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Abstract—This paper presents a deep reinforcement learning
(DRL) framework to optimize autonomous vehicle maneuver
during roundabout approaches, with a focus on safety, efficiency,
and passenger comfort. The proposed method incorporates a
logistic regression-based Roundabout Exit Probability (REP)
model to estimate the likelihood that inbound vehicles will exit
the roundabout, as well as a regression-based Time-To-Collision
(TTC) predictor to model the ego vehicle’s controlled maneuver
while maintaining comfort constraints. These predictive models
are integrated into a Proximal Policy Optimization (PPO) frame-
work, enhanced with a curriculum learning strategy to gradually
shape the agent’s behavior toward balanced, human-like decision-
making. The reward function is designed to penalize unsafe or
abrupt actions and encourage smooth, efficient maneuvering.
Experimental results in the CARLA simulator demonstrate
the effectiveness of the proposed strategy in achieving robust,
comfort-aware navigation in roundabout scenarios.

Index Terms—DRL, Curriculum Learning, CARLA, Round-
about, AI-driven autonomous systems, PPO, Logistic-Regression,
Passenger-Comfort

I. INTRODUCTION

Navigating roundabouts remains one of the most complex
and safety-critical challenges for autonomous vehicles, espe-
cially in dynamic urban and semi-urban settings. Unlike tra-
ditional intersections, roundabouts require continuous negotia-
tion of entry and exit maneuvers, demanding an understanding
of lane assignments, right-of-way rules, surrounding vehicle
intentions, and rapidly changing traffic dynamics. Achieving
this requires a holistic perception of the driving context and
the ability to make real-time, safe, and comfortable decisions.

To address these challenges, recent research has explored
various AI and machine learning techniques for modeling
roundabout maneuvers. Methods like rule-based systems, tac-
tical planners, and learning-based models emulate human
decision-making. Among these, reinforcement learning (RL)
has proven effective for enabling adaptive, data-driven deci-
sions in uncertain traffic environments. In our study, we use
CARLA1, an open-source autonomous driving simulator offer-
ing a high-fidelity environment for simulating traffic scenarios,
ideal for training behavior models in safety-critical tasks such
as roundabout navigation.

We propose a two-stage AI-driven framework for round-
about entry, balancing safety, efficiency, and passenger com-

1https://carla.org/

fort. The first stage utilizes a supervised Logistic Regression
model, the Roundabout Exit Probability (REP) model, which
predicts whether an inbound vehicle will exit before reaching
the ego vehicle’s entry leg. By filtering out non-threatening
vehicles early, REP reduces unnecessary conservatism in
decision-making and allows the ego agent to exploit safe entry
gaps more efficiently.

The second stage employs Proximal Policy Optimization
(PPO), a state-of-the-art reinforcement learning algorithm, to
train a policy that decides whether the ego vehicle should yield
or proceed. The RL agent learns to reason under uncertainty,
using observations such as ego speed, distance to the round-
about, acceleration, and safety indicators based on Time-To-
Collision (TTC). Through repeated interaction with the envi-
ronment, the agent refines its strategy, balancing assertiveness
and caution to ensure smooth and safe roundabout entry.

Our system also integrates Vehicle-to-Vehicle (V2V) com-
munication using Cooperative Awareness Messages (CAMs),
as standardized by ETSI (EN 302 637-2) [1]. These messages
broadcast key state information—position, speed, acceleration,
and heading—among nearby vehicles, enhancing the ego ve-
hicle’s ability to assess inbound vehicle dynamics and make
contextually appropriate entry decisions, particularly in high-
density traffic scenarios.

In this paper, we present a complete methodology for
enabling AI-based control of an autonomous vehicle during the
roundabout merging phase. Our solution is composed of three
interconnected modules: (i) a PID-based comfort-aware TTC
estimation module that models the ego vehicle’s acceleration
profile to generate a realistic and controllable TTC measure;
(ii) a supervised REP module that anticipates inbound vehicle
behavior, filtering out non-threatening vehicles; (iii) a PPO-
based reinforcement learning agent that synthesizes these in-
puts to learn safe, efficient, and comfort-aware driving policies
in real time.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on roundabout navigation using
reinforcement learning. Section III introduces our method-
ology for achieving a safe and comfort-aware roundabout
merging. Section IV describes the preparation phase on de-
signing and training our regression-based predictors. Section V
presents our deep reinforcement learning model for round-
about decision-making maneuver. Section VI discusses the
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simulation setup and evaluation results. Finally, Section VII
concludes the paper and outlines directions for future research.
To promote reproducibility and facilitate further research,
we have released the complete code-base, including model
training, testing routines, and simulation environment setup as
open-source, publicly available here2.

