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Abstract—This paper presents a high-precision localization
method tailored for line-of-sight (LoS)-dominated wireless en-
vironments. Unlike conventional received signal strength (RSS)
techniques that indiscriminately utilize multipath components,
our approach leverages LoS path characteristics through a re-
fined Composite Nakagami-m Log-Normal statistical model. We
demonstrate that the LoS signal amplitude follows a Nakagami-
m distribution (equivalent to Gamma-distributed energy), while
its scale parameter exhibits log-normal variation due to free-
space path loss. This dual-scale model accurately captures both
small-scale fading and distance-dependent attenuation unique
to LoS propagation. For practical implementation, we develop
an expectation-maximization (EM) algorithm enhanced with
Langevin Monte Carlo (LMC) sampling, enabling efficient
maximum likelihood estimation. Experimental validation using
Quadriga-generated LoS channel data confirms consistent high
accuracy, outperforming standard RSS methods in comparable
LoS conditions. Although primarily designed for LoS scenarios,
the framework offers theoretical insights for future extensions to
mixed propagation environments. The solution remains practi-
cal for existing infrastructure, providing immediate benefits for
5G/6G systems in LoS-predominant deployments such as urban
canyons and millimeter-wave cells.

Index Terms—Localization, Line-of-sight, Nakagami-m, Log-
normal, Expectation maximization, Langevin Monte Carlo

I. INTRODUCTION

Precise localization is essential for contemporary wireless
systems, supporting applications such as autonomous nav-
igation [1], smart infrastructure [2], and augmented reality
[3]. While GPS functions effectively outdoors, alternative
methods are required for indoor and urban environments.
Cellular network-based localization, which utilizes existing
base stations (BSs) and communication signals, offers a
viable solution without necessitating additional hardware.

Current RSS-based localization methods are favored for
their simplicity and compatibility with standard devices, as
they circumvent the need for precise time synchronization
or antenna arrays [4], [5], [6]. Nonetheless, these traditional
RSS techniques are susceptible to significant errors due to
multipath interference and oversimplified channel models
[7]. To mitigate these issues, an enhancement in the chan-
nel estimation phase is proposed. This involves identifying
and modeling the line-of-sight (LoS) path. By accurately
characterizing the LoS attenuation and isolating it from

the non-line-of-sight (NLoS) components, this method not
only improves the accuracy of the model but also reduces
interference, all without the need for additional equipment.

To enhance localization accuracy, we propose a novel
method that accurately models both large-scale and small-
scale fading effects using a Composite Nakagami-m Log-
Normal Distribution, also known as Composite Gamma Log-
Normal Distribution [8], [9], validated in various industry
environments [10], [11]. Specifically, this model uses a
Nakagami-m distribution to characterize signal amplitude,
indicative of signal energy following a Gamma distribution,
while assuming a uniform distribution for the phase. For
large-scale attenuation, we model the scale parameter Ω
of the Gamma distribution within a log-normal distribution
framework, with its mean dictated by a free-space path-
loss model. This dual approach effectively captures both
the distance-dependent signal decay and rapid small-scale
variations.

To determine the user equipment (UE) position from this
model, we employ a maximum likelihood estimation (MLE)
framework [12]. Given the presence of hidden variables,
such as fading parameters, we implement an expectation-
maximization (EM) algorithm [13], [14]. The E-step, in-
volving the computation of posterior expectations, presents
analytical challenges. To address this, we employ Langevin
Monte Carlo (LMC) sampling [15], which facilitates efficient
numerical integration and ensures robust convergence with
maintained computational efficiency.

Finally, we validate our method using channel data gen-
erated by Quadriga [16], which simulates realistic urban
environments. Our experimental results indicate significant
improvements over traditional RSS-based methods, achieving
sub-meter accuracy in typical LoS/NLoS mixed scenarios.
The proposed model exhibits superior robustness against
small-scale fading. Moreover, the EM-LMC estimator facili-
tates reliable and efficient position recovery, further enhanc-
ing the practicality and accuracy of our localization approach.

A. Notations

The notation p(x;µ,Σ) denotes the probability density
function of a complex circularly symmetric Gaussian random
vector x with mean µ and covariance matrix Σ. For any
matrix H ∈ CM×N, hi represents its i-th column vector.



