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Abstract—With the growing number of users in multi-user
multiple-input multiple-output (MU-MIMO) systems, demodu-
lation reference signals (DMRS) are efficiently multiplexed in
the code domain via orthogonal cover codes (OCC) to ensure
orthogonality and minimize pilot interference. In this paper,
we investigate uplink DMRS-based channel estimation for MU-
MIMO systems with Type II OCC pattern standardized in third
generation partnership project (3GPP) Release 18, leveraging
location-specific statistical channel state information (SCSI) to
enhance performance. Specifically, we propose a SCSI-assisted
Bayesian channel estimator (SA-BCE) based on the minimum
mean square error criterion to suppress the pilot interference
and noise, albeit at the cost of cubic computational complex-
ity due to matrix inversions. To reduce this complexity while
maintaining performance, we extend the scheme to a windowed
version (SA-WBCE), which incorporates antenna-frequency do-
main windowing and beam-delay domain processing to exploit
asymptotic sparsity and mitigate energy leakage in practical
systems. To avoid the frequent real-time SCSI acquisition, we
construct a grid-based location-specific SCSI database based on
the principle of spatial consistency, and subsequently leverage
the uplink received signals within each grid to extract the SCSI.
Facilitated by the multilinear structure of wireless channels, we
formulate the SCSI acquisition problem within each grid as a
tensor decomposition problem, where the factor matrices are
parameterized by the multi-path powers, delays, and angles. The
computational complexity of SCSI acquisition can be significantly
reduced by exploiting the Vandermonde structure of the factor
matrices. Simulation results demonstrate that the proposed
location-specific SCSI database construction method achieves
high accuracy, while the SA-BCE and SA-WBCE significantly
outperform state-of-the-art benchmarks in MU-MIMO systems.

Index Terms—MU-MIMO, SCSI, channel estimation, tensor
decomposition, demodulation reference signal
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DRIVEN by the growing demand for data-hungry ap-
plications such as broadband internet of things (IoT)

[2] and extended reality (XR) [3], uplink-centric broadband
communication (UCBC) [4] has emerged as a crucial service
category in the era of forthcoming sixth-generation (6G) net-
works [5] [6]. To better understand this trend, it is instructive
to examine the uplink demands of representative applications.
Specifically, IoT applications demand support for a massive
number of devices transmitting concurrent uplink traffic, while
XR applications require high data rates, collectively resulting
in an enormous uplink traffic volume. As a consequence, 6G
networks must achieve at least a tenfold increase in uplink
capacity to effectively support these data-intensive applications
in the UCBC. To meet this requirement, multi-user multiple-
input multiple-output (MU-MIMO) [7] [8] has emerged as
a key technology for increasing uplink capacity in UCBC,
by enabling concurrent transmissions from multiple users. As
uplink traffic demand continues to escalate in UCBC scenarios,
further expansion of the number of data streams becomes
essential. In this regard, the number of orthogonal pilot ports
increases from 12 to 24 in third generation partnership project
(3GPP) Release 18 [9], enabling uplink transmission for up to
24 users.

However, the increase in orthogonal pilot ports aggravates
the challenge of accurate channel state information (CSI)
acquisition. Specifically, the CSI of multiple users is estimated
via uplink demodulation reference signals (DMRS) [9], whose
performance degrades as the number of users increases due to
the inevitable overlap of DMRS on the same resource element
(RE), thereby constraining the spectral efficiency of MU-
MIMO systems. The improvement of DMRS-based channel
estimation is thus indispensable for achieving reliable and
efficient uplink MU-MIMO transmissions.

A. Prior Work

In MU-MIMO uplink transmission, orthogonal cover codes
(OCC) are typically employed to enable code-domain multi-
plexing of DMRS from multiple users, resulting in their over-
lap on the same RE. Therefore, a critical step in uplink DMRS
channel estimation is to separate the DMRS of different users
through OCC decomposition. Based on the assumption that
the channels remain unchanged over consecutive subcarriers,
many works on uplink DMRS channel estimation leverage
the orthogonality of different pilot ports to achieve OCC
decomposition [10] [11]. However, this assumption breaks
down in the presence of frequency-selective fading channel,
compromising the orthogonality among different pilot ports
and consequently introducing pilot interference. To address
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this issue, the author in [12] proposed an minimum mean
square error (MMSE) scheme for two-port DMRS channel
estimation in New Radio systems, which exploits frequency-
domain channel correlations to facilitate OCC decomposition.

However, the method in [12] assumes that statistical channel
state information (SCSI) is perfectly known, which is unrealis-
tic in practical systems. To this end, several SCSI acquisition
approaches have been proposed in massive MIMO systems
[13]–[19]. In [13] and [14], the instantaneous CSI (ICSI) is
first estimated through pilot transmission, and SCSI is then
derived by performing statistical calculations on the estimated
ICSI. Expectation-maximization (EM) algorithm [20] provides
another method for obtaining SCSI, where the ICSI and SCSI
are iteratively estimated [15] [16] [17]. Some studies [18]
[19] also proposed methods for acquiring SCSI without the
need for ICSI. In [18], the authors employed multiple signal
classification algorithms for SCSI acquisition, in which angles
and delays are estimated from the received signals. The author
in [19] proposed a novel approach for obtaining the beam-
domain channel power matrices based on the received signal
model and Kullback-Leibler divergence.

The aforementioned SCSI acquisition methods primarily
rely on real-time received signals for SCSI estimation, which
leads to large reference signal overhead and processing de-
lay. Owing to the intrinsic relationship between SCSI and
the wireless channel’s scattering environment, a consistent
mapping exists between user location and SCSI in stationary
environments. This motivates the construction of location-
specific SCSI database [21] [22], thereby converting the real-
time estimation of SCSI into the problem of mapping construc-
tion. Toward this end, various location-specific SCSI database
construction methods have been proposed in [23]–[25]. These
approaches leverage error-free SCSI at specific locations to
infer the location-specific SCSI over the entire region via
MMSE-based spatial interpolation [23], subregional learning
[24] and Laplacian pyramid–based image-to-image inpainting
[25], respectively.

Current approaches to building location-specific SCSI
databases [23]–[25] often rely on the idealized assumption
of error-free SCSI samples, which rarely holds in practical
deployment scenarios. This motivates the investigation of
location-specific SCSI database construction methods that ex-
ploit noisy received signals at the base station (BS). However,
the use of noisy received signals at the BS introduces new
challenges. The received signal-to-noise ratio (SNR) at the
BS is limited due to the constrained transmitted power of user
equipment. In addition, the received signals exhibit a nonlinear
relationship with the underlying SCSI parameters, such as
the delay response vector [26]. To address these issues, the
author in [27] employed Bayesian inference to suppress inter-
cell interference and resolved the nonlinear mapping between
received signals and SCSI parameters, paving the way for
location-specific SCSI acquisition using the noisy BS received
signals.

B. Motivation and Main Contributions
The state-of-the-art primarily exploits the orthogonality of

OCC to enable OCC decomposition under the assumption of

frequency flat-fading, which becomes invalid in propagation
environments with significant delay spread. Meanwhile, efforts
to enhance channel estimation via location-specific SCSI often
rely on idealized, error-free channel samples, underscoring the
need to incorporate noisy received signals for improved prac-
tical relevance. Moreover, as future communication systems
scale in both antenna array size and bandwidth, constructing
location-specific SCSI database becomes increasingly com-
plex, necessitating the development of low-complexity solu-
tions.

In this paper, we investigate the SCSI-assisted DMRS-based
channel estimation in MU-MIMO systems and develop the
corresponding location-specific SCSI database construction al-
gorithm. The main contributions of this work are summarized
as follows:

• By incorporating the Type II DMRS configuration in
3GPP Release 18, we develop the signal model for up-
link DMRS-based channel estimation. The code-domain
multiplexing of DMRS from multiple users on the same
RE results in pilot interference, especially in frequency-
selective fading channels. To mitigate such pilot in-
terference, we formulate the uplink multi-user DMRS-
based channel estimation problem based on the MMSE
criterion, leveraging the statistical characteristics of the
channel to effectively suppress noise and pilot interfer-
ence.

• Building on the MMSE formulation, we propose a SCSI-
assisted Bayesian channel estimator (SA-BCE) to achieve
the DMRS-based channel estimation. Specifically, SA-
BCE employs a frequency-domain MMSE estimator to
mitigate the pilot interference, followed by an antenna-
domain MMSE estimator to further suppress the noise.
To reduce the computational complexity of SA-BCE, we
shift from the antenna-frequency domain to the beam-
delay domain and extend the scheme to windowed SA-
BCE (SA-WBCE) to alleviate the energy leakage result-
ing from the finite number of subcarriers and antennas.

• By exploiting the intrinsic relationship between SCSI
and the scattering environment of wireless channel, we
transform the SCSI acquisition problem into a mapping
construction problem between SCSI and location. To
reduce the storage overhead of location-specific SCSI,
the coverage area of the BS is divided into spatial
grids, where the locations within each grid share the
common SCSI. By collecting the noisy received signals
within each grid, we formulate the mapping construc-
tion problem as a tensor decomposition problem, where
the factor matrices are parameterized by the multi-path
power, delay, and angle. By exploiting the Vandermonde
structure of the factor matrices, the SCSI within each
grid can be acquired via Vandermonde-structured tensor
decomposition (VSTD) algorithm, with tensor operations
significantly reducing the computational complexity.

Organization: The remainder of this paper is organized
as follows. Section II describes the system model. The SA-
BCE and SA-WBCE, along with the location-specific SCSI
database, are detailed in Section III. In Section IV, we for-
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mulate the location-specific SCSI database construction into
a tensor decomposition problem and develop a VSTD-based
SCSI database construction method. Simulation results are
given in Section V. Finally, Section VI concludes this paper.

