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Abstract. Deep learning models for breast tumor segmentation in DCE-
MRI may exhibit disparities in performance across demographic and
clinical subgroups, raising concerns about fairness and clinical trust-
worthiness. In this work, we propose a subgroup-aware in-processing
mitigation strategy that integrates divergence-based regularization di-
rectly into the training loop. By leveraging interpretable metadata (e.g.,
age, menopausal status, breast density), we identify subgroups where
the model underperforms and assign higher loss weights to these sam-
ples in proportion to their divergence from average performance. Our
method enables the model to focus training on underrepresented or
harder-to-segment subpopulations, without requiring external data or
post-processing correction. We evaluate our approach on the MAMA-
MIA 2025 challenge dataset, demonstrating improvements in both over-
all segmentation quality and fairness score. Our results highlight the po-
tential of in-processing mitigation as an effective and practical pathway
toward equitable medical image segmentation.
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1 Introduction

Breast tumor delineation using dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) plays a crucial role in the diagnosis, treatment planning,
and monitoring of breast cancer [15, 32]. Advances in deep learning techniques
for medical image segmentation have led to state-of-the-art models that achieve
remarkable accuracy in the task [22]. However, these models may be susceptible
to algorithmic unfairness, meaning they perform unevenly across patient sub-
groups based on protected attributes such as ethnicity, age, or socioeconomic
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background [8, 23, 28]. These disparities undermine the model’s fairness and the
overall trust in AI systems.

In-processing strategies have been proposed to improve fairness dynamically
during model training, without relying on external data or post-hoc adjust-
ments [26, 31]. Existing techniques typically focus on mitigating disparities re-
lated to a single sensitive attribute, such as sex [2, 19], age, or clinical site [27].
However, focusing solely on one attribute at a time may overlook disparities
arising at the intersection of multiple factors. Moreover, these methods often
require a priori knowledge of which subgroups to monitor or protect.

In this work, we propose FairMedSeg, an in-processing mitigation strategy
tailored for medical image segmentation. FairMedSeg automatically identifies
subgroups that exhibit divergent performance, defined as statistically significant
deviations from the population-level average [17], and reduces such disparities
during training. We achieve this by extending the divergence-based reweighting
framework proposed initially by Koudounas et al. [10] for speech processing, and
adapting it to the specific challenges of 3D medical image segmentation. We val-
idate our method on the MAMA-MIA 2025 challenge dataset [5], which provides
annotated DCE-MRI breast scans enriched with clinical metadata, demonstrat-
ing that FairMedSeg improves segmentation accuracy while reducing fairness
gaps across clinically meaningful subgroups.

Our approach introduces several key innovations for in-processing fairness
mitigation in this domain: (i) an automatic and intersectional subgroup discovery
pipeline tailored to clinical metadata; (ii) a fully dynamic, performance-driven
sample reweighting mechanism integrated directly into the training loop; (iii)
a test-time-agnostic design that eliminates the need for metadata at inference,
since fairness is addressed during training; (iv) the removal of any dependence
on predefined sensitive attributes, enabling fairness-aware learning without prior
subgroup specification.

2 Related Work

Fairness-enhancing strategies can be broadly categorized into pre-processing,
post-processing, and in-processing methods [4, 12].
Pre-processing techniques modify the training data to reduce biases before
model learning. Strategies include dataset rebalancing [11], generative data aug-
mentation [18], and harmonization techniques to eliminate confounding vari-
ables [21]. Causal perturbation methods create counterfactual samples by alter-
ing sensitive attributes while maintaining clinical validity [20]. Although model-
agnostic and easy to implement, these methods may distort natural data distri-
butions or struggle to generalize across domains.
Post-processing methods operate on model outputs or internal predictions
after training is complete, without altering the model architecture or input data.
Common techniques include subgroup-specific threshold adjustment [6] and post-
hoc confidence calibration [14]. While effective in some cases, these methods
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typically rely on access to metadata at inference time, an assumption that may
not hold in real-world clinical deployments.
In-processing strategies incorporate fairness constraints into the training pro-
cedure. Adversarial approaches [31] learn representations that are predictive of
the target task while invariant to sensitive attributes, but can be unstable, com-
promising task performance, particularly in high-dimensional data. Group Dis-
tributionally Robust Optimization [25] and fairness-aware regularization [26] pe-
nalize disparities across predefined subgroups, yet require accurate group labels
and can struggle to scale when subgroup definitions are noisy or evolving. More-
over, they are primarily developed for classification tasks and may not translate
directly to structured prediction settings such as medical image segmentation.

