by various companies
and services. Some are retrieved directly from filesystems by endpoint protection
systems, while others come from emails, compressed archives, network traffic, or
memory. Additionally, files may be pre-processed by tools like unpackers. During
this collection and transformation process, a sample might become truncated,
either intentionally or unintentionally. Truncated samples can be identified be-
cause their expected size (i.e., the sum of the start offset and size of the last
section) is larger than the real size of the file on disk. One caveat is that if a
sample has an overlay and the truncation only affects the overlay, then trunca-
tion cannot be detected as the overlay is not described in the PE headers. Among
the 68,683 samples in the three datasets, 2,504 (3.6%) are truncated. Of those,
the vast majority (2,486) belong to the Balanced dataset and 18 come from MO-
TIF, with Malicia having none. Truncated samples are distributed among 42.9%
(320/746) of the families, showing that truncation is indeed a widespread phe-
nomenon. We found 1.9% (14/746) families where more than half of the samples
are truncated. The families with the majority of truncated samples are: stone
(97%), kuaizip (92%), ranumbot (88%), duote (87%), and spybot (82%).

To measure the missing part, we define the truncation ratio as the quotient
of the missing bytes (expected size minus real size) over the expected size. The
mean truncation ratio is 50.2% (median 52.9%), indicating that, on average,
more than half of the expected file size is missing in truncated files. Then, by
analyzing which components are impacted by truncation, we found that the offset
from which bytes begin to be missing always starts at least after the Section
Table; thus, truncation affects sections, resources, certificates, and overlay.

Another aspect of the truncation is whether the truncated samples came from
the same original sample (i.e., the only difference is the truncation size). Thus,
for each family, we compared all the truncated samples by checking whether the
smaller sample was once again a truncated version of the largest. This analysis
revealed 77 (10.3%) families having at least 2 samples coming from the same
original executable and truncated in different points. The extreme case is one
family, spybot, where 80 truncated samples come from the same original file that
has been truncated at different offsets.

While truncated files are rarely, if ever, mentioned in malware studies, their
consequences are very important. For instance, truncated samples cannot be exe-
cuted, and thus fail dynamic analysis. But also static signatures may not match,
and even popular static analysis tools produce confusing results when run on
truncated files. For example, the popular pefile [5] (a multi-platform Python

Understanding Diversities and Similarities in Malware Families 9

module to parse PE files) erroneously reports an inexistent overlay on all trun-
cated samples. Given that also VirusTotal uses pefile to parse PE executables,
VT often reports truncated samples having a non-existent overlay.

We remove the truncated samples, as well as any families with less than 10
non-truncated samples, from the dataset. The dataset used in the remainder of
this paper has 66,160 samples distributed in 743 families.

4.2 Packing

We adopt a broad definition of packing, encompassing all transformations ap-
plied to a PE file—such as encryption, compression, or encoding—that require
a runtime component to recover the original data. While these transformations
primarily aim to thwart static analysis, they can also generate vastly different ex-
ecutables by re-packing the same sample with different algorithms or encryption
keys. Consequently, packing is often regarded as a key driver of polymorphism.

Accurately detecting packed samples is a challenging task and an active re-
search area. To address this, we employ two state-of-the-art approaches. Signature-
based tools are effective at detecting known off-the-shelf packers, offering low
false positives (FPs). However, they suffer from false negatives (FNs) due to their
inability to identify custom packers or all instances of off-the-shelf packers. To
overcome these limitations, we incorporate an ML classifier capable of detecting
both less common off-the-shelf packers and custom packing routines. However,
the classifier may overestimate the number of packed samples. In summary, we
use signature-based tools to establish a lower bound and the ML classifier to set
an upper bound on packing presence in our dataset.
Signature-based tools. We use two publicly available signature-based packer
detection tools: PackGenome [27] and Detect-it-Easy [20]. PackGenome gener-
ates YARA rules from dynamic traces of the unpacking routine collected during
program execution. The authors released the code for generating YARA rules
for 20 off-the-shelf “accessible” packers. These rules identify 24,134 (36.5%) sam-
ples as being packed. The most commonly reported packers are UPX (48.6% of
detected samples), WinLicense (31.7%) and PECompact (9.8%). The popular
open-source Detect It Easy (DiE) tool, whose output is included in the VT re-
ports at the time of writing, identified 15,704 samples (23.7%) being packed. The
top-3 packers identified are UPX (58.8% of detected samples), ASPack (12.3%)
and VMProtect (9.5%).
ML classifier. We implement a packer classifier by leveraging the datasets and
the feature classes proposed by Aghakhani et al. [6]. On their datasets, we used
the same nine static feature classes (56,485 individual features) they extracted
to train a Random Forest classifier that predicts whether a sample is packed or
not. We used 10-fold cross-validation to train and test the classifier and obtained
an overall F1-score of 0.96. When applied to our dataset, the classifier predicted
55,773/66,160 (84.3%) samples as packed.