Notations: IM is the M×M identity matrix. The imaginary
unit is represented by ȷ̄ =

√
−1. x,x,X, and X denote

scalars, column vectors, matrices, and tensors, respectively.
The superscripts {·}∗, {·}T ,{·}H , {·}−1 and (·)† denote the
conjugate, transpose, conjugate transpose, inverse and pseudo-
inverse respectively. || · ||F and || · ||2 denote the Frobenius
norm and the l2 norm, respectively. ⊗ , ⊙ and ◦ denote
the Kronecker, Khatri-Rao and outer products, respectivelv.
CN

(
µ, σ2

)
denotes a Gaussian distribution with mean µ and

variance σ2. The Kronecker delta function is represented by
δ[·]. E{·} denotes the statistic expectation. diag{·} denote
the diagonal operator. r(A) and kr(A) denote the rank and
Kruskal-rank of A, respectively. [A]:,m, [A]m:n,: and [A]:,m:n

denote the m-th column of A, the submatrix of A from the m-
th to the n-th rows, and the submatrix of A from the m-th to
the n-th columns, respectively. [·]i1,...,iD is the (i1, . . . , iD)-th
element of D-order tensor.

II. SYSTEM MODEL

We consider a single-cell massive multiple-input multiple-
output orthogonal frequency-division multiplexing (MIMO-
OFDM) uplink system, where the BS is equipped with a
uniform planar array (UPA) with half-wavelength antenna
spacing and serves K users with an omni-directional antenna.
The UPA with M = MvMh antennas comprises Mv and
Mh antennas in vertical and horizontal directions, respectively.
OFDM modulation is employed with NFFT subcarriers, and
the number of subcarriers for data transmission is Nc, with a
subcarrier spacing of ∆f . The system sampling interval and
OFDM symbol duration are given by Tsam = 1

NFFT∆f and
Tsym = 1

∆f , respectively.

A. Uplink DMRS Configuration

In the physical uplink shared channel (PUSCH), DMRS is
employed to acquire CSI for subsequent coherent detection.
In MU-MIMO systems, the pilot signals transmitted from
different users are superimposed at the receiver. To extract
individual signals from the superimposed signal, the DMRS
sequence is scheduled to support multiple orthogonal ports
at the transmitter. In 3GPP Release 18, Type II DMRS is
specified to support a larger number of users, which divides the
resource grid into multiple code division multiplexing (CDM)
groups, wherein OCC are employed within each CDM group
to distinguish the different orthogonal pilot ports. In particular,
the maximum number of orthogonal pilot ports for Type II
DMRS in 3GPP Release 18 is 24, supporting up to 24 users for
uplink transmission. Fig. 1 illustrates the pilot pattern of Type
II DMRS in a resource block, where the pilot pattern remains
consistent across all resource blocks. Within each CDM group,
frequency-domain OCC and time-domain OCC are assigned
to adjacent OFDM symbols to maintain orthogonality. In this
pilot configuration, the number of subcarriers occupied by each
CDM group is N = Nc

G , where G represents the number of
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Fig. 1: Type II DMRS pattern

CDM groups. The number of OFDM symbols occupied by the
pilots is Tp.

B. Signal Model

Under the aforementioned pilot configuration, the number of
users in each CDM group is K

G . Without loss of generality, we
assume that users with index of { iK

G + 1, iK
G + 2, ..., (i+1)K

G }
are assigned to CDM group i, where i = 0, 1, ..., G−1. The set
of pilot subcarrier indices for CDM group i is denoted as Pi ={
i+ 1 + 6 (n− 1) , i+ 2 + 6 (n− 1)| n = 1, 2, · · · , N

2

}
.

Consequently, the received signal Yi(t) ∈ CN×M of CDM
group i in the t-th symbol duration at the BS can be expressed
as

Yi(t) =

(i+1)K
G∑

k= iK
G +1

wt,kSiCkPiHk(t) +N(t), (1)

where Hk(t) ∈ CNc×M represents the frequency-space do-
main channel for the k-th user at the t-th symbol dura-
tion, as detailed in Section II-C. Pi ∈ {0, 1}N×Nc is a
sampling matrix used to select the pilot subcarrier set Pi.
Ck = diag

(
1, eȷ̄2π

∆k
N . . . , eȷ̄2π

(N−1)∆k
N

)
∈ CN×N represents

the frequency-domain OCC of the k-th user, where ∆k ∈
{0, N

4 ,
N
2 ,

3N
4 } represents the cyclic shift of the k-th user,

employed to ensure the orthogonality of the DMRS across
different users. Si = diag{si} ∈ CN×N represents the pilot
matrix of the CDM group i, satisfying SiS

H
i = IN due to the

unit power of the pilot symbols. N(t) ∈ CN×M is the complex
Gaussian noise consisting of independently and identically
distributed (i.i.d.) Gaussian variables which follow the i.i.d.
complex Gaussian distribution CN (0, σ). wt,k ∈ {1,−1}
represents the time-domain OCC of the k-th user at the t-th
symbol duration, which satisfies1

1

Tp

Tp∑
t=1

wt,pwt,q =

{
1, if (p, q ∈ U1) or (p, q ∈ U2)

0, otherwise
, (2)

1According to the DMRS configuration in 3GPP Release 18, half of the
users within a CDM group share the same time-domain OCC [9]. Without
loss of generality, we assume that the users in each CDM group are divided
into two sets based on whether their time-domain OCCs are identical: the
first set consisting of users indexed from iK

G
+1 to (2i+1)K

2G
, and the second

set consisting of users indexed from (2i+1)K
2G

+ 1 to (i+1)K
G

. In the main
context, we consider the users in the first set without loss of generality, i.e.,
u ∈

{
iK
G

+ 1, · · · , (2i+1)K
2G

}
.
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where U1 = { iK
G + 1, · · · , (2i+1)K

2G }, U2 = { (2i+1)K
2G +

1, · · · , (i+1)K
G }.

C. Channel Model

The space-frequency domain channel of k-th user at t-th
symbol duration can be modeled by [28]

Hk(t) =

Lt,k∑
l=1

αl,t,kbNc (τl,t,k)a(φl,t,k, θl,t,k)
T , (3)

where a(φl,t,k, θl,t,k) = av(θl,t,k)⊗ah(φl,t,k; θl,t,k) ∈ CM×1,
and Lt,k denotes the number of multi-paths for the k-th user
at the t-th symbol duration. αl,t,k, τl,t,k, θl,t,k, and φl,t,k

represent the complex gain, the path delay, the elevation angle
of arrival (AoA), and the azimuth AoA of the l-th path for k-th
user during the t-th symbol duration, respectively. bNc

(τ) ∈
CNc×1, av(θ) ∈ CMv×1 and ah(φ; θ) ∈ CMh×1 represent
the steering vectors in the delay, elevation angle and azimuth
angle domains, which are defined as [bNc(τ)]n = e−ȷ̄2πn∆fτ ,
[av(θ)]n = e−ȷ̄πn cos θ and [ah(φ, θ)]n = e−ȷ̄πn sin θ cosφ,
respectively.

We assume an uncorrelated fading environment, where
different propagation paths are independent. Therefore, the
complex gain satisfies [29]

E
[
αl,t,kα

∗
l′,t,k

]
= ρl,t,kδ [l − l′] , (4)

where ρl,t,k denotes the power of the l-th path for the k-th
user during the t-th symbol duration. The path power ρl,t,k is
assumed frequency-invariant, as the frequency dependence of
large-scale path loss is negligible when the system bandwidth
is much smaller than the carrier frequency.

III. SCSI-ASSISTED CHANNEL ESTIMATION AND
LOCATION-SPECIFIC SCSI DATABASE

The channel estimation problem for CDM group i can be
formulated as the following optimization problem, given by

min

{Hk(t)}
(i+1)K

G

k= iK
G

+1

Tp∑
t=1

∥∥∥∥∥∥Yi(t)−

(i+1)K
G∑

k= iK
G +1

wt,kSiCkH
PS
k (t)

∥∥∥∥∥∥
2

F

,

(5)
where HPS

k (t) = PiHk(t) ∈ CN×M represents the frequency-
space domain channel of the pilot segment for the k-th user at
the t-th symbol duration. In the above optimization problem,
the number of channel parameters to be estimated is KNcMTp

G ,
whereas the number of received signal is NMTp, resulting in
an under-determined estimation problem.

The trivial approach [10] to solving (5) consists of least-
squares (LS) channel estimation, followed by time- and
frequency-domain OCC decomposition, and finally, linear
interpolation. However, this approach faces challenges in
frequency-selective fading channels and becomes increasingly
ineffective as the number of users grows. On one hand, it
assumes that the channel coefficients remain unchanged over
consecutive subcarriers, which does not hold under frequency-
selective fading resulting from multipath propagation in com-
plicated scattering environments. On the other hand, since the

trivial approach does not incorporate inter-subcarrier correla-
tions in OCC decoupling, its channel estimation performance
deteriorates with increased pilot interference. To address these
limitations, we first propose SA-BCE and SA-WBCE based
on the MMSE criterion. Subsequently, we propose a location-
specific SCSI database to facilitate efficient SCSI acquisition.

A. SCSI-Assisted Bayesian Channel Estimator
To address the limitations of the trivial approach, we pro-

pose the SA-BCE, which retains the first and second steps
of the trivial method while introducing improvements in the
subsequent stages. Specifically, the received signal Yi(t) is
first divided by the pilot signal Si to perform LS channel
estimation, as shown by

ŶLS
i (t) = SH

i Yi(t) =

(i+1)K
G∑

k= iK
G +1

wt,kCkH
PS
k (t) + SH

i N(t),

(6)
where ŶLS

i (t) ∈ CN×M denotes the LS channel estimation
result for the pilot segment during the t-th symbol duration.

