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Abstract
Compact indices are a fundamental tool in string analysis, even more so in bioinformatics, where
genomic sequences can reach billions in length. This paper presents some recent results in which
Roberto Grossi has been involved, showing how some of these indices do more than just efficiently
represent data, but rather are able to bring out salient information within it, which can be exploited
for their downstream analysis. Specifically, we first review a recently-introduced method [Guerrini et
al., 2023] that employs the Burrows-Wheeler Transform to build reasonably accurate phylogenetic
trees in an assembly-free scenario. We then describe a recent practical tool [Buzzega et al., 2025] for
indexing Maximal Common Subsequences between strings, which can enable analysis of genomic
sequence similarity. Experimentally, we show that the results produced by the one index are
consistent with the expectations about the results of the other index.
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1 Introduction

Sequence analysis is one of the core branches of bioinformatics, and it is arguably one of the
most fundamental tasks due to the abundance of genomic sequences enabled by advancements
in sequencing technologies. Sequence analysis methods have a huge advantage compared to
“in vitro” methods: once a dataset is available, it can be instantly and easily shared with
anyone, it does not deteriorate or deplete, and can be analysed repeatedly with just regular
computers, without the need of expensive ad-hoc machines. This is one of the reasons why
much effort is dedicated to quickly produce new and more powerful sequencers, resulting in
larger datasets available to the scientific community, ranging from bacteria and viruses to
humans.

The size of genomic data can be daunting, as the length of genomic sequences ranges
from thousands (for some viruses, or proteins) to millions (e.g., E. Coli genome) or billions
(e.g., human genome). An important trade-off is immediately evident: more complex and
refined approaches can extract better-quality information from the data, but require more
computational resources to be executed, and may be not be applicable to complex organisms.
The research community has been advancing in two main directions: developing more
sophisticated algorithms, and extending their applicability to increasingly complex data.
A key task in the latter direction is optimizing the way data is represented and handled,
since just storing sequences in an uncompressed format may already require tens of GB of
space. In this scenario, compact indices are extremely valuable tools, that typically employ
algorithmic tricks to provide a good trade-off between the size of the index, and ease of
access to the data (as well as support for specific queries).

In this paper, our aim is to give an overview of two recent research results concerning
subsequence-based indices in bioinformatics, which involve Roberto Grossi both in their
past development and in their current investigation of future directions. We experimentally
highlight how these indices do more than just represent genomic data: their clever processing
of the input enables the extraction of salient information that can be used for sequence
analysis application tasks.

Specifically, the first research result we review is a method, called phyBWT [25, 26], that
addresses the problem of phylogenetic inference employing the Burrows-Wheeler Transform
(BWT) [11]. The BWT is a text transformation with the remarkable feature of clustering
together repeated sequences, a property originally intended to enhance compression, but
now widely used in genome indexing algorithms [32]. Phylogenetic inference refers to the
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process of reconstructing the evolutionary relationships among species, or more generally,
among taxa. The phyBWT methodology for phylogeny reconstruction uses the BWT of a
string collection [7, 35], precisely of a group of sequences representing different taxa, to group
related taxa together and to suggest evolutionary relationships. The main features of the
phyBWT tool are its ability to work directly on raw sequencing data in an assembly-free
scenario, and the fact that it does not rely on pairwise sequence comparisons, and thus on a
distance matrix, but rather compares all the sequences simultaneously and efficiently.

The subsequent research result reviewed in this paper concerns the construction of a
deterministic finite automaton (DFA) to efficiently index all maximal common subsequences
(MCS) of two (or more) input strings. A common subsequence is a sequence of characters
that occurs in the same order in all input strings, albeit not necessarily consecutively. An
MCS is a common subsequence that is not a subsequence of any other common subsequence.
The DFA, implemented as a labelled directed acyclic graph (DAG), is called McDag, and
was presented in [12, 13]. Even if some previous works provide indices with better worst-case
bounds [18, 28], the McDag index has been experimentally shown to be more efficient in
practice for real-world genomic data, as it is significantly faster to build and typically smaller
in size. Preliminary experiments (see Figure 3 from [12]) showed that the distribution of MCS
lengths appears to behave differently when comparing very similar or dissimilar genomes.

Aiming to illustrate the potential of the two methods for genomic data analysis, we
experimentally observe the MCS lengths distributions on genomic sequences within the same
taxonomic group, to get a picture of how these distributions behave on closely related taxa
versus more distant ones, using the phylogeny produced by phyBWT as a guide.

Outline of the paper

The paper is organized as follows. In the rest of the introduction, we will provide a review of
the state of the art on both phyBWT and MCSs. Then, in Section 2 we will provide some
technical preliminaries needed for the rest of the paper. Sections 3 and 4 will briefly review
the main ideas behind the phyBWT [26] and McDag [13] works, respectively. Finally,
Section 5 will present experiments on MCS lengths distributions for sequences from the same
phylogenetic trees produced by phyBWT. The experimental comparison of phyBWT and
McDag with their relative state of the art is out of the scope of the present work, and the
interested reader can find it in their respective papers.

Related Work: Phylogenetic inference and PhyBWT

Sequence-based phylogeny aims to reconstruct evolutionary relationships between species,
or more generally taxa, by comparing their DNA (or protein) sequences. The relationships
among taxa are traditionally displayed in a tree-shaped diagram called phylogenetic tree,
which can be rooted or unrooted. The leaves of the tree represent the contemporary organisms,
while internal nodes represent common ancestors from which descendant lineages diverged.

The development of next-generation sequencing technologies in the early 2000s revolution-
ized this field, enabling researchers to sequence entire genomes quickly and cost-effectively.
Such an amount of whole-genome sequencing data has lead to the need of advanced compu-
tational algorithms and tools for efficient phylogenetic inference.

Numerous sequence-based methods have emerged and evolved over time in this research
field [43]. Most of them rely on a distance matrix by computing the pairwise evolutionary
distances between every pair of input sequences representing the taxa. Distance measures are
typically based on sequence alignment, and once the distances are obtained, the sequences
are no longer utilized in the analysis.