In summary, signature detection tools identify 23.7%–36.5% samples as packed,
while the ML classifier identifies instead a much higher 84%, as summarized in

10 A. Vitale et al.

Samples Families
Component Present Present(0%) Present(≥50%) Present(100%) Differs OnlyDifference

DOS Header 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 524 (70.5%) -
DOS Stub 65,059 (98.3%) 3 (0.4%) 734 (98.8%) 655 (88.2%) 484 (65.1%) -
Rich Header † 42,577 (64.4%) 94 (12.7%) 497 (66.9%) 168 (22.6%) 494 (66.5%) -
COFF Header 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 622 (83.7%) -
Optional Header 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 652 (87.8%) 1 (0.1%)
Data Directories † 66,148 (99.9%) - 743 (100.0%) 741 (99.7%) 638 (85.9%) -
Section Table 66,160 (100.0%) - 743 (100.0%) 743 (100.0%) 642 (86.4%) -
Entry Point Section 66,155 (99.9%) - 743 (100.0%) 739 (99.5%) 637 (85.7%) 2 (0.3%)
Resource Section † 57,230 (86.5%) 27 (3.6%) 661 (89.0%) 385 (51.8%) 625 (84.1%) 1 (0.1%)
Other Sections † 64,734 (97.8%) 3 (0.4%) 731 (98.4%) 583 (78.5%) 636 (85.6%) 7 (0.9%)
Certificate Table † 11,257 (17.0%) 344 (46.3%) 108 (14.5%) 19 (2.6%) 188 (25.3%) 1 (0.1%)
Overlay † 31,096 (47.0%) 87 (11.7%) 319 (42.9%) 87 (11.7%) 493 (66.4%) 37 (5.0%)

Table 2: Component statistics. For each component, number of samples where
the component is present, number of families where the component is present
in none/half/all samples, number of families where the component differs, and
number of families where the component is the only one with differences. A dash
means zero in all columns. A dagger † indicates an optional component.

Table 3 in Appendix. It is likely that the real fraction lies somewhere in be-
tween, so we use these numbers as lower and upper bounds, respectively. We
illustrate the differences between both packer detection approaches using pri-
vateexeprotector, which has been mislabeled as a malware family but is rather
a commercial protector. When the dataset by Dambra et al. [15] was created,
AVClass taxonomy did not yet classify it as a packer, leading to its mislabel-
ing. Executables labeled privateexeprotector may belong to different malware
families using the same protector. Of 100 samples, 13 are tagged as "Private
EXE Protector" by signature-based tools, 2 as UPX, and 87 remain undetected,
showing high FNs. In contrast, the ML classifier detects 99 samples as packed,
demonstrating minimal FNs, although potentially introducing FPs.

Finally, we noticed that many families use different off-the-shelf packers, a
quick shortcut to achieve polymorphism. The most extreme cases are 8 families
that use at least 15 different packers. In fact, we computed the Pearson corre-
lation between the number of different components in each family and the total
number of unique off-the-shelf packers in that family. We obtained a moderate
relationship (0.42, p-value = 6.0e−34), namely, more packers, greater difference.

5 Component Analysis

We now use PEdiff to understand in which parts of a PE file the differences
among samples of the same family are located. Section 5.1 first examines how
frequently each component exists. Then, Section 5.2 identifies similar and differ-
ent components in families. Section 5.3 examines where their polymorphism is
being introduced in individual components.

Understanding Diversities and Similarities in Malware Families 11

5.1 Component Presence

Table 2 summarizes the presence of individual components in the dataset. Most
required components are present in all samples (DOS Header, COFF Header,
Optional Header, Section Table). Optional components vary significantly in pres-
ence. Three are common: Data Directories (present in 99.9% of samples), Other
Sections (97.8%), and Resource Section (86.5%). Less common optional compo-
nents include the Rich Header (64.4%), Overlay (47.0%), and Certificate Table
(17.0%). The presence of an optional component is not consistent across all sam-
ples in a family. For example, while 399 (53.7%) families have some signed sample
and 656 (88.3%) families have a sample with an overlay, only 19 (2.6%) families
have all samples signed and only 87 (11.7%) have an overlay in all samples. Sim-
ilarly, there are 94 families (12.7%) where no sample has the Rich Header, 168
(22.6%) where all samples have it, but in the majority of families some samples,
but not all, have it (87.3%).

