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Abstract—Sex conversion in speech involves privacy risks from
data collection and often leaves residual sex-specific cues in
outputs, even when target speaker references are unavailable.
We introduce RASO for Reference-free Adversarial Sex Obfus-
cation. Innovations include a sex-conditional adversarial learning
framework to disentangle linguistic content from sex-related
acoustic markers and explicit regularisation to align fundamental
frequency distributions and formant trajectories with sex-neutral
characteristics learned from sex-balanced training data. RASO
preserves linguistic content and, even when assessed under a semi-
informed attack model, it significantly outperforms a competing
approach to sex obfuscation.

I. INTRODUCTION

Voice Conversion (VC) plays a critical role in privacy-
sensitive applications, e.g. anonymisation [1] of speech data
collected in healthcare scenarios. Privacy preservation involves
the obfuscation of speaker-specific traits (e.g., the voice, sex,
age and accent) but the preservation of utility (e.g., the linguis-
tic content, naturalness, prosody, emotion and health-related
cues). The work presented in this paper concerns obfuscation
of the speaker’s sex.1 Traditional voice conversion methods,
which rely on parallel corpora or target speaker references [4],
[5], face two fundamental limitations, namely the high cost
of acquiring sensitive target speech data and the incomplete
suppression of sex-discriminative acoustic features (e.g., fun-
damental frequency distributions, formant trajectories) in zero-
shot scenarios, which leaves residual cues exploitable by re-
identification attacks [6].

To address these challenges, we propose RASO, a GAN-
based framework for reference-free, sex-neutral voice conver-
sion. Our approach introduces the following key innovations:

1. Reference-free, sex-neutral conversion via conditional
adversarial learning. Our learning framework disentangles
speaker-agnostic linguistic content from sex-discriminative
acoustic features (fundamental frequency(F0) distributions and
formant trajectories). A discriminator enforces sex ambiguity
in generated speech, enabling the obfuscation of sex-specific
attributes without requiring reference target speaker data.

2. Explicit acoustic regularisation for distributional neu-
trality. To ensure sex neutrality, we introduce a sex feature
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modification module that normalises the probability density of
fundamental frequency distributions and the temporal dynamic
range of formant trajectories to align with mixed-sex speech
statistics. This mechanism eliminates sex-specific offsets in
acoustic parameters to achieve population-level, sex-neutral
acoustic representations.

By integrating these mechanisms, RASO offers a robust
solution which eliminates the need for sensitive target speaker
data, effectively suppresses sex-related attributes while main-
taining high speech intelligibility and naturalness, and ensures
population-level privacy by aligning acoustic features with
mixed-sex statistical distributions. Experimental results show
that RASO surpasses competing state-of-the-art methods [6],
[7].

II. RELATED WORK

Deep learning has propelled voice conversion advance-
ments, with GAN-based methods like CycleGAN-VC [4]
and StarGANv2-VC [8] leading the field by disentangling
linguistic content from speaker attributes via cycle-consistency
or style encoding for non-parallel, multi-domain conversion.
These models excel at generating high-fidelity prosodic details,
such as pitch contours, rhythm, and timbral nuances, but
inadvertently retain privacy-sensitive speaker cues (e.g., sex-
specific formant patterns, vocal tract characteristics) embedded
in their representations, as their design prioritises identity
preservation over attribute obfuscation.

In the realm of speaker anonymisation, recent advancements
have sought to balance privacy preservation with linguistic
utility. Early work by Fang et al. [9] introduced a foundational
approach by fusing speaker X-vectors with neural waveform
models, enabling identity obfuscation while retaining linguistic
content. Building on this, Srivastava et al. [10] refined the
approach by introducing pseudo-speaker selection strategies
that dynamically mixed X-vectors to enhance privacy-utility
trade-offs. Later, Champion [11] proposed quantisation-based
transformations to suppress speaker-related information in
acoustic features, outperforming traditional noise-based meth-
ods. Concurrently, Panariello et al. [7] adopted a neural audio
codec strategy, leveraging pre-trained EnCodec and Trans-
former architectures to disentangle semantic-acoustic tokens
for synthesis. Meyer et al. [12] further advanced the field by
generating pseudo-embeddings via GANs to replace speaker
identities while preserving prosodic nuances. Tomashenko et
al. [1] evaluated these systems under semi-informed attacker



models, emphasising the need for standardised frameworks to
assess multi-condition privacy-utility trade-offs.

