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Abstract. Tone mapping is an essential step in an acquisition or a rendering pipeline
to map high dynamic range (HDR) content to a reference display range. The simplest
tone mapping approach is to apply a function to the luminance channel of an HDR image
and then to propagate the change to the red, green, and blue channels. However, this
often causes color distortions since luminance and chrominance channels are interdepen-
dent, and modifying one affects the other. We propose a novel tone mapping approach
that preliminarily decomposes the image into intrinsic components and leverages them to
perform the actual operation. This strategy effectively mitigates color distortions, elim-
inating the need for post-processing color correction required by many state-of-the-art
methods, and it also assists tone mapping operators (TMOs), improving the overall image
quality. Our method was validated through quantitative metrics and a psychophysical
experiment, both demonstrating its effectiveness.

1 Introduction
HDR imaging [1, 2] is a fundamental technology that allows users to have a digital experience that is one
step closer to reality [3]. While HDR televisions and displays have entered the consumer markets, tone
mapping—the process of adapting HDR content to a display with a smaller dynamic range—remains
necessary due to the dynamic range mismatch between content and display. In other markets, this issue
is even more pronounced. For instance, HDR head-mounted displays are largely in the prototype phase
[4], making tone mapping an essential topic in this domain as well [5]. Although many TMOs have been
introduced in the past [1, 2] and more advanced methods using deep learning have started to emerge [6],
the majority of such TMOs typically do not handle color distortions between original and compressed
content. Their focus is mostly on compressing luminance with either minimal color processing or no
processing at all. However, it is important to consider that luminance compression of bright areas leads
to an increase in color saturation, and luminance expansion of dark areas desaturates colors. In this work,
we present a novel tone mapping framework that, through formulation of the problem in the intrinsic
domain, inherently mitigates color distortion. Intrinsic Image Decomposition [7] is a technique that
decomposes an image into its shading and reflectance layers. Our method employs this technique and
can be applied in a plug-and-play manner to any existing TMO. We evaluate its effectiveness on HDR
images spanning a wide luminance range, employing objective metrics and conducting a psychophysical
experiment. Additional details and resources are available in the supplementary materials.



2 Related Work
2.1 Post-Processing Color Correction Algorithms
Tone mapping serves a dual purpose, requiring the manipulation of images to compress their absolute
luminance range while also adjusting pixel relationships to enhance visible detail and alter overall contrast.
Nevertheless, modifications to contrast and luminance frequently result in color shifts. This can negatively
impact on saturation and hue of the images.

If the overarching purpose when performing tone mapping is to accurately preserve the authenticity
and color representation of a scene, what is often done in the literature is to develop a posteriori color
correction algorithms that reduce the distortion introduced in the tone mapped image. Schlick’s approach
[8] to color treatment in tone mapping involves introducing a saturation control parameter s into the
equation:

Cd′ =

(
Cw

Lw

)s

· Ld s ∈ (0, 1], (1)

with C representing each single color channel and L the luminance. The subscripts d′ , d, and w are,
respectively, corrected tone mapped values, tone mapped values before correction, and HDR values. This
method reproduces exactly the traditional approach to tone mapping with the only novelty given by
the management of the saturation parameter. However, this formulation has its drawbacks, as it can
significantly impact the luminance, deviating from the desired outcome, especially for highly saturated
pixels, by altering the chroma and lightness of colors. Mantiuk et al. [9] introduced a linear color
correction formula:

Cd′ =

((
Cw

Lw
− 1

)
s+ 1

)
· Ld s ∈ (0, 1]. (2)

Equation 2 mitigates lightness shifts, which happens in Equation 1, but it introduces a more pronounced
hue shift. For both these two methods, the saturation parameter s is supposed to be manually picked by
users, but it can also be automated when the TMO is global and differentiable [9].

Artusi et al. [10] proposed a fully automatic methodology that takes as input the original HDR and the
tone mapped images, which are converted into the cylindrical color space ICh [11] of the IPT space [12].
Then, the hue of the tone mapped image is reset using the hue of the HDR image. Finally, the chroma
component is scaled in such a way that it approximates the result if the tone mapping of the original HDR
image is performed in the ICh space. This method can be extended to handle out-of-the-gamut colors
[10]. As stated before, our problem is to minimize the color distortion between the input HDR image
and the output tone mapped one. This is different from related topics such as Color Appearance Models
(CAMs) and gamut mapping. Indeed, our problem does not take as input any viewing environment and
display as CAMs and gamut-mapping methods [13].