II. RELATED WORK

Navigating roundabouts presents significant challenges for
autonomous vehicles due to dynamic multi-agent interactions
and the need for real-time decision-making that balances safety
and passenger comfort. Recent studies have explored intent
prediction, comfort-aware control, and reinforcement learning
strategies to address these complexities. In [2], Deveaux et
al. proposed a knowledge networking approach for AI-driven
roundabout risk assessment, introducing the Roundabout Exit
Probability (REP) model to predict inbound vehicle exits. We
adopt the REP concept to dynamically weight inbound vehi-
cles in the observation space, filtering those likely to exit and
reducing unnecessary Time-To-Collision (TTC) computations
and waiting time-loss. Comfort-aware control was studied in
[3] by Moradi, who introduced a PID controller with a transfer
function to achieve smooth acceleration and deceleration, min-
imizing jerk and enhancing passenger comfort during round-
about navigation. Building on this, we integrate a comfort-
aware TTC predictor that estimates safe and smooth collision
timing for the ego vehicle. For roundabout navigation, Cuenca
et al. applied Q-learning in [4] to train an agent using trial-and-
error interactions within the CARLA simulator. While their
work focuses purely on learning maneuvering behavior, our
methodology leverages pre-trained REP and TTC models to
enrich the agent’s situational awareness and improve policy
robustness. Intersection navigation via deep RL was tackled
by Elallid et al. in [5], where the authors addressed uncer-
tainty and dynamic priority management using a DRL policy.
Although their work focuses on intersections, it informs our
handling of multi-agent interactions in roundabouts, where de-
cision complexity is even greater. In [6], Gutiérrez-Moreno et
al. trained an agent via PPO to manage intersection types such
as traffic lights and stop signs, focusing mainly on collision
avoidance. Our work builds upon this by tackling the added
complexity of roundabouts and introducing a comfort dimen-
sion through smooth, human-like driving strategies based on
PID-guided TTC estimation. Recognizing the importance of
structured learning, Anzalone et al. in [7] proposed Reinforced
Curriculum Learning in CARLA to progressively train au-
tonomous agents through increasing task difficulty. Inspired by
this, we incorporate a curriculum learning strategy in our PPO-
based framework, initially focusing on efficiency and safety
before gradually introducing passenger comfort constraints,
leading to smoother and more robust roundabout entry behav-
ior. In [8] Yuan et al. investigated DRL algorithms—DDPG,
PPO, and TRPO—for automated driving through roundabouts.
The reward function incorporates safety, efficiency, comfort,

2https://gitlab.eurecom.fr/cats/carla/comfort-rl-roundabout

and energy consumption. TRPO outperforms others in safety
and efficiency, while PPO excels in comfort. The study also
demonstrates the adaptability of the TRPO model to different
driving scenarios like highway driving and merging. In [9]
Capasso et al. introduced a maneuver planning module using
a novel Delayed A3C (D-A3C) algorithm for negotiating entry
into busy roundabouts. The system allows agents to exhibit
varying levels of aggressiveness, emulating different driving
styles, which is particularly useful in managing congested
scenarios.

III. METHODOLOGY

Our proposed framework for optimizing autonomous round-
about merging maneuver is structured into two sequential
phases: offline pre-training of predictive models, and online
decision-making via reinforcement learning. An overview of
the framework is illustrated in Fig.1.

Fig. 1: Overview

In the pre-training phase, we develop two regression-based
predictors to enhance the ego vehicle’s situational awareness.

