
A Language Model-Based Playlist Generation Recommender
System

Enzo Charolois-Pasqua∗
EURECOM

Sophia Antipolis, France
enzo.charolois-pasqua@eurecom.fr

Eléa Vellard∗
EURECOM

Sophia Antipolis, France
elea.vellard@eurecom.fr

Youssra Rebboud
EURECOM

Sophia Antipolis, France
Youssra.Rebboud@eurecom.fr

Pasquale Lisena
EURECOM

Sophia Antipolis, France
pasquale.lisena@eurecom.fr

Raphaël Troncy
EURECOM

Sophia Antipolis, France
raphael.troncy@eurecom.fr

Abstract
The title of a playlist often reflects an intended mood or theme,
allowing creators to easily locate their content and enabling other
users to discover music that matches specific situations and needs.
This work presents a novel approach to playlist generation using
language models to leverage the thematic coherence between a
playlist title and its tracks. Our method consists in creating se-
mantic clusters from text embeddings, followed by fine-tuning a
transformer model on these thematic clusters. Playlists are then
generated considering the cosine similarity scores between known
and unknown titles and applying a voting mechanism. Performance
evaluation, combining quantitative and qualitative metrics, demon-
strates that using the playlist title as a seed provides useful recom-
mendations, even in a zero-shot scenario.

CCS Concepts
• Information systems→ Language models; Recommender
systems.

Keywords
Language model, Playlist generation, NLP
ACM Reference Format:
Enzo Charolois-Pasqua, Eléa Vellard, Youssra Rebboud, Pasquale Lisena,
and Raphaël Troncy. 2025. A Language Model-Based Playlist Generation
Recommender System. In Proceedings of the Nineteenth ACM Conference on
Recommender Systems (RecSys ’25), September 22–26, 2025, Prague, Czech Re-
public. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3705328.
3748053

1 Introduction
In the era of personalized digital experiences, recommender systems
have become crucial for delivering content tailored to individual
tastes. These systems use advanced algorithms and data analyt-
ics to understand user preferences and behaviors, making each
∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
RecSys ’25, Prague, Czech Republic
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1364-4/25/09
https://doi.org/10.1145/3705328.3748053

interaction uniquely relevant. Music platforms, in particular, rely
heavily on recommender systems to enhance user engagement and
satisfaction by suggesting songs and artists that align with a user’s
listening habits and favorite genres.

However, creating tailored playlists remains a challenging and
time-consuming task for users. Crafting a playlist that captures
the right mood, includes a diverse yet cohesive selection of tracks,
and adapts to different listening contexts requires significant effort.
Users must manually search for songs, consider the sequence and
flow of the playlist, and continuously update it to keep it fresh and
engaging. This process can be overwhelming, especially for those
with large music libraries or eclectic tastes.

Apart from the tracks, another distinctive characteristic of a
playlist is its title. Previous studies have demonstrated that the
playlist titles significantly influence users’ expectations, playing
a crucial role in their selection process [17]. Moreover, playlists,
and even private ones, have generally meaningful titles that reflect
their content, mood, genre, or the context in which they were cre-
ated, such as a specific situation, event, or purpose. As a result, it is
common to find similarities in the titles of playlists created by dif-
ferent users, who often include words like “workout”, “gaming”, or
“wedding” to indicate the playlist’s purpose [14]. For these reasons,
the playlist title can be a key element in recommender systems,
specifically if the title reveals a commonsense theme rather than
being personal [28]. First, it can serve as the sole seed element to
suggest songs for an empty playlist in a cold start scenario. Sec-
ondly, it can enhance other types of recommender systems (e.g.,
collaborative-based) by adding a semantic constraint for proposing
subsequent songs.

While it is true that titles like those mentioned in the previ-
ous paragraph may have abundant ready-made materials, e.g. by
streaming services, a user may instead want to have a playlist
named “Housewarming Party”, “Spring awakening”, or “Country
summer”1 will hardly have a straightforward, one-to-one match
with existing categories.

In this paper, we specifically study this challenge in proposing a
pipeline for playlist generation using a sole title as input. Unlike
previous works [10, 19], we use language models to capture the
semantic meaning of playlist and track titles. In particular, we fine-
tune a pre-trained transformer-based language model on playlist
groups, clustered based on their track content. Such a fine-tune
1Those real playlist titles that one can find in the Million Playlists Dataset.

https://orcid.org/0009-0004-9659-8816
https://orcid.org/0009-0006-1050-6736
https://orcid.org/0000-0003-3507-5646
https://orcid.org/0000-0003-3094-5585
https://orcid.org/0000-0003-0457-1436
https://doi.org/10.1145/3705328.3748053
https://doi.org/10.1145/3705328.3748053
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3705328.3748053

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Charolois–Pasqua, Vellard, et al.

language model enables the creation of vector representations for
any playlist title, whether known or unknown, of any complexity
and not necessarily matching a pre-existing category (genre, mood,
emotion, purpose) as in previous related work [5, 11]. Track recom-
mendations for a given playlist title are subsequently made using
similarity metrics and a voting mechanism. In addition, we assess
the capacity of Large Language Models (LLM) in playlist generation
from titles, both in a 0-shot scenario and for ranking a pre-selection
of tracks.