For any vector a ∈ CN , ai denotes its i-th element. IM ∈
RM×M stands for the M ×M identity matrix.

II. SYSTEM MODEL

Consider a multi-base station (BS) localization system
where the user equipment (UE) estimates its position using
orthogonal frequency-division multiplexing (OFDM) pilot
signals transmitted from K spatially distributed BSs. The
system operates under the following assumptions:

A. Pilot Structure and Delay Modeling

Each BS transmits known pilot symbols Sk ∈ CN×N

(diagonal matrix, N subcarriers), and the channel exhibits
sparse multipath propagation with integer-delay Line-of-
Sight (LoS) and Non-LoS (NLoS) components. The delay
matrix Tk ∈ CN×L (where L is the maximum delay spread)
is constructed as a Toeplitz matrix incorporating cyclic shifts
corresponding to the LoS/NLoS path delays. These delays
remain time-invariant over short observation intervals due to
negligible geometric changes between the UE and BSs.

B. Time-Varying Channel Gains

The complex channel gain vector ak[n] ∈ CL×1, repre-
senting the amplitudes and phases of the multipath com-
ponents, varies across time instances n due to small-scale
fading. The received signal yk[n] ∈ CN×1 at the User
Equipment (UE) from the k-th Base Station (BS) at time
n is given by:

yk[n] = SkTkak[n] + vk[n], k = 1, . . . ,K, (1)

where vk[n] ∼ CN (0, σ2
vIN ) represents the additive white

Gaussian noise (AWGN). The matrices Sk (pilots) and Tk

(delays) are deterministic and known, and the time-invariant
delay matrix Tk encodes delay information between Line-
of-Sight (LoS) and Non-Line-of-Sight (NLoS) components.

For collaborative localization, the aggregate received sig-
nal from all K BSs is stacked into a composite vector:

ỹ[n] =

y1[n]
...

yK [n]

 =

S1T1 · · · 0
...

. . .
...

0 · · · SKTK


︸ ︷︷ ︸

Block-diagonal pilot-delay matrix Φ

a1[n]
...

aK [n]

+ṽ[n].

(2)
The block-diagonal structure of Φ, resulting from orthogonal
pilot assignments across BSs, ensures inter-cell interference-
free channel estimation.

C. LoS Channel Matrix Acquisition

The input LoS channel fading matrix X ∈ CM×K ,
containing the complex gains of the line-of-sight (LoS) paths
across M measurement intervals and K base stations, is
obtained through the following channel estimation procedure:

X =

 âLoS
1 [1] · · · âLoS

K [1]
...

. . .
...

âLoS
1 [M ] · · · âLoS

K [M ]

 , (3)

where each element âLoS
k [n] represents the estimated LoS

channel gain for BS k at time interval n, obtained through
the following steps:

1) Pilot-Based Channel Estimation: For each time inter-
val n and BS k, the receiver first estimates the complete
multipath channel vector:

âk[n] = (SkTk)
†yk[n]. (4)

Moreover, the LoS component is extracted as:

âLoS
k [n] = e⊤1 âk[n] (5)

where e1 = [1, 0, . . . , 0]⊤ selects the first component corre-
sponding to the LoS path in the delay-ordered channel vector.

2) Statistical Properties: The estimation error for each
LoS component follows:

âLoS
k [n] = aLoS

k [n] + ϵk[n], ϵk[n] ∼ CN (0, σ2
ϵ,k) (6)

with estimation variance:

σ2
ϵ,k = σ2

v∥(SkTk)
†e1∥2 (7)

3) Matrix Construction: The complete LoS channel ma-
trix is constructed by collecting estimates across all time
intervals and BSs:

X = Xtrue +E (8)

where E is the estimation error matrix with i.i.d. elements
ϵk[n]. The accuracy of X directly impacts the subsequent
parameter estimation in the EM framework. The EM module
operates under the default assumption that matrix X is
accurate.

D. Statistical Modeling of LoS Channel Gain

The LoS channel fading for each base station is modeled
as a compound Nakagami-m and log-normal distribution,
capturing both small-scale and large-scale fading effects. For
simplicity, we define the vector xk ∈ CM×1 to collect the
M -group LoS channel fading of the k-th BS as:

xk = [xk1, · · · , xkM ]T = [aLoS
k [1], · · · , aLoS

k [M ]]T .