There is less work in sex obfuscation. Stoidis and Caval-
laro [13] introduced GenGAN, which generates sex-ambiguous
speech by smoothing spectral differences, achieving balanced
privacy and speech intelligibility. Noé et al. [6] propose
a ”zero-evidence” framework using adversarial training and
normalising flows to suppress sex information in an analy-
sis/synthesis pipeline. Chouchane et al. [14] present a differ-
entially private adversarial auto-encoder framework, designed
to protect sex information in voice biometrics by mitigating
sex-specific cues. In their other work [15], they analysed how
sex affects voice biometric systems and proposed strategies to
reduce sex-related biases. Koutsogiannaki et al. [16] propose a
method that blends low-frequency spectral characteristics with
prosodic patterns to generate sex-ambiguous speech outputs
and reduce the discriminability of sex attributes in speech
signals.

III. MODEL ARCHITECTURE

To achieve sex obfuscation in speech, our proposed frame-
work employs a privacy-driven adversarial architecture that
suppresses sex-discriminative acoustic features while preserv-
ing linguistic content. The model consists of two core com-
ponents: a generator for feature-level de-identification and a
multi-task discriminator. The architecture is illustrated in Fig. 1
and is described in the following.

A. Generator: sex feature suppression network

The generator aims to remove sex-specific acoustic markers
from input speech while keeping other information intact. It
employs a dual-branch architecture which explicitly decouples
linguistic content from sex feature suppression.

1) Linguistic content preservation: A Mel-spectrogram en-
coder is employed to extract linguistic information. The in-
put Mel-spectrogram X ∈ RB×1×80×T is compressed into
a latent content vector by a hierarchical encoding module
consisting of residual blocks with downsampling. The input
Mel-spectrogram X ∈ RB×1×80×T is compressed into a latent
content vector Zcont ∈ RB×C×H×W by a hierarchical encoding
module consisting of residual blocks with downsampling,
where C denotes the channel dimension and H,W represent
spatial dimensions.

2) Sex feature modification: Three specialised modules are
employed to neutralise sex-discriminative acoustic features and
preserve semantic content:

Formant Manipulation Branch - This module processes
the lower 40 Mel bands (Flow ∈ RB×1×40×T ) to suppress
sex-discriminative formant patterns. By introducing a sex-
conditioned embedding mechanism, the formants for each sex
are edited according to:

Xmod = X⊙ (1 +W · s(yorg))

where W ∈ R40×64 is a learnable projection matrix, and
s(yorg) ∈ R64 is an embedding vector generated by the sex

descriptor based on the input sex label yorg ∈ {0, 1} (0 repre-
sents male, 1 represents female). Label s(yorg) is parameterised
independently via a conditional embedding layer, enabling the
module to apply sex-specific frequency modulation strategies.

For female inputs (yorg = 1), s(0) is optimised to enhance
attenuation at higher frequencies to neutralise female-specific
formant concentrations. Conversely, for male inputs (yorg = 0),
s(1) targets low-frequency bands to suppress male-dominant
spectral features. During training, s(yorg) and W are jointly
optimised. This design eliminates the need for target speaker
references, relying solely on binary sex labels to achieve di-
rectional suppression, which effectively obfuscates sex-related
acoustic cues while preserving linguistic content.

F0 Neutralization Branch - The fundamental frequency
contour f pred

0 is predicted by the model JDC [17]. 2 The
predicted fundamental frequency contour f pred

0 is mapped to
the sex-neutralized counterpart f shifted

0 via log-domain shifting:

f shifted
0 = exp

(
log(f pred

0 ) + log

(
µneutral

f̄ org
0

))
(1)

where f̄ org
0 denotes the global mean F0 of the input speech

and where µneutral is updated via exponential moving average
during training:

µ
(t)
neutral = γµ

(t−1)
neutral + (1− γ) · f̄ batch

0 (2)

where γ = 0.99 and f̄ batch
0 represent the average F0 across

all speech samples in the current training batch, which acts
to ensure that µneutral dynamically approximates the global F0
statistics of the mixed-sex training corpus while suppressing
batch-specific fluctuations.