The main contributions of this work are:
• A pipeline for generating playlists from their titles;
• An evaluation of this pipeline, against different variants and
against other title-based recommender systems;

• An assessment of the capabilities of prompt-based LLM in
the task of playlist generation.

The code and data of all our experiments are available in open source
at https://github.com/elea-vellard/LLM-Playlist-Recommender.

The remainder of this paper is structured as follows. Section 2
provides an overview of previous work related to playlist gener-
ation. Section 3 delves into the details of our proposed approach,
outlining each step comprehensively. Section 4 presents and dis-
cusses the results of our study. Finally, Section 5 concludes the
paper, highlights its limitations and outlines potential future work.

2 Related work
The inclusion of playlist titles in music recommender system re-
search is relatively recent. Several experiments have been made in
generating the title of a playlist, given the list of tracks it includes,
using RNN and transformer-based models [8, 15]. In 2024, an online
web application uses a combination of GPT-4 [22] and Claude [1]
to generate good and catchy playlist titles given a list of songs.2
While these studies investigate a task that is the inverse of ours,
they provide some evidence that language models can successfully
capture the semantic content of playlist titles.

An in-depth study on the creation and purpose of playlists was
conducted in [5]. The authors of this study identified 9 distinct
categories (excluding ‘Other’) that guide the organization of tracks
into playlists. Furthermore, the research delves into examples of
lengthy and complex playlist titles, which pose challenges when at-
tempting to assign them to specific categories. In [11], a topic model
applied on titles is used to classify playlists, and represent them as
10-dimensional topic mixture vectors. The distance between these
vectors is used to recommend similar playlists. McFee and Lanck-
riet [18] apply natural language processing techniques to playlists
by treating songs as tokens in a sequence, analogous to words in a
sentence. While they do not use natural language directly, songs are
modeled as discrete items similar to words in traditional NLP tasks.
For example, a playlist containing the songs Let It Be, Hey Jude, and
Imagine would be represented as a three-token sequence, just like a
sentence composed of three words. Other works intersecting music
information retrieval and NLP are reported in [13].

In 2018, the annual RecSys Challenge focused on playlist com-
pletion, leading to the release of the Million Playlist Dataset by
Spotify [4]. This dataset remains one of the most significant re-
sources for the task today. The inclusion of 0-seeds playlist in the
2https://www.playlistnameai.com/

challenge, pushed several participants in having a cold start strategy
based on playlist titles. The underlying rationale for the proposed
implementations is consistent across all participants: playlists with
similar titles are more likely to contain the same tracks. In [10], titles
are used to create a matrix reporting if a given track (column) ap-
pears in at least one playlist having a specific title (row); the matrix
is then used to compute a playlist-song pair score. In [19], playlist
embeddings have been computed based on the co-occurrences of
tracks, and these embeddings are used for clustering and for train-
ing a fastText model [2], working at the n-gram level.3 In [16],
another approach relying on a LSTM that learns word embeddings
(based on n-grams), used in input – together with track features –
to a Recurrent Neural Collaborative Filtering model is proposed,
showing good performances in the no-seed scenario.

Other textual information are used in the literature to generate
or to continue playlists. In [12], a Knowledge Graph is used to con-
nect the contextual information of a playlist – extracted from its
metadata such as the title – and the genres of the tracks, which is
then fed in a classifier. These contextual information are however
manually annotated. Emotions are leveraged in [20], extracted with
a LSTM from chatbot interactions and mapped to acoustic features
of tracks that are proposed as a playlist. In this context, a sad emo-
tion can lead to a selection of sad and slow songs. Text2Playlist [6]
is a tool designed to generate relevant playlists based on a textual
prompt (e.g., “I want music from the 90s for work”). The system
uses an LLM to extract a set of tags from the prompt, which are
then used to produce playlist recommendations which are further
refined by the LLM. Finally, Text2Tracks [23] and TALKPLAY [7]
perform a supervised finetuning of LLMs on pairs including a query
(or conversation) and a list of recommended tracks.

These studies do not directly engage with titles, thus distinguish-
ing from our work. Indeed, following the RecSys Challenge 2018,
limited attention has been devoted to playlist titles, leaving the
state of the art largely globally unchanged while transformer-based
approaches and LLM enable nowadays to go one step further.

3 Method
Our approach to playlist generation exploits the textual information
of playlist (name and track titles) to capture the intended scope
and topic of the playlist itself. Our methodology is divided into two
phases.

