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Abstract—Evaluating autonomous vehicle performance in com-
plex traffic scenarios requires both calibrated sensors and realis-
tic traffic conditions. However, existing traffic datasets focus on
vehicle trajectories but lack comprehensive sensor data, while
perception datasets provide sensor data but offer limited traffic
diversity. To bridge this gap, we introduce an open-source toolset
that generates perception datasets in CARLA by embedding real-
world vehicle trajectories within a simulated sensor environment.
This approach produces sensor data that accurately mirrors
real-world traffic dynamics, providing a valuable resource for
testing Al-driven autonomous systems in complex scenarios such
as roundabouts, where sensor-based perception is essential for
safe AV navigation.

Index Terms—Real-world Scenario, CARLA, Roundabout, Al-
driven autonomous systems, Datasets, Sensor-based perception

I. INTRODUCTION

The development of autonomous vehicles (AVs) heavily
relies on high-quality datasets for perception, sensor fusion,
and motion planning. Real-world datasets like KITTI!, offer
high-quality sensor data from urban scenes but lack customiz-
able and varied traffic scenarios, limiting their applicability
for testing AVs under controlled and varied conditions. In
contrast, naturalistic traffic datasets like RounD? capture real
roundabout behaviors but cannot be dynamically modified to
test AV strategies, and they include no sensor data. Finally,
synthetic SUMO?3-based city-wide traffic scenarios such as
LUST [1] or MOST [2], provide realistic and dynamically
alterable urban traffic, but at a scale that is not adapted
to perception or motion planning for AVs. This gap calls
for an AV-oriented simulation toolset capable of producing
realistic, calibrated, and alterable data for perception and
motion planning.

CARLA*, an open-source autonomous driving simulator,
has emerged as a powerful tool for generating synthetic scenar-
ios with ground-truth annotations. CARLA has the capability
to model precise motion planning, engine patterns, urban envi-
ronments as well as on-board sensors, making CARLA better
suited to research on AVs than SUMO. However, CARLA
lacks reference scenarios that simultaneously incorporate real-
istic motion planning, sensor-based perception, and decision-
making dynamics.

Uhttp://www.cvlibs.net/datasets/kitti/
Zhttps://round- dataset.com/
3https://eclipse.dev/sumo/
“https://carla.org/

We propose in this paper a methodology to create such
reference scenario, incorporating real-world traffic datasets
in CARLA, while ensuring accurate sensor perception. Our
approach consists of three key modules: (i) Dataset integration
& trajectory reconstruction, where we integrate real-world
scenario data and correct vehicle trajectories in CARLA; (ii)
the motion control calibration, where we adjust the CARLA
internal motion control parameters and algorithms (e.g. PID
& steering patterns) ensuring spatial and temporal accuracy
between the dataset and CARLA. (iii) sensor mapping, where
we equip CARLA vehicles with calibrated sensor parameters
corresponding to realistic sensor campaigns. This includes
mapping LiDAR and cameras to replicate real-world sensing
conditions from the sensor campaign. In this paper, we focus
on a roundabout scenario RounD for steps (i) and (ii) and rely
on the KITTI sensor dataset for step (iii). Fig.1 outlines the
general workflow of our methodology. We finally demonstrate
the benefit of such a realistic CARLA reference scenario for
the evaluation of AV roundabout hazard management. We
notably showcase that relying on unrealistic motion planning
or sensor perception provides overoptimistic situation assess-
ments leading to inaccurate decision making by the AV. The

CARLA dataset is released as open-source’.
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Fig. 1: Methodology workflow for integrated simulation

The paper is structured as follows: Section II provides an
overview of related work on AV dataset generation. Section III
describes the environment mapping and mobility extraction
process. Section IV presents the individual vehicle control
dynamics model. Section V details the sensor setup. Sec-
tion VI discusses the simulation experiment and its evaluation.
Section ?? concludes the paper and outlines future research
directions.