2.2 Intrinsic Image Decomposition for Editing Tasks
Intrinsic Image Decomposition (IID) [7] is a core mid-level computer vision problem that aims to facilitate
a deeper understanding of the image content by disentangling intrinsic scene properties from lighting
variations. It separates an image I into two components: reflectance, R, and shading, S. Employing the
widely recognized Lambertian-world assumption with a single-channel representation for shading (Sgray)
and a color-embedded reflectance (RRGB), this decomposition is formulated as a pixel-wise multiplication:

IRGB = RRGB ⊙ Sgray, (3)

such that RRGB is considered invariant to illumination changes and delivers information about the mate-
rial’s spectral properties and colors of the objects in a scene, while Sgray only accounts for the illumination
effects over those objects. This decomposition provides a simplified yet insightful understanding of image
formation, making it a valuable tool in various applications (e.g., relighting, recoloring) [14] [15].

There is convincing evidence in the literature that numerous processes in the human visual system
(HVS) compensate for the impact of light. For example, the HVS adjusts to illumination changes and
approximately preserves an object’s appearance by making its color stable over a wide range of lighting
[16, 17]. If, in this sense, light appears of lesser significance, it is probable that alterations to the shading
component will be less noticeable than changes to the reflectance. Limiting modifications to the shading
component could be particularly beneficial in the context of tone mapping, as light is largely accountable
for the extensive dynamic range in real-world settings. Indeed, the maximum dynamic range generated
solely by reflectance is less than two orders of magnitude, whereas the dynamic range of shading surpasses
four orders of magnitude [18]. This reasoning legitimizes the idea of applying tone mapping in the shading
domain rather than the luminance one. Our work adopts IID as a new application, i.e., applying it to
color-preserving HDR tone mapping, a direction not previously explored.



Figure 1: Pipeline of the proposed framework. The encoded HDR image is decomposed into shading and
reflectance using an IID network [14]. Tone mapping is applied only to the shading, and the final image
is obtained by recombining it with the reflectance, followed by brightness adjustment.

3 Methodology
In this section, we present the proposed framework. Figure 1 shows an overview of the pipeline: we
first employ an off-the-shelf deep learning model to perform the intrinsic decomposition after which tone
mapping is applied by leveraging the separation of the resulting intrinsic components.

3.1 Decomposition Network
To date, learning-based approaches have emerged as the preferred solution for addressing the IID task.
Careaga and Aksoy [14] outlined an architecture that achieves state-of-the-art results in a wide range
of possible scenarios (e.g., indoor, outdoor, with human faces, etc). This model was trained on several
synthetic datasets [19], [20], [21] that include HDR renderings and corresponding intrinsic ground-truth.
In the context of our framework, we conducted a comparative evaluation of two other IID models,
CGIntrinsics [21] and PIE-Net [22], using HDR images sourced from the HDR Photographic Survey
[23], and we performed task-specific fine-tuning on the Hypersim dataset [19]. However, Careaga and
Aksoy’s pretrained model consistently outperformed the others in terms of decomposition quality and
computational efficiency. This confirmed its strong generalization ability, making it the most suitable
choice for our tone mapping pipeline.

3.2 Input Encoding and Network Inference
As commonly done when applying deep learning models to HDR content, we encoded the images to
ensure a suitable input representation before feeding them into the network. To identify the most effective
encoding for generating reflectance and shading, we tested three different approaches: HLG [24], PU21
[25], and a robust normalization method (99.5-percentile) followed by 2.2 gamma correction, which we
denote as NORGAMMA. Our experiments showed that NORGAMMA preserves more detail and reduces
over-exposed regions in the final rendering of a tone mapped image (see Figure 2).

Considering an HDR image H, its NORGAMMA-encoded version Ĥ is passed through the decompo-
sition network (denoted as N ) which computes:

Ĥ = R̂⊙ ŜH , (4)

where R̂ naturally falls within the [0, 1] range, as it does not convey HDR information, while ŜH retains
the HDR content and remains unbounded.

3.3 Tone Mapping in the Intrinsic Domain
To compress the dynamic range while preserving colors, we formulate the tone mapping in the intrinsic
domain. Denoting any TMO as T , the outcome of the tone mapping process step can be expressed as:

T IID(R̂; ŜH) = R̂⊙ T (ŜH), (5)

where T IID(R̂; ŜH) is a tone mapped image obtained by first carrying out the tone mapping operation

only over the shading, T (ŜH), and then multiplying the result with the untouched reflectance R̂.