5.2 Similar and Different Components

This section examines how many similar and different components there are in
each family. Roughly two-thirds of the dataset, specifically 454 families, contain
samples with no components in common, i.e., where all parts of the PE files are,
at least partially, different. Among the remaining 289 families, 95 families contain
largely similar files, with only one, two, or three different components and 157
families contains instead files that are all different except for 1–3 components.

We examine these three family groups separately. In most families, differ-
ences among samples span all PE file components, not just localized parts. This
suggests malware authors did not achieve polymorphism by altering a few bytes
or simply re-compiling (which would preserve sections like data, resources, and
the Rich Header). For the 42,498 samples in this group, 40.1% are packed ac-
cording to the signature-based tools, 84.7% according to the ML classifier, and
90.4% when combining both methods. Of the samples in the remaining 289 fam-
ilies (23,662 samples), 38.4% are packed according to the signature-based tools,
83.6% according to the ML classifier, and 90.4% using both methods. Despite
slightly higher percentages in the first group, the difference is too small to at-
tribute polymorphism to packing alone.

We focus on families with files sharing few common components. The most
consistent components are the DOS Header and Stub, in 95 and 131 families
respectively, and the Rich Header, in 21 families. In highly similar families,
the most variable component, is the overlay (78 families), appearing over three
times more frequently than others like other sections (22), resource (17) and
entry point (14) section. Rare differences include headers and, in three families,
only the Certificate Table.

5.3 Individual Component Polymorphism

So far, our analysis has been binary—components were either identical or differ-
ent. In this section, we explore differences and similarities in greater detail. For

12 A. Vitale et al.

example, over 5% of the families in our dataset contain samples that differ only
in their overlay. What do these overlays look like? Are they entirely different, or
do they contain only a few unique bytes? To address these questions, we examine
each component individually.

Rich Header. The Rich Header is an optional and undocumented component,
which can be useful to detect if two executables may come from the same project.
Among the 494 (66.5%) families where the Rich Header is different, in 12 families
the entry IDs are similar, and in 4 family also its counts meaning that most
objects used to build the samples are common.

Entry Point Section. This component contains the very first instruction of
the program and thus can be considered a code section. The SHA256 pairwise
similarity identifies 41 (5.5%) families where this component does not change
at all and another 65 (8.7%) families where this component is similar. For the
remaining 637 (85.7%) families, we use the BinDiff similarity to compare their
code, identifying an additional 7 families with similar code. For 37/637 (5.81%)
families BinDiff failed to properly disassemble all the samples, mainly because
the entry point address points to invalid code. Such behavior is a common eva-
sion technique in malware, where a custom loader, often implemented via TLS
callbacks, dynamically reconstructs the correct code during runtime.

Resource Section. Among the 625 (84.1%) families where the resource section
differs, there is one family (dostre) where this component is the only difference.
The difference is in the resource values, in particular, there is one specific Bitmap
resource whose value keeps changing. We manually reversed the code and discov-
ered that the malicious code’s payload (extracted and executed at runtime) was
encoded within that image. We also identify four families (moarider, winloadsda,
axespec, sohana) where their only difference lies in the order of the resource
names, three families (blackshades, umbra, virfire) for which the resources are
the same, but the padding of the section differs, ten families where the difference
is in the Resource Table but not in the resources identifiers, and another (lolbot)
has the only difference in a single string that changes for all the samples. The
observed variations in the samples are likely introduced intentionally to achieve
hash-bursting and, subsequently, polymorphism.

Other Sections. This component includes default sections with a pre-defined
purpose (e.g., .idata, .bss, .rdata). But it is possible to create custom sections
as well. This is the case of packers, which usually create one section for acco-
modating the unpacked payload. For one family (ezsoftwareupdater) the only
difference in the whole executable is a single 32-byte string in the .rdata section,
containing hexadecimal characters, likely a unique identifier, and in another
family (stormattack) the difference was also in the .rdata section where a few
hexadecimal strings were changing.

Overlay. To measure how much hidden data has been added to samples with
an overlay, we define the excess ratio as the quotient of the size on disk over
the expected size (i.e., without the overlay). The median excess ratio is 1.73x,
an additional 73% content over the expected length. However, the mean is 130x,

Understanding Diversities and Similarities in Malware Families 13

because some samples contain a vast amount of additional data. The extreme
case is a sample with an expected size of 2.56KB but an overlay of 454MB.