Shttps://gitlab.eurecom.fr/cats/carla/round-carla
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II. RELATED WORK

Autonomous Driving (AD) research heavily relies on high-
fidelity datasets that accurately capture both real-world traffic
behaviors and sensor data characteristics. Most autonomous
driving systems fuse sensor readings from multiple sensors,
including cameras, LiDAR, radar, GPS, wheel odometry, and
IMUs. Previously released autonomous driving datasets have
included sensor readings obtained by multiple sensors. Geiger
et al. introduced the multi-sensor KITTI Dataset [3], which
provides synchronized stereo camera as well as LiDAR sensor
data, enabling tasks such as 3D object detection and tracking,
visual odometry, and scene flow estimation. Caesar et al. also
introduced the multi-sensor nuScenes Dataset [4] with more
extensive data by incorporating five radar sensors, while Sun
et al. introduced Waymo dataset with mutli-LiDAR strategy
by adding five high-resolution LiDAR sensors. For AD data
perception, In KITTI-CARLA [5], a synthetic dataset is gen-
erated within a simulated environment in CARLA, using a
vehicle equipped with sensors identical to those in the KITTI
dataset [3], providing ground truth for semantic segmentation,
instance segmentation, and odometry poses.

Considering naturalistic traffic behavior, RounD [6] presents
naturalistic trajectory dataset that introduces a fresh compi-
lation of natural real-world road user trajectory data from
German roundabouts. The dataset is gathered using a camera-
equipped drone technology, overcoming occlusion challenges
inherent in traditional traffic data collection methods. The
extracted tracks contain positions, headings, speeds, accel-
erations, and object classifications, processed from recorded
videos using deep neural networks.

Existing datasets such as KITTI and RounD provide valu-
able insights for perception, motion planning and AD research.
However, they each have limitations: KITTI lacks dynamic
and interactive traffic scenarios, while RounD, despite offering
naturalistic vehicle trajectories, cannot be dynamically altered
to test AD features (e.g. Al models) under controlled, alterable
and reproducible conditions.

As illustrated in Table I, realistic AD simulations require
datasets that include naturalistic, alterable, robotic-ego control,
sensor perception, and robotic background traffic scenarios.
However, no single dataset strategy fully meets all these
metrics. RounD dataset typically satisfies only two of these
requirements. The KITTI-CARLA fulfills three complemen-
tary metrics. To address these limitations, we propose in this
work a RounD-KITTTI scenario in CARLA, which integrates
the naturalistic dataset RounD for traffic scenarios and the
calibrated KITTI sensors for perception. This combined ap-
proach enables a more comprehensive and realistic simulation
framework that fulfills all key requirements for AD simula-
tions, including realistic environment, dynamic interactions,
high-fidelity sensor data, and controlled scenario variations.

III. DATASET INTEGRATION

The first step in our methodology ensures that real-world
vehicles environment and trajectories from the RounD dataset
are accurately replicated in CARLA.

TABLE I: Existing simulation methodologies for AD
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A. Map Reconstruction

The first step is to design a roundabout in CARLA that
closely matches one of the four roundabouts available in the
RounD dataset. Using the latitude and longitude coordinates
of the selected roundabout, we exported its OpenStreetMap
(OSM) representation. As road configurations in OSM lack
the precision needed for CARLA simulations, we leveraged
MathWorks’ RoadRunner to modify the roundabout design
by adjusting entry/exit curvature, lane width, and geometry to
match the coordinate projection of the RounD dataset. Fig. 2
illustrates the steps followed to create the scenario design.
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Fig. 2: Road scenario design in CARLA