Assuming that the channel coefficients remain constant
across consecutive OFDM symbols2, the effect of the time-
domain OCC in ŶLS

i (t) can be eliminated by exploiting its
orthogonality property, as shown in equation (2), through

ŶLS
i =

1

Tp

Tp∑
t=1

wt,uŶ
LS
i (t) =

∑
k∈U1

CkH
PS
k + Z, (7)

where HPS
k = 1

Tp

∑Tp

t=1 H
PS
k (t) ∈ CN×M , Z =

1
Tp

∑Tp

t=1 wt,uS
H
i N(t) ∈ CN×M .

After the time-domain OCC decoupling, rather than adopt-
ing the straightforward approach which leverages the orthog-
onality of frequency-domain OCC to achieve OCC decom-
position, the MMSE criterion is employed to decompose the
frequency-domain OCC in ŶLS

i . A key prerequisite for the
MMSE-based algorithms is the availability of the second-order
SCSI, which can be obtained through several approaches in
practical systems. For example, it can be estimated in real
time using sounding reference signals (SRSs) [14] [18], or
alternatively acquired from a location-specific SCSI database
[27]. Therefore, it is reasonable to assume that the required
second-order SCSI is available to the estimator.

With the availability of SCSI as discussed above, we
proceed to present the MMSE-based estimator. Since the
processing is identical across all receive antennas during the
decomposition of the frequency-domain OCC, we focus on
the m-th receive antenna without loss of generality. The
corresponding frequency-domain received signal vector can be
expressed as

ŷLS
i =

(2i+1)K
2G∑

k= iK
G +1

Ckh
PS
k + z, (8)

2Considering the velocity of the user v = 3 km/h, the carrier frequency
fc = 6.7 GHz, the coherence time [28] Tc is around 20 ms, which is much
longer than the OFDM symbol duration Tsym = 33.3us for ∆f = 30
kHz [9]. Consequently, the channel coefficients can be assumed to remain
unchanged between consecutive OFDM symbols.
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where z = [Z]:,m ∈ CN×1 denotes the noise vector at
the m-th antenna, ŷLS

i = [ŶLS
i ]:,m ∈ CN×1 denotes the

frequency-domain received signal at the m-th antenna and
hPS
k = [HPS

k ]:,m ∈ CN×1 represents the frequency-domain
channel of the pilot segment for the k-th user at the m-th
antenna. The MMSE channel estimation of hPS

u can then be
obtained according to [30]:

ĥPS
u = RhPS

u ŷLS
i
R−1

ŷLS
i ŷLS

i

ŷLS
i , (9)

where RhPS
u ŷLS

i
∈ CN×N and RŷLS

i ŷLS
i

∈ CN×N can be
expressed as

RhPS
u ŷLS

i
= E

{
hPS
u

(
ŷLS
i

)H}
= PiR

f
uP

T
i C

H
u ,

RŷLS
i ŷLS

i
= E

{
ŷLS
i

(
ŷLS
i

)H}
=

(2i+1)K
2G∑

k= iK
G +1

CkPiR
f
kP

T
i C

H
k + σ2IN .

(10)

Here, Rf
k ∈ CNc×Nc denotes the frequency-domain channel

correlations for the k-th user and is expressed as

Rf
k =

Lt,k∑
l=1

ρl,t,kbNc
(τl,t,k)b

H
Nc

(τl,t,k) . (11)

As a result, {ĤPS
u }Ku=1, denoting the user-specific channel

estimates based on the MMSE criterion with other-user sig-
nals treated as interference, are obtained by applying (9) to
the received signals ŷLS

i from all CDM groups and receive
antennas, i.e,

ĤPS
u = PiR

f
uP

T
i C

H
u (

(2i+1)K
2G∑

k= iK
G

+1

CkPiR
f
kP

T
i C

H
k + σ2IN )−1ŶLS

i .

(12)
To further suppress the noise in ĤPS

u , we exploit the inter-
antenna correlations and employ the MMSE channel estima-
tion in the antenna domain, which gives [30]

(H̃PS
u )T = Rs

u(R
s
u + σ2IM )−1(ĤPS

u )T , (13)

where Rs
u ∈ CM×M is the antenna domain channel correla-

tions for the u-th user, expressed as

Rs
u =

Lt,u∑
l=1

ρl,t,ua(φl,t,u, θl,t,u)a
H(φl,t,u, θl,t,u). (14)

Finally, the full-frequency domain channel for all users,
represented as {ĤMMSE

u ∈ CNc×M}Ku=1, is reconstructed by
applying frequency-domain linear interpolation to the pilot
segment channel {H̃PS

u ∈ CN×M}Ku=1.

B. Low-Complexity SA-BCE

The overall complexity of SA-BCE is dominated by matrix
inversion with complexities of O(N3 + M3). To reduce the
computational complexity of SA-BCE, we implement the SA-
BCE in (9) - (14) in the beam-delay domain [31] [32] [33],
thereby exploiting the limited scattering nature of wireless

channels to reduce complexity. Specifically, the beam-delay
domain MMSE estimator is given by

ĤPS
u = CH

u FNRτ
u(

(2i+1)K
2G∑

k= iK
G +1

Rτ
k + σ2IN )−1FH

NŶLS
i ,

(H̃PS
u )T = FARa

u(R
a
u + σ2IM )−1

(
FA
)H

(ĤPS
u )T ,

(15)

where FN ∈ CN×N denotes the discrete fourier transform
(DFT) matrix, with its (i, j)-th entry defined as [FN ]i,j ≜
1√
N
e−ȷ̄2π ij

N , FA = (FMv ⊗ FMh
). Rτ

u ∈ CN×N and
Ra

u ∈ CM×M denote the delay- and beam-domain channel
correlations of the u-th user, respectively, and are defined as

Rτ
u = FH

NCuPiR
f
uP

T
i C

H
u FN =

Lt,u∑
l=1

ρl,t,ub(τl,t,u)b
H
(τl,t,u),

Ra
u = (FA)HRs

uF
A =

Lt,u∑
l=1

ρl,t,ua(φl,t,u, θl,t,u)a
H(φl,t,u, θl,t,u),

(16)
where b(τl,t,u) = FH

NCuPibNc
(τl,t,u), a(φl,t,u, θl,t,u) =

av(θl,t,u) ⊗ ah(φl,t,u; θl,t,u), av(θl,t,u) = FH
Mv

av(θl,t,u) and
ah(φl,t,u; θl,t,u) = FH

Mh
ah(φl,t,u; θl,t,u).

Since the beam-delay domain formulation is derived through
a unitary transformation of the antenna-frequency domain
model, the received signal models in both domains are there-
fore mathematically equivalent. Building on this equivalence,
the corresponding MMSE estimators preserve this equivalence,
as formally established in the following lemma.

Lemma 1: The beam-delay domain MMSE estimator is
equivalent to its antenna-frequency domain counterpart.

Proof: Utilizing the orthogonality property of the DFT
matrix FN and the relation in (16), substitution of (9) and (13)
directly yields the estimator in (15), thereby proving the
equivalence. ■

Owing to the intrinsic sparsity of the beam–delay domain
channel, the matrices Rτ

u and Ra
u exhibit sparse structures,

thereby enabling a significant reduction in the computational
complexity. Specifically, we present the following proposition
to characterize the asymptotic behavior of Rτ

u and Ra
u.

Proposition 1: In the infinite case, Rτ
u and Ra

u respectively
converge to diagonal matrices.

Proof: In the infinite case where both the number of
antennas and subcarriers tend to infinite, the sampled steer-
ing vectors exhibit asymptotic orthogonality [34], rendering
b(τl,t,u) and a(φl,t,u, θl,t,u) asymptotically 1-sparse [16], i.e.,
containing only a single non-zero element. Consequently, ac-
cording to (16), both Rτ

u and Ra
u reduce to diagonal matrices

in this case. This completes the proof. ■
Proposition 1 reveals that the beam-delay domain MMSE

estimator degenerates into a element-wise operation as the
number of antennas and subcarriers tends to infinity, thereby
eliminating the need for matrix inversion. However, in practi-
cal systems, the number of antennas and subcarriers is finite,
leading to inevitable energy leakage in the beam-delay domain.
Therefore, both the beam- and delay-domain channel correla-
tion matrices exhibit significant off-diagonal elements, which
in turn substantially increases the computational complexity
of the beam-delay domain MMSE estimator.
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To alleviate the energy leakage problem, we incorporate the
energy-concentrating property of window functions [35] [36]
into the beam-delay domain MMSE estimator to develop the
SA-WBCE, given by

ĤPS
u = Λ−1

f CH
u FNR̃τ

u(

(2i+1)K
2G∑

k= iK
G +1

R̃τ
k + σ2Ξf )

−1FH
NΛfŶ

LS
i ,

(H̃PS
u )T = Λ−1

s FAR̃a
u(R̃

a
u + σ2Ξs)

−1
(
FA
)H

Λs(Ĥ
PS
u )T ,

(17)
where Ξf = FH

N |Λf |2FN , Ξs =
(
FA
)H |Λs|2FA, Λf ≜

diag{ηf} ∈ CN×N and Λs ≜ diag{ηs} ∈ CM×M denote
the frequency- and antenna-domain window functions, respec-
tively. R̃τ

u ∈ CN×N and R̃a
u ∈ CM×M denote the windowed

versions of the delay- and beam-domain channel correlations
for the u-th user, respectively, and are given by

R̃τ
u = FH

NΛfCuPiR
f
uP

T
i C

H
u ΛH

f FN

=

Lt,u∑
l=1

ρl,t,ub̃(τl,t,u)b̃
H(τl,t,u),

R̃a
u = (FA)HΛsR

s
uΛ

H
s FA

=

Lt,u∑
l=1

ρl,t,uã(φl,t,u, θl,t,u)ã
H(φl,t,u, θl,t,u),

(18)

where b̃(τl,t,u) and ã(φl,t,u, θl,t,u) represent the windowed
versions of b(τl,t,u) and a(φl,t,u, θl,t,u), respectively, exhibit-
ing improved energy concentration. This implies that R̃τ

u and
R̃a

u can be approximated as band matrices R̂τ
u and R̂a

u, i.e.,

[
R̂ϕ

u

]
i,j

=


[
R̃ϕ

u

]
i,j

, if |i− j| ≤ Bϕ,

0, otherwise,
(19)

where ϕ ∈ {τ, a}. Due to the characteristics of the window
functions, both Ξf and Ξs are band matrices with narrow band
sizes. As a result, the matrix inversion in the SA-WBCE can
be simplified to the inversion of band matrices, reducing the
computational complexity from O(N3 + M3) to O(NB2

f +
MB2

s ). The proposed SA-WBCE for U1 is summarized in
Algorithm 1. For other cases, the SA-WBCE can be readily
obtained by modifying the user index accordingly.

