
Automatic Segmentation of Lower-Limb Arteries
on CTA for Pre-surgical Planning of Peripheral

Artery Disease

Lisa Guzzi1,2,3, Maria A. Zuluaga2, Fabien Lareyre4,5, Gilles Di Lorenzo4,
Sébastien Goffart1,3, Andrea Chierici3, Juliette Raffort3,5, and

Hervé Delingette1

1 Université Côte d’Azur, Inria, Epione Team, Sophia Antipolis, France
2 Data Science Department, EURECOM, Sophia Antipolis, France

3 University Hospital of Nice, Nice, France
4 Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, Antibes, France

5 Université Côte d’Azur, CNRS, UMR7370, LP2M, Nice, France
lisa.guzzi@inria.fr

Abstract. Peripheral artery disease (PAD) often requires revascular-
ization guided by computed tomography angiography (CTA). Manual
analysis of lower-limb arteries on CTA is time-consuming, operator-
dependent, and limited by challenging imaging conditions. While deep
learning has advanced vascular segmentation, current models focus on
large central vessels and do not capture the full arterial anatomy and
pathological conditions in the lower extremities for PAD. In this work,
we present a fully automated 3D segmentation pipeline tailored to PAD
to delineate the entire lower-limb arterial tree, including the recognition
of each main and peripheral branches, along with calcified plaques and
stents. Our framework leverages nnU-Net, and addresses the limitations
in complex PAD settings by introducing (1) a PAD-specific annotation
protocol using a semi-automated tool to reduce inter-observer variabil-
ity in labeling stents and calcifications, (2) a novel object-level detection
metric that accounts for boundary ambiguity in calcified lesions and
stents, and (3) the incorporation of the clDice loss to enhance topolog-
ical preservation, critical for vascular analysis in a pathological setting.
We train and evaluate our method on a curated in-house dataset under
challenging imaging conditions. Our pipeline demonstrates robust per-
formance, enabling the extraction of clinically relevant features necessary
to the pre-surgical planning. It paves the way for fully automated PAD
assessment, with potential to improve diagnostic accuracy, reduce time
to treatment, and more objective severity scoring for therapy planning.

Keywords: Peripheral Artery Disease · Computed Tomography An-
giography · Image Segmentation.

1 Introduction

Peripheral artery disease (PAD) is a common atherosclerotic condition affecting
an estimated quarter billion people worldwide [10, 12, 17]. It carries high mor-
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bidity and mortality and often presents as chronic limb threatening ischemia re-
quiring revascularization [5, 7, 8]. Computed tomography angiography (CTA) is
widely used in this context as vascular surgeons rely on precise 3D visualization of
arterial anatomy and lesion characteristic to plan intervention [4]. The extent and
location of occlusions or stenosis, calcifications and prior stents as well as the gen-
eral artery anatomy of the patient strongly influence the revascularization strat-
egy [12]. However, manual analysis of lower extremity CTA is time-consuming
and operator-dependent. Thus, the automatic segmentation of the lower-limb
arteries, along with detection of calcified plaque and stents, could greatly accel-
erate pre-surgical planning. The automatic measurements could help retrieving
useful informations for example to calculate standardized staging scores (such
as GLASS [18] or the TASCII score [13]) from the imaging, supporting person-
alized therapy. However, PAD presents unique segmentation challenges: arteries
are often narrowed or occluded, distal branches can be small and tortuous, and
heavy calcifications and surgical stents cause imaging artifacts, degrading con-
ventional segmentation performance. Vessel segmentation networks may falsely
break vessels at occlusions or bleed into high-contrast plaque. Clinically, missing
a side branch or mis-measuring a lesion can misguide revascularization decisions.