B. Trajectory Correction

Collected by drone-based computer vision techniques, the
RounD dataset provides highly precise vehicle trajectories with
an average positional error of less than 10 cm. While this level
of accuracy is generally sufficient it presents challenges in our
case, where exact position is crucial for maintaining matching
vehicle dynamics between CARLA and RounD. During our
preparation phase, vehicle steering was directly controlled by
the provided trajectory data. However, as shown in Fig. 3,
some trajectories contained circular path anomalies, causing
the vehicle to sharply turn left and hit the road shoulder. These
trajectory artifacts likely stem from minor positional errors
in the dataset, which, when mapped to CARLA’s physics-
based steering model, led to unrealistic vehicle behavior.
To mitigate this issue, we developed a trajectory correction
algorithm that: (i) detects trajectory mismatches by identifying
abrupt, unrealistic steering deviations, (ii) eliminates erroneous



waypoints, (iii) extrapolates corrected waypoints by generating
new points that align smoothly with the original trajectory
direction, ensuring natural vehicle motion. This correction pro-
cess enhances trajectory feasibility within CARLA, preventing
abnormal patterns and improving simulation accuracy.
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Fig. 3: New waypoints after fixing trajectory errors

C. Time Step Synchronization

To ensure spatiotemporal consistency, we synchronized
CARLA with RounD dataset’s 25 frames per second (fps)
timestep. This required updating CARLA at 25 ticks per
second so that each vehicle’s position, speed, and heading
were precisely aligned with the dataset. Maintaining such exact
update rate ensures that vehicle dynamics in CARLA faithfully
replicate real-world motion patterns from the RounD dataset.
Following only the assigned waypoints led some vehicles to
arrive either too early or too late, potentially causing collisions.
To resolve this, we implemented a Model Predictive Controller
(MPC) to resynchronize CARLA and RounD data points,
reconstructing the exact RounD trajectories (see Fig.4).
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Fig. 4: MPC-based trajectory re-synchronisation

IV. MOTION CONTROL CALIBRATION

In the second phase, we refined vehicle motion control to en-
sure realistic speed and steering dynamics within the CARLA
environment matching RounD trajectories. Accurately replicat-
ing real-world vehicle behavior is inherently complex, making
the choice of a suitable vehicle model critical. We selected the
Tesla Model-3 as our reference vehicle in this study.

Trajectory

Fig. 5: Kinematic bicycle model [source: www.shuffleai.blog].

A. Steering Control

For steering and lateral control, we adopt a simplified
bicycle model, as illustrated in Fig. 5. The steering input is
denoted as 4, the heading error with relative to the trajectory
as A1, and the cross-track error as e. According to the Stanley
Control Law, the cross-track error represents the perpendicular
distance between the trajectory and the center of the front axle.
As described in [7], Eq. (1) defines the steering input as a path-
tracking solution applicable to any vehicle model. However,
the control behavior varies based on two key gains: K, for
Cross-track error gain, and K, for Speed-dependent gain.

Kee(t)

5(t) = Avp(t) + tan_l(m

) (D

B. Initial Speed Challenge

Unlike RounD vehicles, which start at non-zero speeds
(13-56 km/h), CARLA vehicles spawn at rest. To bridge this
gap, we developed a holistic strategy to compute the required
throttle input, speed, and distance necessary to match the initial
speeds observed in RounD. As a preliminary step, we con-
structed an adaptive model by applying throttle inputs as a step
function, increasing from 30% to 72% in 0.2% increments.
We then recorded three key parameters: (i) Velocity (m/s) at
steady-state, (ii) Time (frames at 25 FPS) and (iii) Distance
(m) traveled until steady-state.

Table II summarizes the extracted data, serving as a lookup
table for identifying vehicle dynamics during acceleration.

TABLE II: System Identification Parameters for Vehicle Dy-
namics at gaining speed phase

CARLA steady-state Dynamic model parameters
Throttle | Velocity (km/hL) | Frame | Distance(m)

tg vo fa dg
30.0% 11.81 345 34.98
30.2% 11.93 346 35.45
30.4% 12.06 347 35.89
30.6% 12.18 348 36.36
30.8% 12.30 348 36.71
71.2% 55.68 465 216
71.4% 56.02 465 217.6
71.6% 56.35 466 219
71.8% 56.66 464 218
72.0% 57.04 467 222

*Specific for Tesla M3 blueprint in CARLA simulator.