Grossi’s Festschrift
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X C G G G G T A T A T A

Y T A T A T A G G G C G

Figure 1 The two strings X, Y shown in the figure have as only LCS the string TATATA of length 6,
shown with matching dashed edges. The MCS set is instead composed of three strings: TATATA, GGGG,
and CG. In LCS-based analysis, the longer LCS prevents us from considering the second-longest
MCS, GGGG (shaded), as a possible meaningful common pattern.

In 1992, Bandelt and Dress [4] introduced a technique called split decomposition that was
shown to enhance phylogenetic analysis [5]. Based on a solid mathematical ground [4, 6],
the split decomposition involves constructing a set of splits (binary partitions of the set of
taxa) from a given dissimilarity matrix, each split being weighted by an isolation index that
intuitively quantifies the strength of the split on the basis of the dissimilarity values. Given
a distance matrix for ℓ taxa, the list of splits is computable in polynomial time (of order ℓ6).
Phylogenies in a tree-shaped form can be constructed by greedily selecting the splits with
the highest isolation indices, as long as they are compatible2. Compatible splits correspond
to a tree structure and, conversely, any tree can be represented by a set of compatible splits.
Thus, ideal data gives rise to a phylogenetic tree, whereas phylogenetic networks, which
generalize phylogenetic trees, are reconstructed when the splits are weakly compatible (see
the tool SplitsTree [29]).

The increasing cost of the alignment task has led to the development of alignment-free
approaches to efficiently quantify the dissimilarity between pairs of sequences [46]. Starting
from the split decomposition idea, the authors of [44] introduced an alignment-free method
called SANS that builds a list of splits and, from that, it infers the phylogeny by using
SplitsTree. However, differently from the split decomposition theory, SANS builds the
list of splits without relying on a distance matrix, and assigns weights to splits by counting
fixed-length substrings shared among the sequences. According to [44], for ℓ taxa represented
by sequences of length O(n) each, SANS runs in O(nℓ log(nℓ)) time.

The method phyBWT proposed in [26] and reviewed in this paper also belongs to the
class of alignment-free approaches that infer phylogenetic relationships without relying on
pairwise sequence comparisons. It differs from SANS as it does not build a list of splits, but
rather defines a new strategy to draw a phylogenetic tree. Moreover, phyBWT evaluates
sequence similarity/dissimilarity considering shared strings of varying length, without fixing
a-priori the length of the common substrings. The interested reader can find a direct
comparison between SANS and phyBWT in [26].

Related Work: Maximal Common Subsequences

Maximal common subsequences are a generalization of the well-known Longest Common
Subsequences (LCSs), that is, common subsequences of maximum length: indeed, each LCS is,
by definition, an MCS as well. LCSs are well-established in the context of genome sequence
alignment [41], and the value of the length of an LCS can be used as a string similarity
measure [8]. Still, by only considering the longest such sequences, (slightly) shorter but still
relevant alignments might be discarded (see Figure 1). At the same time, going instead
to the opposite extreme and considering all common subsequences would create too much

2 A set of splits is compatible if, for every pair of splits, at least one of the four possible intersections
between their parts is empty.
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redundancy. A reasonable middle ground is thereby provided by MCSs, which can still be
exponential in number (as LCSs can be too [24]), but are significantly fewer than all common
subsequences.

The (shortest) MCS problem on strings3 was proposed in [22], where the authors provided
a dynamic programming algorithm for finding the shortest MCS, and other related problems.
Sakai later provided the first (almost) linear-time algorithm to extract one MCS between
two strings [39, 40]. This highlights a key difference from LCS computation, for which
there exists a SETH-based quadratic conditional lower bound [1, 9]. When increasing the
number of strings, this difference becomes even more pronounced: finding an LCS among an
arbitrary number of strings is NP-hard [33], while there is a polynomial-time algorithm for
extracting one MCS in the same setting [28]. MCSs were also recently employed as a tool for
a parameterized LCS algorithm [10].

In the past years, several works have appeared on the topic of MCSs, more specifically
in the direction of MCS enumeration and indexing, with Roberto Grossi contributing to
many of them. Indeed, he took part in the first results concerning efficient MCS enumeration
between two strings [16, 17], as well as in one of the two independent works that produced
the first polynomial-sized indices for MCSs [18, 27]. Finally, as previously mentioned,
he was involved in the development of the practical tool described and employed in the
present paper [12]. While providing no formal theoretical bounds on the space complexity,
experiments on genomic data have shown this algorithm to be more efficient in practice with
respect to [18] (see the Experimental Analysis in [12, 13]). Worst-case complexity bounds
for constructing McDag, and, more in general, for the minimum size of a DFA representing
all MCSs, remain an open problem [13, Conclusions].

MCS problems have been studied for an arbitrary number m of input strings as well.
Hirota and Sakai proposed a O(nm log n)-time algorithm for computing one such MCS,
where n is the total length of the input strings [28]. The practical indexing tool of Buzzega
et al. [12] was also extended to deal with m > 2 strings in [13]. Moreover, the problem of
efficiently indexing MCSs of an arbitrary number of strings, as well as their enumeration, has
recently been shown to be unfeasible in time polynomial in the output size, unless P=NP [14].

2 Preliminaries

We consider a string X = X[1] . . . X[|X|] as a sequence of characters from a finite and ordered
alphabet Σ, where X[i] ∈ Σ denotes the character at position i in X and |X| denotes the total
number of characters in X. Let X[i, j] denote the substring X[i] . . . X[j], for 1 ≤ i ≤ j ≤ |X|:
a substring X[i, |X|] (resp. X[1, i]) is called suffix (resp. prefix) of X, for any 1 ≤ i ≤ |X|.
We use special characters {#, $} as markers delimiting input strings.