For small-scale fading, each aLoS
k [n] follows a Nakagami-m

distribution in magnitude and a uniform phase distribution
over [0, 2π). Thus, the probability density function (PDF) of
xkn is:

px(xkn|m,Ωkn) =
mm|xkn|2m−2

πΓ(m)Ωm
kn

exp

[
−m|xkn|2

Ωkn

]
,

where Ωkn represents the mean received signal power in the
n-th interval between the k-th BS and the user equipment
(UE). This is modeled as a hidden random variable with a
log-normal distribution:

pΩ(Ωkn|µk, σ
2
k) =

η

Ωkn

√
2πσ2

k

exp

[
− (η lnΩkn − µk)

2

2σ2
k

]
,



where η = 10/ ln 10, and µk and σ2
k (in dB) are the scale

and shape parameters, respectively:

µk = E {η lnΩkn} , σ2
k = E

{
(η lnΩkn − µk)

2
}
.

Here, µk is defined as:

µk = η

(
lnG0 + nLoS ln

λ

4π
− nLoSdk

)
,

where G0 combines transmit power and antenna gain, λ is
the wavelength, nLoS is the propagation fading factor and dk
is the LoS distance between the UE and the k-th BS.

Assuming the UE’s position is rUE = [rUE
x , rUE

y , rUE
z ] and

the k-th BS’s position is rBSk = [rBSk
x , rBSk

y , rBSk
z ], the

distance dk is:
dk = ∥rUE − rBSk∥2,

with ∥ · ∥2 denoting the Euclidean distance:

∥rUE − rBSk∥2 =

√ ∑
i∈{x,y,z}

(rUE
i − rBSk

i )2. (9)

Since µk decreases linearly with dk (due to the −nLoSdk
term), we can estimate the UE’s position using multiple BS
measurements.

E. Estimation Problem

Assuming we have perfectly accurate observations of X ∈
CM×K given as X = [x1, · · · ,xK ], we define a hierarchical
probabilistic model for the joint density function of:

• The measurements X,
• The hidden signal Ω ∈ RM×K = [Ω1, · · · ,ΩK ],
• The unknown parameters θ =

{
m, {µ2

k}Kk=1, {σ2
k}Kk=1

}
.

This joint density is expressed as:

p(X,Ω;θ) =
K∏

k=1

M∏
n=1

px(xkn|m,Ωkn)×

pΩ(Ωkn|µk(r
UE, nLoS), σ

2
k). (10)

Our goal is to estimate θ directly from X using the maximum
likelihood estimator (MLE):

θ̂ = argmax
θ

ℓ(θ;X) = argmax
θ

L(θ;X), (11)

where L(·) and ℓ(·) denote the likelihood and log-likelihood
functions, respectively. The likelihood function is given by:

L(θ;X) = p(X|θ) =
∫
p(X,Ω;θ) dΩ. (12)

However, directly solving this integral to obtain p(X|θ) is
intractable due to the lack of an analytical solution. Addition-
ally, the latent variables Ω are unobserved, and their distribu-
tions depend on the unknown θ. To address these challenges,
we introduce the Expectation Maximization (EM)- Langevin
Monte Carlo (LMC) algorithm in the following section.

III. EXPECTATION MAXIMIZATION (EM) - LANGEVIN
MONTE CARLO (LMC) ALGORITHM

A. Review of Expectation Maximization

To solve the optimization problem in (11), we employ
the expectation-maximization (EM) algorithm, which is par-
ticularly effective for estimation problems involving latent
variables like Ω. Using the minorization-maximization (MM)
framework, we iteratively maximize a lower bound of the
log-likelihood function. At the t-th iteration, given the current
estimate θ(t), we apply Jensen’s inequality and the concavity
of ln(·) to construct a tractable lower bound for the log-
likelihood. This allows us to approximate the optimal pa-
rameters through iterative refinement as below:

ℓ(θ)− ℓ(θ(t)) ≥
∫∫

p(Ω|X,θ(t)) ln
p(X,Ω;θ)

p(Ω|X,θ(t))
dΩ

−
∫
p(Ω|X,θ(t)) ln p(X|θ)dΩ. (13)

where p(Ω|X,θ) is the posterior distribution of Ω as which
can be expressed by Bayes’ rule as:

p(Ω|X,θ) = p(X,Ω;θ)∫
p(X,Ω;θ)dΩ

. (14)

By observing (13), it is obvious that optimizing θ by maxi-
mizing ℓ(θ) also equals to maximizing the loss function as
below:

θ(t+1) = argmax
θ

Ep(Ω|X,θ(t))[ln p(X,Ω;θ)]. (15)

Furthermore, it can be shown that at convergence, we obtain
θ(t) = θ(t+1). At this point, Jensen’s inequality becomes an
equality, demonstrating that the EM algorithm converges to
a (local) optimum. We now derive the parameter update rule
for θ(t+1) based on the current estimate θ(t).