While the preceding design of the SA-BCE and SA-WBCE
algorithms assumes that SCSI are readily available, the reliable
SCSI acquisition under limited SRS resources remains a key
challenge in practical systems. To address this issue, a promis-
ing alternative is to exploit recent advances in positioning
technologies, such as integrated sensing and communication
(ISAC) [37] [38], to enable database-assisted SCSI acquisition.
Specifically, a location-specific SCSI database exploits the in-
trinsic relationship between SCSI and the wireless propagation
environment, which gives rise to a consistent mapping between
user location and SCSI in stationary environments. Once the
SCSI at a given location is obtained, any user positioned
at that location can directly utilize the corresponding SCSI
without incurring additional signaling overhead. Based on this
principle, we construct a location-specific SCSI database to
support efficient SCSI acquisition in the proposed framework,

while the detailed database construction process is presented
in Sections III-C and IV.

Algorithm 1 SA-WBCE for U1

Input: {{τl,t,u, φl,t,u, θl,t,u, ρl,t,u}
Lt,u

l=1 ,Cu, wt,u}u=1,··· ,K ,
{Yi(t),Si,Pi}i=0,··· ,G−1, σ2, Ξf , Ξs

1: for u = 1, ...,K do
2: Compute Rf

u and Rs
u via (11) and (14);

3: Compute R̂τ
u and R̂a

u using (18) and (19);
4: end for
5: for i = 0, ..., G− 1 do
6: ŶLS

i (t) = SH
i Yi(t), t = 1, ..., Tp;

7: Γ = (
∑ (2i+1)K

2G

k= iK
G +1

R̂τ
k + σ2Ξf )

−1;

8: for u = iK
G + 1, ..., (2i+1)K

2G do
% Time-domain OCC decomposition

9: ŶLS
i = 1

Tp

∑Tp

t=1 wt,uŶ
LS
i (t);

% Frequency-domain OCC decomposition
10: ĤPS

u = Λ−1
f CH

u FNR̂τ
uΓΛfŶ

LS
i ;

% Antenna-domain MMSE
11: Ω = (R̂a

u + σ2Ξs)
−1
(
FA
)H

Λs;
12: (H̃PS

u )T = Λ−1
s FAR̂a

uΩ(ĤPS
u )T ;

13: Perform linear interpolation to obtain ĤMMSE
u ;

14: end for
15: end for
Output:{ĤMMSE

u ∈ CNc×M , u ∈ U1}.

C. Location-Specific SCSI Database
Advancements in localization systems, such as global posi-

tioning system (GPS), laser-based systems, inertial measure-
ment units, and integrated sensing and communication (ISAC)
[37], enable efficient user localization for communication
systems. This progress facilitates the availability of abundant
high-quality location-tagged channel data. In this context, we
propose a location-specific SCSI database that establishes
a mapping between user location and SCSI to support the
proposed SA-BCE and SA-WBCE. To ensure the practicality
of such a database, it is essential to represent the SCSI in
a compact form rather than directly storing high-dimensional
correlation matrices. Given that the channel correlation matri-
ces required by SA-BCE and SA-WBCE are uniquely deter-
mined by the parameter set {τl,t,u, φl,t,u, θl,t,u, ρl,t,u}

Lt,u

l=1 , it is
sufficient to store only this set, which significantly reduces the
storage overhead while preserving all necessary information
for downstream processing.

Since the BS’s position is generally fixed after deployment,
the SCSI depends on the user’s location at t-th OFDM
symbol duration (denoted as q(t)) and the local propagation
environment. With the assumption that the local propagation
environment remains quasi-static over a longer time period
2T relative to the signal transmission period, i.e., the quasi-
static environment assumption, the SCSI depends only on
the location q(t). Therefore, we can establish a mapping
relationship between the user’s location and the SCSI, i.e.,

C(·) : q(t) →
{
τ̄q(t),l, θ̄q(t),l, φ̄q(t),l, ρ̄q(t),l

}Lq(t)

l=1
t ∈ T,

(20)
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 Users within the grid

 Center of the grid

 Users within the grid

Fig. 2: Illustration of the grid-based location-specific SCSI
database.

where T = {1, . . . , T} denote the set of the OFDM symbol
duration. Since the SCSI {τ̄q(t),l, θ̄q(t),l, φ̄q(t),l, ρ̄q(t),l}

Lq(t)

l=1

remains unchanged over the duration of 2T OFDM symbols,
we collect the uplink signals from the user located at q(t) over
T OFDM symbol durations to construct the location-specific
SCSI database and use the SCSI to assist channel estimation
over the subsequent T OFDM symbol durations.

However, directly mapping all possible user locations within
the physical region to the SCSI incurs significant storage
overhead. To address this issue, we divide the coverage area of
the BS into multiple grids, where users within the same grid
share a common SCSI. The rationale behind grid partitioning
is the spatial consistency of wireless channels which refers
to the fact that neighboring spatial positions tend to share
similar clusters, leading to spatial correlation in SCSI [39]. The
correlation of SCSI at two spatial positions depends on both
the distance between them and the correlation distance of the
environments. When the distance between the two positions
exceeds the correlation distance, the corresponding SCSI of
the two positions become statistically independent, and vice
versa can be considered identical. Thus, as long as the grid
size is much smaller than the correlation distance, the SCSI at
different positions within the same grid can be approximated
as identical.

In the following, we provide a detailed description of the
grid-based SCSI database as shown in Fig. 2. Assume that the
coverage area of the BS is divided into U grids, each with a
size of d×dm2, where d is much smaller than the correlation
distance. Define a mapping G(·) from the user’s location at
t-th OFDM symbol duration q(t) to a grid g as

L(·) : g = L(q(t)) t ∈ T, g ∈ G, (21)

where G = {1, . . . , U} denote the set of the grid. Based
on grid partitioning, we can replace the location-based SCSI
{τ̄q(t),l, θ̄q(t),l, φ̄q(t),l, ρ̄q(t),l}

Lq(t)

l=1 with the grid-based one
{τ̄g,l, θ̄g,l, φ̄g,l, ρ̄g,l}L̄l=1, where L̄ denotes the number of ef-
fective paths of the channel. The corresponding grid-based
SCSI database can be represented as

C(·) : g → {τ̄g,l, θ̄g,l, φ̄g,l, ρ̄g,l}L̄l=1. (22)

To obtain the SCSI of user k for the DMRS channel
estimation, the position qk(t) of user k at the t-th OFDM

symbol is mapped to the grid gk using the function gk =
L(qk(t)) in (21). Subsequently, the SCSI for grid gk, denoted
as {τgk,l, φgk,l, θgk,l, ρgk,l}L̄l=1, is obtained by applying C(gk)
as given in (22). It is worth noting that, in practical systems,
the processes of localization and database lookup introduces
a non-negligible latency, typically on the order of millisec-
onds [40] [41]. For users with relatively low mobility, such
millisecond-level latency does not cause significant position
variation and therefore has minimal impact on the effective-
ness of the location-specific SCSI database. In contrast, in
high-mobility scenarios, this latency may result in noticeable
position errors, potentially causing the user to be mapped to an
incorrect spatial grid and consequently retrieving mismatched
SCSI. To address this issue, position prediction techniques [42]
[43] are required to compensate for the latency-induced errors
and enhance SCSI accuracy under high mobility scenarios.

Given the obtained SCSI {τgk,l, φgk,l, θgk,l, ρgk,l}L̄l=1, the
frequency-domain channel correlation matrix R̃f

k and antenna-
domain channel correlation matrix R̃s

k can be computed using
(11) and (14). Based on R̃f

k and R̃s
k for all users, the channel

can be estimated using the SA-BCE and SA-WBCE as detailed
in Section III-A and Section III-B, respectively.

IV. VSTD-BASED SCSI DATABASE CONSTRUCTION

In this section, we first analyze the received signals for the
location-specific SCSI database construction. Building on this
foundation, we reformulate the location-specific SCSI database
construction as a tensor decomposition problem, where the
multilinear structure of wireless channels [44], [45] enables a
significant reduction in computational complexity.