Whenever loading a new vehicle trajectory from the RounD
dataset, the lookup table is used to determine the appropriate
initialization parameters:

« Throttle t,: throttle input required to reach the desired
initial speed vg

o Frame offset f,: adjusted CARLA spawn time to account
for acceleration delay, computed as fc = fr - fy

o Distance offset d4: adjusted CARLA spawn position
before the original RounD position, computed as pc =
PR - dg (moving backward along the trajectory).

C. Speed Control

To regulate a vehicle’s speed and acceleration, we finally
need to account for nonlinear dynamics, either through a
transfer function or an adaptive state-space model. A first-
order control system is notably characterized by a first-order
differential equation that defines the relationship between
input and output in the frequency domain (s-domain). Eq. (2)
represents Moradi et al. [8] transfer function for a vehicle’s
throttle input U(s) to its velocity output V'(s), where kappa
is the gain, and 7 is the time delay of the first-order dynamics:

V(s) K

U(s) BRZES @

The state-space representation of a single-input, single-output
(SISO) Linear Time Invariant (LTI) system is shown in (3),
where x(t) is the system’s state, u(t) is the input and y(¢) is
the 4 output.

{x(t) = ax(t) + bu(t) 3)

y(t) = cx(t) + du(t)

By simplifying (3) under the assumptions a,c # 0, b = 1,
d = 0, and considering velocity v(t) as the new state, we
obtain the state-space model for LTI control as per Eq. (4):

{aw (t) = av(t) + cu(t)
y(t) = v(t)

We adopted the speed control model from [8] with one key
modification: replacing the passenger comfort constraint with
the RounD dataset’s recorded speed, this approach allows
us to generate throttle and brake values for each vehicle in
CARLA based on RounD dataset’s frame-specific speed and
acceleration. To validate our approach, we analyzed speed
compliance and time synchronization. Fig.6 illustrates a speed
comparison for a randomly selected vehicle (veh-95 from the
RounD dataset):

4)

« Preparation Phase (Left): The vehicle spawns at a specific
distance and gradually accelerates to match the initial dataset
speed at the corresponding frame.

« Tracking Phase (Right): The speed control function main-
tains close alignment with the dataset’s speed over time,
demonstrating the accuracy of our approach.
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Fig. 6: MPC-based RounD speed matching

V. SENSORS MATCHING

The third phase of our methodology equips CARLA vehi-
cles with KITTI-like calibrated sensors to enable high-fidelity
data collection within CARLA. While CARLA lacks vehicle
characteristics for KITTI’s Volkswagen vehicle in terms of
width, height, and physical characteristics (as shown in Fig.7),
it yet provides a flexible framework for sensor placement.
Without loss of generalities, we placed KITTI sensors on our
Tesla Model-3 vehicle at the exact positions and orientations as
in the KITTI dataset, ensuring consistent perception and data
collection as for real-world KITTI recordings. To maintain
realism and accuracy, we replicate KITTI’s sensor configura-
tions, including:

o Velodyne HDL-64E LiDAR (identical mounting position
and calibration as in KITTI).

o Two RGB cameras (similar to Point Grey Flea 2) positioned
according to the KITTT dataset.

Velodyne HDL-64E

Point Grey Flea 2 <—LiDAR

RGB Cameras ————>

Fig. 7: KITTI-Car equipped with calibrated sensors

Our approach follows KITTI-CARLA’s sensor setup and
calibration settings [5], yet with one key distinction: un-
like KITTI-CARLA, which generates data in artificial towns
(TOWNO1-TOWNO7), our methodology replicates the real-
world RounD dataset. This ensures the collected sensor data
captures naturalistic driving behaviors as depicted in Fig. 8,
including roundabout interactions, yielding, and acceleration
patterns. By integrating real-world road topology and traffic
dynamics into a synthetic simulation, we bridge the gap be-
tween real-world traffic datasets and synthetic sensor simula-
tions. This enhances dataset suitability for autonomous driving
research, sensor fusion, and transfer learning applications.