First, the Roundabout Exit Probability (REP) model esti-
mates the likelihood, as a continuous probability within [0,1],
that an inbound vehicle (zone B) will exit the roundabout be-
fore reaching the ego vehicle’s trajectory. This probability later
serves as a dynamic feature within the reinforcement learning
agent’s state space, effectively filtering non-threatening vehi-
cles from decision consideration. Second, we train a comfort-
aware Time-To-Collision (TTC) predictor for the ego vehicle
(zone A). This model outputs a target collision timing that
accounts for passenger comfort by adhering to constraints on
longitudinal/lateral acceleration and jerk, enabling smoother
and more natural driving behavior. To ensure the reliability
and quality of these predictive models, we conduct an inde-
pendent evaluation phase prior to integrating them into the
reinforcement learning pipeline. This evaluation validates the
models’ predictive performance and their suitability for real-
time decision support.

In the second phase, we integrate the REP and TTC models
within a Proximal Policy Optimization (PPO)-based control
framework. During online operation, the ego vehicle processes
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continuous Cooperative Awareness Messages (CAMs) from
nearby vehicles, using the predicted TTC to guide its basic
”yield” or ”proceed” decisions. A curriculum learning strat-
egy progressively introduces comfort considerations into the
agent’s learning objective, ensuring robust, safe, and smooth
roundabout entries. The following sections detail each phase,
beginning with the offline training and evaluation of the REP
and TTC predictive models.

IV. PRE-TRAINING PHASE: REGRESSION-BASED
PREDICTORS

A. Roundabout Exit Probability (REP) model

To anticipate the behavior of circulating vehicles and reduce
unnecessary conservatism in decision-making, we first train
a supervised logistic regression model, referred to as the
Roundabout Exit Probability (REP) model [2]. This model
estimates the likelihood that an inbound vehicle will exit the
roundabout before reaching the ego vehicle’s merging point.

The REP model is trained offline using annotated vehi-
cle trajectories extracted from the CARLA simulator. Each
training sample includes features derived from Cooperative
Awareness Messages (CAMs), standardized under ETSI EN
302 637-2 [1]. The input features include vehicle position,
heading, speed, and acceleration.

At inference time, the REP output is used as a dynamic
attention weight within the ego vehicle’s observation space.
This mechanism effectively down-weights vehicles that are
likely to exit and therefore pose less collision risk, allowing
the agent to concentrate computational effort on truly relevant
interactions. As a result, the agent achieves faster and more
efficient decision-making during roundabout negotiation.

Fig. 2: Input features for the Exit Probability model

As initially outlined in [2], the scenario illustrated in Fig. 2
highlights three spatial and kinematic features critical to
predicting exit behavior: lateral position, relative heading, and
exit distance.

• Lateral position reflects the radial distance from the
roundabout center. Vehicles on the outer lane are statisti-
cally more likely to exit, while those in inner lanes tend
to circulate further.

• Relative heading measures the angular deviation be-
tween the vehicle’s orientation and the tangent of the
roundabout arc, indicating whether the vehicle is prepar-
ing to steer outward.

• Exit distance captures the normalized arc length re-
maining before the vehicle’s next exit point. Unlike the
Euclidean distance used in [2], our method accounts
for roundabout curvature, offering more topologically
relevant context.

Fig. 3: REP divergence analysis: Polynomial Model

To evaluate the trained model, we conduct a series of ex-
periments in the Town03 two-lane roundabout of the CARLA
simulator. In this study, we focus on vehicles circulating in
the outer lane, while leaving inner-lane complexities for future
investigation.

As shown in Fig. 3, the REP output remains ambiguous
at first but begins to diverge significantly approximately 15
meters before the exit. The x-axis indicates the arc distance
between two successive exits (about 40 meters), and the y-axis
shows the predicted probability of exit. The early divergence
of the two trajectory states allows the ego vehicle to anticipate
with confidence whether an inbound vehicle will exit, reducing
unnecessary waiting time and improving flow.

This prediction is embedded directly into the PPO agent’s
observation space. By including REP as a dynamic weight,
the agent is empowered to reason probabilistically: even if a
vehicle appears threatening based on position alone, it may
still be deemed safe to proceed if its exit probability is
sufficiently high. This integration results in more assertive yet
safe decision-making around roundabout entries.