The training phase (Figure 1) begins with the preprocessing
of the dataset to extract the relevant information for our goal. Af-
terwards, we employ a pre-trained transformer-based model to
generate embeddings that capture the semantic meaning of the
titles of both playlist and the included tracks. These embeddings
transform the textual information into high-dimensional vectors,
which are the representation of the playlists in a semantic space.

We apply a clustering algorithm to the generated embeddings, in
order to group playlists based on their thematic similarity and iden-
tify distinct themes or moods that are prevalent across the dataset.
The resulting clusters serve as the foundation for fine-tuning a lan-
guage model, making it more capable to capture semantic similarity
in this specific context.

3An n-gram is a contiguous sequence of n items (phonemes, syllables, letters, etc.)
from a given sample of text or speech.

https://github.com/elea-vellard/LLM-Playlist-Recommender
https://www.playlistnameai.com/

A Language Model-Based Playlist Generation Recommender System RecSys ’25, September 22–26, 2025, Prague, Czech Republic

MPD Pretrained
SBERT

Playlist
embeddings Clustering Fine-tuning

Fine-tuned
language

model

Figure 1: Diagram representing our training approach

Fine-tuned
language

model

New
Playlist Title MPD

Embedding
representation

Embedding
representation

K most relevant playlists

Ranking based
on cosine
similarity

N recommended tracks

Voting
mechanism

Figure 2: Diagram representing our recommendation ap-
proach when a new playlist title is used as seed

In the generating phase (Figure 2), the fine-tuned transformer
model extracts the embedding representations of titles from both
existing playlists and new input playlists. These embedding repre-
sentations are then compared using cosine similarity scores. Each
new input playlist title is compared with the known titles of exist-
ing playlists within the dataset, ranking them based on similarity.
This process identifies the most similar playlists.

A voting mechanism is subsequently employed to determine
the final selection of tracks in the new playlist being generated.
This mechanism considers all tracks included in the most similar
playlists, and returns in output those that occur the most.

Separately, we conducted additional experiments with prompt-
based LLM for playlist generation from a title, in order to have a
comparison with our proposed fine-tuned model.

These steps are further detailed in the following sections.

3.1 Processing the dataset
The Million Playlist Dataset (MPD) released by Spotify in 2018 [4]
is composed of one million user-generated playlists that are com-
monly used for understandingmusic preferences and for developing
recommendation algorithms. It is available as a set of JSON slices,
each slice containing 1,000 playlists. In the dataset, a playlist is
represented with a title and a unique playlist identifier (pid), and
includes some additional information such as the timestamp of the

last update, the number of included tracks and artist, and an (op-
tional) description. Each playlist is composed of a certain number
of tracks and artists, that can be identified by their unique Uniform
Resource Identifier (URI).

To better manage the content, the dataset is transformed into
easily-readable CSV files:

• playlists.csv contains the main information of each playlist:
its pid, its title, the number of tracks, etc.

• items.csv serves as a bridge between tracks and their cor-
responding playlists. It connects every track (identified by
its URI) to its playlist (pid) and writes the track’s position
within the playlist.

• tracks.csv contains information about each track: its unique
URI, the title, the artist, the album URI and name, and the
track duration.

3.2 Clustering strategy
We hypothesize that playlist titles and track names convey specific
ideas and themes that maintain coherence within the context of
the playlist, with this coherence being domain-specific rather than
universal. For example, a playlist titled “Let it Snow” could simply
suggest a winter theme when just considering the semantic mean-
ing of the words. However, within the context of music playlists, it
unmistakably indicates a Christmas-themed collection.

Based on this premise, we propose that playlist titles and track
titles that frequently co-occur are more likely to share semantic
relatedness, similar to how words that often appear together in
sentences do. Just as sentences, when grouped into documents, pro-
vide the contextual foundation for fine-tuning language models, the
combination of playlist and track titles, organized into thematically
coherent clusters, can serve as a valuable dataset for fine-tuning a
playlist-aware recommendation model.

3.2.1 Vector representation of playlist content. There are several
methods to represent playlists as vectors based on their content.
The one-hot encoding approach, as in [10], was deemed imprac-
tical due to its excessive size and computational inefficiency. The
skip-gram approach, as described in [19], was also considered and
discarded for similar reasons. Consequently, we opted to use text-
based embeddings for this vector representation because they offer
a more compact dimensionality through aggregation techniques.
In this scenario, each playlist is represented by the titles of all its
tracks.

Initially, we tested word embedding models such as fastText [2],
averaging the vectors of all words composing the track titles in the
playlist. However, our initial assessment revealed that this model
was not sufficiently efficient for our use case, as it primarily focuses

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Charolois–Pasqua, Vellard, et al.

Figure 3: T-SNE plot of 10 clusters for the training set using
kMeans on fastText embeddings

on word-level representations and failed to capture the contextual
meaning of playlist titles. This was particularly evident in our
attempt to cluster playlists, which resulted in poorly defined data
separations as illustrated in Figure 3.

