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Abstract

Open-world segmentation in medical imaging presents unique challenges, as mod-
els must generalize to seen and unseen classes while retaining knowledge of previously
seen structures. We propose MedOpenSeg, a Memory-Augmented transformer frame-
work that dynamically stores and updates class prototypes to enhance segmentation accu-
racy, improve adaptability to new anatomical structures, and detect novel regions during
inference. MedOpenSeg integrates a Swin-Transformer 3D backbone with a memory
bank module that retrieves class-specific feature embeddings and facilitates prototype-
based novelty detection using cosine similarity and Euclidean Distance Sum (EDS). We
benchmark MedOpenSeg on multiple datasets against state-of-the-art closed-set seg-
mentation and foundation models, demonstrating its effectiveness in handling open-
set medical segmentation. Code is publicly available at https://github.com/robustml-

eurecom/MedOpenSeg.git.

1 Introduction

Semantic segmentation of medical images plays a crucial role in clinical decision-making,
enabling precise delineation of anatomical structures and pathological regions. Recent ad-
vances in deep learning-based segmentation models, particularly Convolutional Neural Net-
works (CNNs) and transformer-based architectures, have led to state-of-the-art performance
in various medical imaging tasks [6, 10, 22, 26]. However, the vast majority of these mod-
els operate under a closed-set assumption, where all semantic categories are known and
fixed during training. This assumption breaks down in real-world clinical scenarios, which
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frequently present unseen anatomical variations, rare pathologies, or device artifacts not
represented in the training set [22]. As a result, standard segmentation models underper-
form or misclassify in open-set scenarios, where new categories emerge at inference. When
the segmentation task involves unfamiliar anatomies or labels, conventional deep-learning
models often require retraining or fine-tuning, which is impractical in clinical environments
due to computational cost. This highlights the need for flexible segmentation frameworks
to detect and handle unseen classes without extensive retraining. In this work, we adopt
the open-world medical segmentation setup: unknown categories may appear at test time,
and the system should flag them while maintaining accuracy on known classes, without
post-deployment learning. A detailed review of related paradigms open-set/OOD detection,
prototype-memory mechanisms, universal, zero-shot segmentation, and promptable founda-
tion models is provided in Sec. 2.

To address these challenges, we propose MedOpenSeg, a Memory-Augmented trans-
former framework designed for open-world medical image segmentation. Our method dy-
namically stores and updates class prototypes in a memory bank, enabling both robust seg-
mentation of known anatomical structures and effective identification of novel regions at
inference. Crucially, MedOpenSeg does not require model retraining or class prompts for
unseen structures, instead relying on voxel-wise comparisons in a learned embedding space
to score novelty and guide segmentation decisions. In summary, our key contributions are:

(1) Memory-Augmented Segmentation: via a memory bank module that dynamically
stores and updates class prototypes, allowing robust segmentation of known categories while
detecting novel ones.

(2) Prototype-Based Learning: with a loss function that optimizes feature embeddings
by enforcing class consistency and prototype alignment, improving representation learning
for known and unknown structures.

(3) Prototype-Based Novelty Detection: using voxel-wise novelty maps from cosine
similarity and Euclidean Distance Sum (EDS), providing a continuous measure of feature
divergence, and

(4) Open-Set Segmentation Benchmarking: where we evaluate MedOpenSeg on mul-
tiple datasets against state-of-the-art closed-set segmentation and foundation models, high-
lighting the key challenges in open-set medical segmentation.

We provide our source code and dataset splits to facilitate reproducibility and future
research in open-set medical segmentation.

2 Related Work

Open-set and out-of-distribution (OOD) detection for medical segmentation. Open-set
recognition and OOD detection aim to identify inputs that deviate from the training distri-
bution while preserving performance on known classes; in medical imaging, recent surveys
have examined this specifically for segmentation and highlighted persistent challenges un-
der distribution shift [9, 28]. A common strategy is to attach post-hoc scores to features of
a trained segmenter, e.g., energy-based scores [19], Mahalanobis distances [16], and several
works adapt such detectors to medical segmentation [11, 13, 17]. While effective for detect-
ing abnormalities, these approaches typically output image- or region-level flags and lack
a prompt-free mechanism for producing dense, voxel-wise novelty maps integrated into a
unified segmentation pipeline [27, 28].
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Prototype and memory-augmented representations. Prototype learning and memory banks
have shown strong benefits in classification, and few-shot and semi-supervised segmentation:
class prototypes compactify intra-class variation, stabilize training, and support transfer by
comparing embeddings to stored representatives [5, 30, 32]. In medical imaging, prototype-
centric objectives and memory-enhanced schemes have improved data efficiency and gen-
eralization in few-shot and semi-supervised settings [1, 23]. However, most prior works
assume a closed label space and do not explicitly convert prototype distances into an open-
set decision mechanism [8]. MedOpenSeg leverages prototypes during training to shape the
embedding space and at test time to produce training-free voxel-wise novelty scores, bridg-
ing representation learning and open-set inference.