We say that string Z is a subsequence of X if there exist indices 1 ≤ i1 < · · · < i|Z| ≤ |X|
such that X[ik] = Z[k] for 0 < k ≤ |Z|. If a subsequence can be mapped on X contiguously,
i.e., for all 0 < k ≤ |Z|, ik = i1 + k − 1, then Z is a substring of X. Moreover, Z is a common
subsequence of strings X and Y if Z is a subsequence of both X and Y (see Figure 1). More
specifically, let us call a pair (i, j) a match when X[i] = Y [j]: letting 1 ≤ j1 < · · · < j|Z| ≤ |Y |
be the indices such that Y [jk] = Z[k] for 0 < k ≤ |Z|, then each pair (ik, jk) is a match (as
X[ik] = Y [jk]) and we say that the pairs (i1, j1), . . . , (i|Z|, j|Z|) form a matching in X and
Y , whose corresponding string is Z. We observe that matches induce a partial order, defined

3 The concept of MCS in a more general form actually first appeared in data mining applications [3],
where they were defined over ordered sequences of itemsets, instead of over strings. The string setting
we consider for MCS can be seen as a special case of this framework, where each itemset is a singleton.

Grossi’s Festschrift
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as (i, j) < (i′, j′) iff i < i′ and j < j′, which is total if the pairs belong to the same matching;
(i, j) ≤ (i′, j′) is analogously defined. A string Z is a maximal common subsequence (MCS)
of X and Y if there is no string W ̸= Z that satisfies both conditions: (i) W is a common
subsequence of X and Y , and (ii) Z is a subsequence of W . The set of all strings that are
maximal common subsequences is denoted by MCS(X, Y ).

We next introduce some graph notions. A directed graph G = (V, E) consists of a set of
nodes V and a set of edges E ⊆ V × V , where each edge (u, v) is an ordered pair of nodes
that specifies a direction from u to v. Two edges (u, v) and (w, z) are said to be adjacent
if v = w. A path in G is a sequence of distinct edges, each adjacent to the next. If the
path starts at node s and ends at node t, it is called an st-path; it is a cycle when s = t. A
DAG is a directed acyclic graph. Given a node u, the set N+(u) indicates the out-neighbor
nodes v such that (u, v) ∈ E, and the set N−(u) indicates the in-neighbor nodes v such that
(v, u) ∈ E. The out-degree of u is d+(u) = |N+(u)|, and its in-degree is d−(u) = |N−(u)|; u

is a source if d−(u) = 0, and a sink if d+(u) = 0. In a labeled DAG G = (V, E, l) each node u

is associated with a character l(u) ∈ Σ ∪ {#, $}. In Section 4 we also consider labeled DAGs
in which each node u is associated with a match m(u) = (iu, ju).

3 BWT-based Phylogenetic Inference

In this section we review phyBWT, a methodology first introduced in [25] and subsequently
refined in [26], for reconstructing a phylogenetic tree bypassing the standard computationally
expensive steps of sequence alignment and de novo assembly. It can take as input any type
of sequence data representing taxa, such as whole-genome sequences and raw sequencing
reads.

The approach exploits the inherent combinatorial properties of the extended Burrows-
Wheeler Transform (eBWT) [7, 35] to index and detect relevant common substrings of
varying length. The common substrings then play a crucial role in building partition trees
without performing pairwise comparisons between sequences. This is the primary feature of
phyBWT: the tree structure is inferred by comparing all the sequences simultaneously and
efficiently, without resorting to a distance matrix.

The second remarkable feature of phyBWT is that, to the best of our knowledge, it is
the first approach to apply the properties of the eBWT to the idea of decomposition for
phylogenetic inference. By indexing the sequences in the eBWT, we can identify maximal
common substrings of varying lengths that are used to group sequences together and to
partition groups of taxa based on their shared substrings.

Finally, the worst-case running time of phyBWT is O(Nℓ), where ℓ is the number of
taxa and N is the total length of all the taxa sequences, using O(N + ℓ2) space.

In the following, we first provide an overview of the preliminary notions. These include
the extended Burrows-Wheeler Transform employed for detecting common substrings and the
positional clustering framework, which overcomes the limitation of a priori fixing the length
of the common substrings. Subsequently, we delineate the tree reconstruction methodology
of phyBWT according to [26].

3.1 Burrows-Wheeler transform and Common Substrings
The Burrows-Wheeler Transform (BWT) [11] is a well-known reversible transformation that
permutes the symbols of a string in such a way that, as a result, the runs of equal symbols
tend to increase. In addition to enhancing the performance of memoryless compressors,
the BWT plays a crucial role in the development of efficient self-indexing compressed data
structures.
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The BWT was first extended to a string collection in [35] (eBWT) by sorting cyclic
rotations of all the strings in the collection according to a special order, called ω-order. In
order to use the lexicographic order rather then the ω-order, in [7], a variant of the eBWT
was defined by appending a distinct end-marker symbol to each string and lexicographically
sorting the suffixes of all the strings in the collection. In the following, we call ebwt the
output string4 defined in [7], and introduce some auxiliary data structures that allow to
detect common substrings in a string collection.

Let S = {s1, s2, . . . , sm} be a collection of m strings. We assume that each string si ∈ S
is a sequence of ni − 1 characters from Σ followed by a special end-marker symbol $i, i.e.
si[ni] = $i, which is lexicographically smaller than any other symbol in Σ and $i < $j , if
i < j. The total number of characters in S is N =

∑m
i=1 ni. The ebwt(S) string is defined

by concatenating the symbols preceding each suffix of the lexicographically sorted list of
suffixes of all the strings s1, . . . , sm, where each si is circular. The longest common prefix
(LCP) array [34] of S (denoted by lcp(S)) is the array of length N storing the length of the
longest common prefix between any two consecutive suffixes in lexicographically sorted list
of suffixes of s1, . . . , sm, using the convention that lcp(S)[1] = 0.

Finally, if S comes in ℓ parts, namely S = S1∪S2∪ . . .∪Sℓ, where each Si is a non-empty
subset of {s1, . . . , sm}, and all the subsets are pairwise disjoint, then the color document
array of S (denoted by cda(S)) is the array of length N storing the indices of the subsets to
which the ebwt(S) symbols belong. The set S is omitted if it is clear from the context.
▶ Remark 1. Let R ⊂ S. The data structures ebwt(R), lcp(R), and cda(R) can be deduced
through a linear scan of the larger ebwt(S), lcp(S), and cda(S), as the relative order of
suffixes holds (see [7], cf. also [15]).