(a) HLG [24] (b) PU21 [25] (c) NORGAMMA

Figure 2: An example of the application of different encodings for the IID network when applying our
framework to the Drago et al. TMO [26] for the Jesse Brown’s Cabin [23]. NORGAMMA allows to have
a brighter image and to maintain details of trees and the sky.

3.4 Brightness Refinement
Despite preserving the overall structure and colors, we observed that images produced by Equation 5
generally exhibit a low brightness issue, appearing darker than those that would be obtained following the
traditional methodology, as a tone mapped shading is typically darker than a tone mapped luminance. We
realized that this difference is due to a global scalar multiplier that nearly matches the 99.5-th luminance
percentile of the processed image. To address this, we introduced a step called brightness refinement (B),
where the output image is normalized by this scalar. A more sophisticated solution could be employed
(e.g., a refinement neural network to predict this value). To summarize, the complete pipeline to produce
the final tone mapped image I can be expressed as:

I = B(T IID(N (Ĥ)). (6)

4 Results
In this section, we present both quantitative and qualitative results obtained. To generate the test images,
we used three traditional TMOs—Reinhard et al. [27], Reinhard and Devlin [28] and Drago et al. [26]—
alongside a deep learning-based method by Vinker et al. [29], for a total of four TMOs. We juxtaposed our
outcomes with those from Artusi et al.’s method [10] and Mantiuk et al.’s [9] and Schlick’s [8] algorithms,
with the saturation parameter estimated from the tone curve as described in [9]. For all the global TMOs,
we employed the HDR Toolbox [30] implementation (please refer to the supplementary materials for the
specifications of the parameter choices). Regarding Vinker et al.’s TMO [29], we employed the original
implementation available on github 1, with automatic parameters estimation.

4.1 Objective Evaluation
We identified two evaluation metrics: Hue Distance (∆h) [10] and ColorVideoVDP (CVVDP) [31].
The ∆h quantifies hue distortion between the original HDR image and its tone mapped counterpart,
operating in the ICh color space [11], which is known for effectively decorrelating intensity and chromatic
components. This metric has already been successfully applied to this type of evaluation in [10] and
we computed the results using the HDR Toolbox implementation [30]. CVVDP is a perceptual metric
that models spatial and temporal aspects of vision for both luminance and color, working for static
images as well. To compute this metric, we converted the tone mapped 8-bit images into physical
values by applying the display settings of an SDR monitor with peak luminance of 100 cd/m2. HDR
images were also displayed using the calibration parameters of an EIZO CG3145 HDR reference monitor
with peak luminance equal to 1000 cd/m2. We conducted the comparisons considering all 106 HDR
images from HDR Photographic Survey [23]. Table 1 reports ∆h and CVVDP values computed for each
proposed method and for every tested TMO. Our method achieves the best performance across nearly
all combinations of TMOs, consistently reducing hue distortion and improving perceptual quality. While
Artusi et al. [10] specifically target hue preservation, their corrections operate in a color space where
luminance and chromaticity are not fully decoupled. This partial coupling can lead to residual hue
distortions in highly saturated regions, which our intrinsic domain formulation helps mitigate. It is also
important to note that small hue changes can still be perceptible, as this value refers to the entire image,
and such distortions are often concentrated in vivid colors covering small areas.

1Accessed on the 20-th of April 2025, https://github.com/yael-vinker/unpaired hdr tmo

https://github.com/yael-vinker/unpaired_hdr_tmo


Table 1: ∆h and CVVDP scores for the tested TMOs on the HDR Photographic Survey [23]. Best in
bold.

Reinhard et al. [27] Reinhard and Devlin [28] Drago et al. [26] Vinker et al. [29]

Method ∆h↓ CVVDP↑ ∆h↓ CVVDP↑ ∆h↓ CVVDP↑ ∆h↓ CVVDP↑

Schlick [8] 0.0142 7.81 0.0328 5.00 0.0137 6.92 0.0264 6.57
Mantiuk [9] 0.0152 7.67 0.0350 4.78 0.0145 6.79 0.0279 6.50
Artusi [10] 0.0124 7.82 0.0129 5.35 0.0125 6.94 0.0181 6.60
Ours 0.0157 8.70 0.0120 7.49 0.0122 7.92 0.0137 7.35

Table 2: Ranking of methods; total votes in parentheses. Methods are grouped together if they are
statistically the same, using the critical value R = 85 at significance level α = 0.01 [32].