A. Received Signals for SCSI Database Construction

The grid-based SCSI database, as shown in Fig. 2, is
constructed by utilizing the received signals from all users
within the grid. For simplicity, we define Qg = {(q, t) | g =
L(q), t ∈ T} as the set of locations corresponding to grid g
and their corresponding OFDM symbol duration indices. For
simplicity, we define v = (q, t) ∈ Qg , as the spatial sampling
point for grid g (the user at location q during the t-th OFDM
symbol duration). Based on (22), the channel of the sampling
point v located within grid g can be represented as

Hv =

L̄∑
l=1

αl,vbNd
(τ̄g,l)a(φ̄g,l, θ̄g,l)

T +∆Hv , v ∈ Qg,

(23)
where Hv ∈ CNd×M , and Nd denotes the number of sub-
carriers used to obtain the SCSI. αl,v is the l-th effective
complex coefficient, which satisfies E

[
αl,vα

∗
l,v

]
= ρ̄g,l. ∆Hv

represents the error in channel representation and can also
indicate the accuracy of the SCSI. Over the T OFDM symbol
durations, the received signals Yv ∈ CNd×M , v ∈ Qg , are
collected as measurement data including sounding reference
signals, synchronization signals, etc., from all users within
grid g. Subsequently, Yv , for v ∈ Qg , is used to construct
the SCSI database for grid g, given by

Yv = SvHv + Ñv, (24)
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where Sv ∈ CNd×Nd denotes the pilot sequence of the sam-
pling point v, Ñv ∈ CNd×M represents the complex Gaussian
noise matrix, where each element follows the i.i.d. complex
Gaussian distribution, incorporating the channel representation
error induced by ∆Hv

.
To facilitate implementation, we equivalently represent Yv

in vector form as follows:

yv =
L̄∑

l=1

αl,v (SvbNd
(τ̄g,l))⊗ a(φ̄g,l, θ̄g,l) + ñv. (25)

Assume that there are W spatial sampling points
{v1, v2, . . . , vW } within each grid, we can use the
received signals from these spatial sampling points
{yv1 ,yv2 , . . . ,yvw , . . . ,yvW

, vw ∈ Qg}Ww=1 to obtain
the SCSI for grid g. To eliminate the effects of pilot, we first
perform LS channel estimation on the received signal yvw

,
as follows:

hLS
vw

= (SH
vw

⊗ IM )yvw . (26)

Let Hg ∈NdM×W be the concatenation of the channels from
all sampling points, given by

Hg =
[
hLS
v1
,hLS

v2
, . . . ,hLS

vw
, . . . ,hLS

vW

]
, vw ∈ Qg. (27)

Since we assume that the SCSI remains consistent for each
sampling point within each grid, Hg can be represented as

Hg =
L̄∑

l=1

(
bNd

(τ̄g,l)⊗ a(φ̄g,l, θ̄g,l)
)
pT
g,l +Ng, (28)

where pg,l = [αl,v1 , αl,v2 , . . . , αl,vW ]
T denotes the channel

gains of the l-th path at all sampling points within grid g.
Since αl,vw satisfies the condition E[αl,vwα

∗
l,vw

] = ρ̄l,g, w =
1, 2, . . . ,W , we can approximate ρ̄l,g using αl,vw as follows:

ρ̄l,g =
1

W

W∑
w=1

|αl,vw |2. (29)

Since the received signals yv exhibit a nonlinear relationship
with the underlying SCSI parameters, traditional methods for
obtaining SCSI parameters typically require iterative proce-
dures [19], resulting in high computational complexity. To
tackle this challenge and estimate the parameters efficiently,
we establish a tensor decomposition framework for location-
specific SCSI database construction in the following subsec-
tion.

B. Problem Formulation

We aim to extract τ̄g,l, θ̄g,l, φ̄g,l, and ρ̄g,l from the data Hg

to construct the SCSI database. Note that the construction of
the SCSI database for each grid is independent and follows
the same procedure. Without loss of generality, we present
the problem formulation for the g-th grid below. Using the
expression of Hg in (28), we first derive a fourth-order tensor
Hg ∈ CNd×Mv×Mh×W , with its (n,mv,mv, w)-th entry
given by [Hg]nM+mvMh+mh,w

. By comparing (28) to the
definition of tensor canonical polyadic decomposition (CPD)

[46], it can be readily observed that HHHg can be represented in
a CPD format, i.e.,

Hg = JB(1),B(2),B(3),B(4)K +N g

=
L̄∑

l=1

bNd
(τ̄g,l) ◦ av(θ̄g,l) ◦ ah(φ̄g,l, θ̄g,l) ◦ pg,l +N g,

(30)
where N g is the tensor form of noise and representation error.
B(1),B(2),B(3) and B(4) are factor matrices represented by

B(1) =
[
bNd

(τ̄g,1) , . . . ,bNd

(
τ̄g,L̄

)]
∈ CNd×L̄,

B(2) =
[
av(θ̄g,1), . . . ,av(θ̄g,L̄)

]
∈ CMv×L̄,

B(3) =
[
ah(φ̄g,1, θ̄g,1), . . . ,ah(φ̄g,L̄, θ̄g,L̄)

]
∈ CMh×L̄,

B(4) =
[
pg,1, . . . ,pg,L̄

]
∈ CW×L̄.

(31)

We aim to estimate the SCSI {τ̄g,l, θ̄g,l, φ̄g,l, ρ̄g,l}L̄l=1 from
the observation tensor Hg , by utilizing the structured CPD
format as described in (30)-(31). The SCSI estimation problem
can be formulated as the following optimization problem:

min
{τ̄g,l,θ̄g,l,φ̄g,l,ρ̄g,l}L̄

l=1

∥∥∥Hg − JB(1),B(2),B(3),B(4)K
∥∥∥2
F
.

(32)
The above problem essentially corresponds to a CPD problem,
which can be addressed using existing tensor decomposi-
tion algorithms. Intuitively, these algorithms approximates the
high-dimensional tensor by a set of low-dimensional factor
matrices, allowing for processing in one domain while treating
the other domains as batches, thereby reducing computational
complexity. This decomposition not only separates the latent
components across different domains but also significantly
lowers the computational burden, as the factor matrices have
substantially lower dimensionality compared to the original
tensor.

One of the most widely used tensor decomposition algo-
rithms is the alternating least squares (ALS) [47] method,
which iteratively estimates one factor matrix while keeping the
others fixed, updating them alternately. Given the estimated
factor matrices {B(1),B(2),B(3),B(4)}, the SCSI can be
derived by leveraging the underlying manifold structure of
the factor matrices. However, the ALS algorithm guarantees
the uniqueness of the estimated factor matrices only when
the tensor is of low rank. In contrast, the scenario considered
in this paper involves a channel with several hundred sub-
paths, resulting in a high-rank CPD problem for which the
uniqueness condition is no longer satisfied. Since uniqueness
is critical for reliable CPD-based decomposition, we first
analyze the uniqueness conditions associated with the CPD
formulation in equation (32). This analysis then serves as
the foundation for enhancing the subsequent SCSI estimation
algorithm.

C. Extraction of SCSI

The uniqueness condition of the CPD problem is funda-
mental to the accurate estimation of SCSI, ensuring that the
decomposed factor matrices incorporate the accurate informa-
tion of channel statistical parameters. A well-known sufficient
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condition for the uniqueness of CPD problem (32) is as follows
[48]:

Lemma 1: Considering the fourth-order tensor Hg defined
in (30), if the condition

∑4
i=1 kr(B

(i)) ≥ 2L̄+ 3 is satisfied,
then the CPD of Hg is guaranteed to be unique. In the general
case, the uniqueness condition simplifies to

min
(
Nd, L̄

)
+min

(
Mv, L̄

)
+min

(
Mh, L̄

)
+min

(
W, L̄

)
≥ 2L̄+ 3

(33)
In our system, since Mv , Mh, and W are much smaller

than L̄, the condition kr
(
B(2)

)
+ kr

(
B(3)

)
+ kr

(
B(4)

)
< L̄

holds. Therefore, the Kruskal condition cannot be satisfied.
To address this issue, the structural properties within the

tensor must be exploited to relax the uniqueness condi-
tion. Note that the factor matrices B(1), B(2), and B(3)

are all Vandermonde matrices where the generators are
{z1,l = e−ȷ̄2π∆fτ̄g,l}L̄l=1, {z2,l = e−ȷ̄π cos θ̄g,l}L̄l=1 and {z3,l =
e−ȷ̄π sin θ̄g,l cos φ̄g,l}L̄l=1 respectively. Utilizing this structural
information, the following relaxed uniqueness condition can
be derived [10], [49].

Lemma 2: Considering the fourth-order tensor Hg defined
in (30), where B(1),B(2),B(3) are Vandermonde matrix with
generators {z1,l}L̄l=1, {z2,l}L̄l=2, {z3,l}L̄l=1. Select the smooth-
ing parameters (Ks, Ls), s = 1, 2, 3 subject to K1 + L1 =
Nd + 1, K2 + L2 = Mv + 1, and K3 + L3 = Mh + 1 for
spatial smoothing. If

z1,i ̸= z1,j ,∀i ̸= j,

r
(
B(K1−1,1) ⊙B(K2,2) ⊙B(K3,3)

)
= L̄,

r
(
B(L1,1) ⊙B(L2,2) ⊙B(L3,3) ⊙B(4)

)
= L̄,

(34)

then the CPD of Hg is unique. Specifically, B(K1−1,1) ≜
[B(1)]1:K1−1,: denotes the first K1−1 rows of B(1). In general,
condition (34) simplifies to

min ((K1 − 1)K2K3, L1L2L3I4) ≥ L̄. (35)

The relaxed uniqueness condition (35) can be guaranteed by
appropriately choosing parameters (Ks, Ls), s = 1, 2, 3.

Based on Lemma 2, the high-rank CPD problem in our work
can be solved by exploiting the Vandermonde structure of the
factor matrices. Specifically, we leverage the method in [10]
and [49] to estimate the SCSI of grid g using Hg . We define
the smoothing parameters (Ks, Ls), s = 1, 2, 3, which satisfy
the conditions outlined in Lemma 2. Consider the matricization
X[3] of the tensor Hg [49] as follows:

X[3]

≜


[Hg]1,1,1,1 [Hg]1,1,1,1 · · · [Hg]1,1,1,W
[Hg]1,1,2,1 [Hg]1,1,2,1 · · · [Hg]1,1,2,W

...
...