One technique to find common substrings of fixed length k in S is based on the use
of LCP-intervals. An LCP-interval of lcp-value k is a maximal interval [i, j] such that
lcp[r] ≥ k for i < r ≤ j (defined slightly differently from [2]); in other words, the interval
[i, j] corresponds to suffixes in the lexicographically sorted list that share at least the first
k characters. Nevertheless, the length of the common prefix in any LCP-interval could be
longer than k, possibly revealing common substrings of greater length.

To overcome the limitation of a priori fixing the length of common substrings in S,
the authors of [37] introduced a framework called positional clustering. According to this
framework, the boundaries of the intervals in the LCP array are data-driven, and not
established a-priori by a fixed k. Specifically, the intervals of interest are those enclosed
between two “local minima” in the LCP array. In fact, intuitively, a local minimum in the
LCP array indicates a shortening of the common prefix. Moreover, to exclude intervals
associated with short random prefixes, a minimum prefix length km can be established.
Formally, an eBWT positional cluster is a maximal substring ebwt[i, j] such that lcp[r] ≥ km,
for all i < r ≤ j, and none of the indices i < r ≤ j is a local minimum of the LCP array5.
By definition, we have that any two different eBWT positional clusters are disjoint.
▶ Remark 2. Each eBWT positional cluster ebwt[i, j] corresponds to suffixes in the lexico-
graphically sorted list that have a common prefix (i.e., a common substring) of length given
by the minimum between lcp[i + 1] and lcp[j] (see [37, Theorem 3.3]). Thus, each eBWT
positional cluster ebwt[i, j] corresponds to a substring in S, and the values in cda[i, j] provides
the information about the strings that contain it.

4 In the literature, the extended transform of [7] is also called multi-string BWT [21] or mdolEBWT [15].
5 According to [26], an index r is said a local minimum if lcp[r − 1] > lcp[r] and lcp[r] < lcp[r + s], where

s > 1 is the number of adjacent occurrences of lcp[r] from position r. For instance, the local minima of
lcp = [2, 1, 3, 5, 4, 4, 2, 2, 7] are indices 2 and 7, corresponding to LCP values of 1 and 2, respectively.

Grossi’s Festschrift
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Remarks 1 and 2 are key to the phyBWT method, which detects common variable-length
substrings of a subset of taxa and uses this information to reconstruct a phylogenetic tree.

3.2 Tree Reconstruction Method
The methodology proposed in [26] reconstructs a tree T through a series of refinement steps
performed on groups of taxa.

Formally, we denote the set of leaves as S = {S1, S2, . . . , Sℓ} where each Si corresponds
to a taxon, which could be represented by a single sequence (e.g., genome sequence) or a
string collection (e.g., sequencing reads).

The tree T is defined as a partition tree of the set S:
each node of T corresponds to a non-empty set of taxa S′ ⊆ S;
the root of T corresponds to S;
each leaf of T corresponds to a distinct taxon Si ∈ S, and vice-versa;
for each node corresponding to S′, its children form a partition of S′.

We define the operation of adding a node to T by a set: a set S′ ⊆ S can be added to T

only if it is compatible, i.e., if every other node of T corresponds to a set S′′ that satisfies
one of these conditions: S′′ ⊂ S′, S′′ ⊃ S′, or S′′ ∩ S′ = ∅ (i.e. no partial overlap between
S′′ and S′). If this is the case, there is only one way to add S′ to T , namely, S′ becomes a
child of the smallest set P ⊃ S′ of T (by cardinality), and all the other children of P that
are contained in S′ become the children of S′. The resulting T is still a partition tree.

We describe the method by first explaining the tree reconstruction procedure, which applies
a refinement procedure iteratively, and then by briefly sketching the inner refinement
algorithm. The rationale of the refinement algorithm is to group together nodes of T

whose associated sequences share variable-length substrings not found in other sequences,
and to interpret this fact as a common feature of the group that differentiates it from the
others.

Tree reconstruction via the refinement procedure. The key idea is to refine an intermediate
partition tree by taking one of its internal nodes and applying the refinement procedure
to the groups of taxa corresponding to its children. Here, we consider refinement as a
blackbox that uses the eBWT and its related data structures to produce a list of compatible
subsets, which are new nodes that can be added to the partition tree. This process allows for
fine-grained node clustering, by restricting the input data to the sequences of the relevant
subtree. This is repeated until all internal nodes in the partition tree have only two children,
or no more refinements are possible. We report the pseudocode in Algorithm 1.

The tree produced is an unrooted tree, but for the sake of simplicity, we describe it as
rooted. At the beginning the unrefined partition tree T (Line 1 in Algorithm 1) is a rooted
star that has ℓ + 1 nodes: root S (non-final) and children S1, . . . , Sℓ marked as final. The
mark final for a node indicates that no more refinement is possible at that node.

The algorithm iteratively processes any non-final node X of T (Line 3): given the list of
nodes C1, . . . , Ch that are children of X, refinement (Line 6) returns a list L = L1, . . . , Ls,
with s < h, of compatible subsets of

⋃
k Ck. The draw_and_mark function adds the

nodes (possibly non-final) listed in L to T (Line 7).
To mark the node X as final, the draw_and_mark function checks if L is empty

(Line 10). If L is not empty, a new internal node of T is created for each Li ∈ L. Any
inserted node, as well as X, is marked final, if it has only two children; otherwise, it needs
to be further refined and is added to the queue (Lines 14-16). One possible iteration of
Algorithm 1 can be found in [26, Figure 2].
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Algorithm 1 Iterative refinement of the partition tree (Algorithm 1 from [26]).

input : ℓ, ebwt(S), lcp(S), cda(S)
output : A tree whose leaves are colored with 1 . . . ℓ, each color being a taxon of S

1 Let T ← Rooted star with a non-final root S, and final leaves colored 1 . . . ℓ

2 Queue.push(S)
3 while Queue is not empty do
4 X ← Queue.pop()
5 C1, . . . , Ch ← X.children()
6 L← refinement(ebwt(S), lcp(S), cda(S), {C1, . . . , Ch})
7 draw_and_mark(T, L, X, Queue)
8 Function draw_and_mark (T, L, X, Queue)
9 if L is empty then