Feature Fusion and Reconstruction Module - The outputs
of the sex feature suppression branch, including formant-
suppressed low-frequency Mel-bands and F0-neutralised con-
tours, are fused with the content representation Zcont via
a formant-guided attention mechanism which extracts sex-
relevant spectral patterns from the lower 40 Mel-bands and
generates attention maps through style embeddings to highlight
sex-neutral frequency regions. Fused features are processed
through upsampling residual blocks with adaptive instance nor-
malisation (AdaIN)[18] to restore spectral resolution, followed
by a projection layer to reconstruct the Mel-spectrogram. This
design suppresses sex-discriminative acoustic cues (formant
shifts, F0 trends) while preserving linguistic content through
multi-scale feature refinement, enabling reference-free sex
obfuscation with high-fidelity speech synthesis.

B. Discriminator: Adversarial Privacy Transformation

The discriminator D is designed with a dual-objective
architecture to enforce two complementary objectives in the
adversarial training framework: speech generation with pre-
served speech intelligibility and effective sex neutrality.

2https://github.com/keums/melodyExtraction JDC
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Fig. 1. Architecture of the RASO framework. The left side shows the training process of the generator. The right side shows the training process of the
discriminator.

1) Real/Fake Discrimination: A multi-scale convolutional
network with spectral normalisation is used to distinguish
between real spectrograms Xreal and generated spectrograms
X̂. A least-squares generative adversarial loss [19] is used to
stabilise training.

2) Sex Confusion Discrimination: A pre-trained sex clas-
sifier with frozen parameters is used to evaluate the sex
ambiguity of generated speech [20].3 During training, the dis-
criminator provides gradients to the generator to maximise the
classifier output entropy over X̂, while the classifier parameters
remain fixed to provide an unbiased evaluation.

C. Loss Functions

Our privacy-driven loss framework balances sex obfuscation
and speech intelligibility through a multi-objective optimisa-
tion strategy. This is achieved using a set of loss functions,
each of which is described below.

1) Adversarial Loss: We adopt the Least Squares GAN
(LSGAN) loss [19] with soft labels to stabilise training and
promote spectrogram results[21]:

Ladv
D =

1

2
EXreal∼pdata

[
(D(Xreal)− 0.95)

2
]

+
1

2
EX̂∼pgen

[(
D(X̂)− 0.05

)2
]
, (3)

where Xreal denotes real speech Mel-spectrograms, X̂ denotes
generated sex-neutral speech, and D denotes the discriminator.
The soft labels (0.95 for real, 0.05 for fake) mitigate gradient
vanishing compared to hard labels (1 and 0). The adversarial
loss of the generator is given by:

Ladv
G =

1

2
EX̂∼pgen

[(
D(X̂)− 0.95

)2
]
. (4)

3https://huggingface.co/audeering/wav2vec2-large-robust-24-ft-age-gender

2) Sex Ambiguity Loss: To enforce sex neutrality, we max-
imise the entropy of a pre-trained sex classifier C [20] over
generated speech. The loss is defined as the negative Shannon
entropy:

Lsex = −E
[
Pmale(X̂) · logPmale(X̂)

+
(
1− Pmale(X̂)

)
· log

(
1− Pmale(X̂)

)]
, (5)

where Pmale(X̂) ∈ [0, 1] is the probability that the outcome
is classified as male. Minimizing Lsex forces Pmale → 0.5,
ensuring a uniform class distribution.