Thus, we opted for a transformer-basedmodel, which has demon-
strated strong performance across a wide range of tasks [29]. In
particular, we employed Sentence BERT, which leverages the atten-
tion mechanism through Siamese BERT-Networks. This approach
involves two BERT blocks processing sentence pairs concurrently,
followed by a pooling layer that generates fixed-size sentence em-
beddings [24]. This enables Sentence BERT to create more effective
representations at the sentence-level. Given that playlist titles can
be viewed as concise sentences (or at least are more extensive than
single words), we conclude that Sentence BERT is the most appro-
priate choice for our task.

For each playlist, we compute the mean embedding 𝑒 of all the
track titles in the playlist itself:

𝑒𝑝𝑙𝑎𝑦𝑙𝑖𝑠𝑡 =
1
𝑛

𝑛∑︁
𝑖=1

𝑒𝑡𝑟𝑎𝑐𝑘𝑖

where 𝑛 is the number of tracks within the playlist, and 𝑒𝑡𝑟𝑎𝑐𝑘𝑖 is
the Sentence BERT embedding of the 𝑖-th track in the playlist.

By focusing solely on the tracks within the playlists (i.e., their
content) and excluding the titles, we achieve two key objectives:
(1) We prevent the introduction of bias that could arise from similar
titles representing in facts different themes or concepts. (2) By
concealing the titles during the clustering stage, we can confidently
extract the test set later, ensuring it contains only titles that were
not seen during training. This approach maintains the integrity of
our evaluation process.

3.2.2 Clustering algorithm. The playlist vectors are clustered using
the K-Means algorithm. We manually selected the number of clus-
ters instead of relying on density-based algorithms like DBSCAN.
This was because the embedding space, composed of mean embed-
dings, was very dense, making it difficult for DBSCAN to effectively
differentiate between various themes. For the same reason, metrics
such as the Silhouette or Davies-Bouldin scores, which measure

Figure 4: The elbow curve and the suggested number of clus-
ters (in red)

intra- and inter-cluster distances, were not particularly relevant in
our specific use case.

We implemented an elbow curve approach to estimate an opti-
mal number of clusters, as in Figure 4. Since our main goal was to
ensure coherence within each cluster, the elbow curve served more
as a guideline to establish a minimum value rather than a defini-
tive choice for the number of clusters. In fact, although the elbow
curve suggested a number 𝑘 of clusters around 25, we ultimately
set 𝑘 = 200. We observed that increasing the number of clusters
generally improved performance, as visible in Figure 5. However,
we also found that a higher number of clusters significantly in-
creased computational cost. Beyond 200 clusters, the computational
expense became prohibitive. Therefore, based on our analysis, we
settled on 200 clusters as the optimal choice.

Figure 5: The standard error of estimate (SSE) of clusters
decreases with the increment of number 𝑘 of clusters.

The T-SNE plot of an initial experiment made with 50 clusters
(Figure 6) reveals two key observations. First, the clusters are more
distinct compared to those in Figure 3, although some overlaps per-
sist, making them challenging to separate completely. Additionally,
the presence of clusters that are significantly larger and more dis-
persed than others is evident. This phenomenon can be attributed

A Language Model-Based Playlist Generation Recommender System RecSys ’25, September 22–26, 2025, Prague, Czech Republic

to certain clusters containing a broader range of topics4, which we
will refer to as miscellaneous throughout this paper.

Figure 6: T-SNE plot of 50 clusters for the training set using
kMeans on Sentence BERT embeddings. It is possible to note
at least two miscellaneous clusters, in dark blue and green.

The presence of these miscellaneous clusters poses several chal-
lenges. First, their significantly larger size compared to other clus-
ters can lead to imbalanced training, potentially impacting classifi-
cation accuracy. Secondly, the informative value of these clusters is
questionable, as their playlists are included primarily because they
do not fit well into other categories. Therefore, we decided to re-
move those clusters (and playlists) from our training set. Indeed, for
the goal of fine-tuning a language model, we prefer having coherent
clusters (including only playlists on the same theme), rather than
complete ones (with a unique cluster theme). In order to realize
this, we found for each cluster the most occurring playlist title and
we computed the percentage of exact matches with it among all
the playlists’ titles of that cluster. We consider valid the clusters
that have the percentage over a threshold 𝑡 and miscellaneous be-
low it. The threshold has been set to 𝑡 = 0.02 empirically. Indeed,
most clusters below this percentage include a number of playlists
largely above the mean of all other clusters. Although this method
is relatively simple, we found it to be effective in identifying miscel-
laneous clusters, which have been excluded from the dataset. This
action removed around 40% of the MPD, resulting in a total of 158
clusters left for the next sections5.

We split our processed dataset into training (80% of the data),
validation (10%) and test set (10%), ensuring a representation of
each cluster in every set, so that the model can train and evaluate
its performance on specific clusters.