1) Optimization of Nakagami-m Parameter:: The estima-
tion of the Nakagami-m parameter proceeds through the
following rigorous derivation within the EM framework.
First, we construct the complete-data log-likelihood function
for parameter m given the observed measurements X and
latent variables Ω:

ℓc(m) =
K∑

k=1

M∑
n=1

[m lnm−m lnΩkn − ln Γ(m)

+ (m− 1) ln |xkn|2 −
m|xkn|2

Ωkn
− ln |xkn|2]. (16)

Taking the conditional expectation with respect to
p(Ω|X,θ(t)) yields the Q-function:

Q(m|θ(t)) = m lnm−m ln[Γ(m)] +mξ(t), (17)



where

ξ(t) =
1

KM

K∑
k=1

M∑
n=1

Ep(Ωkn|xkn,θ(t))[lnΩkn]

+
1

KM

N∑
m=1

K∑
k=1

[|xkn|2]Ep(Ωkn|X,θ(t))[Ω
−1
kn ]

− 1

KM

M∑
n=1

K∑
k=1

[ln |xk(l)|2], (18)

The maximization of Q(m|θ(t)) leads to the following non-
linear equation for m(t+1):

lnm− ψ(m) + 1 = ξ(t) (19)

where ψ(m) = Γ′(m)/Γ(m) is the digamma function. This
transcendental equation requires numerical solution via the
Newton-Raphson method. The iterative update rule is derived
by computing the first and second derivatives of the Q-
function:

∂Q

∂m
= (lnm− ψ(m)) + ξ(t),

∂2Q

∂m2
=

1

m
− ψ′(m),

(20)

where ψ′(m) is the trigamma function. The Newton-Raphson
iteration thus becomes:

m(i+1) = m(i) −
[
∂2Q

∂m2

]−1 [
∂Q

∂m

]
. (21)

For practical implementation, we initialize the Newton-
Raphson method using the moment-based estimator [12]:

m
(t+1)
init =

1 + 2ξ(t)

(2ξ(t) − 2)(2 + ξ(t))
. (22)

The iteration continues until convergence is achieved, typ-
ically when |m(i+1) − m(i)| < ϵ for some small tolerance
ϵ > 0. The final value is taken as m(t+1) = m(∞). The
expectations in these expressions are computed as:

Ep(Ωkn|xkn,θ(t))[lnΩkn] =

∫ ∞

0

lnΩknp(Ωkn|xkn,θ(t))dΩkn,

(23)

Ep(Ωkn|xkn,θ(t))[Ω
−1
kn ] =

∫ ∞

0

Ω−1
knp(Ωkn|xkn,θ(t))dΩkn,

(24)

where the conditional distribution p(Ωkn|xkn,θ(t)) is derived
from the Nakagami-m and log-normal mixture model. The
complete algorithm guarantees monotonic increase in the
likelihood function and convergence to a local maximum
under standard regularity conditions.

2) Optimization of Log-Normal Parameters: The closed-
form updates for the log-normal distribution parameters µk

and σ2
k are derived as follows:

µ
(t+1)
k =

η

M

M∑
n=1

Ep(Ωkn|xkn,θ(t)) [lnΩkn] , (25)

(σ2
k)

(t+1) =
η2

M

M∑
n=1

Ep(Ωkn|xkn,θ(t))

[
(lnΩkn)

2
]
− (µ

(t+1)
k )2,

(26)

where

Ep(Ωkn|xkn,θ(t)) =

∫ ∞

0

(lnΩkn)
2p(Ωkn|xkn,θ(t))dΩkn.