Divergence-based regularization [10] is a recent in-processing mitigation tech-
nique that dynamically adjusts training based on disparities among subgroups. It
identifies subgroups whose performance deviates from the overall model accuracy
and assigns higher weights to the samples from those groups. This encourages
the model to focus on learning from the divergent subgroups. So far, it has been
used in the context of speech processing. In this work, we adapt the divergence-
aware framework to 3D medical image segmentation, extending the method to
automatically discover vulnerable subgroups based on clinical metadata. Un-
like classical reweighting approaches based on group frequency statistics [9] or
meta-learned strategies [29], our method leverages subgroup-level performance
divergence as a dynamic signal to guide training. In contrast to focal-loss-based
techniques [1, 30], which prioritize sample-level difficulty, our approach explicitly
addresses performance disparities across clinically meaningful subgroups defined
by metadata.

3 Method

3.1 Problem Formulation

Let D = {(xi, yi,mi)}Ni=1 denote a dataset of N annotated DCE-MRIs, where
xi is the input image, yi the corresponding ground truth segmentation mask,
and mi a vector of clinical metadata attributes (e.g., age, menopausal status,
breast density), i.e., mi = (mi,1, . . . ,mi,k), with k the number of attributes.
A segmentation model Mθ, is trained to predict ŷi = Mθ(xi) by minimizing a
segmentation loss function Lseg over the training data.

We define a subgroup S as a subset of samples sharing specific metadata char-
acteristics, i.e., S = {(xi, yi,mi) ∈ D |mi,j1 = m∗

j1
∧mi,j2 = m∗

j2
∧ . . . ∧mi,jp =

m∗
jp
} with j1, j2, . . . , jp the indices of the features within mi. For instance, a sub-

group can be defined by {age = 41–50, menopausal status = pre}. Let f(S,Mθ)
represent the model’s performance on subgroup S (e.g., mean Dice score), and
f(D,Mθ) its performance over the full dataset. The divergence of subgroup S
is [16]:

∆f (S,Mθ) = f(S,Mθ)− f(D,Mθ), (1)
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Fig. 1. Overview of FairMedSeg weight update scheme. After each training epoch e,
performance is evaluated on a validation set (a), and metadata-defined subgroups are
discovered using DivExplorer (b). Sample weights are updated based on subgroup di-
vergence, prioritizing underperforming subgroups (c). These weights are used to com-
pute a fairness-aware loss for the next epoch, iteratively reducing subgroup disparities
throughout training (d).

In our setting, where we measure model performance using the average Dice
score, negative values indicate performance below the global average. Our goal is
to reduce divergence while preserving overall segmentation accuracy by defining
a training strategy that is sensitive to subgroup disparities and can proactively
mitigate them.

3.2 FairMedSeg Mitigation Strategy

Figure 1 provides an overview of the training process for FairMedSeg. During
each training epoch e, the resulting model Mθe is evaluated using a valida-
tion set, which allows us to assess the model’s performance. By exploiting the
metadata available at training (e.g., age, menopausal status, breast density), we
automatically identify subgroups and estimate their divergence. The estimated
performance gaps for each subgroup are then used to update sample weights and
adjust the loss function in the subsequent epoch. By reducing fairness gaps at
training, the final model Mθ is test-time-agnostic by eliminating the need for
metadata at inference.
Subgroup Discovery. We define subgroups as conjunctions of interpretable
clinical metadata attributes (e.g., menopausal status, age group, breast den-
sity). To systematically construct these subgroups, we leverage the DivExplorer
framework [16], which enumerates all combinations of metadata attributes that
satisfy a minimum support threshold, denoted as minsup. This threshold ensures
that each subgroup is sufficiently represented in the dataset, enabling reliable
estimation of performance metrics.
Divergence-Based Sample Weighting. We assign training sample weights
based on subgroup-level performance divergences identified during step (b). Each
training sample xi may belong to one or more metadata-defined subgroups,
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denoted as S(xi) = {S ∈ S | xi ∈ S}. For example, a 45-year-old patient in
pre-menopause belongs not only to the marginal subgroups {age = 45} and
{menopausal status = pre} but also to the intersectional subgroup {age = 45,
menopausal status = pre}. After each training epoch, we evaluate the model of
current epoch e (Mθe) on the validation set and compute the divergence score
∆f (S,Mθe) for each subgroup S ∈ S (Eq. 1).