B. Comfort-Aware Time-To-Collision (TTC) Predictor

We develop a comfort-aware Time-To-Collision (TTC) pre-
dictor to estimate the ideal timing for the ego vehicle to
safely and smoothly reach the roundabout merging point. The
method builds upon the longitudinal control strategy proposed
in [3], in which a first-order transfer function models vehicle
dynamics and a PID controller ensures smooth convergence
to a target speed, while satisfying passenger comfort con-
straints—specifically limiting acceleration and jerk.

The TTC predictor takes three input features; current speed,
current acceleration, and distance to the merging point to
produce a controlled TTC value. The ego vehicle’s longitudinal
maneuver is modeled using a first-order transfer function:



V (s)

U(s)
=

κ

τs+ 1
(1)

where:
• V (s) is the vehicle speed in the Laplace domain,
• U(s) is the throttle input signal,
• κ is the system gain,
• τ is the time constant.
To regulate acceleration while maintaining passenger com-

fort, we adopt a classical Proportional-Integral-Derivative
(PID) control law:

u(t) = kP e(t) + kI

∫ t

0

e(τ)dτ + kD
de(t)

dt
+ bias (2)

where:
• e(t) = vtarget − v(t) is the velocity tracking error,
• kP , kI , and kD are the PID gains,
• bias ensures smooth throttle transitions from initial con-

ditions.
To evaluate the smoothness and comfort compliance of our

PID-based control strategy, we visualize the maximum and
minimum values of acceleration and jerk obtained during the
data generation phase across a wide range of initial vehicle
conditions.

To evaluate the comfort compliance of the PID controller,
we assess the maximum and minimum acceleration and jerk
values across a variety of initial conditions during the data
generation phase.

Figure 4a presents the range of acceleration values for
varying initial speeds and distances. The values remain within
the comfort-compliant bounds, approximately between −2.5
and +2.5 m/s2, confirming that the controller generates smooth
transitions aligned with real vehicle dynamics. Some devia-
tions at high initial speeds (≥ 10 m/s) are observed, likely
due to transitions between control regimes.

Figure 4b shows the corresponding jerk values. Most cases
stay within acceptable thresholds, although a few configura-
tions involving high initial speed and short distance exhibit
minimum jerk values below −4 m/s3, indicating more abrupt
deceleration. Nevertheless, overall trends validate the con-
troller’s ability to maintain low jerk and ensure comfort-aware
control.

(a) Max/Min acceleration vs. ini-
tial speed and distance.

(b) Max/Min jerk vs. initial speed
and distance.

Fig. 4: Evaluation of comfort-aware PID control outputs.

This control setup enables the TTC predictor to produce
comfort-aware reference timings that respect both physical dy-
namics and passenger comfort. These TTC estimates are later
used to guide high-level decision-making in our reinforcement
learning module.

Figure 5 illustrates the full two-stage process used to
construct the TTC predictor. In the first stage, a PID controller
receives high-level control parameters, including target speed,
max-jerk limit, curvature radius , and horizon distance, as
well as the current speed and throttle values, to generate
a throttle command profile {u0, . . . , un}, executed in the
CARLA simulator. The resulting outputs is recorded over
time. In the second stage, these trajectories are used to create
a supervised regression dataset. From each simulated run,
features such as speed, acceleration, and distance are extracted,
and the corresponding time-to-spot value is computed as
the target label. This dataset is used to train an XGBoost
regression model that forms our comfort-aware TTC predictor.
The trained model serves as a key component in assessing safe
and smooth roundabout entry conditions in real time.

Fig. 5: Two-stage process for generating a comfort-aware
Time-To-Collision (TTC) predictor.

V. ONLINE DECISION-MAKING: PPO-BASED CONTROL

Autonomous vehicle control during the roundabout ma-
neuver involves managing three key control signals: throttle,
brake, and steering. In our framework, the longitudinal control
(throttle and brake) is learned by a deep reinforcement learning
agent, while lateral control (steering) is handled using a rule-
based path tracking method based on the Stanley controller.