Universal, zero-shot, and few-shot segmentation. Universal segmentation frameworks
seek task- or label-agnostic models that generalize across organs, modalities, or institutions.
CLIP-driven models integrate text embeddings to encode label semantics, enabling zero-shot
extension by providing a new class name [18, 33]. Few-shot frameworks exploit limited sup-
port masks to adapt to new targets with minimal tuning. While compelling, these approaches
generally assume either textual descriptors that align with anatomy or a small number of sup-
port annotations—assumptions that may fail for rare or ambiguous findings. Moreover, they
typically lack an explicit unknown-class detector, focusing instead on transferring to named
classes. Our approach targets the complementary setting where unknowns are unspecified
and must be surfaced without text or support.

Promptable foundation models for medical segmentation. Segment Anything (SAM) [14]
and its medical adaptations (e.g., MedSAM, SAM-Med2D) [7, 20, 21, 29] demonstrate
strong generalization through prompt-conditioned inference (points/boxes/masks). Recent
work has also reduced manual effort by automating prompt generation or propagation within
SAM-based pipelines, including microscopy-focused systems for segmentation and track-
ing [3]. Despite these advances, SAM-family methods remain gated by the presence and
policy of prompts at inference; absent a suitable prompt, they do not natively declare “un-
known”. In contrast, MedOpenSeg is prompt-free and produces an intrinsic novelty map,
making it suitable as an autonomous unknown detector.

Compared to (i) OOD detectors that score anomalies but do not yield dense novelty
maps integrated into the segmentation pipeline, (ii) prototype-memory methods that pre-
dominantly operate in closed-set regimes, (iii) universal and few-shot approaches that re-
quire class names or supports, and (iv) SAM-based pipelines, including those with automatic
prompting that remain prompt-dependent, MedOpenSeg contributes a 3D prototype-memory
segmentation framework with a training-free, voxel-wise novelty scorer for open-set medical
segmentation.

3 Method

We propose MedOpenSeg, a Memory-Augmented transformer framework designed for open-
set medical segmentation. Our approach integrates a Swin-Transformer backbone for vol-
umetric segmentation [26], a memory module that dynamically stores and updates class
prototypes, enabling novelty detection by comparing voxel-wise embeddings against learned
prototypes. Figure 1 shows an overview of the proposed method.

Unlike conventional closed-set segmentation models operating within a fixed anatomical
structure set, MedOpenSeg explicitly accounts for previously unseen structures by incorpo-
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Overview of MedOpenSeg, a memory-augmented transformer framework for

open-world medical segmentation. It integrates a Swin-Transformer encoder, a U-Net-based
decoder, and a memory bank module. During training, the memory bank stores class proto-
types from decoder embeddings. At inference, voxel-wise embeddings are compared against
these prototypes to generate segmentation and novelty detection outputs, identifying novel
structures based on feature divergence.

rating an adaptive memory mechanism. This design allows the model to perform segmenta-
tion as usual while simultaneously detecting novel anatomical regions based on their feature
divergence from known prototypes.

3.1 Multi-Scale Feature Representation

MedOpenSeg adopts a hybrid architecture that integrates a Swin-Transformer based encoder
with a U-Net-style decoder, enabling multi-scale feature representation and fine-grained se-
mantic segmentation. Our encoder is based on the SwWinUNETR architecture [26], which
applies a hierarchical Swin-Transformer for multi-scale feature extraction. The input 3D vol-
ume is first partitioned into non-overlapping patches, which are processed by a patch embed-
ding layer before passing through a sequence of shifted window self-attention mechanisms.
This architecture allows the model to capture both local fine-grained and global contextual
dependencies. As the encoder deepens, the spatial resolution is progressively reduced while
the feature dimensionality increases, producing a hierarchical latent representation.