. . .
...

[Hg]Nd,Mv,Mh,1
[Hg]Nd,Mv,Mh,2

· · ·[Hg]Nd,Mv,Mh,W


=
(
B(1) ⊙B(2) ⊙B(3)

)
PT

g +N[3],

(36)
where N[3] ∈ CNdMvMh×W is the corresponding noise matrix.
Since B(1),B(2), and B(3) exhibit a Vandermonde structure,
the dimension of X[3] can be expanded by exploiting the

spatial smoothing technique. We perform spatial smoothing
on X[3], yielding

XS ≜
[
J1,1,1X

[3] · · · J1,1,L3X
[3] · · · J1,2,1X

[3]

· · · J1,2,L3
X[3] · · · J1,L2,L3

X[3]

· · ·JL1,1,1X
[3] · · · JL1,L2,L3

X[3]
]

=
(
B(K1,1) ⊙B(K2,2) ⊙B(K3,3)

)
·
(
B(L1,1) ⊙B(L2,2) ⊙B(L3,3) ⊙B(4)

)T
+NS ,

(37)
where NS ∈ CK1K2K3×L1L2L3W is the corresponding noise
matrix; Jl1,l2,l3 is the selection matrix [50], given by

Jl1,l2,l3 ≜
[
0K1×(l1−1) IK1

0K1×(L1−l1)

]
⊗[

0K2×(l2−1) IK2
0K2×(L2−l2)

]
⊗[

0K3×(l3−1) IK3 0K3×(L3−l3)

]
.

(38)

Subsequently, the truncated singular value decomposition is
performed on XS , i.e.,

SVD (XS) = UΣVH, (39)

where U ∈ CK1K2K3×L̄,Σ ∈ CL̄×L̄ and V ∈ CL1L2L3W×L̄.
Using the minimum description length (MDL) criterion [51],
L̄ can be estimated.

Omitting the noise and based on (34), there exists a non-
singular matrix M ∈ CL̄×L̄ such that

UM = B(K1,1) ⊙B(K2,2) ⊙B(K3,3),

V∗ΣN = B(L1,1) ⊙B(L2,2) ⊙B(L3,3) ⊙B(4),N = M−T .
(40)

The above equation implies that

U1M = B(K1,1) ⊙B(K2,2) ⊙B(K3,3),

U2M = B
(K1,1) ⊙B(K2,2) ⊙B(K3,3),

(41)

where B(K1,1) and B
(K1,1) are obtained by deleting the

bottom and top row of B(K1,1) respectively, i.e., B(K1,1) =

[B(K1,1)]1:K1−1,: , B
(K1,1)

= [B(K1,1)]2:K1,:. The expressions
for U1 and U2 are

U1 = [U]1:(K1−1)K2K3,:,

U2 = [U]1+K2K3:K1K2K3,:.
(42)

Due to the Vandermonde structure of B(1), we have(
B(K1,1) ⊙B(K2,2) ⊙B(K3,3)

)
Z1

= B
(K1,1) ⊙B(K2,2) ⊙B(K3,3),

(43)

where Z1 = diag
([
z1,1, . . . , z1,L̄

])
.

By merging (41)-(43), the following equation is obtained:

U1MZ1 = U2M. (44)

From (44), we have U2 = U1Ẑ1, where Ẑ1 = MZ1M
−1.

Since B(K1,1) ⊙ B(K2,2) ⊙ B(K3,3) has full column rank, it
follows that U1 and U2 also have full column rank. Therefore,
we obtain Ẑ1 = U†

1U2. From the eigenvalue decomposition
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(EVD), U†
1U2 = MZ1M

−1, the Vandermonde generators set
{z1,l}L̄l=1 of B(1) is derived, i.e.,

{z1,l}L̄l=1 = diag(Z1), z1,l =
z1,l
|z1,l|

, l = 1, . . . , L̄. (45)

Then, we can reconstruct B(1) with {z1,l}L̄l=1 based on (31).
The next step is to find B(2). Note that(

(b
(K1,1)
l )H

b
(K1,1)H
l b

(K1,1)
l

⊗ IK2K3

)(
b
(K1,1)
l ⊗ b

(K2,2)
l ⊗ b

(K3,3)
l

)
= b

(K2,2)
l ⊗ b

(K3,3)
l ,

(46)
where b

(Ks,s)
l is the l-th column of B(Ks,s)(s = 1, 2, 3). Thus,

by leveraging (40), b(K2,2)
l ⊗ b

(K3,3)
l is obtained as

b
(K2,2)
l ⊗ b

(K3,3)
l =


(
b
(K1,1)
l

)H
(
b
(K1,1)
l

)H
b
(K1,1)
l

⊗ IK2K3

Uml.

(47)
Then, the second Vandermonde generators set {z2,l}L̄l=1

of B(2) is determined. Since
(
B(K2,2) ⊙B(K3,3)

)
Z2 =

B
(K2,2) ⊙ B(K3,3), where Z2 = diag

([
z2,1, . . . , z2,L̄

])
, we

have
z2,l =

(
b
(K2,2)
l ⊗ b

(K3,3)
l

)†
(1:(K2−1)K3,1)

·
(
b
(K2,2)
l ⊗ b

(K3,3)
l

)
(K3+1:K2K3,1)

.
(48)

Similarly, we reconstruct B(2) with {z2,l}L̄l=1. So far, we
have obtained

{
B(1),B(2)

}
. l-th vector of B(3) can be derived

in the similar way, i.e.,

b
(K3,3)
l =


(
b
(K2,2)
l

)H
(
b
(K2,2)
l

)H
b
(K2,2)
l

⊗ IK3


·


(
b
(K1,1)
l

)H
(
b
(K1,1)
l

)H
b
(K1,1)
l

⊗ IK2K3

Uml.

(49)

Considering the Vandermonde structure of B(K3,3),
the generators of B(3) can be expressed as z3,l =(
bl

(K3,3)
)†

b
(K3,3)

l . According to (40), l-th vector of B(4)

can be derived as

b
(4)
l =

(
b
(L1,1)
l

)H
(
b
(L1,1)
l

)H
b
(L1,1)
l

⊗

(
b
(L2,2)
l

)H
(
b
(L2,2)
l

)H
b
(L2,2)
l

⊗

(
b
(L3,3)
l

)H
(
b
(L3,3)
l

)H
b
(L3,3)
l

⊗ IW ·V∗Σnl.

(50)

Upon completing the tensor decomposition, we
proceed to estimate the SCSI. Specifically, the SCSI
{τ̄g,l, θ̄g,l, φ̄g,l, ρ̄g,l}L̄l=1 can be estimated using the generators
{z1,l, z2,l, z3,l}L̄l=1 and the factor matrix B(4) as follows:

τ̄g,l ≜ − 1

2π∆f
∠z1,l, l = 1, . . . , L̄, (51a)

Algorithm 2 VSTD-Based SCSI Database Construction Al-
gorithm for Grid g

Input: Hg ∈ CNd×Mv×Mh×W

1: Compute XS using (36) and (37).
2: Compute the SVD of XS using (39).
3: Compute EVD as U†

1U2 = MZ1M
−1.

4: Estimate the normalized generators {z1,l, z2,l, z3,l}L̄l=1 us-
ing (44)-(49).

5: Reconstruct
{
B(1),B(2),B(3)

}
using {z1,l, z2,l, z3,l}L̄l=1.

6: Compute the factor matrices B(4) using (50).
7: Compute

{
τ̄g,l, θ̄g,l, φ̄g,l, ρ̄l,g

}L̄
l=1

via (51a) -(51d).

Output:{τ̄g,l, θ̄g,l, φ̄g,l, ρ̄g,l}L̄l=1.

θ̄g,l ≜ arccos

(
− 1

π
∠z2,l

)
, l = 1, . . . , L̄, (51b)

φ̄g,l ≜ arccos

(
− 1

π sin θ̄g,l
∠z3,l

)
, l = 1, . . . , L̄, (51c)

ρ̄l,g ≜
1

W
∥b(4)

l ∥22, l = 1, . . . , L̄, (51d)

where ∠ denotes the operator for extracting the phase angle.
The VSTD-based SCSI database construction algorithm is
summarized in Algorithm 2.

V. SIMULATION RESULTS

A. Simulation Configuration

In this section, we present simulation results to evaluate
the performance of the proposed algorithms. To generate the
channels for simulations in the 3GPP 38.901 urban macro
(UMa) line-of-sight (LOS) scenario, we utilize QuaDRiGa
[52], which is capable of generating massive MIMO-OFDM
channels that consistent with the 3GPP 38.901 specifications
[53]. Each channel consists of 34 clusters, comprising 221
subpaths. Furthermore, the channel parameters vary at dif-
ferent positions in accordance with the spatial consistency
procedure [53]. The basic simulation parameters are presented
in Table I. Unless otherwise specified, a velocity of 0.1 km/h
is adopted to focus on the impact of frequency-selective fading
on the frequency-domain OCC decomposition, with additional
simulations provided for high-mobility scenarios. Finally, the
SNR during channel estimation and the location-specific SCSI
database construction are denoted as SNRCE and SNRSC,
respectively.

B. Benchmarks and Performance Metric

To demonstrate the superiority of the proposed scheme,
we compare our schemes with the following state-of-the-art
algorithms:

• OMP without SCSI Database [54]: The orthogonal
matching pursuit (OMP) algorithm estimates delay-
angular channel parameters by applying OMP with a
pre-defined dictionary from the trivial approach results
[11]. The channel is subsequently reconstructed using the
estimated parameters.