A. Lateral Control via Stanley Steering

To ensure stable and interpretable lateral motion, we adopt
a simplified bicycle model for steering control. The steering
input δ is computed based on the heading error ∆ψ—the
angular difference between the vehicle’s orientation and the
path tangent—and the cross-track error e, defined as the lateral
distance between the vehicle’s front axle and the reference
trajectory.

Following the Stanley control law [10], the steering angle
is given by:

δ(t) = ∆ψ(t) + tan−1

Å
Kee(t)

Kv + v(t)

ã
(3)



where Ke is the cross-track gain, Kv is the speed-dependent
gain, and v(t) is the current vehicle speed. This path-tracking
solution is general-purpose and can be applied across different
vehicle models. However, the control performance depends on
the tuning of Ke and Kv , which are calibrated in our case
specifically for the Tesla Model 3 blueprint in the CARLA
simulator. The reference trajectory is provided either by a
topological planner or retrieved from a fixed map, guiding
the ego vehicle along the appropriate lane and entry path.
With steering handled through this rule-based strategy, our
reinforcement learning agent is dedicated exclusively to learn-
ing longitudinal control—deciding when to throttle, brake, or
yield—based on real-time traffic context and risk estimation.

B. RL-Based Longitudinal Control with PPO

The main goal of this section is to demonstrate how deep
reinforcement learning agents can drive in realistic complex
environments by analyzing the design decisions we make for
our environment, agent, and network models. The implemen-
tation is in Python 3.7 with the package and dependency
manager Poetry and PyTorch. All simulations and model
training were conducted on a workstation equipped with an
Intel Core i7-11700 CPU (8 cores, 16 threads, up to 4.9 GHz),
16 GB of RAM, and an NVIDIA GeForce GTX 1660 GPU
with 6 GB of video memory. The experiments were performed
under a Linux environment with CUDA 12.3.

We chose Proximal Policy Optimization (PPO) as the deep
reinforcement learning algorithm for continuous control prob-
lems [11] that worked best in our tests. PPO is a model-free
reinforcement learning algorithm based on policy gradients
that stops divergence with a first-order trust region criterion.

Proximal Policy Optimization is particularly well-suited to
our setting, offering stability in continuous control environ-
ments with high-dimensional state spaces. Its clipped surrogate
objective prevents unstable policy shifts and supports gradual
learning in complex driving scenarios.

We adopt an Actor-Critic reinforcement learning archi-
tecture as the foundation for training our Proximal Policy
Optimization (PPO)-based agent. This decision is motivated
by the continuous action space and the need for stable, sample-
efficient learning in high-stakes driving environments such as
roundabouts. The actor network generates continuous control
actions—specifically throttle and brake signals—based on the
ego vehicle’s current observation. The critic network evaluates
the quality (value) of the current state under the learned policy,
providing a baseline that stabilizes policy updates. This dual-
network architecture offers several advantages; (i) Efficient
Policy Learning: By leveraging the critic’s value estimates, the
actor can focus on learning a policy that maximizes long-term
rewards without high variance in returns. (ii)Support for Con-
tinuous Action Spaces: Unlike discrete-action methods (e.g.,
DQN), the actor directly outputs smooth throttle and brake
values, enabling fine-grained longitudinal control necessary
for comfort-sensitive driving. (iii) Compatibility with PPO:
The architecture is naturally suited for PPO, which uses the
actor’s outputs and critic’s state evaluations to apply clipped,

stable policy updates. (iV) Exploration via Learnable Noise:
The inclusion of a learnable log-standard deviation (log σ)
allows the agent to adapt its exploration behavior over time,
encouraging wide behavioral sampling early in training and
more refined actions in later phases.

C. Action Space

In CARLA simulator, the actions for controlling our agent
are usually defined as a tuple of three values (s, t, b). In
that tuple s is our steer, t is the throttle and b is the brake.
The steer action was described in section V-A. The input
representation is then fed into our policy network, which
consists of a multi-layer perceptron and outputs (t̂, b̂), where
t̂ is the predicted throttle action and b̂ is the predicted brake
for that timestep, as shown in Figure 6. The structure of our
actor network—with progressively reducing hidden layer sizes
(500 → 300 → 100)—was chosen to capture a rich latent
representation of the high-dimensional observation space while
maintaining computational tractability. Similarly, the critic
shares this deep structure to provide accurate value predictions
aligned with the policy’s complexity.