To restore spatial resolution and refine segmentation predictions, MedOpenSeg employs
a U-Net-like decoder with skip connections that progressively integrate contextual informa-
tion from the encoder while refining feature representations at multiple scales. Each decoder
block consists of upsampling operations, transposed convolutions, and residual connections,
ensuring a balance between coarse-to-fine reconstruction and detailed segmentation refine-
ment. In addition to segmentation, MedOpenSeg incorporates an embedding projection layer
at the final decoding stage. This projection is implemented via a 1 x 1 x 1 convolutional
layer, which maps the final segmentation feature maps into a compact embedding space.
The resulting feature embeddings serve as input to the memory bank, where they are com-
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pared against stored class prototypes. If a voxel’s embedding significantly deviates from all
known class prototypes, it is flagged as belonging to an unseen category, triggering novelty
detection.

3.2 Memory Bank Module

The memory bank serves as a structured repository of learned class representations, storing a
prototype p. € RF for each class ¢ € C, where C is the set of known classes, and F represents
the feature dimensionality of the learned embedding space. Each prototype p. acts as a
centroid that captures the characteristic distribution of embeddings associated with class c,
allowing MedOpenSeg to guide segmentation and flag novel anatomical structures.

During training, the memory bank is iteratively updated as embeddings for each class are
observed. Specifically, a moving average update rule is applied:

peoap.+(l—a) % (1

where X, is the mean embedding of class ¢ in the current batch, and ¢ € [0, 1] is a momentum
term ensuring smooth adaptation. All prototypes are L2-normalized to stabilize training and
enable reliable distance-based comparisons.

To model unseen anatomical regions, the memory bank reserves a dedicated prototype
Punk that is allocated for unknown structures. This prototype is optionally initialized using a
single annotated instance of unseen structures, serving as an embedding anchor rather than
as a supervised signal. Crucially, pynx is not updated via backpropagation, but is adapted
solely through unsupervised embedding statistics. This preserves the open-set assumption
while providing a structured reference for novelty detection.

This strategy enables MedOpenSeg to benefit from minimal supervision while maintain-
ing test-time autonomy. Notably, unlike few-shot segmentation methods [24] that require
support-query supervision [25, 31], our approach uses no query-time labels and operates
fully autonomously during inference.

It shares similarities with recent one-shot prototype-based methods such as ProtoSAM [4],
yet distinguishes itself by explicitly avoiding any retraining or supervised adaptation on the
unseen class. These design choices make MedOpenSeg suitable for practical clinical deploy-
ment, where manual annotations for novel conditions are scarce or unavailable.

3.3 Prototype-Guided Representation Loss

We introduce the Prototype-Guided Representation (PGR) Loss to enhance the discrimina-
tive power and consistency of learned voxel embeddings with respect to their correspond-
ing class prototypes. The core idea is to explicitly encourage embeddings to tightly cluster
around their respective prototypes, thereby ensuring strong representational robustness for
seen and unseen anatomical structures. The PGR Loss comprises two complementary terms:
the Class Assignment (CA) Loss and the Prototype Consistency (PC) Loss.

Class Assignment (CA) Loss: The CA Loss ensures accurate assignment of each voxel
embedding to its correct class prototype by minimizing a softmax-normalized negative squared
Euclidean distance. Formally, given a voxel embedding x with ground-truth class label ¢, we
define the probability of voxel x belonging to class c as:
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exp(—[lx — pe[*)
Ply=clx)= )
Zc’eC exp(— ||)C — P ||2)
where C represents the set of known classes, and p, denotes the learned prototype embedding
of class ¢. The corresponding classification loss for voxel x is computed using the negative

log-likelihood:

Lea(x,c) = —logP(y=c|x) 3)

Minimizing this loss encourages the embedding vectors to be closely aligned with their
correct prototypes and promotes clear decision boundaries between different classes.

Prototype Consistency (PC) Loss: To further enhance representational coherence within
each class, we introduce the PC Loss. This loss penalizes deviations of voxel embeddings
from their corresponding class prototypes, explicitly enforcing tight clustering around each
class prototype. Formally, it is defined as:

1 1
Lrc=—Y ceCir ¥ [Ix—pcl? 4
Ly &

xeVe

where C denotes the set of known classes, V. represents the set of voxel embeddings belong-
ing to class ¢, x is the embedding of a voxel belonging to class ¢, and p, is the correspond-
ing learned prototype embedding for class c. By enforcing low variance around each class
prototype, this loss ensures compactness within classes, significantly improving intra-class
consistency.