Lidar (point-cloud)

Fig. 8: KITTI-like dataset; Lidar & RGB Camera

VI. IMPACT ASSESSMENT ON AUTONOMOUS DRIVING

In this section, we assess the benefit of the designed joint
motion control & sensor CARLA scenario matching RounD
motion and KITTTI perception for repeatable, controllable and
realistic autonomous driving simulation-based experiments.
Without loss of generality, we rely on a simplified roundabout
hazard detection access control algorithm considering percep-
tion from sensor input rather than perfect CARLA knowledge
on the decision-making algorithm. This assessment does not
aim at judging the algorithm itself but rather how imperfect
or delayed perception would impact its decision to decide to
enter a roundabout.

A. Experiment Setup

Figure 9 represents the roundabout under test and highlights
two specific areas: (i) RounD control, where vehicles drive
according to RounD trajectories; (ii) Perception-control, where
vehicles alter the original RounD trajectories according to the
decision-making algorithm. The objective of the latter area is
to evaluate if and how sensor-based perception would change
if and how the vehicle enters the roundabout compared to
RounD (reproducing a human decision).

In this experiment, we leverage two sensor input, LiDAR
and RGB cameras, to enable perception-driven decision-
making. As a vehicle approaches the roundabout and enters the
perception-control zone, it continuously processes sensor data
to detect other vehicles, predict their trajectories, and assess
traffic gaps. The decision to enter the roundabout is made
based on perception inputs and hazard assessment models,
ensuring the autonomous system proceeds only when a safe
gap is available.

As any access to the roundabout under test is under
perception control, we consider two options to assess the
impact of realistic sensor perception: (i) perfect knowledge,
where the ego vehicle gets an absolute knowledge of any
approaching vehicle; (ii) perception-based knowledge, where
the ego-vehicle only detects danger based on its own sensors.

Considering the perception-based decision process, once a
vehicle enters the perception control zone, it analyzes sensor
data from LiDAR and two RGB cameras, configured identi-
cally to those in the KITTI dataset. By fusing LiDAR and
camera data and leveraging the YOLOvV8 model, the ego ve-
hicle not only detects surrounding vehicles but also accurately
determines their relative positions in a 2D space. This fusion
process enables precise distance estimation between the ego
vehicle and other detected vehicles, represented as a 2D vector:

o x-distance: The distance between the ego vehicle’s front
bumper and the closest detected point along the x-axis. This

zone
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Fig. 9: Perception-based control

value is always positive, as the cameras are aligned with the
vehicle’s heading.

« y-distance: The lateral distance between the ego vehicle and
the detected object. Negative values indicate objects to the
left, while positive values correspond to objects on the right.

Without loss of generality, the control strategy follows a con-
servative approach: if the ego vehicle detects an approaching
vehicle within a predefined Euclidean distance and in a nega-
tive y-position (i.e., approaching from the left), it identifies a
collision risk and applies braking. Conversely, if no incoming
vehicle is detected, the ego vehicle proceeds safely into the
roundabout.

B. Evaluation and Discussion

The RounD dataset contains 256 vehicle trajectories in a
roundabout traffic scenario. To evaluate the impact of our
proposed approach, we simulated all RounD vehicles and
analyzed their behaviors under perception-based control. Fol-
lowing the simulation, we compared the autonomous vehicle
(AV) behavior with the original RounD dataset trajectories.
This comparison allowed us to assess deviations, collision
rates, and overall safety performance, highlighting the effect
of perception-based decision-making compared to perfect (un-
realistic) knowledge in complex urban environments.