• VSD without SCSI Database [10]: The Vandermonde
structured decomposition (VSD) algorithm exploits the
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TABLE I: Basic System Parameters

System Parameters Value
Centering frequency fc 6.7 GHz

Bandwidth B 100 MHz
FFT size NFFT 4096

Number of subcarriers for transmission Nc 816
Subcarrier spacing ∆f 30 kHz

Number of CDM group G 3
Number of OFDM symbols for pilots Tp 2

Number of subcarriers each CDM group N 272
Number of UE K 24

Number of spatial sampling points W 10
Number of BS antennas [Mv,Mh] [4,16]

Height of BS hBS 25 m
Height of UE hUE 1.5m

Delay spread 300ns
Shape parameter of the Kaiser window 3.95

Window function of SA-WBCE Kaiser window
Bandsizes in SA-WBCE [Bτ , Bϕ] [15, 20]

channel’s inherent Vandermonde structure, applying ten-
sor decomposition to estimate the channel from the trivial
approach results [11].

• EM-AMP without SCSI Database [20]: This algorithm
assumes an unknown Bernoulli-Gaussian prior, learns the
hyper-parameters through EM algorithm, and estimates
the frequency-space domain channels of all users via
approximate message passing (AMP) based on the trivial
approach results.

• SA-BCE with SOMP-based SCSl Database: This algo-
rithm leverages the SCSI database constructed via the
simultaneous orthogonal matching pursuit (SOMP) algo-
rithm for SA-BCE. The SOMP algorithm [55] extracts
the SCSI under signal model (28), taking into account
the common statistical properties of the channel across
different spatial sampling points.

To evaluate the performance of SCSI database construction,
we use the mean square error (MSE) of location-specific SCSI-
assisted MMSE estimator as the performance metric, i.e.,

LSCSI =
Ef + Es

2
, (52)

where Ef and Es denote the MSE of the frequency-domain
MMSE channel estimator and antenna-domain MMSE channel
estimator, respectively, which can be expressed as

Ef =
1

Nd
tr

(
Rf −RfR̃f

(
R̃f + σ2IN

)−1
)
,

Es =
1

M
tr

(
Rs −RsR̃s

(
R̃s + σ2IM

)−1
)
,

(53)

where Rf ∈ CNc×Nc and Rs ∈ CM×M denote the ideal
frequency-domain and antenna-domain channel correlation
matrices, respectively, R̃f ∈ CNc×Nc and R̃s ∈ CM×M

represent the frequency-domain and antenna-domain channel
covariance matrices obtained using the SCSI from location-
specific SCSI database.

To assess the performance of channel estimation, we in-
troduce the normalized mean squared error (NMSE) as the

TABLE II: Computational Complexity of VSTD Algorithm

Main Steps Computational Complexity
Perform truncated SVD on XS O

(
K1L1K2L2K3L3WL̄

)
Perform EVD on U†

1U2 O
(
K1K2K3L̄2

)
Compute

{
z2,l

}L̄

l=1
O

(
K1K2K3L̄2

)
Compute

{
z3,l

}L̄

l=1
O

(
K2K3L̄

)
Reconstruct B(4) O

(
L1L2L3WL̄2

)
Total O

(
K1L1K2L2K3L3WL̄

)
evaluation metric, i.e.,

NMSE =
1

TpK

K∑
k=1

Tp∑
t=1

10 log10

(
∥Ĥk(t)−Hk(t)∥2F

∥Hk(t)∥2F

)
,

(54)
where Hk(t) ∈ CNc×M and Ĥk(t) ∈ CNc×M represent the
actual and estimated frequency-space domain channel for the
k-th user at the t-th symbol duration.

C. Computational Complexity

1) Location-specific SCSI database construction: Since the
process of constructing the matrix XS by collecting spe-
cific rows incurs negligible cost, the overall computational
complexity of the VSTD algorithm can be decomposed into
four steps, as summarized in Table II. Among these steps,
the truncated SVD performed on XS is the dominant com-
ponent, with a complexity of O

(
K1L1K2L2K3L3WL̄

)
. In

contrast, the primary operations in SOMP involve searching
for the matched steering vectors bNd

(·) ⊗ av (·) ⊗ ah (·) ∈
CNdM×1 and performing a LS estimation of the matrix
B(4) ∈ CW×L̄, resulting in a computational complexity
of O

(
N2

dM
2WL̄+ L̄3

)
. By exploiting the tensor-structured

characteristics of wireless channels, the proposed VSTD al-
gorithm avoids high-dimensional matrix operations, thereby
achieving lower computational complexity and improved per-
formance compared to SOMP. Furthermore, to evaluate scala-
bility with respect to both the antenna array size and the system
bandwidth, we analyze the multiplication counts of both al-
gorithms under varying antenna configurations and subcarrier
numbers, as summarized in Table III. The results demonstrate
that the VSTD algorithm exhibits favorable scalability in both
cases, thereby underscoring its computational efficiency and
suitability for large-scale wideband massive MIMO systems.

2) Channel estimation: In SA-BCE, the primary computa-
tional cost originates from matrix inversions and multiplica-
tions. To alleviate the computational burden of matrix inver-
sion, we implement SA-BCE in the beam-delay domain and
employ a windowing technique, which simplifies the matrix
inversion in SA-BCE to the inversion of band matrices in SA-
WBCE. Furthermore, in both SA-BCE and SA-WBCE, the
frequency-domain MMSE estimator requires matrix inversion
to be performed once per CDM group. The computational
complexity of the proposed algorithms and baselines is sum-
marized in Table IV, where L denotes the number of iterations
in OMP, R represents the predefined tensor rank in VSD, Titer
denotes the number of iterations in the EM-AMP algorithm.
In general, both L and R are set as the maximum number of
effective channel paths.
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TABLE III: Multiplication counts of VSTD and SOMP algorithms under varying antenna array sizes and subcarrier numbers

Algorithm Multiplication Count
[Mv,Mh] = [4, 16] [Mv,Mh] = [16, 16] [Mv,Mh] = [16, 32] Nd = 240 Nd = 480 Nd = 960

VSTD 5.25× 109 6.09× 1010 2.29× 1011 5.25× 109 2.04× 1010 8.07× 1010

SOMP 1.89× 1011 3.02× 1012 1.21× 1013 1.89× 1011 7.55× 1011 3.02× 1012

TABLE IV: Computational Complexity of Channel Estimation
Methods

Algorithm Computational Complexity
OMP O

(
K

(
N2M2L+ L3

))
VSD O(KN2M2R)

EM-AMP O
(
KN2M2Titer

)
SA-BCE O

(
G

(
N3 +N2M

)
+KN2M

)
+

O
(
KM3 +KNM2

)
SA-WBCE

O
(
G

(
NB2

τ +N2M
)
+KN2M

)
+

O
(
KMB2

ϕ +KNM2
)

As shown in Table IV, the proposed SA-BCE and SA-
WBCE schemes achieve lower computational complexity than
baseline methods that jointly process signals in the antenna-
frequency domain. This reduction is enabled by leveraging
location-specific SCSI and decoupling processing across fre-
quency and antenna domains. In addition to the asymptotic
complexity summarized in Table IV, we further report the
multiplication counts under different antenna array sizes and
numbers of subcarriers in Table V, which serve as a more
quantitative metric of computational burden. The results con-
firm that the proposed SA-BCE and SA-WBCE schemes
achieve substantially better scalability than the baseline algo-
rithms, whose complexity grows quadratically. In particular,
SA-WBCE attains strictly sub-quadratic scaling by replacing
full matrix inversion with band-matrix inversion, thereby en-
suring computational feasibility for large-scale massive MIMO
deployments.

D. Performance Evaluation

The SCSI accuracy of the proposed VSTD-based algorithm
compared to the SOMP-based benchmark under varying SNR
and Nd is depicted in Fig. 3. It is evident that the proposed
algorithm consistently enhances SCSI accuracy with increases
in both Nd and SNR. Across the entire evaluated range of
Nd, the VSTD-based SCSI database construction algorithm
demonstrates substantial superiority over the SOMP-based
baseline. To quantify, at Nd = 180 and an SNRSC of 10 dB,
the proposed algorithm realizes a SCSI accuracy of −23.5
dB, which is 16.3 dB superior to the −7.2 dB achieved by the
SOMP-based approach.

Fig. 4 presents the SCSI accuracy of the proposed algorithm
as a function of the grid size d and the number of subcarriers
Nd. The proposed algorithm exhibits an improvement in SCSI
accuracy with an increase in Nd or a decrease in d. Notably,
to maintain a consistent SCSI accuracy of −23.4 dB, an
increase in the grid size d from 2m to 5m necessitates
a substantial increase in Nd, specifically from 120 to 240.
This observation highlights a critical trade-off: while smaller
grid sizes enhance SCSI accuracy, they lead to finer grid
partitioning and consequently increase the storage overhead

100 150 200 250 300

-30

-25

-20

-15

-10

-5

A
cc

u
ra

cy
 o

f 
S

C
S

I 
(d

B
)

Fig. 3: SCSI accuracy versus Nd (d = 2m, σ2 = 10−3 ).

1 2 3 4 5 6

60

120

180

240

300
-26

-24

-22

-20

-18

-16

A
cc

u
ra

cy
 o

f 
S

C
S

I 
(d

B
) 

Fig. 4: The SCSI accuracy of the VSTD-based SCSI database
at different Nd and d (SNRSC = 10 dB, σ2 = 10−3).

for the SCSI database. Thus, a judicious selection of d is
imperative to achieve an optimal balance between accuracy
and storage efficiency.