Finally, the overall PGR Loss function combines the CA Loss and PC Loss through a
weighted summation, formally expressed as:

Lpcr = Lca+ AprcLpc %)

where Apc is a hyperparameter balancing the importance of accurate class assignment against
intra-class representational compactness. We set Apc = 0.01 based on validation perfor-
mance in our current implementation. For training, MedOpenSeg optimizes a combined
objective that integrates PGR loss with Dice-Cross Entropy loss, ensuring accurate segmen-
tation while refining the prototype-based representation space.

3.4 Novelty Detection Module

During inference, MedOpenSeg detects voxel-wise novelty by assessing how each voxel’s
embedding aligns with known class prototypes stored in the memory bank. Rather than re-
lying on hard class predictions, the model computes two complementary voxel-wise novelty
scores: one based on cosine similarity and the other on cumulative squared Euclidean dis-
tance. These maps allow the model to highlight potentially novel anatomical regions that
deviate from known anatomical structures. The novelty head is parameter-free, introducing
no learnable weights; at inference it reduces to batched matrix multiplications between the
(N x F) embedding map and the (F x |C|) prototype matrix, with memory O(F|C|) for the
bank.

To compute the novelty maps, the feature embeddings extracted from the decoder are
first projected into a lower-dimensional space using the embedding projection layer.
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Let x, € RF denote the L2-normalized embedding of voxel v, and let p. € RF be the
normalized prototype of class ¢ € C. The cosine similarity between x and prototype p. is
computed as:

Spe = v Pe (6)
xol|pel

Since all embeddings and prototypes are L2-normalized, this reduces to a dot product.
The maximum similarity to any class is then:

Sy = Maxsy,c. (7
ceC

This similarity score quantifies how closely voxel v aligns with the closest known class.
A voxel is flagged as novel if its similarity score falls below a predefined threshold 7, i.e., if
sy < T. T is set on a validation split to maximize performance; we keep it fixed across test
cases.

To complement this local similarity score, we also compute the Euclidean Distance Sum
(EDS), which captures the total deviation of the voxel embedding from all class prototypes:

Seps =Y % —pell*- ®)
ceC

While cosine similarity focuses on alignment with the most likely prototype, EDS pro-
vides a holistic distance measure to the entire prototype manifold. Although both measures
relate to L2-normalized vectors, they offer complementary insights: cosine similarity reflects
local class membership confidence, while EDS captures global distributional shift. To gen-
erate a robust open-set segmentation map, we normalize both novelty maps and apply an
adaptive threshold. Voxels with low cosine similarity and high EDS are flagged as poten-
tially novel. This dual-criterion fusion improves sensitivity to subtle outliers and mitigates
overconfidence in ambiguous regions. The cosine-based map emphasizes class alignment,

while the EDS map captures deviations from learned distributions.

4 Experimental Setup

We evaluate MedOpenSeg on multiple 3D medical imaging datasets, covering MRI and CT
modalities. Our experiments focus on open-world segmentation, where models are trained
only on a subset of known anatomical categories and evaluated on their ability to detect both
known and previously unseen structures at inference time.

Dataset Protocol: To assess the robustness and effectiveness of MedOpenSeg, we con-
duct experiments on three widely used 3D medical imaging datasets: AMOS 2022 [12],
BTCV [15], and MSD-Pancreas [2]. Each dataset provides voxel-wise annotations for multi-
ple abdominal organs, enabling a controlled evaluation of open-world segmentation. AMOS
2022 consists of 500 CT and 100 MRI scans from multi-center, multi-modality sources,
with annotations for 15 abdominal organs. We train MedOpenSeg on 10 common organs
(e.g., liver, kidneys, spleen) and evaluate its generalization to duodenum, prostate, blad-
der, and adrenal glands as unseen categories. BTCV contains 50 abdominal CT scans col-
lected from patients with liver cancer or post-operative conditions, with 13 annotated or-
gans. During training, we exclude the pancreas and adrenal glands and, at inference, eval-
uate MedOpenSeg’s ability to recognize them as novel structures. Because these selected
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categories are relatively small or thin and have shown lower segmentation performance
in prior work, we anticipate lower AUROC on these held-out classes. To assess general-
ization to pathological regions, we include MSD-Pancreas, which provides 281 CT scans
with annotations for the pancreas and pancreatic tumors. This dataset allows us to evaluate
MedOpenSeg’s ability to identify unseen tumor regions. Crucially, unseen classes are never
presented to the model during training except in one controlled ablation ("w/o Unknown Pro-
totype"), where a single instance is used to initialize an adaptive prototype. This prototype
is updated only through latent embedding statistics and is not trained using segmentation
supervision.