To update training priorities, we assign each training sample a weight equal
to the maximum absolute divergence across the subgroups to which it belongs:

w(xi) = max
S∈S(xi)

|∆f (S,Mθe)|. (2)

The updated weights are then used in the next training epoch via Ltotal
(Eq. 4). This weighting mechanism increases the influence of samples from sub-
groups where the model exhibits the most divergent behavior, encouraging the
model to focus on those more challenging or underperforming samples.
Loss Formulation. The loss function is composed of two terms: segmentation
loss Lseg and divergence-aware loss L∆. Specifically, they are defined as:

L∆ =
∑
xi∈D

w(xi) · Lseg(xi), (3)

where Lseg(xi) denotes the standard segmentation loss (e.g., Dice Cross-entropy,
Dice Focal) for the training sample xi. The final loss function combines the
original segmentation loss with the divergence-aware component:

Ltotal = α · Lseg + (1− α) · L∆, (4)

where α ∈ [0, 1] balances the trade-off between overall segmentation performance
and subgroup fairness mitigation.

4 Experimental Setup

We evaluate our method using three widely used backbone 3D medical image seg-
mentation architectures implemented within the MONAI framework [3]. These
are: UNet [24], a baseline convolutional encoder–decoder architecture; SegRes-
Net [13], a residual convolutional network optimized for volumetric medical data;
and SwinUNETR [7], a hybrid transformer-based model that combines a Swin
Transformer encoder with a UNet-like decoder. For each backbone architecture
considered, we compare the base model (trained with a standard segmentation
loss) to its fairness-enhanced counterpart using FairMedSeg.

4.1 Dataset and Data Preparation

We evaluate our method on the MAMA-MIA dataset [5], which comprises 1,506
T1-weighted DCE-MRI cases from female patients diagnosed with breast cancer,



6 E. Poeta et al.

divided into training and validation sets. Each case comprises one pre-contrast
and up to five post-contrast dynamic phases, acquired across multiple clini-
cal centers under varying imaging protocols. Tumor regions were manually seg-
mented by a panel of 16 expert radiologists, ensuring high-quality ground truth
annotations of the primary lesions. In addition to imaging data, the dataset
includes rich clinical metadata. We focus on three key attributes, patient age,
menopausal status, and breast density, to define clinically meaningful subgroups
for fairness evaluation, as specified by the challenge guidelines.

We preprocess each DCE-MRI case by first reorienting the images to RAS
(Right-Anterior-Superior) and resampling them to an isotropic resolution of 1.0
mm, using bilinear interpolation for the images and nearest-neighbor interpola-
tion for the labels. We concatenate the pre-contrast and two post-contrast phases
into a single 3-channel 3D volume. To ensure consistent spatial dimensions across
the dataset, we standardize all inputs to a fixed shape of 320× 320× 128 by ap-
plying cropping or padding as needed. To focus learning on the relevant anatomy,
we apply a foreground cropping step based on non-zero voxel intensity. We apply
a set of data augmentation strategies during training. Namely, random flipping
along each spatial axis (x, y, z) with a probability of 0.5, intensity normaliza-
tion restricted to non-zero voxels, and random intensity scaling and shifting with
factors and offsets up to ±10%.

For post-processing the model output, we refine each predicted segmentation
by leveraging patient-specific anatomical priors. Specifically, we use metadata-
provided bounding box coordinates that delineate the breast region for each case.
These coordinates are used to apply a spatial mask that restricts predictions
to the anatomically plausible area, effectively removing any segmented regions
outside the breast tissue.

4.2 Evaluation Metrics

We follow the evaluation protocol from the MAMA-MIA challenge, relying on
five metrics: the Dice Similarity Coefficient (DSC), the Normalized 95th Per-
centile Hausdorff Distance (NormHD), the Performance Score (PS), the Fairness
Score (FS), and the Total Score (TS).

The DSC quantifies the spatial overlap between predicted and ground truth
segmentation masks. The NormHD assesses boundary-level accuracy by comput-
ing the 95th percentile Hausdorff Distance, normalized by the image resolution
and clipped to the range [0, 1]. The PS summarizes segmentation quality as the
average of the DSC and the complement of the NormHD:

PS = 0.5 · (DSC + (1− NormHD)) .

The FS assesses fairness across variables. For each variable v ∈ V, the chal-
lenge computes a disparity measure Dv based on subgroup-level performance
variations, defining FS as:

FS =
1

|V|

|V|∑
v=1

(1−Dv),
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Table 1. FairMedSeg-enhanced and base models’ performance on MAMA-MIA’s vali-
dation and test sets. The highlighted row refers to the model submitted to the MAMA-
MIA challenge (private test set). Bold denotes the best scores on the validation set.