(27)

B. Langevin Monte Carlo Algorithm for Expectaion Approx-
imation

In the maximization step, we have to calculate the ex-
pectation Ep(Ωkn|xkn,θ(t))[lnΩkl], Ep(Ωkn|xkn,θ(t))[(lnΩkl)

2]

and Ep(Ωkn|xkn,θ(t))[Ω
−1
kn ]. The posterior distribution

p(Ωkn|xkn,θ(t)) is intractable in closed form, but its
gradient ∇Ωkn

ln p(Ωkn|xkn,θ(t)) can be computed (up to
a normalization constant) via:

∇Ωkn
p(Ωkn|xkn,θ(t)) = ∇Ωkn

ln pΩ(Ω;µ
(t)
k , (σ2

k)
(t))

+∇Ωkn
ln p(xkn|Ωkn,m

(t)). (28)

By using the Langevin Monte Carlo (LMC) algorithm, the
samples {Ω(i)

kn}Pi=1 from p(Ωkn|xkn,θ(t)) by iterating the
following dynamics:

Ω
(i+1)
kn = Ω

(i)
kn + α∇Ωkn

p(Ω
(i)
kn|xkn,θ

(t)) +
√
2αγ(i), (29)

where α > 0 is the step size, γ(i) is the standard complex
Gaussian noise with zero mean and one variance. Using T

samples {Ω(t)
kn}Tt=1 from LMC, the posterior moments are

estimated empirically:

Ep(Ωkn|xkn,θ(t))[lnΩkl] ≈
1

T

T∑
t=1

ln(Ω
(t)
kl ), (30)

Ep(Ωkn|xkn,θ(t))[(lnΩkl)
2] ≈ 1

T

T∑
t=1

(ln(Ω
(t)
kl )

2, (31)

Ep(Ωkn|xkn,θ(t))[Ω
−1
kn ] ≈

1

T

T∑
t=1

1

Ω
(t)
kl

. (32)

C. Optimization of UE Position and Path Loss Exponent:

If the EM-LMC converged, we have the {µ̂k}Kk=1 and
{σ̂2

k}Kk=1 the joint optimization of user equipment position
rUE and path loss exponent nLoS is formulated as:

[(r̂UE), n̂LoS] = arg min
rUE,nLoS

ψ(rUE, nLoS)

= arg min
rUE,nLoS

K∑
k=1

1

(σ̂2
k)

∥∥µ̂k − f(rUE, rBSk , nLoS)
∥∥2 , (33)
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where the channel propagation model f(·) is defined as:

f(rUE, rBSk , nLoS) = η

(
lnG0 + nLoS ln

λ

4π

− nLoS∥rUE − rBSk∥2
)
. (34)

The joint optimization problem in (33) is solved through the
following steps:

1) Initialization:
• Set (rUE)(0) as the centroid of BS positions
• Initialize n(0)LoS = 2 (typical free-space value)
• Compute initial ζ

(0)
k = f((rUE)(0), rBSk , n

(0)
LoS)

using (34)
2) Gradient Computation: The gradient components are:

∂ψ

∂rUE = 2nLoSη
K∑

k=1

∆ψk

σ̂2
k

· rUE − rBSk

∥rUE − rBSk∥2
, (35)

∂ψ

∂nLoS
= 2η

K∑
k=1

∆ψk

σ̂2
k

(
ln

λ

4π
− ∥rUE − rBSk∥2

)
(36)

where ∆µk = µ
(t+1)
k − f(rUE, rBSk , nLoS).

3) Iterative Optimization:
• Apply limited-memory BFGS (L-BFGS) with

Wolfe conditions [17].
• Enforce nLoS ∈ [1.6, 3.5] (empirical range).
• Use Armijo line search with α0 = 0.5.

4) Termination Criteria:

∥rUE
(i+1) − rUE

(i)∥2 < ϵr (ϵr = 0.5meter), (37)

|n(i+1)
LoS − n

(i)
LoS| < ϵn (ϵn = 0.01). (38)

D. EM-LMC Algorithm Implementation

The complete Expectation-Maximization Langevin Monte
Carlo (EM-LMC) algorithm is presented in Alg. 1. The
implementation employs the following carefully tuned pa-
rameters:

• Convergence Threshold: ϵ = 0.001 (relative change in
log-likelihood).

• Learning Rate: α = 0.2 (for Langevin dynamics step).
• Particle Count: P = 200 (parallel Markov chains).
• Thermalization Steps: T = 1000 (burn-in iterations per

EM step).
• Maximum Iterations: Imax = 200 (EM cycle limit).

