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Abstract. Most medical image segmentation techniques rely on overlap-
based metrics such as the Dice coefficient. In contrast, the Hausdorff
Distance (HD) offers a more sensitive assessment of boundary discrepan-
cies by explicitly capturing spatial misalignments. Despite its relevance,
directly minimizing the HD during the training of convolutional neural
networks for medical image segmentation remains challenging due to the
non-differentiability of the conventional distance transform algorithms.
Previous attempts of soft distance transforms are limited by numerical
instability or require binary inputs, limiting their applicability. In this
paper, we introduce novel regional Hausdorff Distance loss functions to
optimize the HD without relying on any auxiliary losses. Specifically, we
propose the maximum, modified, and average regional Hausdorff Dis-
tance losses. Central to our approach is a new method to compute a
fully differentiable erosion-based distance function, which can be applied
directly to probability maps. These functions accurately approximate
the signed, unsigned, or positive distance maps while maintaining full
differentiability. We validate our approach on multiple public medical
image segmentation datasets, demonstrating that our HD losses achieve
competitive performance, outperforming state-of-the-art methods.

Keywords: Hausdorff Distance - Image Segmentation - Distance trans-
forms.

1 Introduction

The Hausdorff Distance (HD) metric quantifies the distance between two point
sets [11]. In medical image analysis, it is widely used to assess the segmen-
tation performance of deep learning models [6,24]. Unlike the Dice Similarity
Coefficient (DSC), which only measures the volumetric overlap between a pre-
dicted and the ground truth segmentation, the HD metric offers a more sensitive
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assessment of boundary discrepancies by explicitly capturing the maximal dis-
tance between misaligned parts. This makes it particularly relevant for assessing
the quality of the delineation of small structures such as tumors or lesions by
highlighting the worst-case mismatch between two objects [19], or the bound-
ary alignment of anatomical structures like the heart or the liver [15]. Despite
its importance, few attempts have been reported to directly optimize the HD
metric during the training of deep learning-based image segmentation. Some
studies have designed losses to optimize the boundary accuracy without ex-
plicitly reproducing the HD [14, 5,27, 9]. The weighted Hausdorff Distance loss
from [18] approximates the average HD for isolated points but is designed only
for points, not image masks. Only the work from [13] aims to reduce the HD by
approximating an HD loss, relying on the Euclidean Distance Transform (EDT)
of the segmentation boundaries. They also propose an alternative loss through
morphological operations, which underperformed compared to the EDT-based
formulation. While this loss improved performance regarding HD, it must be
combined with Dice loss to prevent any instabilities, and its formulation does
not exactly replicate the HD formula. Additionally, the EDT-based loss lacks dif-
ferentiability properties. Indeed, Distance Transform Maps (DTM) provide an
alternative representation of a binary shape where each voxel’s intensity corre-
sponds to its distance with the nearest foreground boundary voxel [21]. This rep-
resentation enables explicit distance computations between point sets. However,
conventional distance transform algorithms are inherently non-differentiable [28].
The differentiability of the approach in [13] is not explicitly addressed, raising
questions about its suitability for gradient-based optimization. Several studies
have tried approximating soft distance transforms (DT) by emulating the oper-
ation through CNN-based learning [2, 4, 16]. For instance, in [2], a CNN-based
approach was introduced to learn a watershed transform for instance-based seg-
mentation. Other methods have directly regressed the DTM as a CNN output to
be used as a loss function or as a regularization term [25,7,26]. However, these
approaches are prone to domain shift since the learned DT is dataset-dependent,
and some require additional geometry-aware refinements to improve generaliza-
tion. Recent works have proposed Convolutional-based differentiable Distance
Transform (CDT) operations [29,28,17]. One major limitation of CDT is that
the kernel size must be as large as the image diagonal to process sparse binary
images correctly. If the kernel size is too small, background pixels far from the
foreground will mistakenly receive a zero-distance value. This leads to increased
computational complexity due to the large kernel size and potential numerical
instability when the kernel’s exponential term approaches zero, particularly in
large images with only a few foreground pixels. A cascaded CDT approach was
proposed by [17] to mitigate these issues, but it requires soft binarization of
segmentation outputs, hence not directly applicable to raw probability maps.

In this paper, we propose a novel family of regional HD-based loss functions
that rely on a soft and differentiable DT. As a first contribution we introduce
a novel morphological erosion-based differentiable distance transform that can
be applied directly on probability maps. This method allows to compute the ac-
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curate signed, unsigned, and positive distance maps in a differentiable manner,
ensuring compatibility with deep learning models. In a second contribution, we
derive three well-established variations of the HD loss leveraging the differen-
tiable distance transform. Specifically, we provide a smooth formulation of the
Hausdorff, Modified Hausdorff, and Symmetric Averaged Hausdorff Distances.
These losses achieve state-of-the-art performance without auxiliary losses.