The sensitivity of the proposed SA-BCE and SA-WBCE
schemes to the grid size in location-specific SCSI acquisition
is evaluated in Fig. 5. It can be observed that although
increasing the grid size leads to performance degradations for
both SA-BCE and SA-WBCE, the gaps are relatively small.
This is because, although larger grids result in coarser user
position quantization and reduced accuracy of the retrieved
SCSI, essential channel characteristics, such as angle and
delay spectra, are still effectively preserved due to spatial
consistency, leading to only marginal performance degrada-
tion. Specifically, when the grid size grows from 2m to 10m,
the performance losses are only about 2 dB for SA-BCE
and 2.5 dB for SA-WBCE. These observations indicate that
the proposed methods exhibit strong robustness to grid size,
allowing the storage overhead of the SCSI database to be
significantly reduced by enlarging the grid size with only a
marginal performance degradation.
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TABLE V: Multiplication counts of channel estimation algorithms under varying antenna array sizes and subcarrier numbers

Algorithm Multiplication Count
[Mv,Mh] = [4, 16] [Mv,Mh] = [16, 16] [Mv,Mh] = [16, 32] Nc = 816 Nc = 1632 Nc = 3264

SA-BCE 2.21× 108 1.40× 109 6.01× 109 2.21× 108 1.05× 109 6.02× 109

SA-WBCE 1.55× 108 9.79× 108 3.04× 109 1.55× 108 5.66× 108 2.15× 109

OMP 5.82× 1011 9.31× 1012 3.72× 1013 5.82× 1011 2.33× 1012 9.31× 1012

VSD 5.82× 1011 9.31× 1012 3.72× 1013 5.82× 1011 2.33× 1012 9.31× 1012

EM-AMP 2.18× 1012 3.49× 1013 1.40× 1014 2.18× 1012 8.73× 1012 3.49× 1013
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Fig. 5: The NMSE performance of the proposed SA-BCE and
SA-WBCE schemes with different grid size d (Nd = 240 and
SNRSC = 10 dB in SCSI database construction).

To examine how the channel estimation performance of the
proposed method varies with the number of subcarriers used
for location-specific SCSI acquisition, we present NMSE per-
formance for the proposed SA-BCE and SA-WBCE method
with different Nd in Fig. 6. As shown in the figure, the
performance of the proposed algorithm improves with the
increasing SNR. Furthermore, the performance of the proposed
algorithm improves as Nd increases. When Nd is small, the
condition in (35) may not be satisfied, leading to inaccurate
SCSI and degraded channel estimation performance. When
Nd is large, increasing Nd does not significantly improve the
channel estimation performance. Therefore, during the con-
struction of the SCSI database, only a subset of measurement
data is required. Furthermore, the SA-WBCE exhibits inferior
performance compared to SA-BCE, particularly in the high-
SNR regime. This result stems from the approximations made
during the design process, which, in turn, contribute to a
significant reduction in computational complexity.

The comparison of NMSE and average effective commu-
nication rate performance between the proposed schemes and
baseline methods is shown in Fig. 7. By leveraging the SCSI,
the proposed schemes outperform all benchmark methods
across the entire SNR range and achieves performance com-
parable to the SA-BCE with the ideal SCSI database. In
particular, the proposed SA-BCE and SA-WBCE with the
VSTD-based SCSI database achieve an NMSE of approxi-
mately −21.5 dB and −19.5 dB when SNR is 15 dB, whereas
the NMSE of all other benchmark methods remains above
−17 dB. These results demonstrate the great potential of the
proposed SA-BCE and SA-WBCE for MU-MIMO systems.

Fig. 8 illustrates the NMSE performance of the SA-WBCE
with the VSTD-based SCSI database under different band
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Fig. 6: The NMSE of the proposed methods with different Nd

in SCSI database construction (d = 2 m and SNRSC = 10 dB
in SCSI database construction).

sizes and window functions. As the band size increases, the
NMSE performance of the SA-WBCE scheme improves, albeit
at the cost of higher computational complexity. In practical
applications, a trade-off between performance and complexity
can be achieved by appropriately selecting the band size.
Among the three window functions, the Kaiser window offers
the best performance. Specifically, When Bτ = 15 and
Ba = 20, the SA-WBCE with the Kaiser window achieves an
NMSE of –21.4 dB, representing a 2 dB improvement than
SA-WBCE with the rectangular window.

In Fig. 9, we present the NMSE performance of various
algorithms as a function of the channel delay spread. The
OMP, VSD, and EM-AMP algorithms, which rely on OCC
decomposition results obtained through trivial approach for
channel estimation, suffer significant performance degradation
as the delay spread increases. In contrast, the proposed SA-
BCE and SA-WBCE, which incorporate SCSI into the OCC
decomposition process to mitigate pilot interference, exhibit
minimal NMSE deterioration. Specifically, as the delay spread
increases from 200 ns to 500 ns, the proposed algorithms
experiences only a 0.5 dB NMSE loss, compared to a 6.5 dB
degradation observed in the VSD and EM-AMP algorithms.

The NMSE performance of the several schemes with re-
spect to user mobility is depicted in Fig. 10. As observed,
increasing the user speed leads to only a marginal NMSE
degradation across all methods, with the proposed SA-BCE
and SA-WBCE schemes consistently outperforming the base-
line approaches. The negligible performance loss is mainly
attributed to the DMRS patterns defined in the specifications
[9] [56]. In OFDM systems, Doppler frequency mainly induces
phase rotation between successive symbols. Since DMRS
spans two consecutive OFDM symbols, the resulting phase
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Fig. 7: The NMSE and average effective communication rate
performance versus SNR (Nd = 240, SNRSC = 10 dB and
d = 2m in SCSI database construction).
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Fig. 8: The NMSE performance of the SA-WBCE with
different band size and different window functions (Nd = 240,
SNRSC = 10dB and d = 2m in SCSI database construction,
SNRCE = 20dB).

rotation is limited, thereby preserving the orthogonality in
time-domain OCC decomposition. In contrast, as illustrated
in Fig. 9, the frequency-domain OCC decomposition is more
susceptible to delay spread because the widely spaced DMRS
subcarriers within each CDM group experience distinct fading,
breaking orthogonality and consequently degrading NMSE
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Fig. 9: The NMSE performance of several schemes versus the
delay spread (Nd = 240, SNRSC = 10dB and d = 2m in
SCSI database construction, SNRCE = 20dB).
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Fig. 10: The NMSE performance of several schemes versus
the user speed(Nd = 240,SNRSC = 10 dB and d = 2 m in
SCSI database construction, SNRCE = 20 dB ).

performance.
In future wireless communication systems, both antenna

array size and system bandwidth are expected to scale up sig-
nificantly, necessitating an evaluation of the proposed schemes
under such configurations. Fig. 11 presents the NMSE results
with varying numbers of BS antennas and subcarriers. In
both cases, the proposed SA-BCE and SA-WBCE consistently
achieve the lowest NMSE among all baselines. This is because
the estimation accuracy is highly determined by the spatial and
delay-domain resolutions which are governed by the antenna
array size and system bandwidth, respectively. Increasing the
antenna array size and system bandwidth enhances these
resolutions, enabling more effective separation of multipath
components and reducing energy leakage. However, as the
antenna array size or system bandwidth increases beyond
a certain threshold, the dominant propagation paths become
sufficiently distinguishable, leading to diminishing returns in
channel estimation accuracy and resulting in only marginal
NMSE improvements.

In practical localization systems [37], non-negligible po-
sitioning errors are inevitable. Moreover, in high-mobility
scenarios, the localization and database access latency may
further exacerbate user location errors. To assess the impact
of such errors, Fig. 12 illustrates the NMSE performance of
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(a) Lager antenna arrays
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Fig. 11: NMSE performance of several schemes versus: (a)
the number of BS antennas [Mv,Mh]; and (b) the number
of subcarriers Nc (Nd = 240,SNRSC = 10 dB, d = 2 m in
SCSI database construction; SNRCE = 0 dB ).

SA-BCE and SA-WBCE under different levels of location
error. The results indicate that NMSE degrades gradually as
the error increases, due to the potential mismatch between
the estimated user position and the true grid location, which
leads to erroneous SCSI retrieval. With a location error of 2
m, the resulting performance degradation is relatively minor,
with an NMSE increase of approximately 1 dB. As the error
increases to 6 m and 10 m, the degradation becomes more
pronounced, reaching about 3 dB and 4 dB, respectively. For
small errors (up to 4 m), the proposed methods maintain a
clear performance advantage over all baseline methods across
the entire SNR range. In scenarios with larger location errors,
the proposed schemes still deliver competitive performance,
and their robustness can be further enhanced by increasing the
grid size. This adjustment effectively mitigates the impact of
position mismatch and helps maintain consistent performance
across different SNR levels, as demonstrated in Fig. 5.

VI. CONCLUSION

In this paper, we investigated uplink DMRS-based chan-
nel estimation for MU-MIMO systems. We first developed
the received signal model under the Type II OCC pattern
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Fig. 12: The NMSE performance of the proposed SA-BCE
and SA-WBCE schemes with different user location errors
(Nd = 240,SNRSC = 10 dB and d = 2 m in SCSI database
construction).

standardized in 3GPP Release 18. Building on this model,
we proposed SA-BCE, which effectively suppresses pilot
interference by fully leveraging SCSI. To further reduce the
computational complexity of SA-BCE, we reformulated the
estimation process from the antenna-frequency domain to
the beam-delay domain and extended the approach to SA-
WBCE by incorporating the windowing technique. To acquire
SCSI, we constructed a location-specific SCSI database by
partitioning the spatial region into grids and leveraged the
uplink received signals within each grid to extract the SCSI.
Facilitated by the multilinear structure of wireless channels,
we formulated the SCSI acquisition problem within each grid
as a tensor decomposition problem and exploited the VSTD
algorithm to extract the SCSI. Simulation results validated the
superiority of the proposed schemes. In future work, we plan
to extend the proposed framework to more practical settings,
including dynamic environments with moving scatterers and
scenarios affected by pilot contamination.
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