Deep learning techniques for 3D image segmentation have advanced rapidly [1,
15]. It has been successfully used to segment different artery types and calcifi-
cation plaques [6, 2, 11]. The nnU-Net framework [9] has emerged more recently
as a self-configuring state-of-the-art method for medical image segmentation.
It was used for example to segment carotid arteries and calcified plaques on
CTA [20]. Zhou et al. [14] additionally proposed a general CTA model for mul-
tiple anatomical structures and lesions, and outperformed prior methods on all
evaluated structures using the nnU-Net framework, notably including coronary
arteries, aorta, and lower limb arteries. While these studies show the potential
of deep learning to segment vascular structures on CTA, most focus on major
vessels such as the aorta, coronaries, carotids or on classification tasks, but none
of them fully segment the total lower-limb arterial tree, typically stopping at
the iliac or femoral level. To further improve the segmentation of fine tubular
structures, the clDice loss function [16] has been proposed. This loss explicitly
enforces the overlap of predicted and ground-truth centerlines and preserves ves-
sel topology. To our knowledge, these advances have yet to be fully exploited for
the entire lower limb vasculature in PAD patients.

In this study, we address these gaps by applying a fully automatic 3D seg-
mentation pipeline in a clinically realistic PAD population on CTA imaging.
Building upon the nnU-Net framework, we train on a curated in-house anno-
tated CTA volumes to segment the entire lower-limb arterial tree, including ma-
jor named vessels, secondary branches, calcified plaques, and implanted stents.
Beyond standard segmentation, we tackle several PAD-specific challenges. First,
the complex morphology and variable imaging appearance of calcifications and
stents on CTA introduce significant ambiguity in manual annotations. To miti-
gate inter-annotator variability, we developed a semi-automatic labeling tool tai-
lored to these structures. Second, conventional voxel-based metrics often under-
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Fig. 1: Flowchart of the Dataset distribution in each task.

estimate performance when boundary definitions are uncertain for small objects,
we therefore introduce an object-level detection metric designed to faithfully re-
flect the detection of calcified plaques and stents. Third, to ensure continuity
and topological integrity of the segmented vessels, crucial for downstream clin-
ical analysis, we incorporate the clDice loss alongside Dice and Cross-Entropy
(CE) during training. Compared to prior work, each arterial segment is explicitly
labeled, enabling the extraction of region-specific features such as local calcifica-
tion burden or anatomical variants. It supports detailed preoperative planning,
facilitates reproducible quantification of disease severity, and lays the foundation
for automated stenosis and thrombosis assessment in PAD.

2 Method

2.1 Dataset

For this study, a dataset of 196 lower-limb Computed Tomography Angiography
(CTA) anonymized scans from patients with Peripheral Artery Disease (PAD)
was acquired from the Hospital of Nice, following the French Regulatory Health
Authorities, and with informed consent from all subjects. A total of 25 scans were
excluded due to suboptimal image quality, including issues related to anatomical
coverage, resolution or when the contrast product was not visible in the arteries.
The remaining 171 scans were converted from DICOM to NIfTI format, resulting
in 3D volumes with a mean image dimension of 512 x 512 x 1657 slices (± 595)
and a mean voxel spacing of 0.81 x 0.81 x 0.77 mm (± 0.11 × 0.11 × 0.83 mm).
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(a) (b)

Fig. 2: (a) A 3D representation of Artery, Calcification and Stent segmentation.
(b) Axial CTA representation with and without segmentation annotations.

2.2 Annotation protocol

From the 171 selected CTA scans, 88 were randomly selected for manual seg-
mentation. This manual segmentation was performed by two experts based on a
consensus, and inter-annotator variability was assessed on a subset of 12 scans
independently annotated by the two experts. The segmented structures include
the arteries, calcification plaques, and stents (Fig. 2). Segmentation was per-
formed using ITK-SNAP v4.0 [19] with an adaptive brush tool based on the
watershed algorithm. The arterial tree was annotated in the axial plane, be-
ginning at the abdominal aorta until the fibular and tibial arteries. Collateral
arteries and secondary branches were segmented up to their first bifurcation or
until they became indistinguishable.