We analyze the effect of key hyperparameters and validate our method through
controlled validation experiments. Then, we evaluate the applicability of our
losses across various public medical segmentation datasets, proving the applica-
bility of the soft distance transforms and the effectiveness of the proposed loss
functions to minimize the distance of the predicted masks to the ground truth
while maintaining an equivalent Dice score. To foster reproducibility, our code
is available at https://github.com/lisaGUZZI/HD-Loss

2 Method

2.1 Definition of distance transforms

We define a ground truth binary segmentation G consisting of IV voxels such that
G ={G.,})_,, G, €{0,1}. The boundary 9G of the foreground object in the
image is defined as 0G = {q | G, = 1, 3r such that G, =0, dt(¢,r) < 1} where
dt(q,r) is a chosen distance metric between two voxels, typically the Euclidean
or Manhattan distance.

The distance transform map D(G) assigns to each voxel G, its minimum

distance to the closest foreground boundary voxel ¢ such that:

Eq. 1 actually corresponds to the unsigned distance transform D“ where the
distance is computed for each voxel, both inside and outside the boundary 0G.
Alternatively, one can also compute the signed distance transform D? such that
the distance is negative inside the object and positive outside:

DHG,) = mingeaq dt(Gn, q), if G, =0 (outside the object)
" —mingeaq dt(Gn,q), if G, =1 (inside the object)

The positive distance transform DT assigns a distance of 0 to all foreground
voxels and computes the distance only for background voxels:

(3)

min agdt Gn,q), lfGnZO
D+(G"):{0 weoa G =1

The relationships between these distance transforms are therefore given by:
DY(G) =DM (G)+DT(1-G) and D*(G) = DT (G) —DT(1-G). Also, D“(G) =
|D*(G)| and DT (G) = max(D*(G), 0).
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Fig. 1: Illustration of distance transforms D*, D%, DT on a binary image G.

o

2.2 Distance transforms with morphological operations

The positive distance transform D+ can be computed with morphological oper-
ations, specifically using successive erosions, when morphological distances are
considered. The maximum distance corresponds to the number of erosions re-
quired to completely remove the background. The erosion filter & is defined by
an isotropic structuring element k (typically k = 4+ 1 or k = 8 + 1 in 2D,
and k=6+4+1, k =18+ 1 or k = 26 + 1 in 3D) which defines the unit ball of
the considered metric. The erosion of shape G with the k structuring element is
written as G © k, and we note G ©° k its ith eroded shape.
We propose to compute the positive distance transform DT as:

1

DHG) =) [(1-G) &' K] (4)

i=1

where I represents the number of iterations required to compute the complete
distance map, or in other words, the number of successive erosions to perform to
remove the background. Therefore, each background voxel receives a value equal
to the number of erosions required to remove the shape complement 1 — G. The
other distance transforms D" and D* can then be derived from their respective
relationships to DT.

2.3 Soft distance transforms

Neural networks typically output a segmentation ) of an image X corresponding
to the probability map Y = {y,} € [0,1]" with y,, = p(G,, = 1|X) € [0,1]. We
want to formalize the D%, D¢ and D+ distance transforms to their probabilistic
equivalents d%, d* and d which can be applied on the probabilistic segmentation
Y. The probabilistic distance transform d should generalize to the discrete case
D(Y) = d(Y) such that both give the same output when Y is binary.

Given the soft and differentiable morphological filters introduced in [10], we
propose to compute the soft distance transform by replacing the binary erosion
filter ©'k in Eq. 4 with a soft erosion filter ©k applied on the probability seg-
mentation ). The soft erosion ©; is expressed as the multi-linear polynomial



Regional Hausdorff Distance Losses for Medical Image Segmentation 5

(YEsk)n = ILien(n) Vi where N*(n) are the neighboring pixels of voxel n ac-
cording to the selected structuring element. This soft erosion operator makes the
soft distance transforms applicable on probability maps and fully differentiable.

2.4 Regional Hausdorff Distance Losses

The Hausdorff Distance (HD) quantifies the maximum discrepancy between
two point sets. Given the point sets A and B, the HD is defined as: HD =
max(maxge 4 dt(a, B), maxpe g dt(b, A)) where the directed distance of a point a
to the set B is given by dt(a, B) = minye g dt(a,b). This formulation of the HD
satisfies the triangle inequality property. However, its sensitivity to outliers has
led to the introduction of alternative HD formulations. The Modified Hausdorff
Distance (MHD) [8] averages the minimal distance instead of taking the max-
imum. The Symmetric Averaged Hausdorftf Distance (M HDyy,,) [8] takes the
mean of the two directed distances. The M H D is more robust in matching ob-
jects based on edge points than the HD (8|, while M H Ds,,,, provides a smooth
alternative with a slightly reduced discriminatory power.