3.3 Fine-tuning a language model
The training and validation set created in the previous step is used
to fine-tune a language model, with the ultimate goal of effectively
distinguishing and classifying playlist themes. The input for fine-
tuning consists of clusters, each represented by concatenating the
titles of its associated playlists. These concatenations of titles acts as
documents in our fine-tuning, while cluster IDs are used as labels.

Concerning the architecture, we used a sentence transformer
backbone [24] and in particular the all-MiniLM-L6-v26 model.
This model maps sentences to a 384 dimensional dense vector space
and can be used for tasks like clustering, while being compact
enough to ensure computational efficiency. Additional classification
layers were included, composed of a dropout layer for regularization
and a fully connected layer to predict cluster labels. The model is
fine-tuned in two variants:

• using the cross-entropy loss, commonly used for classification
tasks;

• using the triplet loss, which focuses on making items from
the same group closer than those from different groups [25].

We used standard training arguments, including a batch size
of 8 and a learning rate of 2 × 10−5. Throughout the process, we
monitored the loss on both the training and validation sets to detect
any signs of overfitting, which we observed after approximately
15 epochs. Consequently, we stopped the fine-tuning early and
retained the model that minimized the validation loss.

On the output model, we observed significant improvements
in the model’s ability to adapt to the music playlist context. To
illustrate this, we compared the cosine similarity scores between
the embedding of the word “Workout” and each of the words “K-
pop”, “Running”, and "Sports”. In Figure 7, it is evident how the
three model variants differ in the representation. The pre-trained

4In particular, the presence in the MPD of some broad-sense, not-meaningful playlist
titles, such as “music” or “my playlist” was already reported in [10].
5It is important to specify that we exclude the miscellaneous clusters only during
the fine-tuning phase. For this task, a more homogeneous corpus was required to
prevent the language model from learning irrelevant associations. However, any title
can subsequently be processed by the fine-tuned model, which also leverages its
pre-existing knowledge.
6https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

-0,5

0,0

0,5

1,0

Workout/K-pop Workout/Running Workout/Sports

Pretrained Fine-tuned (cross-entropy loss) Fine-tuned (triplet loss)

Figure 7: The cosine similarity scores of pairs of embeddings
computed with the three model variants.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Charolois–Pasqua, Vellard, et al.

model exhibits less variability in its vectors, indicating a more
uniform and compact embedding space where nodes are closer
to each other. In contrast, fine-tuning helps to better differentiate
semantically distant words, such as “Workout” and “K-pop”, while
bringing semantically similar words, like “Workout” and “Running”
or "Workout” and “Sports”, closer together. It is noteworthy that
in the triplet loss variant, “Workout” is closer to “Sports” than to
“Running”. While “Workout” and “Sports” are definitively within
the semantic realm of physical activity, “Running” can also appear
in metaphorical contexts – such as “running away from sentiments”
– and this has probably been captured in the fine-tuned model.

3.4 Playlist generation
The final step of our pipeline focuses on generating playlists that
align with a user’s input title. Utilizing the fine-tuned model, we
aim to recommend tracks that match the input theme, even if they
are no exact matches with the proposed title.

The embeddings of each (known) playlist titles in the dataset are
computed using the finetuned model. As seed for the generation
process, a (unknown) playlist title – that can be composed of one
or multiple words – is provided, and the embedding of the title
is generated. The latter is compared with the embeddings of all
known playlists using cosine similarity.

Formally, the cosine similarity between two embeddings 𝑒𝑎 and
𝑒𝑏 is defined as:

cosine_similarity(e𝑎, e𝑏) =
e𝑎 · e𝑏

∥e𝑎 ∥∥e𝑏 ∥

The 50 playlists with the highest similarity scores are selected.
Among these, we count the occurrences of each track. A voting
mechanism is applied, where tracks that appear more frequently
across the matched playlists receive higher scores, indicating their
relevance to the input theme. The top 𝑘 most frequently occurring
songs are then recommended to the user.

3.5 Playlist generation using LLM
We also conducted a playlist generation experiment using three
Large Language Models in a implementation using LangChain [3].
In particular, we tested a zero-shot and two few-shot scenarios, in-
cluding 1 and 5 songs respectively as examples given in the prompt.
To ensure a fair comparison with our ground truth, we explicitly
instructed the LLM to consider only songs published before the
release date of the MPD dataset.

The prompt provided to the LLM is structured as follows.We first
assign the LLM the role of an expert in music recommendation and
clearly define its task. We then explicitly outline a set of constraints
that the LLM must adhere to, restricting its recommendations to
songs released before 2017. We ask to generate a playlist of 10 songs,
and specify that the output must exclusively be in JSON format
to simplify subsequent parsing. Elements in curly brackets ({})
represent configurable parameters. This allowed us to obtain a
simple format of recommended songs in order to easily compute
quantitative metrics.