Inter-annotator evaluation. The inter-annotator agreement on the 12 inde-
pendently labeled scans for the global arterial tree achieved a Dice score of 0.91,
indicating strong overall concordance. However, agreement was lower for dis-
tal branches in the below-knee region (Dice: 0.40), compared to the Aorto-Iliac
(Dice: 0.94) and Femoral-Popliteal (Dice:0.88) regions, reflecting greater vari-
ability in segmenting small-caliber vessels. This reduced agreement is attributed
to the sensitivity of the Dice metric to minor boundary differences in small struc-
tures. Final ground truth segmentations were therefore derived from a consensus
of the two experts. For calcifications and stents, inter-annotator agreement was
substantially lower, with a Dice of 0.42 for the calcifications and 0.41 for the
Stents. This is primarily due to the small size of these structures and the inher-
ent difficulty in visually identifying their exact boundaries on CTA. It highlights
the subjectivity and variability of manual annotation for such small targets.

Semi-automatic labeling. Due to the difficulty in manually defining the exact
boundaries of calcifications and stents, we propose a semi-automatic tool to
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Fig. 3: 3D representation of main branches of the arteries of the lower limbs.

reduce operator bias and improve annotation consistency. Gaussian clustering
was applied to the intensity distribution of voxels adjacent to the artery mask.
The cluster of voxels with Hounsfield Unit (HU) values above 700 was initially
classified as calcifications. Due to overlapping intensity ranges, stents and bones
were manually distinguished and corrected post-clustering.

Final label processing. Each segmentation underwent further refinement by
removing small connected components (< 5 voxels) and applying the Tukey
interquartile range method to clip outlier intensities. After the initial manual
segmentations, a preliminary nnU-Net model was trained on the 88 labeled im-
ages and applied to 25 additional unlabeled scans. These pseudo-labels were
manually corrected to increase the sample size to 113 annotated scans.

Branch annotation. A second segmentation protocol was implemented to label
individual arterial segments on 98 scans, specifically to differentiate main artery
branches, secondary branches and bypass arteries (Fig. 3). An expert provided
proximal and distal landmarks for each branch over the artery mask, including
the aorta, common iliac artery, external iliac artery, superficial femoral artery,
popliteal artery, tibial artery, posterior tibial artery, fibular artery and tibio
peroneal trunk. All other segments were categorized as secondary branches. A
semi-automatic labeling script connected annotated landmarks along the center-
line of the artery mask to assign unique labels to each arterial segment. Manual
corrections were subsequently applied to refine these labels.

2.3 Automatic segmentation

The automatic segmentation was performed using the nnU-net [1]. This frame-
work is a self-configuring deep learning architecture designed for biomedical im-
age segmentation. It automatically determines the model parameters based on
the dataset’s properties, including pre and post processing steps, training param-
eters, data augmentation techniques and the network architecture. The training
of the segmentation framework was conducted in a 5 fold cross validation setup,
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and then inferred and evaluated on a separate test set. For the final artery
segmentation, scans were divided into 76 scans for the training, 20 scans for
validation and 17 scans for the independent test set. The intensity normaliza-
tion was automatically applied by nnU-Net, foreground voxel intensities from
all training images were collected to compute the 0.5th and 99.5th percentiles.
Voxel intensities were clipped to this range, followed by z-score normalization.
Patch size was set to 96 × 320 × 80 voxels, voxel spacing was resampled to 0.838
× 0.62 × 0.828 mm, the training was performed with Adam optimizer and an
initial learning rate of 0.01. The network configuration was empirically set to
3D network with full resolution of the image (3d_fullres). For the loss Function,
the default nnU-Net uses a combination of CE and Dice loss. In addition, we
investigated the use of clDice loss, which enhances topological preservation in
tubular structures:

LCE+Dice+clDice = λ1 × LCE + λ2 × LDice + λ3 × LclDice (1)

where λ is a weighting factor controlling the contribution of the clDice term. In
this training, the values of λ1, λ2, λ3 were set respectively to 2, 1, 1.