To optimize the HD into neural network-based segmentation, we propose
differentiable approximations of the HD formulas based on the positive distance
transform DT (G) and its probabilistic counterpart d*()). Given a binary ground
truth segmentation G' and a probabilistic prediction segmentation ), we define:
The Hausdorff Loss (Ly), approximating the classical HD:

Ly = smax(smax(D"(G),, o yn),smax(d" (y), o G,)) (5)

The Averaged Hausdorff Loss (Lag):

— g 1 + 1 +
Lap = smax (IYI — > DG o yn, AT e Zn:d (V)n o Gn> (6)

n

The symmetric Averaged Hausdorff Loss (Lag,,,, ):

b + 1 +

n

where smax(z) is a smooth approximation of the maximum operator imple-
mented using the LogSumExp function (with a « scaling parameter), o represents
the Hadamard product and e a small positive constant. The directed distance
DT (G),, o yn represents the false positive points of ) and their distance to the
ground truth G whereas d* (y), o G,, is the directed distance representing the
distance of the false negatives to G.

Computational complexity. Considering that the complexity of the soft dice
loss is O(b-c¢- V), the proposed losses have a complexity of O(I-b-c-V') where I
is the number of soft erosion iterations, and b,c,V denote batch size, number of
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channels, and number of voxels, respectively. To reduce computational overhead,
we propose constraining I to a small fixed value (e.g., 2-5), resulting in a sat-
urated positive distance transform. The truncation attenuates the influence of
distant errors without removing them, maintaining meaningful gradient signals
and additionally improving numerical stability during optimization, ensuring
that overly large distances do not dominate the loss.

3 Results

3.1 Experimental Setup

Datasets. We evaluated our method on five public datasets: the DRIVE dataset
of 2D retinal blood vessels [23|, the 3D CT Liver, Spleen and Pancreas datasets
from the Medical Segmentation Decathlon [1], and the ACDC dataset [3] com-
prising multi-slice 2D cine MRI images of the heart. 3D datasets were considered
as a stack of 2D slices in the 2D applications.

Evaluation Metrics. We evaluated segmentation performance using the Dice
coefficient, conventional HD, HD95, modified HD (MHD) to verify that Haus-
dorff distance losses regress distance metrics, and clDice [22] to assess the global
shape and object-level alignment.

Implementation Details. Experiments were conducted with Python 3.12.8
and Pytorch 2.5.1 on 3 Nvidia A40 PCle GPUs.

3.2 Validation of Distance transforms

Our differentiable distance transforms, based on morphological operations, is
sensitive to the connectivity choice. To evaluate the validity of the generated
distance maps, we analyzed the variance of the gradient norm of the signed dis-
tance map computed with D? under different connectivity settings. Indeed, the
ideal configuration should exhibit minimal variance, as the norm of the gradient
should be equal to 1 everywhere: | VD*(G)|| = 1. We considered signed distance
maps produced with a connectivity of 4 and 8 in 2D and of 6, 18, and 26 in
3D. We additionally compared these results with i) the distance_ transform_ edt
function from scipy which provides the exact distance but is not differentiable,
and ii) the convolutional distance transforms from [29] and [17]. In Table 1, we
reported the variance averaged over a database of 50 images randomly selected
from the DRIVE, Liver, Spleen, and ACDC datasets, both in 2D and 3D. In 2D,
our method achieved a lower norm of the gradient variance around the value 1
than SciPy with both 8 and 4-connectivity. In 3D, the Scipy package got the
smallest variances, and the 26-connectivity led to the smallest variance to 1. In
the remainder, a connectivity of 4 is selected in 2D and of 26 in 3D.

3.3 Evaluation on Public Datasets

2D. We used our Hausdorfl loss functions to train a 2D U-Net [20] for the
segmentation of the DRIVE and Spleen datasets (Table 2). Datasets were split
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Table 1: Variance of the norm of the gradient of different SDT

Modality‘ DT ‘Variance to1l | ‘Variance to mean |
2D Scipy 0.96 0.03
CDT [29] 2.80 2.16
cascaded CDT [17] 0.24 0.21
Ours| 4 connec 0.14 0.02
8 connec 0.12 0.12
3D Scipy 0.97 0.03
CDT [29] 4.68 4.18
Ours| 6 connec 74.64 72.63
18 connec 21.87 21.62
26 connec 19.89 19.69

into 75% training, 15% validation, and 15% testing sets, and the network was
trained with a batch size of 16 through 250 epochs and a learning rate of le-3 for
the DRIVE dataset and of 1le-4 for the Spleen. We set the number of erosion to
compute the distance transform to 5 iterations for the Ly loss and to 2 for L g
and Lag,,,,- The a scale factor of the LogSumExp function was empirically set
to a = 150. We compared our method with models trained with the same UNET
and the Dice loss as a baseline and the HD loss proposed in [13].