Groups

3rd 2nd 1st

Overall
Schlick(211) Mantiuk(315) Artusi(392) Ours(582)

4.2 Psychophysical Experiment
To validate the effectiveness of the proposed approach, we also conducted a psychophysical experiment.
The experiment involved evaluating 25 images randomly selected out of the 106 from the HDR Photo-
graphic Survey [23] (selected images are shown in the supplementary materials). The type of experiment is
2AFC (2-Alternative-Forced-Choice), meaning that each time participants were asked to choose between
two options. For the criterion of choice, participants were asked: ’Among the proposed options, which
tone mapped image is most similar to the reference HDR image?’. To reproduce the content of HDR
images, we used the EIZO CG3145 HDR monitor with a peak luminance equal to 1000 cd/m2. Initially,
the reference HDR image is displayed alone in full screen. Upon pressing a key, two SDR tone mapped
images are presented side by side. When the SDR images are shown for pair comparison, the monitor is
calibrated to reproduce the luminance characteristics of a standard SDR display, with brightness limited
to a peak of 100 cd/m2. To control absolute luminance on the HDR monitor, the SDR images are mapped
to PQ encoding [33] while preserving SDR brightness levels. The experiment involved 10 participants,
comprised of 70% males and 30% females, all of whom were experts in color assessment and aged between
28 and 45 years. There were no time constraints imposed for making the choices. For each participant,
the experiment consisted of a single session lasting approximately 40 minutes on average. The 2AFC
protocol requires a large number of repeated comparisons, which significantly increases session duration.
Therefore, we opted for a limited but qualified group of participants. This design choice is in line with
common practice in tone mapping studies, which often rely on a comparable number of participants [29]
[10]. Please, refer to the supplementary materials for more details. In this experiment, we tested images
tone mapped using Reinhard et al.’s TMO [27]. The reasoning behind this choice is that we wanted
to assess the quality of an operator which had not the best results in terms of ∆h, even though visual
comparisons showed promising results. We analyzed the collected data using paired comparison analysis
[32], as previously employed in the HDR literature [34]. We computed: i) the coefficient of consistency
u; ii) the coefficient of agreement ζ. The coefficient of consistency, u ∈ [0, 1], indicates the degree to
which voters are consistent in their preferences, with 0 meaning no consistency and 1 meaning perfect
consistency. The coefficient of agreement, ζ ∈ [−1, 1], measures the level of agreement among voters, with
-1 indicating complete disagreement and 1 indicating full agreement. Our results show that participants
were highly consistent (ζ = 0.918) and demonstrated significant agreement (u = 0.199). These results
were statistically significant, as indicated by X 2 = 303.26 (critical value at significance level α = 0.01 is
16.81). Furthermore, the difference in scores, Dn = 294.53, was also statistically significant, exceeding
the critical value at α = 0.01 (11.33). These two tests are equivalent to the analysis of variance and
Tukey’s test respectively [32]. Table 2 shows the results of ranking the overall methods based on votes;
note that we group methods that that are not distinguishable according to the critical value R = 85 [32].
From this table, we can notice that our method got most votes and differs significantly from the other
methods. Moreover, our experiment confirms the literature, demonstrating that Mantiuk et al. [9] and
Artusi et al. [10] methods achieve superior performance compared to Schlick [8].
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Figure 3: Visual comparison of our method against the state-of-the-art. The first column shows an HDR
image tone mapped with a global TMO (Reinhard et al. [27]) and a deep-learning method (Vinker et al.
[29]). Remaining columns report results for each specific method. From top to bottom: Cemetery Tree
and LasVegasStore images from [23]. See supplementary materials for further comparisons.

4.3 Visual Comparison
Figure 3 compares images obtained by applying state-of-the-art color correction methods and following
our preliminary decomposition approach, using [27, 29] as base TMOs. The strength of our framework
lies in its ability to maintain accurate color reproduction. TMOs tend to disrupt the saturation of colors,
resulting in less realistic visual outputs. Post-processing methods limit the problem but sometimes end up
desaturating or oversaturating the images. In contrast, our approach prevents color distortion from the
beginning and returns more balanced images (see the color of the leaves in Cemetery Tree). Furthermore,
in challenging bright regions, finer details are more visible with our method, where others might fade or
lose some information (see the neon signs in LasVegasStore), and it can also reduce halo artifacts in local
TMOs, as observed in the same image tone mapped with Vinker et al. TMO [29], which is a local one.

4.4 Limitations
While our method performs well in most scenarios, we have observed that, in rare instances, it can produce
images with lower brightness levels. This is particularly noticeable in predominantly dark images, such
as night or in indoor scenes with few bright areas present (see Peppermill and WaffleHouse in Figure
5 of the supplementary materials) and it may occur because the reflectance-shading separation is not
fully successful, given a case that probably the network cannot model. A possible solution could involve
adapting the IID model to better handle these scenarios.