Fig. 6: Proposed Policy Network Architecture

D. State Space

Training is performed using mini-batch gradient descent,
guided by Monte Carlo reward estimates. A high initial
action standard deviation is used to promote exploration and
is gradually reduced to ensure smoother, more deterministic
actions as training progresses. The PPO agent’s observation
space includes:

• Ego-previous-action (throttle and brake) at time (t-1),
• Ego-centric state features (velocity, acceleration, distance

to collision point),
• Adversarial-centric state features (velocity, distance to

collision point),
• TTC predicted for the ego at time (t),
• TTC predicted for the ego at time (t-1),
• REP-derived exit likelihoods for inbound vehicles.

E. Curriculum Rewarding Strategy

To ensure stable and meaningful policy learning, we adopt
a curriculum-based reward shaping strategy that decouples the
learning of efficiency from comfort and risk awareness. This



design addresses early-stage conflicts between performance,
comfort, collision risk.

To facilitate efficient and stable learning, we employ a
curriculum-based reward shaping strategy that introduces
safety gradually, after the agent masters comfort and efficiency.

a) Step 1: Efficiency-Oriented Reward: Initially, the re-
ward function focuses on core objectives to avoiding unneces-
sary braking or idling and encouraging forward motion when
safe (without traffic inside roundabout). We opted to disable
the Comfort-related penalties or weakly weighted during the
first 100 episodes to avoid overwhelming early learning.

b) Step 2: Comfort-Oriented and Speed constraint Re-
ward: Once efficiency is consistently achieved, the agent
begins learning comfort-aware behavior. The reward function
is extended to include; (i) penalties for excessive jerk and
abrupt changes, (ii) rewards for smooth acceleration profiles,
(iii)penalties for throttle-brake overlap, and (iv) rewards for
maintaining a moderate throttle zone (0.1 < throttle < 0.6)
with low jerk. A smooth transition is ensured by gradually
increasing the weight of comfort.

c) Step 3: Collision-avoidance-Oriented Reward: In the
final phase, the agent is trained to develop risk-aware behavior
by incorporating safety-critical metrics—particularly Time-To-
Collision (TTC)—into the reward function. This step intro-
duces stronger penalties for unsafe decisions and encourages
proactive yielding when necessary. The reward function in-
cludes:

• A strong penalty for actual collisions or near-miss events;
• A penalty based on the relative TTC difference between

ego vehicle and the closest inbound vehicle:

∆TTC = TTCinbound − TTCego

Unsafe decisions are penalized when ∆TTC is negative
(i.e., the ego vehicle is expected to reach the merging
point after an inbound vehicle);

• A scaled reward when the ego vehicle proceeds safely
with a sufficiently positive TTC margin;

VI. RESULTS

To assess the effectiveness of our proposed framework, we
evaluate the trained RL agent under varying traffic conditions
and reward configurations, with a particular focus on safety,
efficiency, and passenger comfort. The evaluation pipeline is
divided into three stages, each designed to test the agent’s abil-
ity to generalize, adapt, and comply with driving constraints
in realistic roundabout scenarios. The sections below describe
in detail the training parameters and evaluation metrics used
to validate the performance of our PPO-based control policy.

A. Training Parameters and Constraints

We constrain the vehicle’s longitudinal behavior with a
maximum speed limit of 35 km/h and apply a comfort-
aware control policy by penalizing jerk values exceeding
5 m/s3. To facilitate robust and stable learning, we imple-
ment a curriculum-based reward shaping strategy that in-
troduces behavioral objectives progressively: starting with

efficiency-focused speed acquisition, followed by comfort-
oriented smoothness, enforcement of speed limits, and finally,
safe interaction with traffic to encourage collision avoidance.
The training takes place in a critical entry zone located
approximately 40 meters before the potential collision point
representing the area where human drivers typically begin
assessing whether to yield or proceed into the roundabout.
To ensure realism, we dynamically spawn inbound vehicles
ahead of this decision zone, with randomized initial speeds
uniformly sampled between 3km/h and 25km/h. This setting
exposes the agent to diverse traffic dynamics and enhances
generalization to realistic entry conditions.