IV. SIMULATION RESULT

A. Simulation Configuration

In this section, we present simulation results to evaluate
the positioning performance of our proposed algorithm. We
utilize the QuaDriGa channel simulator, which is consistent
with the third Generation Partnership Program (3GPP) New
Radio (NR) specifications [18] and has been validated in
various field trials [16]. The simulator models the 3GPP

Algorithm 1 EM-LMC Based Localization
Input: LoS Channel Fading Matrix: X based on (3) and (5)
Output: UE’s Positioning: r̂UE

1 Initialize:
{
m(0), {(µ2

k)
(0), (σ2

k)
(0)}Kk=1

}
while stopping criterion not fulfilled do

2 // Expectation Step
while All expectation w.r.t. Ω are obtained do

3 Generate LMC Samples {Ω(i)
kn}Pi=1 based on (29)

Update Ep(Ωkn|xkn,θ(t))[lnΩkl] based on (30)
Update Ep(Ωkn|xkn,θ(t))[(lnΩkl)

2] based on (31)
Update Ep(Ωkn|xkn,θ(t))[Ω

−1
kn ] based on (32)

4 // Maximization Step
while All parameters are optimized do

5 Update m(t) based on (21) and (22)
Update {(µ2

k)
(t), (σ2

k)
(t)}Kk=1 based on (25) and (26)

6 // UE Position Estimation
Optimize r̂UE and n̂LoS based on (34) abd III-C

urban macro (UMa) line-of-sight (LoS) scenarios, comprising
ten clusters with ten subpaths each, sharing similar physical
parameters. We configure four base stations (BSs) with

Fig. 1: Localization Results.

coordinates set at rBS1 = [0, 0, 10], rBS2 = [50, 0, 10],
rBS3 = [0, 50, 10], and rBS4 = [50, 50, 10] in meters. The
user equipment (UE) position is rUE = [25, 25, 1] in meters,
and the altitude of UE is supposed to be known. The carrier
frequency is set to 6.7 GHz, a critical value for future
communications in the upper mid-band. We use 64 pilot
symbols with a subcarrier spacing of 120 kHz. The channel
noise level is set at 20 dB SNR. Signal recovery of X is
performed using the least squares estimate. Additionally, the
antenna gain G0 is specified as 0 dB. To underscore the
effectiveness of our LoS CSI-based localization method, we
apply the RSS-based localization method via the Log-normal



Fig. 2: CDF of Absolute Bias Error.

statistical model[19].
B. Simulation Results

In our experiments, we compare the performance of our
proposed method, represented in blue, against a benchmark
method, represented in red. Our approach estimates the nLoS
at approximately 2.27 and m at 1.1. Fig. 1 displays the
outcomes of 100 estimation trials. It is evident that our
results cluster more closely around the true values, show-
casing the higher reliability of our method. In Fig. 2, which
plots the results on x and y coordinates, we evaluate the
performance from the cumulative distribution function (CDF)
perspective. The 95% confidence interval for the x-axis error
is 1.8 meters, and for the y-axis, it is 1.97 meters. These
values significantly surpass those of the comparison trial.
These findings substantiate the effectiveness of our method,
highlighting its superior accuracy and reliability in practical
scenarios.

V. CONCLUSIONS

This paper proposes a high-precision localization method
for LoS-dominated environments by modeling LoS path char-
acteristics via a Composite Nakagami-m Log-Normal distri-
bution, which jointly captures small-scale fading (Nakagami-
m) and large-scale path loss (log-normal). We develop
an EM-LMC estimator to efficiently solve the associ-
ated MLE problem, addressing hidden variables through
Langevin Monte Carlo sampling. Validated with 3GPP-
compliant Quadriga simulations, our method achieves sub-
meter accuracy (95% CI: 1.8 m x-axis, 1.97 m y-axis),
outperforming traditional RSS techniques in LoS conditions.
The framework’s computational efficiency and compatibility
with existing infrastructure make it practical for 5G/6G
deployments in urban canyons or mmWave cells. While op-
timized for LoS scenarios, future work will extend the model

to mixed LoS/NLoS environments via hybrid measurements
and adaptive tuning, further enhancing its applicability for
autonomous navigation, smart cities, etc..
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