5 Conclusions
We presented a color-preserving tone mapping framework formulated in the intrinsic domain. Preferring
this preliminary decomposition demonstrated advantages in minimizing color distortion and improving
visual fidelity, outperforming post-processing state-of-the-art methods for color correction in most cases.
The psychophysical experiment has confirmed this; i.e., the analysis has shown participants consistently
preferred images processed through our framework. Our work can be applied to any existing TMO in a
plug-and-play fashion, requiring minimal effort for integration making it ideal for production pipelines.

While the current approach avoids additional training overhead by leveraging a pre-trained IID model,
we acknowledge that jointly optimizing the IID and tone mapping modules by training the decomposition
end-to-end with a learnable TMO could further enhance performance. We consider this direction as future
research. Another possible extension involves incorporating temporal consistency constraints to handle
HDR video tone mapping, ensuring coherent decomposition and appearance across frames.
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1 Global TMOs parameters choice
In this section, we present the parameters used for the three global tone mapping operators (TMOs) tested
in our study. For Reinhard et al.’s [1] TMO parameters, α and Lwhite were estimated using Reinhard’s
estimation [2]. Regarding Reinhard and Devlin’s TMO [3], we employed the default parameters suggested
in the paper [3]: m = 0.3+0.7k1.4 (where k is the key of the image), f ′ = 0, c = 0, and a = 1. Finally, for
Drago et al.’s TMO [4], we employed the default parameters values as in the paper [4]: Ldmax = 100 cd/m2

and b = 0.85.

2 Experimental procedure
In Figure 1 we summarize the experimental setup. In an environment deliberately darkened to minimize
all light sources, participants first viewed the HDR image, which was displayed alone in full-screen mode.
When the participant pressed a key, a grayscale image was projected to allow for eye adaptation. After
this adaptation period, participants were asked to express their preference between two SDR images
shown side by side. Since there were 4 methods to compare in total, each HDR image required 6 pairwise
comparisons of tone mapped SDR images. Participants were allowed to view the HDR image for as long
as they wanted before proceeding to compare the SDR image pairs. Additionally, participants could bring
up the HDR image again at any time before making their final choice. The frequent switching between
HDR and SDR modes was facilitated using custom software. Participants viewed the images at a fixed
distance of 80 cm from the monitor, with all images displayed in full-HD resolution. Figure 2 shows the
25 ”baseline” images selected from the HDR Photographic Survey [5], which were used to generate all the
variations for the 4 methods analyzed in this study. This resulted in a total of 100 (25 Ö 4) test images
as experimental stimuli. However, due to space constraints, only the 25 baseline images are shown.

3 Additional results
In Figures 3, 4 and 5, we provide more visual comparisons between the proposed method and the oth-
ers, showing the results for all tested TMOs. Note that these images represent additional examples of
visual comparison from the 106 tested images of the HDR Photographic Survey [5] but not all of them
were randomly selected for the experiment, except for LabBooth, WaffleHouse and Zentrum, which also
appeared in the experiment.



(a) HDR Scene Viewing (b) Visual Adaptation (c) Preference Selection

Figure 1: Experimental setup. The subject looks at the HDR image first. Then, a gray scale image
is projected for an adaptation time for the eyes. Finally, the subject is asked to express a preference
between 2 tone mapped options and for 6 times for each test image.

Figure 2: The 25 randomly selected images from the HDR Photographic Survey [5] for the experiment.
Note that we show the ”baseline” images tone mapped for visualization purposes using Reinhard et al.’s
TMO [1], and not the versions obtained following each of the tested methods.
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Figure 3: Visual comparison of our method against the state-of-the-art. The first column represents an
HDR image respectively tone mapped using all the tested TMOs. Remaining columns represent the result
obtained when each specific method is employed. In this figure, LabBooth and MasonLake(2) images from
the HDR Photographic Survey [5] have been used from top to bottom respectively.
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Figure 4: Visual comparison of our method against the state-of-the-art. The first column represents an
HDR image respectively tone mapped using all the tested TMOs. Remaining columns represent the result
obtained when each specific method is employed. In this figure, Peppermill and Waffle House images
from the HDR Photographic Survey [5] have been used from top to bottom respectively.
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Figure 5: Visual comparison of our method against the state-of-the-art. The first column represents
an HDR image respectively tone mapped using all the tested TMOs. Remaining columns represent the
results obtained when each specific method is employed. In this figure, Canadian Falls and Zentrum
images from the HDR Photographic Survey [5] have been used from top to bottom respectively.
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