Branch segmentation was performed similarly with nnU-Net. We divided
the 98 annotated scans into 63 training, 16 validation and 19 scans for the
independent test set. The branches each correspond to a submask of the global
artery mask. Here the task is considered as a multi-label segmentation directly
extracted from the CTA. Training was conducted on Nvidia A40 PCIe GPUs.

2.4 Evaluation metrics

Overlap-based metrics. We evaluated the predictions using the Dice score,
the Precision, Recall, the Hausdorff Distance (HD) and its (HD95).

Topological-based metrics. These metrics assess the preservation of anatom-
ical continuity and connectivity, which are crucial in vascular segmentation. The
clDice [16] metric extends the traditional Dice metric by emphasizing the align-
ment of tubular structures along their centerlines. To evaluate topological consis-
tency, we computed the mean absolute difference of Betti numbers where β0,
β1 and β2 respectively represent the number of connected components, loops, and
cavities. Additionally, the Euler characteristic χ is defined as: χ = β0−β1+β2.
We used a connectivity of 26 in the foreground and of 6 in the background.

Detection metrics. The segmentation of calcifications and stents presents a
unique challenge due to their small size and the inherent subjectivity in delin-
eating their exact boundaries. As a result, traditional voxel-wise metrics such as
the Dice score can be overly sensitive to minor discrepancies. In clinical applica-
tions, the primary objective is to reliably detect the presence and approximate
extent of each calcification or stent, rather than achieving perfect boundary ac-
curacy. To assess detection performance, we employed an object-level matching
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Table 1: nnU-Net segmentation performance of the global artery mask with and
without incorporating the clDice loss, and segmentation of each arterial branch.

Dice ↑ clDice ↑ HD ↓ HD95 ↓ Prec. ↑ Rec. ↑ β0 ↓ β1 ↓ β2 ↓ χ ↓
- 0.93 0.86 103.36 5.59 0.93 0.93 35.06 67.00 25.29 69.00
+ clDice 0.94 0.88 93.42 3.43 0.93 0.95 24.65 59.53 22.12 54.29
Aorta 0.96 0.90 402.78 2.85 0.97 0.94 3.85 8.65 6.89 6.20
Second. 0.68 0.61 245.90 52.00 0.75 0.65 5.58 0.85 0.30 5.55
C. iliac 0.79 0.84 28.93 13.05 0.81 0.81 0.60 1.25 1.05 1.10
E. iliac 0.79 0.87 39.25 11.43 0.83 0.79 1.50 1.75 0.30 2.05
C. fem. 0.67 0.72 78.29 63.69 0.71 0.69 1.10 0.45 0.05 1.50
S. fem. 0.75 0.78 156.49 48.16 0.78 0.76 7.80 3.25 1.50 7.15
Popliteal 0.49 0.62 169.40 111.10 0.74 0.40 2.27 0.47 0.06 2.06
TPT 0.45 0.60 35.45 29.02 0.79 0.33 1.53 0.12 0.06 1.47
A. Tib. 0.70 0.80 95.92 21.24 0.88 0.60 3.47 0.36 0.00 3.35
P. Tib. 0.32 0.55 73.15 33.92 0.97 0.20 32.70 0.18 0.06 32.83
Fibular 0.63 0.75 70.45 50.33 0.81 0.54 6.23 0.06 0.00 6.30

detection algorithm that compares individual segmented components between
the ground truth and predicted segmentation masks. All connected components
are extracted from both the ground truth and predicted segmentations. An ob-
ject from the predicted segmentation is matched to a ground truth object if they
share at least one voxel. In cases where multiple objects from one segmentation
overlap with the same object in the other segmentation, those objects are merged
into a single group to avoid redundant matches. For each matched object pair or
group, the volumetric overlap is computed. An object is considered successfully
detected if it overlaps by at least 30% (set empirically) with its corresponding
ground truth object. This approach yields object-level counts of true positives
(TP), false positives (FP), and false negatives (FN). Using these counts, we
compute detection precision and recall, using the same formulas as voxel-based
metrics but applied to objects rather than voxels. To distinguish them, we denote
these metrics as D_Pre and D_Rec. The F1 Score is the harmonic mean of
precision and recall and gives a balanced measure of segmentation accuracy.