We removed the overlays from all samples in the dataset and re-computed
their SHA256 hash (which we will now refer to as “no-overlay hash”). About one-
fourth (18,315/66,160) of the samples share the same no-overlay hash with at
least another sample, indicating that the overlay was the only difference between
them. In particular, 13 families only contain samples with the same no-overlay
hash, and 46 families have at least 75% of their samples with the same no-
overlay hash. Interestingly, 156 no-overlay hashes are shared across different
families, with one matching samples in 12 families. This hash corresponds to
7zS.sfx, a template for 7-zip self-extracting archives. These archives are created
by combining 7zS.sfx, a configuration file, and a compressed archive, with the
overlay holding the latter two. Another hash matches 6 families and corresponds
to Default.sfx, used by WinRAR for self-extracting files. These cases highlight
the frequent use of self-extracting archives in malware for distributing multiple
files, and likely also for obfuscation as analyzing them requires inspecting the
overlay’s compressed data.

Four families had overlay differences that stem solely from strings. In three
cases, the overlay was entirely ASCII text, while the fourth had one meaningless
differing string. However, examining the overlay revealed strings resembling CA
names. Despite the Certificate Table fields being set to 0 in the Data Directory,
treating the overlay as a Certificate Table revealed valid PKCS#7 signatures.

Finally, we analyzed overlay content using DiE. In 43.67% of cases (13,537/31,096),
no file type was detected. Among the rest, 6.08% (1,890/31,096) were archives
(RAR, ZIP, 7ZIP), 8.87% (2,750/31,096) were PE files, and 18.17% (5,650/31,096)
contained ASCII text. Of these, 7.88% (445/5,650) were valid Base* encodings
with no recognizable file types when decoded.

Certificate Table. For the 11,257 samples (17.0%) with a Certificate Ta-
ble, we extracted the Authentihash and its hash algorithm. The Authentihash
is computed from the file’s content at signing, excluding the Checksum and
Certificate Table Data Directory. We failed to extract a signature for 1,044
samples due to truncation or corruption (e.g., incorrect offset). For the remaining
10,213, a mismatched Authentihash indicated modification or unrelated signa-
tures in 1,845 samples across 211 families. Thus, 8,368 samples (12.6%) had valid
signatures when signed, though some may now be invalid (e.g., revoked). Among
these, 1,098 samples had an overlay after the Certificate Table.

We computed the Authentihash for all samples using SHA256, resulting in
63,404 unique values, with 492 shared by multiple samples. Samples with identi-
cal Authentihash must belong to the same program (family and version), differ-
ing only in their Certificate Table and checksum. For instance, all the samples
in the amigo family share the same Authentihash, checksum, and a chain of 5
certificates, indicating polymorphism in hidden parts of the Certificate Table.

Other Components. Of the remaining six components (DOS header, COFF
and Optional Header, DOS Stub, Section Table, Data Directory), all except
the DOS Stub have predefined structures in the PE format but can still be

14 A. Vitale et al.

manipulated for polymorphism. For example, in bebloh, the only difference is
the Optional Header’s version values, while the code and data are identical.
In lebreat, standard UPX section names (.upx0, .upx1, .rsrc) are replaced with
random strings, though the content remains unchanged. We also analyzed the
COFF Header’s creation timestamp, which can be faked. It differs in 622 (83.7%)
families, but 130 (11.3%) families share the same timestamp in over 75% of com-
parisons. Interestingly, obit has the same timestamp across all samples (Saturday,
June 1, 2019 5:56:28 AM), likely fabricated, as the content differs.

5.4 File Infectors

File infectors, or viruses, infect benign executables with malicious code, creating
samples with a combination of malicious and benign content. Furthermore, file
infector families tend to be highly polymorphic since a single sample may infect
many executables stored in the compromised host.

We investigated file infectors on our dataset using a combination of static
and dynamic analysis. We first used AVClass [42] to obtain tags for all samples
in the dataset. Using the tags, we identified 70 likely-virus families where the
CLASS:virus tag appeared in more than half of the samples. For each of these
families, we randomly selected 5 samples, dynamically executed them in a vir-
tual machine (VM), and identified those that modified executables that already
existed in the VM prior to the execution, i.e., the same filepath in the VM point-
ing to an executable file had different hashes before and after the execution. For
those samples, we used PEdiff to examine the component differences between
the original executable and the modified one produced during the execution.