10 Mark X in T as final // cannot further refine X

11 else
12 foreach set Li of L do
13 Add Li as a node in T if not already present
14 Mark as final every new node with two children in T

15 Add to Queue all new nodes not marked final
16 Mark X as final if it has two children, otherwise add it to Queue

17 Return T

The refinement procedure. The inner refinement function returns a list L of compatible
subsets starting from a set of sibling nodes C1, . . . , Ch of T , which correspond to some (not
necessarily all) taxa. Specifically, if Ci is a leaf, then Ci corresponds to one taxon (represented
by a single sequence or a string collection), otherwise Ci is an internal node and corresponds
to the subset Ri ⊂ S comprising all the taxa associated with the leaves of the subtree rooted
at Ci. Let R =

⋃h
i=1Ri be the set of all the taxa corresponding to nodes C1, . . . , Ch.

To quantify the similarity of a subset of taxa in R in terms of their common substrings,
the eBWT positional clustering framework is employed and scores are assigned to some of the
eBWT positional clusters detected. More precisely, given R ⊂ S, by Remark 1, we linearly
scan the data structures ebwt(S), lcp(S) and cda(S) to detect and analyse eBWT positional
clusters in ebwt(R). Among all the eBWT positional clusters detected, by Remark 2, we
consider relevant the ones associated with common substrings that are shared by a sufficiently
large number of taxa in R (but not by all of them) and cannot be extended on the left –
the reader can find details in [26, Definition 3.5]. Since any relevant positional cluster is
associated with a unique subset R ⊂ R of taxa sharing a common substring of variable
length, we assign the length of that common substring as the cluster’s score for subset R (see
also Remark 2). After analysing all the relevant positional clusters, we have a weighted list
L of subsets of R. Each subset R in L corresponds to at least one relevant positional cluster,
and its weight is the sum of all the scores for R over all the relevant positional clusters.

Finally, to build up the output list L, we sort the subsets in L by their weight and greedily
select those with the highest weight that are compatible with each other. For computational
efficiency, we stop the greedy procedure after a certain number of consecutive unsuccessful
attempts to add elements to L (more details in [26]).

Grossi’s Festschrift
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4 The McDag Compact Index for Maximal Common Subsequences

In this section we describe the main ideas of the practically efficient compact index McDag
introduced in [12]. In the present paper, for the sake of simplicity, we describe the results for
two input strings, even if they have also been extended to handle an arbitrary number of
strings in [13].

Let us first formalize the definition of an MCS index as follows:

▶ Definition 3 ([12], Section 2.2). Given two strings X and Y of length O(n), a labeled DAG
G = (V, E, l) is an index for MCS(X, Y ) if the following conditions hold:
1. Each node u (other than source or sink) is associated with a match denoted as m(u) = (i, j),

and has label l(u) = X[i] = Y [j], where 1 ≤ i ≤ |X| and 1 ≤ j ≤ |Y |.
2. There exist a single source s and a single sink t, with special values m(s) = (0, 0), l(s) = #,

and m(t) = (|X|+ 1, |Y |+ 1), l(t) = $.
3. Each st-path P = s, x1, ..., xh, t is associated with unique string Z = l(x1), ..., l(xh) ∈

MCS(X, Y ), and the associated matching for P must satisfy m(x1) < · · · < m(xh).
4. For each Z ∈MCS(X, Y ) there is a corresponding st-path P = s, x1, ..., xh, t such that

Z = l(x1), ..., l(xh).

Let us note that a naive construction of such an MCS index (e.g., through a trie) could
potentially require exponential time and space, as the number of nodes may be proportional
to the number of MCS, which can in turn be exponential in the input size. Constructing
such a compact MCS index in an efficient way is therefore not trivial.

We start by giving a high-level idea of how this problem is solved by McDag in Section 4.1,
and then, in Section 4.2, we focus on explaining how to efficiently compute the frequency
distribution of MCS lengths from the McDag index.

4.1 Overview of McDag Construction
The best way to define McDag is to employ a two-phase scheme. In the first phase, an
approximate rightmost co-deterministic index A= (VA, EA, lA) for the set of MCSs is built.
Approximate, rightmost, and co-deterministic respectively mean that (i) A indexes both
the whole set of MCSs as well as some non-maximal common subsequences; (ii) for each
edge (v, u) no character lA(v) appears between the positions defined by matches m(v) and
m(u); and (iii) each node of A has at most one in-neighbor labeled with any character c ∈ Σ.
Then, the second phase builds a deterministic version of A (i.e., where each node has no
more than one out-neighbor per character) that does not contain any non-maximal common
subsequence, yielding the final McDag. This latter procedure is called McConstruct, and
its pseudocode is reported in Algorithm 2.

Empirical results show that the size of the initial approximate index A plays an important
role in determining the size of the output MCS index. For this reason, we here review a
method to construct A that tries to include few non-maximal common subsequences to
begin with. Nevertheless, McConstruct correctly produces an MCS index for any input
approximate rightmost co-deterministic index. For example, one could use a variant of the
Common Subsequence Automaton [19, 20, 42], which models all common subsequences of a
set of input strings.

First phase. We start by building a deterministic approximate MCS index D = (VD, ED, lD):
we first add a source sD with associated match m(sD) = (0, 0), corresponding to character
l(sD) = #; then, we start to visit all nodes u in VD. Throughout construction we ensure
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that all nodes have distinct matches: if m(u) = m(v) then u = v. When visiting node u, we
consider for each character c ∈ Σ the closest match (ic, jc) > m(u). If there exists a match
m′ such that m(u) < m′ < (ic, jc), then we discard (ic, jc). Otherwise, we identify node v

with match m(v) = (ic, jc), or create v if it is not present. Then, we connect node u to node
v. If we are not able to connect u to any node, we connect it to the sink tD, which has match
m(tD) = (|X|+ 1, |Y |+ 1) and label l(tD) = $.