3 Results

3.1 Automatic segmentation of the vascular system

The performance of the nnU-Net-based artery segmentation is summarized in
Table 1. Combining the clDice loss with the Dice and CE losses consistently
improved all metrics, achieving a final Dice score of 0.94 and clDice of 0.88.
For the Branch-wise labeling, segmentation accuracy was higher for large, prox-
imal arteries (in the iliac and femoral segments) and declined for smaller distal
branches, particularly below the knee. These results mirror the results observed
in inter-annotator agreement for these regions, suggesting that anatomical com-
plexity and reduced label consistency negatively impacted the model learning.
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Table 2: nnU-Net segmentation performance of the calcification and stent masks
with and without incorporating the clDice loss.

D_Pre D_Rec F1 β0 β1 β2 χ Dice HD HD95
Calcif. - 77.87 88.62 82.35 16.65 27.76 4.06 27.53 0.80 180.04 12.70

+clDice 79.14 88.86 83.01 13.06 27.34 4.18 28.59 0.82 175.39 6.58
Stents - 64.75 82.10 64.56 7.60 85.50 5.50 82.00 0.68 137.14 74.90

+clDice 66.00 85.00 68.88 6.00 90.50 5.70 85.60 0.69 162.73 109.03

Table 3: Average artery diameter (mm) and ratio of calcified artery per branch
Aorta C. i. E. i. C. f. S. f. Popliteal TPT A. t. P.t. Fibular

Diameter 8.73 4.58 4.04 4.87 3.23 3.26 2.31 1.76 1.67 1.61
Ratio 0.07 0.25 0.20 0.15 0.12 0.06 0.15 0.12 0.06 0.09

3.2 Automatic segmentation of anomalies

We reported segmentation performance of calcifications and stents in Table 2.
Incorporation of the clDice loss function improved performance across all detec-
tion, overlap, and topology metrics for both structures. Calcifications were seg-
mented with a Dice score of 0.82 and an F1-score of 83%, while stents achieved
a Dice score of 0.69 and an F1-score of 68.9%. Despite the manual annotation
challenges, both structures were segmented with reasonable accuracy. These re-
sults are likely due to the use of the semi-automatic detection, reducing inter-
annotator variability and providing consistent labels.

3.3 Retrieval of pathological features.

We extracted the average artery diameter using VesselVio [3] and the average
ratio of calcified artery in each branch across the dataset (Table 3). Additionally,
42% of the labeled scans have stents. Among them, patients have on average
1.67 stents. It demonstrate how our framework enables localized quantification
of arterial pathology, supporting automated disease scoring.

4 Conclusion

By bridging advanced neural architectures with the clinical context of PAD, this
work aimed to provide clinicians with an automated tool for detailed vascular
mapping from CTA scans to help in the pre-surgical planning and treatment
decision. It fills a critical gap on the application of the whole lower-limb ar-
terial tree with the recognition of its main branches, calcification plaques and
stents, in the specific context of PAD. In future works, we would like to improve
the detection of the smaller branches in the below-the-knee region and use the
segmentation volumes to automatically detect stenosis and thrombosis lesions.
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Prospect of application. This method can be deployed in clinical workflows
to support fast, consistent and personalized pre-surgical planning for PAD. It
enables objective extraction of arterial features in each branch such as diame-
ters, tortuosity, calcification burden, and stents from CTA scans. The segmented
volume could be used for scoring systems to help PAD preoperative management.
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