B. Evaluation: Without-Traffic

In a simplified roundabout environment without circulating
vehicles, the agent is initially trained to accelerate efficiently
and gain speed. Comfort objectives are then introduced by
encouraging smooth acceleration profiles and minimizing jerk.
Finally, a speed limit constraint is applied through reward
shaping, enabling the agent to learn rule-compliant behavior
while maintaining comfort and efficiency. Figs. 7a-7b present
the minimum and maximum jerk values during training. No-
tably, after episode 100, comfort constraints are activated in
the reward function, encouraging smooth vehicle behavior.
As shown, the jerk values stabilize and remain consistently
bounded within the threshold of ±6 m/s3, validating the
agent’s ability to respect comfort limits and reduce abrupt
acceleration or deceleration, even under varying initial con-
ditions.

(a) Comfort-Aware: min-jerk (b) Comfort-Aware: max-jerk

(c) Traffic-Rules: max-speed (d) Reward: without-traffic

Fig. 7: Evaluation of comfort-aware control parameters: speed
and jerk under various initial conditions.

Figure 7c illustrates the evolution of maximum speed during
training. After episode 200, the reward function introduces
a speed-limit constraint set at 35 km/h. The graph shows a
noticeable adjustment in the agent’s behavior, with average
speeds gradually converging toward the limit, demonstrating
successful adherence to traffic rules. Finally, Figure 7d shows
the cumulative reward trend throughout training. Initially, the



reward increases rapidly as the agent learns basic movement
and efficiency. However, after introducing the speed-limit
penalty at episode 200, the reward curve shows slower but
stable improvement, indicating that the agent is adapting to
stricter control requirements while preserving overall perfor-
mance.

C. Evaluation: With-Traffic

Introducing vehicles circulating inside the roundabout sig-
nificantly increases the complexity of the scene, requiring the
agent to learn when to yield to higher-priority inbound vehicles
and when to safely initiate entry. Leveraging the ego vehicle’s
modeled Time-To-Collision (TTC), the TTC of inbound vehi-
cles, and REP-derived exit probabilities, the agent is equipped
to make more informed decisions that minimize unnecessary
waiting and reduce collision risk. The reward function is
designed to encourage cautious decision-making—rewarding
braking when required and penalizing unsafe throttle actions.
As illustrated in Fig. 8, from episode 600 onward, the reward
function begins penalizing the agent for attempting to enter
the roundabout under risky conditions. This adjustment results
in a temporary drop in cumulative reward, followed by a
recovery and convergence approximately 800 episodes later.
This behavior confirms that the agent learns to respect safe
temporal gaps and prioritize yielding in the presence of other
vehicles, thereby improving both safety and traffic negotiation
performance in realistic roundabout scenarios.

Fig. 8: Cumulative Reward: with-traffic

VII. CONCLUSION & FUTURE WORK

This paper introduced a two-phase deep reinforcement
learning (DRL) framework to enhance autonomous vehi-
cle decision-making during roundabout entry, emphasizing
safety, efficiency, and passenger comfort. In the prepara-
tion phase, we trained two predictive models: a logistic
regression-based Roundabout Exit Probability (REP) model
to anticipate inbound vehicle behavior, and a comfort-aware
Time-To-Collision (TTC) predictor that accounts for smooth
acceleration dynamics using a PID-based control strategy.
These models were integrated into a Proximal Policy Opti-
mization (PPO) framework for online control. A curriculum-
based reward shaping strategy is employed to guide the
PPO agent through progressive learning stages—starting with

efficiency, advancing to comfort-aware control, and culmi-
nating in safety-focused decision-making in dynamic, multi-
agent environments. Experimental evaluations conducted in
CARLA demonstrated that our strategy enables safe and robust
roundabout negotiation, while maintaining passenger comfort
and driving fluidity. For future work, we aim to extend the
agent’s capabilities to handle more complex multi-lane lookup,
integrate real-time lane detection from perception modules.
Additionally, we plan to investigate multi-agent coordination
through cooperative reinforcement learning to enable more
advanced negotiation strategies between autonomous vehicles
in shared traffic scenarios.
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