To build A, we repeat the same process in the opposite direction, reading the input
strings right-to-left while using D as a guide: for each node u, we define a corresponding set
of nodes F (u) ⊆ VD as the nodes that share a suffix with u. We start by adding tA, with
F (tA) = {tD} and match m(tA) = m(tD). To ensure that F (u) is completely defined, we
visit u only after we have visited all its potential out-neighbors, i.e., all nodes w that have
match m(u) < m(w). When processing a node u, we add its in-neighbors and enrich their
F (·) sets as follows. We consider each node x ∈ VD such that (x, y) ∈ ED for some y ∈ F (u),
and if there is a match m′ such that m(x) < m′ < m(u), we discard x. For each character c

associated with the non-discarded nodes x, we select node v with match m(v) = (ic, jc) such
that c does not appear in X[ic + 1] . . . X[iu − 1] and Y [jc + 1] . . . Y [ju − 1], or create it if not
present, and add it as an in-neighbor of u. We then add all non-discarded nodes x to F (v).

Algorithm 2 McConstruct (Algorithm 1 from [12]).

Data: Input A = (VA, EA, lA): rightmost approximate co-deterministic MCS index with
source sA

Result: A deterministic MCS index G = (V, E, l)
1 Initialize G = (V, E, l), where V = {s}, E = ∅, m(s) = m(sA), l(s) = #

// F (u) is the set of nodes in A corresponding to u in G

2 F (s)← {sA}
3 while there exists u ∈ V with no out-neighbors and l(u) ̸= $ do
4 Initialize Nc = ∅ for all c ∈ Σ ∪ {$}
5 forall (x, y) ∈ EA such that x ∈ F (u) do
6 Add y to Nc, where c = l(y)
7 Initialize P = ∅
8 forall Nc ̸= ∅ do
9 ic ← min{iz | (iz, jz) = m(z) ∧ z ∈ Nc}

10 jc ← min{jz | (iz, jz) = m(z) ∧ z ∈ Nc}
11 Add match (ic, jc) to P

12 forall Nc ̸= ∅ and p ∈ P do
13 Remove all y from Nc such that p < m(y)
14 forall Nc ̸= ∅ do
15 if no node w ∈ V has F (w) = Nc then
16 Add new node w to V

17 Set F (w) = Nc, m(w) = (ic, jc), l(w) = c

18 else Let w ∈ V be the node such that F (w) = Nc

19 Add edge (u, w) to E

20 return G = (V, E, l)

Second phase. Given A = (VA, EA, lA) with source sA from the first phase, we apply
Algorithm 2 (McConstruct) to obtain a graph G = (V, E, l) that becomes our McDag
with source s. Again, we associate each node u ∈ V with a set F (u) of nodes from VA,
all having the same label as u (initially, F (s) = {sA} with label #). This time, a node
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(a) The first deterministic approximate index
D, with |VD| = 15 and |ED| = 21.
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(b) The co-deterministic approximate index A,
with |VA| = 15, and |EA| = 19.

Figure 2 First phase of McDag construction for input strings X = TACCATGCG and Y =
CCTTCTGAA.

x ∈ F (u) must share at least one prefix with u. At each step we take a node u ̸= t and
add its out-neighbors. To do so, we take the out-neighbors of x in A and filter-out the ones
whose matches are to the right of some match (ic, jc) > m(u), as they cannot lead to an
MCS: (ic, jc) is a witness to defy their maximality. Then, we identify a node v with that
same associated set of filtered out-neighbors F (v), or we add it if not present, and add edge
(u, v) to G. The key difference is that in the first phase each node u is uniquely identified by
match m(u), while in the second phase it is uniquely identified by the set F (u). We end up
having a single sink t, corresponding to $, only occurring at the end of both strings.

In the rest of this section we illustrate the described method with an example, and we
highlight the key features that make McConstruct work. Consider the two input strings
X = TACCATGCG and Y = CCTTCTGAA. Figure 2 depicts the indices constructed during the
first phase. More specifically, Figure 2a depicts the deterministic approximate index D, built
by reading both strings left-to-right, while Figure 2b shows the co-deterministic approximate
index A which is constructed using D. Upon careful inspection, one can observe that A

does not contain the non-maximal sequence TTG as a source-to-sink path, whereas D does.
However, A still contains CCTG, which is also not maximal because of CCTCG.

Non-maximal common subsequences such as TTG or CCTG can be characterized in both of
these data structures by using the concept of subsequence bubbles. A subsequence bubble
is formed by a pair of paths that start and end at common nodes but are otherwise node-
distinct, with the added condition that the shorter path spells a subsequence of the longer
one. If a non-maximal common subsequence is contained in the index, the corresponding
st-path must pass through the shorter path of at least one subsequence bubble. For instance,
in Figure 2a a subsequence bubble is given by the pair of paths (1, 3), (6, 4), (7, 7) and
(1, 3), (3, 5), (6, 6), (7, 7), in which the short path spells TTG and the long path spells TCTG,
thus witnessing the non-maximality of TTG. The main goal of McConstruct is to ensure
that the resulting DAG contains no such subsequence bubbles. We refer the interested reader
to [12] for the proof of correctness.

Figure 3 finally shows the McDag index, resulting from using the index A as input for
McConstruct. Empirically, McDag has been shown to usually produce smaller indices
with respect to the provably polinomially-bounded index of [18]. Despite this, finding
a polynomial theoretical bound on the size of McDag remains an open problem. Note
that here we are comparing the size of the indices as output by the respective construction
methods, without applying any node removal. Otherwise, a simple automaton minimization
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Figure 3 The McDag index for input strings X = TACCATGCG and Y = CCTTCTGAA has |V | = 13,
|E| = 17 (F (·) sets omitted for compactness). Note that there are two nodes for match (6, 4): this
necessarily means that the two nodes have different F (·) sets.

algorithm (such as Revuz’s algorithm [38] for acyclic deterministic finite automata) could
reduce the number of nodes to a minimum, independently of the starting MCS index. Finding
a tight bound on the size of the resulting minimal index also remains an open problem.