Evaluation Metrics: Open-set semantic segmentation combines closed-set segmentation
and anomaly detection elements. We assess performance using the Dice Score (DSC) to
evaluate segmentation accuracy on known structures. Area Under the ROC Curve (AUROC)
measures the model’s ability to distinguish novel from known anatomical regions [5].

Implementation Details: We implement MedOpenSeg in PyTorch and train the models on
an NVIDIA A100 GPU for 30k iterations. We use an Adam optimizer with a learning rate of
1 x 107* to minimize the Dice-Cross entropy loss and the Prototype-Guided Representation
Loss with a batch size of 6.

5 Results

5.1 Comparison with the State-of-the-Art

We compare MedOpenSeg with SwinUNETR [26], MedSAM [20], SAM-Med2D [7] and
CLIP-Universal [18]. SwinUNETR is a strong transformer-based baseline trained in a closed-
set setting, while MedSAM and SAM-Med2D leverage SAM [14] for medical image seg-
mentation, incorporating foundation model pretraining. We evaluate two training regimes:
CW (closed-world) trained with access to all categories (seen + unseen) to establish a su-
pervised performance upper bound. OW (open-world) trained only on seen classes, follow-
ing the open-world setting. This variant does not observe any information about unseen
classes. MedOpenSeg is trained strictly on known classes. The unknown class prototype is
not trained using labeled examples of unseen structures. Instead, it is either: (1) uninitialized
(random), or (2) optionally initialized using a single one-shot example, and then adapted
solely through statistics over the embedding space without backpropagation on unseen an-
notations. This preserves the open-set assumption and avoids leakage of segmentation su-
pervision from unseen classes.

Table | presents the performance in both known class segmentation and novel class de-
tection. MedOpenSeg achieves superior Dice scores on known classes and significantly
higher AUROC on unseen structures. For instance, on AMOS, MedOpenSeg improves AU-
ROC by 13% over the strongest baseline. This performance stems from the synergy between
hierarchical encoding, prototype-guided representation learning, and training-free novelty
detection using embedding-prototype distances.

MedOpenSeg consistently outperforms MedSAM and SAM-Med2D on known structure
segmentation despite these baselines leveraging large-scale foundation model pretraining.
We attribute this to our prototype-driven training strategy, which explicitly optimizes intra-
class compactness and inter-class separation through the PGR loss.

In Figure 2, we present qualitative results illustrating MedOpenSeg’s performance in
closed-set segmentation and open-set novelty detection on a representative CT slice from
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Table 1: Performance Comparison. MedOpenSeg outperforms other methods in known
segmentation accuracy (Dice) and unseen class detection (AUROC). Best results in bold and
percentage improvements compared to the best baseline.

AMOS BTCV MSD-Pancreas

Method

Known 1 Unseen 1 Known 1 Unseen 1 Known 1 Unseen 1

MedOpenSeg (Ours) 90.11 A 2% 79.20 A 13% 8818 A 2% 68.13 A 3% 88.96 A 8% 75.80 A 8%

SwinUNETR (CW) 87.00 62.70 86.68 63.50 81.67 58.36
SwinUNETR (OW) 81.45 39.82 80.39 34.53 77.40 12.36
CLIP-Universal (OW) 88.51 52.70 83.17 42.70 82.43 49.60
MedSAM 67.81 70.24 64.40 66.34 58.86 70.45
SAM-Med2D 72.06 52.83 70.00 46.59 56.50 64.60

Closed-Set Segmentation Novelty Detection

-

Figure 2: Qualitative Results: The left panel shows the ground truth segmentation over-
laid on the CT scan. The middle panel displays the closed-set segmentation output of
MedOpenSeg. The right panel illustrates the novelty map, where the model highlights pre-
viously unseen structures via the fused cosine/EDS novelty map.

the AMOS dataset. The left panel shows the ground truth segmentation overlaid on the
original image, highlighting both seen and unseen anatomical structures. The middle panel
displays the closed-set segmentation output from MedOpenSeg, which is trained exclusively
on seen classes. As expected, the model correctly segments structures it was trained on (e.g.,
liver, kidney, spleen), while completely ignoring or misclassifying regions corresponding to
unseen organs such as the bladder and prostate.