Prompt for LLM Playlist Generation

You are an expert in music playlist generation.
Your task is to generate the continuation of a playlist given
only its title and five example songs with their artists.
Important:

• You have to select only songs released before October
2017.

• Propose a COMPLETE playlist consisting of exactly 10
songs.

• Do not output any extra text besides the list of songs.
• The output must be a JSON list where each item is a
dictionary with keys "song" and "artist".

• Only return the JSON list. Do not repeat the instructions
or inputs.

• In each dictionary, the value for "song" must contain
only the song name (without any hyphen or artist in-
formation) and the value for "artist" must contain
only the artist name.

• All recommended songs must be UNIQUE and must not
repeat any of the five example songs provided.

Playlist Title: "{playlist_title}"
Examples:

(1) {"song": "{song1}", "artist": "{artist1}"}
(2) . . .

Output format (strict):
[

{"song": "<title>", "artist": "<artist>"},
...

]
Answer ONLY with the JSON list exactly as specified
above. Do not output anything else.

4 Evaluation
To evaluate the effectiveness of our method, we employed a com-
bination of quantitative and qualitative metrics. The quantitative
evaluation focuses on commonly used metrics, computed on the
playlists from the test set. It is important to recall that the playlists
in the test set have not been used during training.

For each playlist, the set of relevant songs 𝑅 is defined as the ac-
tual tracks contained within that playlist. The set of recommended
songs is noted as 𝑆 . The metrics we focus on are computed for a
playlist of 𝑁 songs [4, 26]:

• precision@N measures the proportion of recommended
tracks that are relevant, with N being the number of recom-
mended songs.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁 =
𝑙𝑒𝑛(𝑅 ∩ 𝑆)
𝑙𝑒𝑛(𝑆) (1)

• recall@N assesses the proportion of relevant tracks that
were successfully recommended.

𝑟𝑒𝑐𝑎𝑙𝑙@𝑁 =
𝑙𝑒𝑛(𝑅 ∩ 𝑆)
𝑙𝑒𝑛(𝑅) (2)

A Language Model-Based Playlist Generation Recommender System RecSys ’25, September 22–26, 2025, Prague, Czech Republic

• MRR@N (Mean Reciprocal Rank) estimates the rank of the
first relevant song in the recommended songs.

𝑀𝑅𝑅@𝑁 =
1

Rank of the first relevant song in 𝑆
(3)

• R-Precision evaluates the proportion of recommended
tracks 𝑆𝑇 and artists 𝑆𝐴 that are relevant among all known
relevant tracks 𝐺𝑇 and artists 𝐺𝐴 .

R-precision =
|𝑆𝑇 ∩𝐺𝑇 | + 0.25 · |𝑆𝐴 ∩𝐺𝐴 |

|𝐺𝑇 |
(4)

• NDCG (Normalized Discounted Cumulative Gain) evaluates
the ranking quality of recommended tracks, improving as
relevant tracks are positioned higher in the list. If 𝑟𝑖 is the
position in the ground truth of the 𝑖-th recommended track,
over the 𝑁 recommended songs, and 𝐼𝐷𝐶𝐺 is the DCG ob-
tainable when the recommended playlist matches perfectly
the ground truth:

DCG =

𝑁∑︁
𝑖=1

𝑟𝑖

log2 (𝑖 + 1) (5)

NDCG =
DCG
IDCG

(6)

To complement these quantitative metrics, we incorporated a
qualitative evaluation process involving human reviews. This step
assessed the thematic coherence and overall appeal of the gener-
ated playlists. Two reviewers, leveraging their familiarity with the
songs and conducting listening sessions when necessary, evaluated
each track within the playlists and assigned an overall qualitative
score. The integration of qualitative evaluation is essential because
quantitative metrics may not fully reflect the model’s quality, given
that the recommended tracks may still be relevant according to the
playlist title, even if not among the involved ground truth.

4.1 Quantitative results
We evaluated each approach using the same metrics on the playlists
from the test set. The two fine-tuned models – with cross-entropy
loss andwith triplet loss – are comparedwith a pre-trained Sentence
BERT. For each model, we computed metrics on the first 10, 66, and
500 tracks for input playlist title, where 66 is the average number of
tracks per playlist across the whole dataset, and 500 is the number
of requested track to predict in RecSys Challenge 2018.

Table 1 shows the average metrics computed over multiple input
playlists. We observed a positive impact from fine-tuning, with all
metrics showing approximately double the improvement compared
to the pre-trained model. The results between the two fine-tuned
model variants are similar, although the cross-entropy variant per-
formed slightly better across almost all metrics. When predicting
500 tracks, the fine-tuning with cross-entropy still yields better
scores, although the improvement over the pre-trained model is
less pronounced. Conversely, the triplet loss approach results in
comparatively lower performance. As the number of predicted
songs increases, popular songs are more frequently selected be-
cause they are prevalent across various playlists. This prevalence
can diminish the distinctions between different variants, and this
is reflected in the results.