Using this approach we identified 20 virus families. Of those, 16 are pre-
pender viruses where the PE executable contains the malicious code and the
infected (benign) executable is in the overlay: lamer, induc, neshta, shodi, sinau,
sivis, soulclose, xiaobaminer, memery, pidgeon, detroie, gogo, lmir, stihat, xolxo,
xorer. For all those 16 families, our analysis identifies the overlay as a component
that changes. For two families (gogo, soulclose) the overlay is the only compo-
nent that changes, i.e., the malicious executable has no polymorphism itself, but
obtains it from the infected executable in the overlay. In the other 14 families,
polymorphism is also added to other components. The remaining 4 families are
appender viruses. Two of these (expiro, wlksm) extend one of the sections of
the infected executable with the malicious code. The other two families (triusor,
wapomi) add new sections at the end of the infected executable with malicious
code. For all these four families, our analysis outputs that no component is
similar across the family samples.

6 Related Work

Polymorphism. Malware achieves polymorphism by employing obfuscation
techniques such as dead-code insertion, register reassignment, and instruction
substitution [51]. This behavior renders static detection methods ineffective [7].

Understanding Diversities and Similarities in Malware Families 15

Therefore, prior works mainly focus on behavioral analysis to detect polymor-
phic malware: by using behavior-aware hidden Markov models [45], employing a
mixed approach between static and dynamic analysis [35] or using an application-
level emulator to perform flowgraph matching [13].
Code similarity. Some approaches compare executable files by examining the
similarity of the disassembled code [18, 21, 22, 29]. These approaches may diff
two versions of the same program [18, 29], search for similar programs in a
repository [21], or group similar executables [22]. We leverage BinDiff [18] as
a representative of this class to identify code similarity within a family.

Fuzzy hashes (or similarity hashes) compare file similarity at the raw byte
level by generating digests that remain close in distance space for similar inputs.
Various fuzzy hashes exist, including SSDEEP [26], TLSH [34], SDHASH [40],
and MRSH-v2 [12]. Prior research applies fuzzy hashes to forensic analysis [41],
malware detection [31, 32, 43], and clustering [8, 9, 44, 48], while others evaluate
their effectiveness [11, 36]. Instead, we propose a fine-grained structural com-
parison across 12 PE file components to pinpoint byte-level differences. As part
of our approach, we use TLSH to implement pairwise comparison of the values
of a component across two executables. We observe high volatility when aggre-
gating TLSH comparisons for family-wise similarity due to few, but significant,
differences in small components such as PE headers.
Malware clustering. A wealth of prior work has focused on grouping mal-
ware samples into families [10, 23, 37, 39]. Each family cluster typically contains
executables from the same malicious program, which may include different ver-
sions or polymorphic variants of a version. Malware clustering methods may use
similarities in system calls [10], network traffic [37, 39], raw bytes [23], or dis-
assembled code [22]. We use three malware datasets where samples are labeled
with their family and thus already clustered into families.
Malware lineage. Lineage methods classify malware family samples, identi-
fying polymorphic variants and tracing their evolution through phylogenetic
trees [14, 19, 24, 28, 46]. Instead of detecting identical versions, our study ex-
amines tactics employed to create polymorphic variants.

7 Final Remarks

A Complex Picture. Our study aimed to identify the main causes of poly-
morphism and assess their prevalence across a large dataset of malware families.
Through our experiments, we identified several causes, summarized in the fol-
lowing section. More importantly, we found that a single factor is rarely sufficient
to explain the diversity of samples within a family. In fact, only 12.8% of the
families (95 out of 743) exhibited polymorphism due to a single cause. For the
remaining 87.2%, polymorphism arose from multiple overlapping factors. This
is not a failure but a key finding, highlighting that attributing polymorphism
solely to repacking is an oversimplification. It also suggests that no holistic solu-
tion exists to address the problem. For example, while removing or normalizing

16 A. Vitale et al.

certain components may help in comparing samples, any approach addressing
only one or a few causes will have limited success in explaining and mitigating
the dissimilarities within a family.

Truncation. While truncated files are rarely, if ever, mentioned in malware stud-
ies, we observed that 3.6% of the files in the initial datasets are truncated, with
99.3% coming from the balanced dataset by Dambra et al. Since that dataset
was collected from the VirusTotal file feed, a similar ratio of truncated PE ex-
ecutables might affect other studies using the VT feed [49]. Truncated samples
are distributed among nearly half of the dataset families, indicating this is not
an issue specific to some families but likely a common error that occurs during
sample collection. Truncated samples pollute malware feeds and waste resources
such as storage and sandbox time if they are queued for execution. Therefore,
we suggest filtering out these samples, as we did, to avoid biasing the results.