The right panel visualizes the novelty detection output using the fused prototype-based
scoring mechanism. Warm colors (e.g., red and orange) indicate regions where voxel em-
beddings exhibit low similarity to all known class prototypes and high cumulative distance
in embedding space, suggesting a distributional shift from the seen class manifold. Notably,
these highlighted regions spatially correspond to the unseen anatomical structures present in
the ground truth, validating the effectiveness of MedOpenSeg’s novelty scoring mechanism.

5.2 Ablation Experiments

We conduct ablation studies to assess the impact of the PGR loss, the unknown prototype
mechanism, and different novelty detection scoring strategies (Table 2). We observe that
removing the PGR loss degrades both known-structure Dice and AUROC on unseen classes,
confirming its role in learning well-clustered, discriminative prototypes. Similarly, removing
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Table 2: Ablation Study on MedOpenSeg. Evaluation of key components affecting seg-
mentation accuracy (Dice) and unseen class detection (AUROC). We analyze the impact of
the Prototype-Guided Representation Loss (PGR), the unknown class prototype, and alter-
native novelty detection strategies. The best results for each setting are highlighted in bold.

AMOS BTCV MSD-Pancreas
Method Known? Unseen{ Known{ Unseen?t Known?1 Unseen 1
MedOpenSeg (Ours) 90.11 79.20 88.18 68.13 88.96 75.80
w/o PGR 85.6 76.45 87.09 65.34 83.24 74.90
w/o Unknown Prototype 88.01 45.23 87.97 39.47 86.75 28.90
Cosine Similarity Only - 68.30 - 60.18 - 70.67
EDS Only - 77.82 - 65.45 - 75.60

the unknown class prototype drastically reduces novelty detection performance (e.g., 45.23
AUROC on AMOS, 39.47 on BTCYV, and 28.90 on MSD-Pancreas), demonstrating its impor-
tance for effective novelty detection. The unknown prototype can be optionally initialized
from a single annotated instance. We acknowledge that this can bias the prototype toward
that seed. To mitigate this, the seed is selected from a validation set disjoint from test data,
no gradients are propagated through it, and the prototype is subsequently updated only via
unsupervised embedding statistics. We also report a seed-free variant at the cost of lower
AUROC. Among novelty detection strategies, Euclidean Distance Sum (EDS) outperforms
Cosine Similarity alone, as it captures global divergence rather than alignment to a single
prototype. Their combination yields the best overall AUROC.

6 Conclusions

This work presents MedOpenSeg, a Memory-Augmented transformer framework for open-
world medical image segmentation. By integrating a hierarchical Swin-Transformer encoder
with prototype-driven representation learning, MedOpenSeg achieves strong performance
in both closed-set segmentation and open-set novelty detection. The key innovation lies
in its prototype-guided representation loss (PGR) and training-free novelty scoring mecha-
nism, which together enforce compact, class-aligned prototypes and enable the model to flag
anatomically coherent novel regions without requiring retraining. Our experiments demon-
strate that MedOpenSeg outperforms state-of-the-art methods, including vision-language
pre-trained models, on standard benchmarks like AMOS, BTCV, and MSD-Pancreas.
Despite these strengths, MedOpenSeg has some limitations. In particular, its reliance
on a dedicated unknown class prototype introduces a trade-off between performance and
supervision. While the prototype is not trained with segmentation masks, it is initialized
using a one-shot annotated example from an unseen class. This improves detection precision
but introduces minimal supervision that may not be viable in all settings. In deployments
where such a seed is unavailable, MedOpenSeg remains fully unsupervised at test time but
with reduced sensitivity. To mitigate these limitations, future work will investigate fully
unsupervised novelty detection, along with extensions to diverse imaging modalities and
clinically relevant tasks, including rare pathologies and cross-domain generalization.
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