Metric PT FT-C FT-T
Precision@10 0.1630 0.1793 0.1616
Recall@10 0.0332 0.0382 0.0316
MRR@10 0.2567 0.3254 0.3004
R-Precision@10 0.0358 0.0496 0.0417
NDCG@10 0.2780 0.3740 0.3472
Precision@66 0.0571 0.1228 0.1176
Recall@66 0.0647 0.1383 0.1424
MRR@66 0.1896 0.3542 0.3444
R-Precision@66 0.0477 0.1332 0.1059
NDCG@66 0.2742 0.4311 0.4156
HIT@500 0.3868 0.3873 0.3329
Precision@500 0.0480 0.0489 0.0410
Recall@500 0.3868 0.3979 0.3329
MRR@500 0.3499 0.3490 0.2893
R-Precision@500 0.1570 0.1556 0.1285
NDCG@500 0.2731 0.2825 0.2297

Table 1: Quantitative scores of our method in the three stud-
ied variants: the pre-trainedmodel (PT), the fine-tunedmodel
with cross entropy loss (FT-C), and the fine-tunedmodel with
triplet loss (FT-T)

Method R-Precision NDCG
Monti et. al [19]
- Only title 0.0837 0.1260
- Best 0.1634 0.1717
Faggioli et. al [10]
- Only title 0.1093 0.2451
- Best 0.2078 0.3713
Kim et. al [16]
- Only title 0.0760 0.1866
- Best 0.1924 0.3394
Our method
Pre-trained 0.1570 0.2731
Fine-tuned (cross) 0.1556 0.2825
Fine-tuned (triplet) 0.1285 0.2297

Table 2: Comparison of our method and other playlist gen-
eration solutions relying on the playlist title from RecSys
challenge 2018

In Table 2, we compare our strategywith those in previousworks.
The figures for the methods in [10, 16, 19] are sourced from their
respective papers. We include results computed using only title
information, specifically R-Precision@500 and NDCG@500. Addi-
tionally, we present the best results from the relative papers, which
also incorporate training over tracks and are marked as Best in
the table. These Best results are not directly comparable with our
approach since they have been obtained using track content while
our approach relies solely on the playlist title.

Our method demonstrates superior results compared to previ-
ous works, in both reported metrics, surpassing of several points
the performance of the highest competitors that use only the title
information. Our method outperforms in NDCG also some of the

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Charolois–Pasqua, Vellard, et al.

best variants, that incorporated additional information about the
tracks in the training.

4.2 Qualitative assessment
In our qualitative evaluation, we conducted a human assessment of
thematic coherence and appeal for the generated playlists. Due to
the high costs of human annotation, we limited our evaluation to a
set of 22 specifically chosen playlists from the test set, reported in
Table 3, selected according to the following criteria:

• the playlist should include at least 10 tracks;
• a clear thematic alignment between playlist titles and their
tracks should be present. In other words, we excluded titles
that were too generic or not enough representative of the
playlist content;

• both niche and more broadly themed playlists should be
included in the final set.

PID playlist title nb. tracks

673925 KPOP 22
677580 workout music 63
321143 Dance 37
923247 Rock 198
301195 Summer 37
490485 Hawaii 36
575612 Classic Country 174
269088 older songs 8
606436 2016 129
701866 Dance 23
608829 FINESSE 55
273344 Oldies 239
501054 Rock 73
750528 sports 72
684261 Christian 10
44648 gaming 33
837665 classics 52
786219 Party 74
47214 workout 99
889395 work 51
497427 Love songs 43
677006 Summer 29

Table 3: List of 22 playlists used in our evaluation, with the
number of tracks included in each of them

Each recommended track for a given playlist title was assessed
by two reviewers, who reached a consensus on whether to consider
each track as valid. All decisions were thus agreed by consensus by
both reviewers. For instance, for a hypothetical playlist titled “Rock
classics”, tracks such as “Highway to Hell” by AC/DC, “Smells Like
Teen Spirit” by Nirvana, and “It’s My Life” by Bon Jovi would be
considered highly relevant, while “My Heart Will Go On” by Céline
Dion have to be considered as not fitting. The assigned qualitative
score is the percentage of valid tracks over the total, computed as:

𝑄𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒 𝑆𝑐𝑜𝑟𝑒 =
𝑛𝑏. 𝑣𝑎𝑙𝑖𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑐𝑜𝑚𝑒𝑛𝑑𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠
(7)

The metric is in the [0,1] range, being 1 when all recommended
tracks are valid.

The results in Table 4 demonstrate that, while quantitative met-
rics offer valuable insights, qualitative assessments provide crucial
additional perspectives. Specifically, although quantitative scores
may not perfectly align with user-generated playlists, the good
qualitative metrics across all three models underscore their ability
to create meaningful and coherent playlists, with over 70% of tracks
being relevant. The qualitative score confirms the superiority of
the model fine-tuned with cross-validation.