4.2 Generation of MCS Lengths Distribution

Building a deterministic index for MCSs allows us to perform a number of interesting
operations such as enumeration, counting, and random access. One particular operation
we might be interested in is related to counting: in Section 5 we will show experiments
comparing the distribution of the MCS lengths for different pairs of genomic sequences.
Here, we explain how one can generate such a distribution, by counting the number of paths
for each path-length inside a DAG, using dynamic programming. The code for generating
this distribution has been made available with the original paper [12], but the underlying
algorithm was not detailed therein. We give a brief description here.

Consider a DAG G = (V, E) and a generic node u ∈ V . Let d(u)i be the number of
paths of length i that start from node u and end in a sink. These values can be computed as
follows. For any sink t we define d(t)0 = 1. Then, for the remaining nodes we can compute
d(u)i+1 =

∑
(u,v)∈E d(v)i, for all i > 0. Indeed, if all out-neighbors v of u have already

computed their d(v)i values, node u can gather the sum of paths of length i and set the
result as the number of paths of length i + 1 starting from u. At the end of the procedure,
the distribution of the path lengths will be stored at the sources of the DAG.

The main problem of the procedure we just described is that every counter d(u)i can
take non-negligible space and may not fit into a machine word. As previously mentioned,
the number of MCSs can be exponential in the length of the input strings. This in turn
means that the space required to store the number of paths of a given length is O(n) bits.
Since for our purposes we are interested in the qualitative distribution of the MCS lengths,
we can use a trick (commonly known as log-sum-exp) to ensure that each d(u)i value can
fit into a machine word. Namely, instead of storing the number of paths in d(u)i, we store
the logarithm of that number, as d∗(u)i = log(d(u)i) = O(n) for all u and i. To directly
compute the value d∗(u)i+1 we do the following: first, we find the maximum number of
paths of length i among all out-neighbors as αi = max(u,v)∈E d∗(v)i; then we compute
d∗(u)i+1 = αi + log

(∑
(u,v)∈E 2(d∗(v)i−αi)

)
.
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5 Experiments

In this section, we experimentally review that the BWT-based tool phyBWT can achieve
benchmark-level accuracy in phylogenetic reconstruction by exploiting the common substrings
among taxa. Furthermore, we provide experimental evidence suggesting that the tool for
MCSs indexing could offer valuable insights for inferring evolutionary relationships.

Specifically, the plots showing the distribution of the MCS lengths reveal a notable
correlation between sequences associated with taxa that are close in the phylogenetic tree.

Datasets. For this study, we selected two datasets from two well-known viruses: the Human
immunodeficiency virus (HIV) and the Ebola virus. Since viruses can evolve rapidly, viral
phylogenies are challenging and often look very different. However, clade classification plays
a crucial role in virology, since each clade (or subtype) represents a group with shared genetic
similarities.

The HIV dataset comprises 43 HIV-1 complete genomes that have been used in the
literature [45]. Thirty-five sequences belong to the major group (Group M) which is divided
into subtypes A, B, C, D, F, G, H, J, K; seven sequences are from the minor Groups N
and O, and one CPZ sequence (CIV strain AF447763) is an outgroup. The average length
of the sequences is 9267 base pairs. The reference sequences have been carefully selected
in [31] according to several criteria, and can be downloaded from the Los Alamos National
Laboratory HIV Sequence Database6.

The Ebola dataset comprises 20 published sequences from [23] selected in [30]. The
Ebolavirus genus includes five viral species: Ebola virus (Zaire ebolavirus, EBOV), Sudan
virus (SUDV), Tai Forest virus (TAFV), Bundibugyo virus (BDBV), and Reston virus
(RESTV). The average length of the sequences is 18900 base pairs.

Phylogeny reconstruction. For the HIV dataset, Figure 4 depicts the phylogeny produced
by phyBWT in [26]. Resembling the benchmark phylogeny depicted in [45, Fig. 2], subtypes
are distinctly grouped together in different branches: subtypes B and D (resp. C and H) are
closer to each other than to the others, and subtype F (resp. A) contains two distinguishable
sub-subtypes F1 and F2 (resp. A1 and A2) that are closely related to subtypes K and J
(resp. G), while subtypes N and O are external.

For the Ebola dataset, Figure 5 depicts the phylogeny produced by phyBWT in [26].
According to the benchmark phylogeny depicted in [30, Fig. 4], phyBWT exactly separated
the five species. The EBOV sequences are clustered into a monophyletic clade, and BDBV
and TAFV viruses are positioned close and then clustered with the EBOV branch. The
SUDV clade is placed as sister to the EBOV, TAFV and BDBV clade, like in [30, Fig. 4E].

Given the required data structures, phyBWT reconstructs the proposed phylogeny for
each dataset in less than one second by performing only two iterations of Algorithm 1 for the
Ebola dataset and three iterations for the HIV dataset, with a RAM usage of approximately
8.5 MB.

MCS length distribution. We report in Figures 6 and 7 the logarithmic distribution of the
MCS lengths of different viruses taken from the HIV and Ebola datasets. On the x-axis we
find the various lengths of the MCSs, while on the y-axis the logarithm of their quantity.
Specifically, Figure 6 considers the four taxa AF286238 A2, AF286237 A2, U51190 A1,

6 http://www.hiv.lanl.gov/

http://www.hiv.lanl.gov/
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AF005494 F1
AF077336 F1
AF075703 F1
AJ249238 F1
AF377956 F2
AY371158 F2
AJ249237 F2
AJ249236 F2
AF082394 J
AF082395 J
AJ249235 K
AJ249239 K
AF069670 A1
U51190 A1
AF004885 A1
AF484509 A1
AF286237 A2
AF286238 A2
AF061642 G
AF084936 G
AF061641 G
U46016 C
U52953 C
AF067155 C
AY772699 C
AF005496 H
AF190128 H
AF190127 H
AY173951 B
K03455 B
AY423387 B
AY331295 B
AY371157 D
K03454 D
U88824 D
AJ302647 O
L20587 O
AY169812 O
L20571 O
AJ271370 N
AY532635 N
AJ006022 N
AF447763 CPZ

Figure 4 The phylogenetic tree on the 43 HIV sequences by phyBWT [26, Figure 11]. Re-root
the tree in CIV strain AF447763, as it is set outgroup in the reference tree in [45]. We highlight the
strains that are used in the following experiments.