Overlays. Similar to truncation, the impact and role of overlays are rarely
mentioned in malware studies. However, our experiments show that they are
extremely prevalent, affecting a stunning 47.0% of all samples in our dataset,
being the most prevalent cause of polymorphism that we find. These overlays
often contain a considerable amount of data, on average over a hundred times
larger than the main executable alone. Despite this, previous works sometimes
purposefully excluded overlays when extracting features for static analysis [38].
This is fine if the overlay contains useless data simply added to achieve poly-
morphism, but our analysis shows that this is not the case: 6.1% of the overlay
data are compressed archives, and 8.9% are PE files.

Packing. Packing is a pervasive phenomenon in our dataset: while it is dif-
ficult to measure with precision, it might affect between 40% to 90% of our
samples. This is not surprising since it is one of the most effective methods to
counter static analysis. However, one would expect a significant difference in the
components between the families where packing was most prevalent, but the
distributions of packed samples and the negligible correlations we found did not
confirm this expectation. We also discover that malware authors, in a trivial but
effective way, achieve high polymorphism by using many different packers.

Other polymorphism. Beyond packing, our study reveals that malware fami-
lies introduce polymorphism into a variety of components. Among others, we ob-
serve families that modify PE headers to generate polymorphic variants such as
bebloh that varies the version fields in the Optional Header. We also observe fam-
ilies that reorder resources without modifying them (e.g. moarider, winloadsda),
introduce random bytes in the padding (blackshades, umbra, virfire), and intro-
duce hidden data in the certificate table (amigo). There are also families whose
differences are limited to some specific strings (e.g., lolbot). The range of tech-
niques we observe shows that a structural analysis of the PE file format is a
powerful tool for analyzing the reasons behind malware family polymorphism.

Dataset limitations. Our analysis is limited by the datasets used. One issue
is the quality of family labels. Despite dataset authors’ efforts to refine labeling
(e.g., identifying aliases and generic tokens), we found some errors such as priva-

Understanding Diversities and Similarities in Malware Families 17

teexeprotector being considered a family. Also, the MOTIF and Malicia datasets
are highly imbalanced, with few families having more than 10 samples. Still, our
use of three datasets should help ameliorate selection bias.
Conclusions. Our large-scale analysis of 743 malware families offers a com-
prehensive understanding of the factors driving polymorphism in malware. The
study reveals that in about 90% of cases, polymorphism results from multiple
overlapping factors, rather than a single cause. This complexity underscores the
inadequacy of simplistic solutions, such as attributing polymorphism solely to
repacking, and highlights the need for multifaceted approaches.

Acknowledgements

This work was partially funded by two government grants managed by the
French National Research Agency with references: “ANR-22-PECY-0007” and
“ANR-23-IAS4-0001”. Partial support was also provided by the Spanish Govern-
ment MCIN/AEI/ 10.13039/501100011033/ through grants TED2021-132464B-
I00 (PRODIGY) and PID2022-142290OB-I00 (ESPADA). The above grants are
co-funded by European Union ESF, EIE, and NextGeneration funds.

References

1. Find malware detection names for Microsoft Defender for Endpoint. https://le
arn.microsoft.com/en-us/microsoft-365/security/intelligence/malware-n
aming (Accessed August 18, 2025)

2. Hash and family of each sample. https://raw.githubusercontent.com/eureco
m-s3/DecodingMLSecretsOfWindowsMalwareClassification/main/dataset/mal
ware (Accessed August 18, 2025)

3. MOTIF Dataset. https://github.com/boozallen/MOTIF (Accessed August 18,
2025)

4. PEdiff. https://github.com/im-overlord04/PEDiff (Accessed August 18, 2025)
5. PEfile. https://github.com/erocarrera/pefile (Accessed August 18, 2025)
6. Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D.,

Vigna, G., Kruegel, C.: When malware is packin’heat; limits of machine learning
classifiers based on static analysis features. In: Network and Distributed Systems
Security Symposium (2020)

7. Arfeen, A., Khan, Z.A., Uddin, R., Ahsan, U.: Toward accurate and intelligent
detection of malware. Concurrency and Computation: Practice and Experience
34(4), e6652 (2022)

8. Azab, A., Layton, R., Alazab, M., Oliver, J.: Mining malware to detect variants.
In: Cybercrime and Trustworthy Computing Conference (2014)

9. Bak, M., Papp, D., Tamás, C., Buttyán, L.: Clustering iot malware based on bi-
nary similarity. In: IEEE/IFIP Network Operations and Management Symposium
(2020)

10. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
Behavior-Based Malware Clustering. In: Network and Distributed System Secu-
rity Symposium (2009)