3) Content Preservation Loss: To ensure linguistic content
is retained during transformation, we employ a feature-level
consistency loss using a pre-trained automatic speech recogni-
tion (ASR) model [22].4 The loss is defined as:

Lcontent = EX

[∥∥∥hasr(X)− hasr(X̂)
∥∥∥
1

]
, (6)

where hasr(·) denotes the contextual feature extractor from
an ASR model encoder—a network which captures phonetic
and semantic dependencies in speech. Here, X represents the
original speech signal, X̂ is the transformed output, and ∥·∥1 is
the L1 norm, which minimizes the absolute difference between
high-level features of the original and generated speech.

4) Cycle Consistency Loss: To mitigate content degradation
during sex obfuscation, a cycle consistency loss is introduced
to enforce bidirectional fidelity between the original and trans-
formed speech. The loss is defined as:

Lcyc = EX,ssrc [∥G (G(X, sneutral), ssrc)−X∥1] , (7)

where ssrc is the source sex embedding extracted by the sex
descriptor branch, and sneutral is the sex-neutral target vector.
By minimising the L1 distance between reconstructed and
original spectrograms, this mechanism forces the generator G
to learn an invertible mapping, preserving linguistic content
while neutralising sex-specific acoustics.

4https://github.com/yl4579/AuxiliaryASR
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5) F0 Neutralization Loss: The F0 is normalised to a dy-
namic neutral baseline µneu (initialised at 150 Hz, the median
F0 of mixed-sex training data) while preserving relative pitch
dynamics:

LF0 = E
[ ∥∥f̄ gen

0 − µneu
∥∥
1

+ λrel ·
∥∥∆ log(f gen

0 )−∆ log(f org
0 )

∥∥
1

]
, (8)

where f̄ gen
0 and f̄ org

0 denote the mean F0 values of generated
and original speech, respectively; ∆ log(f0) = log(f0) −
log(f̄0) represents log-normalized pitch contours capturing rel-
ative dynamics; and λrel = 0.8 balances absolute F0 alignment
and relative pitch preservation.

6) Formant Suppression Loss: Generated formants are
aligned with mixed-sex statistical moments (mean µ and
standard deviation σ):

Lformant =

3∑
k=1

(∥∥µ(Fgen
k )− µ(Fneutral

k )
∥∥
1

+ β ·
∥∥σ(Fgen

k )− σ(Fneutral
k )

∥∥
1

)
, (9)

where: Fgen
k denotes the k-th formant of generated speech

(extracted via Linear Predictive Coding); µ(Fneutral
k ) and

σ(Fneutral
k ) are the global mean and standard deviation of

formants computed from mixed-sex training data; β = 0.3
controls formant smoothness to balance neutrality and natural-
ness.

7) Total Generator Loss: The total generator loss is used
with empirically tuned weights to balance sex obfuscation and
speech intelligibility:

LG =α1Ladv
G + α2Lsex + α3Lcontent

α4LF0 + α5Lformant + α6Lcyc, (10)

with weights determined from a grid search using a validation
set: α1 = 1.0, α2 = 5.0 (prioritising sex neutrality), α3 = 10.0
(critical for content preservation), α4 = 2.0, α5 = 1.0, and
α6 = 10.0.

IV. EXPERIMENTS

A. Dataset

Inspired by previous research on voice privacy[1], we em-
ploy the LibriSpeech corpus [23] for experiments, specifically
the train-clean-360 subset for training and test-clean subset
for evaluation. The training set contains speech from 921
speakers (482 male, 439 female), while the test set includes
40 unseen speakers (20 male, 20 female). The large-scale,
high-quality recordings in the train-clean-360 subset ensure
robust model training, while the test-clean subset provides a
controlled, unseen dataset for rigorous privacy and conversion
quality assessment.

TABLE I
PERFORMANCE COMPARISON UNDER DIFFERENT ATTACKER

SCENARIOS
(EER↑ INDICATES HIGHER SEX CLASSIFICATION ERROR FOR

BETTER PRIVACY; WER↓ INDICATES LOWER SPEECH
RECOGNITION ERROR FOR BETTER INTELLIGIBILITY)

Model Type Ignorant Attacker Semi Informed

EER (%) ↑ WER (%) ↓ EER (%) ↑

Raw Data 7.22 1.84 –
Pan. et al. [7] 48.56 5.90 32.15
Noe et al. [6] 36.88 2.48 16.37
RASO 55.38 2.47 47.25

B. Training Details

We employ the AdamW optimizer [24] with learning rates
of 10−5 for the generator and 10−4 for the discriminator.
Training is performed with a batch size of 64 and an NVIDIA
3090 GPU with PyTorch mixed-precision acceleration. Early
stopping based on the validation loss is applied for 150 epochs.