Model Method DSC NormHD Perf.
Score

Fairness
Score

Total
Score

UNet Base (val) 0.7251 0.1380 0.7935 0.8334 0.8135
FairMedSeg (val) 0.7691 0.0960 0.8364 0.8580 0.8472
FairMedSeg (test) 0.66 0.16 0.75 0.86 0.8

SegResNet Base (val) 0.7453 0.1226 0.8113 0.7414 0.7763
FairMedSeg (val) 0.7865 0.0806 0.8529 0.8445 0.8475

SwinUNETR Base (val) 0.6421 0.1970 0.7225 0.6480 0.6853
FairMedSeg (val) 0.7478 0.1236 0.8121 0.8379 0.8250

with |V| = 3, the three clinically relevant variables: age, menopausal status, and
breast density. Finally, PS and FS are aggregated using equal weighting into the
Total Score, i.e., TS = (1− α) · PS + α · FS, with α = 0.5.

5 Experimental results

Quantitative Results. Table 1 summarizes the results using the best-performing
configuration for each model using the validation set within MAMA-MIA. We
also report the result of the best model on the official MAMA-MIA private test
set, as evaluated by the challenge organizers. In particular, we found experimen-
tally that a regularization weight of α = 0.2 and a minsup = 0.001 value for
DivExplorer provided the most consistent improvements across architectures.

On the validation set, we observe substantial gains in TS (+14.0). On the
official test set (Table 1, highlighted row) the UNet with FairMedSeg achieves a
FS of 0.86. Overall, these results demonstrate that FairMedSeg achieves strong
generalization across different patient groups while ensuring fairness is preserved
or enhanced. These results confirm that fairness-aware training can reduce dis-
parities among subgroups without compromising overall accuracy.
Subgroup Analysis with Heatmaps. To better understand subgroup-specific
disparities, we visualize the average DSC across combinations of clinical meta-
data (Fig. 2) for the UNet model using FairMedSeg evaluated on the MAMA-
MIA test set. The left plot shows DSC stratified by age group and breast density.
The right one shows DSC by age group and menopausal status.

We observe substantial variability in segmentation performance across in-
tersectional subgroups. For instance, patients aged 41-50 with breast density
category a, exhibit the lowest DSC (0.158), while older patients (71+) generally
achieve higher DSCs, especially in high-density categories. Similarly, the right
heatmap highlights substantial differences in the case of post-menopausal pa-
tients aged 0–40, which achieves only 0.146 DSC, compared to 0.643 for their
premenopausal counterparts. These findings confirm that subgroup disparities
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Fig. 2. Subgroup-level DSC Heatmaps. Left: Average DSC by age group and breast
density (a–d). Right: Average DSC by age group and menopausal status.

are not only present but also intersectional in nature, motivating the need for
intersectionality-aware training strategies such as FairMedSeg.

6 Discussion and Conclusions

We introduced FairMedSeg, a novel in-processing fairness mitigation strategy tai-
lored for medical image segmentation. Our results demonstrate that FairMedSeg
can significantly reduce subgroup disparities in breast tumor segmentation with-
out compromising overall accuracy. By leveraging metadata-defined subgroups
and dynamically adjusting training priorities based on divergence, our method
effectively directs learning toward underperforming cohorts.
Automatic subgroup identification. A key strength of FairMedSeg lies in its
ability to identify and mitigate fairness gaps without requiring prior subgroup
definitions or manual intervention. This is particularly advantageous in clinical
scenarios where vulnerable populations may be unknown or evolve over time.
Moreover, the divergence-aware regularization can be flexibly integrated into a
wide range of segmentation backbones, as demonstrated in our evaluation across
convolutional and transformer-based architectures.
Intersectional subgroup disparities. The subgroup-level heatmap analysis
(Fig. 2) reveals that performance disparities are not uniformly distributed but
often emerge at specific intersections of clinical metadata. For example, patients
aged 41-50 with breast density a, and postmenopausal patients under age 40,
achieve the lowest DSC values. These gaps are often difficult to detect or miti-
gate using fairness strategies that treat attributes independently. FairMedSeg’s
capacity to autonomously discover and prioritize such subgroups underscores
its practical value in real-world medical AI systems. While Figure 2 illustrates
persistent disparities in certain intersectional subgroups, our method reduces
these gaps compared to the baseline. However, achieving full equity across all
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combinations remains a challenge due to limited sample sizes in rare subgroups.

Limitations and Future Work. We have identified some pending limitations.
First, the subgroup divergence computation depends on validation performance,
which may be unstable for low-sample subgroups. Moreover, our current sample
weighting relies on the maximum subgroup divergence per sample, which may
oversimplify intersectional subgroup dynamics. Incorporating richer aggregation
mechanisms represents a promising direction for future refinement.. Second, we
focused on three metadata variables (age, menopausal status, and breast density)
due to the MAMA-MIA challenge rules. Extending our approach to additional
metadata, e.g., ethnicity, hormonal receptor status, or treatment history, is a
promising future direction. Finally, although we fixed the regularization weight
(α = 0.2), automatic tuning could further enhance generalization across datasets.
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