Our loss functions improved the HD metrics (HD, HD95, MHD) compared
to the baseline (Dice loss) while maintaining equivalent Dice and clDice scores
on both datasets. The Hausdorff loss from [13] did not show any improvement
compared to the baseline. When we compared the number of erosion iterations to
compute the distance map (c.f. supplementary material), increasing the number
of erosion for the Ly loss decreased the HD metrics in both datasets. However,
the averaged losses Lag and L4 Haym did not exhibit the same behavior as the
performance sometimes decreases as the number of iterations increases. This
could be because the LAH criterion is a regularized version of LH, which does
not verify the triangular inequality and can entail extra local minima. Indeed,
the normalization term by the size of the predicted mask ) can lead to a local
minimum for slightly over-segmented predicted masks. Increasing the number of
iterations to compute the distance transform might increase the chances of at-
taining those local minima. Additionally, while the losses significantly improved
the HD metrics on the Spleen dataset, the results were less significant regard-
ing the retinal dataset. We believe this is because the DRIVE dataset contains
images of retinal blood vessels that are dense and spread through the entire im-
age while the Spleen contains mask that are smaller and centered in the image,
meaning that the distance of false positive points could be higher and the losses
correct these segmentation discrepancies more effectively.

3D. We used our Hausdorff loss functions to train a 3D nnU-Net [12] for the
segmentation of the Pancreas dataset in 3d full resolution (Table 3). This dataset
has two labels: Pancreas and Cancer. Datasets were split into 65% training,
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Table 2: 2D U-Net segmentation on the Spleen and DRIVE datasets.
|Dice t|HD ||HD95 ||[MHD |[|c]Dice 1
Spleen|Dice (baseline)|| 0.93 [10.95| 10.10 5.93 0.96
HD [13] 0.88 |15.08| 13.97 11.56 0.92
LH 0.90 | 6.82 5.62 3.51 0.94
LAH 0.93 | 5.51| 4.50 0.87 0.96
LAH sym 0.92 | 9.66 8.88 5.32 0.95

Drive |Dice (baseline)|| 0.82 |16.77| 2.20 0.50 0.84
D [13] || 078 |17.80] 3.04 | 0.67 | 081
LH 0.80 |15.58| 2.10 0.49 0.82
LAH 0.80 |15.53| 1.96 0.48 0.84
LAH sym 0.82 |14.80| 1.85 0.45 0.84

Table 3: 3D nnU-Net segmentation on the Pancreas dataset.
|Dice t|HD |[HD95 ||[MHD |[|cIDice 1

Pancreas|Dice (baseline)|| 0.77 [25.14| 13.37 | 524.49 | 0.72
LH 0.77 |25.22| 12.22 | 519.86 0.73
LAH 0.80 |24.65| 10.43 | 282.03 0.75
LAH sym 0.82 (16.94| 7.10 |221.80| 0.79
Cancer |Dice (baseline)|| 0.43 [42.28| 29.95 |1018.01| 0.48
LH 0.42 |23.75| 20.79 | 948.13 0.52
LAH 0.48 [23.29| 20.73 | 867.23 0.53
LAH sym 0.54 |22.09| 19.23 | 283.82| 0.60

15%validation, and 20% testing sets, and the network was trained with a batch
size of 12 through 250 epochs and an initial learning rate of le-2. We set the
number of erosion to compute the distance transform to 2 iterations in every
case. The « scale factor of the LogSumExp function was still set to a = 150. We
compared our methods with an nnU-Net trained with the Dice loss as baseline.

The three Hausdorff losses improved all distance metrics and clDice for all
labels especially for the cancer label, excepted for the MHD with Ly that was
only slightly improved. The other two losses actually correspond the MHD for-
mulation, explaining why they were more efficient to improve this metric. The
Dice score was also improved using L 4z compared to the baseline.

4 Conclusion

We introduced regional Hausdorff Distance (HD) losses to regress the Hausdorff,
modified Hausdorff, and average Hausdorff Distances in CNN-based medical im-
age segmentation. The introduced method relies on a smooth formulation of
the distance transform that can be applied to probability maps. Finally, we have
shown that these losses reduce the HD while preserving the Dice score without re-
quiring any auxiliary loss. Furthermore, we show that only two iterated erosions
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are sufficient to compute the regional HD losses and improve the performance
in terms of HD. In future work, we want to investigate more accurate distance
maps in 3D such as Chamfer distances, and the adoption of other smooth max-
imum functions than the LogSumExp function. This work holds the potential
to improve the segmentation of medical structures where the HD is of higher
relevance, offering a new paradigm for optimizing segmentation models beyond
Dice-centric metrics.
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