C. Objective Metrics

We adopt the Equal Error Rate (EER) to evaluate sex
classification and the Word Error Rate (WER) to evaluation
ASR performance. The EER is derived from the pre-trained
sex classifier [20] and quantifies the obfuscation of sex-specific
acoustic features, while the WER relies on a pre-trained ASR
system [25] trained on the full LibriSpeech-train-960 dataset
to assess the preservation of linguistic content.

D. Evaluations

Within the context of voice privacy protection, our evalua-
tion of RASO incorporates two state-of-the-art baselines, each
contextualised by their relationship to sex obfuscation. Noe
et al. [6], explicitly designed for sex obfuscation, serves as
a direct comparator. Complementing this, Panariello et al. [7]
is included to benchmark a related approach. Although their
work focuses on speaker anonymisation, it hides the speakerID
while also hiding sex-related features.

To simulate adversarial scenarios of increasing sophistica-
tion, we adopt two attack models inspired by the VoicePrivacy
Challenge [1]. The first, an ignorant attack model, assumes
the attacker lacks knowledge of RASO and uses a pre-trained
sex classifier 5 to classify obfuscated speech. In the second
scenario, a semi-informed attack [26], the attacker fine-tunes
a sex classifier on sex-neutralised datasets generated by Noe
et al. [6], Panariello et al. [7] and RASO, respectively. This
setup assesses RASO’s resilience against classifiers adapted
to obfuscation patterns from competing methods, providing a
rigorous comparison across frameworks.

Results for our system and two competing methods are
presented in Table I for both attack models. Also shown are
results for raw (unprocessed/unprotected) speech data. For the
ignorant attack model, RASO achieves an EER of 55.38%,
significantly outperforming results for both competing systems
– 36.88% for Noe et al. [6] and 48.56% for Panariello et al. [7].

5https://huggingface.co/audeering/wav2vec2-large-robust-24-ft-age-gender
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The latter result shows that even voice anonymisation systems,
though not tuned specifically for sex obfuscation, can still
be effective, most likely because target/pseudo speaker voices
used in the conversion are of random sex. RASO maintains a
WER of 2.47%, comparable to that of Noe et al. (2.48%) but
far superior to that of Panariello et al. (5.90%). Together, these
results demonstrate the successful suppression of sex-specific
acoustic features (e.g., formant patterns, F0 contours) and the
preservation of linguistic content.

The results for the semi-informed attack model exhibit even
more pronounced disparities, underscoring the efficacy of our
approach. RASO achieves an EER of 47.25%, significantly
outperforming the 32.15% and 16.37% for competing sys-
tems. This substantial improvement highlights the resilience
conferred by adversarial training and our multi-task loss design
against more sophisticated attacks, still without access to target
speaker data. Across both attack models, RASO consistently
attains a high EER and low WER.

V. CONCLUSIONS

We propose an integrated adversarial framework for ro-
bust sex obfuscation without target speaker references. Our
approach adjusts formant patterns and F0 distributions to
neutralise sex cues in speech while preserving intelligibility.
Experimental results confirm improvements over competing
methods, demonstrating the merit of our approach in balancing
the obfuscation of sex information with the preservation of
linguistic content.

In future research, a potential extension could involve intro-
ducing mechanisms to control the degree of sex obfuscation,
which would allow users to tailor the conversion intensity ac-
cording to specific privacy requirements, thereby enhancing the
framework’s adaptability across diverse application domains.

REFERENCES

[1] N. Tomashenko, X. Miao, P. Champion, et al., “The
voiceprivacy 2024 challenge evaluation plan,” arXiv
preprint arXiv:2404.02677, 2024.
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