18 A. Vitale et al.

11. Botacin, M., Moia, V.H.G., Ceschin, F., Henriques, M.A.A., Grégio, A.: Under-
standing uses and misuses of similarity hashing functions for malware detection
and family clustering in actual scenarios. Forensic Science International: Digital
Investigation 38, 301220 (2021)

12. Breitinger, F., Baier, H.: Similarity preserving hashing: Eligible properties and
a new algorithm mrsh-v2. In: International Conference on Digital Forensics and
Cyber Crime (2013)

13. Cesare, S., Xiang, Y., Zhou, W.: Malwise—an effective and efficient classification
system for packed and polymorphic malware. IEEE Transactions on Computers
62(6), 1193–1206 (2012)

14. Cozzi, E., Vervier, P.A., Dell’Amico, M., Shen, Y., Bilge, L., Balzarotti, D.: The
tangled genealogy of iot malware. In: Annual Computer Security Applications Con-
ference (2020)

15. Dambra, S., Han, Y., Aonzo, S., Kotzias, P., Vitale, A., Caballero, J., Balzarotti,
D., Bilge, L.: Decoding the Secrets of Machine Learning in Malware Classification:
A Deep Dive into Datasets, Feature Extraction, and Model Performance. In: ACM
Conference on Computer and Communications Security. ACM (November 2023)

16. Drew, J., Moore, T., Hahsler, M.: Polymorphic malware detection using sequence
classification methods. In: IEEE Security and Privacy Workshops (2016)

17. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: Dynamic simi-
larity testing for program binaries and components. In: USENIX Security Sympo-
sium (2014)

18. Google: BinDiff. https://github.com/google/bindiff (Accessed August 18,
2025)

19. Haq, I.U., Chica, S., Caballero, J., Jha, S.: Malware lineage in the wild. Computers
& Security 78, 347–363 (2018)

20. horsicq: Detect It Easy. https://github.com/horsicq/Detect-It-Easy, [Online;
August 18, 2025]

21. Hu, X., Chiueh, T., Shin, K.G.: Large-scale Malware Indexing Using Function-call
Graphs. In: ACM Conference on Computer and Communications Security (2009)

22. Hu, X., Shin, K.G., Bhatkar, S., Griffin, K.: MutantX-S: Scalable Malware Clus-
tering Based on Static Features. In: USENIX Annual Technical Conference (2013)

23. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: ACM conference on Computer and Com-
munications Security (2011)

24. Jang, J., Woo, M., Brumley, D.: Towards Automatic Software Lineage Inference.
In: USENIX Security Symposium (2013)

25. Joyce, R.J., Amlani, D., Nicholas, C., Raff, E.: MOTIF: A large malware reference
dataset with ground truth family labels. In: Workshop on Artificial Intelligence for
Cyber Security (2022)

26. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. Digital investigation 3 (2006)

27. Li, S., Ming, J., Qiu, P., Chen, Q., Liu, L., Bao, H., Wang, Q., Jia, C.: Packgenome:
Automatically generating robust yara rules for accurate malware packer detection.
In: ACM SIGSAC Conference on Computer and Communications Security (2023)

28. Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P.M., Zanero, S.: Lines of
Malicious Code: Insights into the Malicious Software Industry. In: Annual Com-
puter Security Applications Conference (2012)

29. Liu, B., Huo, W., Zhang, C., Li, W., Li, F., Piao, A., Zou, W.: αDiff: Cross-
version Binary Code Similarity Detection with DNN. In: ACM/IEEE International
Conference on Automated Software Engineering (2018)

Understanding Diversities and Similarities in Malware Families 19

30. Microsoft: PE format (2023), https://learn.microsoft.com/en-us/windows/wi
n32/debug/pe-format

31. Naik, N., Jenkins, P., Savage, N.: A ransomware detection method using fuzzy
hashing for mitigating the risk of occlusion of information systems. In: International
Symposium on Systems Engineering (2019)

32. Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J., Boongoen, T., Iam-
On, N.: Fuzzy hashing aided enhanced yara rules for malware triaging. In: IEEE
Symposium Series on Computational Intelligence (2020)

33. Nappa, A., Rafique, M.Z., Caballero, J.: The MALICIA Dataset: Identification and
Analysis of Drive-by Download Operations. International Journal of Information
Security 14(1), 15–33 (February 2015)

34. Oliver, J., Cheng, C., Chen, Y.: Tlsh–a locality sensitive hash. In: Cybercrime and
Trustworthy Computing Workshop (2013)