AJ006022 N of the HIV virus dataset, and Figure 7 considers the four taxa BDBV 2012
KC545393, BDBV 2007 FJ217161, TAFV 1994 FJ217162, RESTV 1996 AB050936 of the
Ebola virus dataset. For both datasets, we selected two taxa that are very similar (AF286238
A2 and AF286237 A2 for HIV, and BDBV 2012 KC545393 and BDBV 2007 FJ217161 for
Ebola), one that is not too far from the first two (U51190 A1 for HIV, and TAFV 1994
FJ217162 for Ebola), and one last taxon that is far from every other considered taxon in the
phylogeny (AJ006022 N for HIV, and RESTV 1996 AB050936 for Ebola).

The algorithms for building McDag and computing the distributions were implemented
in C++, compiled with g++ 11.4.0 using the -O3 and –march=native flags. The source
code is available at https://github.com/giovanni-buzzega/McDag [12]. We carried out
the experiments on a DELL PowerEdge R750 machine in a non-exclusive mode, featuring 24
cores with 2 Intel(R) Xeon(R) Gold 5318Y CPUs at 2.10 GHz, and 989 GB of RAM. The
operating system is Ubuntu 22.04.2 LTS.
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EBOV 2007 HQ613403
EBOV 2002 KC242800
EBOV 2014 EM095
EBOV 1976 KC242801
EBOV 1995 AY354458
EBOV 1994 KC242792
EBOV 1996 KC242794
BDBV 2007 FJ217161
BDBV 2012 KC545393
TAFV 1994 FJ217162
SUDV 2000 AY729654
SUDV 2011 JN638998
SUDV 2012 KC545389
SUDV 2012 KC589025
SUDV 1976 FJ968794
RESTV 1996 AB050936
RESTV 2008 FJ621585
RESTV 2008 FJ621583
RESTV 1990 AF522874
RESTV 2008 FJ621584

Figure 5 The phylogenetic tree on Ebolavirus dataset by phyBWT [26, Figure 13]. We highlight
the strains that are used in the following experiments.
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Figure 6 Length distribution of MCSs among the selected pairs of DNA sequences from the HIV
dataset. The black line is the distribution of MCSs between HIV and Ebola virus taxa. The y-axis
is logarithmic (base 10).
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Figure 7 Length distribution of MCSs among different pairs of DNA sequences from the Ebola
dataset. The black line is the distribution of MCSs between HIV and Ebola virus taxa. The y-axis
is logarithmic (base 10).

For all strings we considered the substring between position 2500 and 5200 (chosen
arbitrarily), and we built McDag. On average, index construction took 13.675 ± 0.673
seconds, followed by 15.763 ± 0.95 seconds to compute the MCS length distribution. As
shown on the y-axis on both Figure 6 and Figure 7, the number of paths (and hence MCSs)
in McDag is quite large, reaching values on the order of 10270. Since such large numbers
still remain within the representable range of a double, we did not use the the log-sum-exp
trick in Section 4.2. However, when dealing with larger numbers of MCSs, we may have to
resort to this technique to avoid overflow errors. In this case, the execution time may grow
by a constant factor, due to the additional computational cost of the log and exp functions:
in some preliminary testing on our data, we saw that the execution time increased to an
average of 108.186 ± 10.973 seconds.

We now briefly discuss the outcome of the experiments. Since the LCS length is known
to correlate well with string similarity [36], we see in both Figure 6 and 7, as expected, that
the two strings considered most similar have the far right tail of their distribution ending at
higher values on the x-axis. The most evident behaviour of the plots is that all lines, from
left to right, start with a bell shape and, after the peak, decrease following a straight line
before curving down again. This feature is more evident in the line that plots the distribution
of MCSs between the taxa considered most similar.

Interestingly, we see that the two lines (in blue and green) that correspond to the MCS
distribution between the taxon of medium distance and the first two taxa, are slightly
detached from the first red line. For instance, in the case of HIV, Figure 6 shows an almost-
perfect overlap up to lengths of 2100 on the x-axis; after that the lower similarity translates
to a smaller number of long MCSs, with the straight part of the bell shape decaying earlier
than in the red line. In the case of Ebola (Figure 7), there is again a gradual difference in
where the lines drop on the right side (more similar pairs drop further right), but also a
stark difference of the red line, representing the two closest taxa, in the left side of the graph:
the start of the line is shifted right compared to the others, meaning that every MCS is
longer than about 800. This behaviour suggests a particularly strong similarity, and further
investigation into how it arises is an interesting direction of work.
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The next three lines, in yellow, magenta, and cyan, represent the relations with the more
dissimilar taxon. We see in both figures that the three lines again overlap, and the right side
detaches from the other lines on lower values on the x-axis.

Finally, in both figures we added a black line that depicts the distribution of two completely
unrelated string: in both plots, we used taxon RESTV 1996 AB050936 of Ebola and taxon
AJ006022 N of HIV. In both cases we have that the black line closely follows a bell shape,
with no part of it showing a straight line behavior; moreover, on a large portion of the left
side, it overlaps with the yellow, magenta and cyan lines.

This suggests that there is some baseline set of MCSs of any unrelated strings that acts
as a background noise; after a given threshold length, the number of “non-noisy” MCSs seems
to be a good indicator of string similarity, and, as an extension, of taxon similarity.

6 Conclusions

We have reviewed two recent results that use compact string indices to naturally highlight
relevant information in a genomic context. The BWT-based approach phyBWT infers
evolutionary links by clustering similar substrings, and the DAG-based index McDag can be
used to show the distribution of Maximal Common Subsequences, which exposes similarities
among strings. We have also shown experimentally that MCS length distributions vary
among closely related and more distantly related taxa, using the phylogeny generated by
phyBWT as a reference. Further work in visualizing and analysing the information emerging
from these indices, as well as extending the analysis to new indices, is an interesting direction
to explore and may yield positive results in phylogeny and, more generally, in the analysis of
genomic sequences.
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