Table III presents the evaluation results for both control
strategies: perception-based control and RounD-control (using
perfect knowledge). The analysis considers two possible deci-
sions for each vehicle approaching the roundabout: (i) Brake,
where the ego-vehicle applies braking, and (ii) Go, where
the ego-vehicle enters the roundabout. For each decision, we
further evaluate whether the outcome was safe or resulted in a
collision. It is worth noting that a safe braking event does not
necessarily imply a positive outcome, especially if it involves
unnecessary or excessively harsh deceleration compared to the
original RounD scenario.

Defining a braking event as a continuous deceleration over
25 consecutive frames, the simulation results are summarized
as follows:



TABLE III: Evaluation: RounD-control vs. Perception-control

Brake* Go
Safe Collide Safe Collide
RounD-control 30 0 226 0
Perception-control 41 0 197 18
(Effective: 17,
Ineffective: 24)

*Brake in RounD = 25 consecutive frames with speed deceleration

« RounD-control: 30 vehicles performed braking maneuvers
when approaching the roundabout, consistent with real-
world hazard responses observed in the RounD dataset. The
remaining 226 vehicles entered the roundabout without any
collisions.

« Perception-control: 41 vehicles applied braking before
entering, indicating increased sensitivity to perceived haz-
ards. Among these, 17 were effective braking events that
successfully prevented potential collisions, while 24 were
ineffective, resulting in unnecessary stops (false positives).
Out of the 215 vehicles that proceeded to enter the round-
about, 18 experienced collisions (false negatives).

These findings provide key insights into perception-based
control for roundabout hazard detection. First, unsafe entries
resulting in collisions (the Go-Collide cases) were caused by
false negatives, suggesting that KITTI-like calibrated sensors
alone may be insufficient for comprehensive risk detection.
Second, safe but unnecessary braking events highlight the
occurrence of false positives, which can negatively affect
traffic efficiency.

Both types of perception errors should be carefully ad-
dressed, which is only possible through realistic simulation
environments such as the one presented in this work.
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Fig. 10: Perception-based decision-making at roundabout

One of the key advantages of the proposed integrated
KITTI-RounD CARLA scenario is illustrated in Fig. 10.
On the left (Fig. 10a), the ego-vehicle decides to enter the
roundabout as its left RGB camera does not detect the inbound
vehicle. On the right (Fig. 10b), the vehicle is already inside
the roundabout when the same left RGB camera detects the
hazard, but unfortunately, too late to prevent a collision. This
delayed hazard detection was caused by the limited camera
field of view, exacerbated by the vehicle’s steering away from

the approaching risk, thus moving the danger outside the
observation zone, as depicted in Fig. 9.

We consider this scenario a valuable benefit of our method-
ology, as such perception-driven decision errors would not
appear in simulation environments using either unrealistic
motion planning or idealized (omniscient) sensor perception.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a methodology for creating
realistic, perception-ready simulation scenarios in CARLA by
integrating naturalistic RounD traffic trajectories with KITTI-
calibrated sensor configurations. Our roundabout-focused case
study demonstrated that incorporating both realistic motion
planning and sensor-based perception constraints can Sig-
nificantly impact autonomous vehicle (AV) decision-making
outcomes. The resulting RounD-KITTI CARLA scenario has
been released as open-source to support the broader research
community.

For future work, we plan to pursue the following directions:

o Scenario extension: Incorporating Vulnerable Road
Users (VRUs) and diversifying urban landscapes to en-
hance the realism and complexity of the simulated envi-
ronment.

« Control strategy optimization: Refining comfort-based,
Al-driven roundabout control strategies while explicitly
accounting for perception uncertainties, as introduced
in [8].

« Toolset generalization: Expanding the adaptability of the
toolset to enable seamless integration with other real-
world and synthetic traffic datasets, ensuring broader
applicability across diverse research scenarios.
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