35. Osorio, F.C.C., Qiu, H., Arrott, A.: Segmented sandboxing-a novel approach to
malware polymorphism detection. In: International Conference on Malicious and
Unwanted Software (2015)

36. Pagani, F., Dell’Amico, M., Balzarotti, D.: Beyond precision and recall: under-
standing uses (and misuses) of similarity hashes in binary analysis. In: ACM Con-
ference on Data and Application Security and Privacy (2018)

37. Perdisci, R., Lee, W., Feamster, N.: Behavioral Clustering of HTTP-Based Malware
and Signature Generation Using Malicious Network Traces. In: USENIX Sympo-
sium on Networked Systems Design and Implementation (2010)

38. Quiring, E., Pirch, L., Reimsbach, M., Arp, D., Rieck, K.: Against all odds: Win-
ning the defense challenge in an evasion competition with diversification. Tech.
rep. (2020)

39. Rafique, M.Z., Caballero, J.: FIRMA: Malware Clustering and Network Signature
Generation with Mixed Network Behaviors. In: Symposium on Research in Attacks,
Intrusions and Defenses (2013)

40. Roussev, V.: Data fingerprinting with similarity digests. In: IFIP International
Conference on Digital Forensics (2010)

41. Roussev, V., Quates, C.: Content triage with similarity digests: The m57 case
study. Digital Investigation 9, S60–S68 (2012)

42. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: AVClass: A Tool for Massive
Malware Labeling. In: International Symposium on Research in Attacks, Intrusions,
and Defenses (2016)

43. Seo, K., Lim, K., Choi, J., Chang, K., Lee, S.: Detecting similar files based on
hash and statistical analysis for digital forensic investigation. In: International
Conference on Computer Science and Its Applications (2009)

44. Shiel, I., O’Shaughnessy, S.: Improving file-level fuzzy hashes for malware variant
classification. Digital Investigation 28, S88–S94 (2019)

45. Tajoddin, A., Jalili, S.: Hm 3 ald: Polymorphic malware detection using program
behavior-aware hidden markov model. Applied Sciences 8(7), 1044 (2018)

46. Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.: The evolution of an-
droid malware and android analysis techniques. ACM Computing Surveys (CSUR)
49(4), 1–41 (2017)

47. Upchurch, J., Zhou, X.: Variant: a malware similarity testing framework. In: In-
ternational Conference on Malicious and Unwanted Software (2015)

48. Upchurch, J., Zhou, X.: Malware provenance: code reuse detection in malicious
software at scale. In: International Conference on Malicious and Unwanted Software
(2016)

20 A. Vitale et al.

49. van Liebergen, K., Caballero, J., Kotzias, P., Gates, C.: A Deep Dive into the
VirusTotal File Feed. In: Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (2023)

50. Webster, G.D., Kolosnjaji, B., von Pentz, C., Kirsch, J., Hanif, Z.D., Zarras, A.,
Eckert, C.: Finding the needle: A study of the pe32 rich header and respective mal-
ware triage. In: International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (2017)

51. You, I., Yim, K.: Malware obfuscation techniques: A brief survey. In: International
Conference on Broadband, Wireless Computing, Communication and Applications
(2010)

A Appendix

Samples Families
Factor Present Present(>0%) Present(100%)

Packed (DiE) 15,704 (23.7%) 527 (70.9%) 20 (3.0%)
Packed (PackG) 24,134 (36.5%) 580 (78.1%) 45 (6.1%)
Packed (ML) 55,773 (84.3%) 726 (97.7%) 283 (38.1%)
Packed (All) 59,265 (89.6%) 731 (98.4%) 354 (47.6%)

Table 3: Packing prevalence in terms of packed samples and number of families
with some/all packed samples.

Algorithm 1 Determine Component Status: Similar, Different, or Missing
Require: Array of samples S belonging to family F , Component c, Threshold t
1: Initialize Cp ← 0
2: Initialize Cd ← 0
3: NS ← |S|, number of samples in S
4: P ← all combinations of S
5: NP ← NS(NS−1)

2
, number of samples combinations and cardinality of P

6: for all (Sx, Sy) ∈ P do
7: if c ∈ Sx and c ∈ Sy and Sx[c] = Sy[c] then
8: Cp ← Cp + 1
9: Cd ← Cd + 1

10: else if c /∈ Sx and c /∈ Sy then
11: Cd ← Cd + 1
12: end if
13: end for
14: Cp ← Cp

NP

15: Cd ← Cd
NP

16: if Cp ≥ t and Cd ≥ t then
17: return Similar
18: else if Cp < t and Cd < t then
19: return Different
20: else
21: return Missing
22: end if