Metric PT FT-C FT-T
Qualitative Score@10 0.7376 0.7789 0.7533
Qualitative Score@66 0.7231 0.7719 0.7461

Table 4: Qualitative scores of our method in the three studied
variants: the pre-trained model (PT), the fine-tuned model
with cross validation loss (FT-C), and the fine-tuned model
with triplet loss (FT-T).

4.3 Evaluation of the LLM generation
We conducted an initial assessment of how LLM perform using the
same 22 playlists that were used for the qualitative evaluation. We
tested three different LLMs, namely Llama 3.1 [9], Zephyr7 [27], and
GPT4o [21] in order to have representatives among open weights
models (Llama and derivatives) and closed models (GPT). The re-
sults are presented in Table 5. Although the quantitative metrics are
based on a different test set than those in Table 18, this experiment
can already give us some insight on the LLMs performance.

All language models benefit from including a few examples in
the prompt. Llama has a unique behavior, as it prefers 1 to 5 ex-
amples for most metrics, though not for qualitative assessments.
In every configuration, GPT4o demonstrates the best performance.
In addition, we noticed that Llama and in particular Zephyr were
not completely respecting the provided instruction, recommend-
ing songs published after the desired date specified in the prompt.
GPT4o still falls short compared to the fine-tuned system, even
in the 5-shot scenario. When comparing zero-shot performance –
which relies solely on title information as in the fine-tuned system –
the gap becomes quite pronounced. However, when examining the
qualitative results, the gap is less pronounced (Table 4), with over
60% of the recommended tracks being of good quality. While Llama
and Zephyr fail to match the scores of all transformer-based models,
GPT4o succeeds in doing so, albeit only in the 5-shot scenario.

The limited scope of this experiment serves as a preliminary step
to assess the feasibility of using LLMs in playlist generation. Despite
its preliminary nature, we believe there are valuable outcomes from
this exploration:

• LLMs struggle to replicate the retrieval scores achieved in
our previous experiment;

• However, the relevance of the songs proposed by LLMs re-
mains qualitatively similar.

7https://huggingface.co/TheBloke/zephyr-7B-beta-AWQ
8For reference, the pre-trained Sentence BERT had Precision 0.0586, Recall 0.1295, and
MRR 0.2189 on the same test set of 22 playlists.

https://huggingface.co/TheBloke/zephyr-7B-beta-AWQ

A Language Model-Based Playlist Generation Recommender System RecSys ’25, September 22–26, 2025, Prague, Czech Republic

Model Llama Zephyr GPT4o
n-shot 0 1 5 0 1 5 0 1 5
Precision@10 0.0591 0.0950 0.0636 0.0227 0.0409 0.0590 0.0636 0.1091 0.1227
Recall@10 0.0067 0.0173 0.0059 0.0019 0.0060 0.0103 0.0073 0.0122 0.0197
MRR@10 0.0966 0.1883 0.1723 0.0795 0.1318 0.1800 0.1636 0.2871 0.2505
R-Precision@10 0.0137 0.0269 0.0104 0.0062 0.0103 0.0171 0.0157 0.0219 0.0338
NDCG@10 0.1199 0.2102 0.1863 0.0952 0.1436 0.2011 0.1900 0.3039 0.3249
Qualitative 0.6416 0.6818 0.7132 0.6777 0.6945 0.7038 0.7175 0.7724 0.7953

Table 5: Performance metrics for LLM. In bold, the best absolute scores, while in italic the best scores for a zero-shot scenario

The real advancement in this context would be to integrate LLMs
with other retrieval techniques, as outlined in the conclusions.

5 Conclusion and Future Work
Our study investigated the use of language models for playlist
generation. The experiments confirmed that the playlist title is a
valuable source of information, and capturing its semantic meaning
can be particularly beneficial in cold start scenarios. By combining
clustering with fine-tuning, we enhanced the model’s ability to
generalize across diverse playlist themes, providing a unique and
complementary approach to more traditional recommender system
techniques. When relying solely on the title, our results outperform
existing work in the literature and LLM generation in zero-shot
and few-shot settings.

Our approach empowers users to transcend the limitations of
predefined categories, having the full potential of their choice of
words as seed for generation. This opens up virtually unlimited
combinations, offering users a novel way to discover relevant and
potentially new and unexpectedmusic. However, this work presents
several limitations that necessitate future research.

Firstly, the voting mechanism tends to flatten differences for very
common playlist titles, Moreover it tends to favor popular tracks,
particularly for generic titles. Our implementation is designed to
maximize retrieval-based metrics, as it was the evaluation focus
of the RecSys Challenge 2018, which allows us to make meaning-
ful comparisons with the state-of-the-art. Introducing metrics to
capture diversity, novelty, and order would undoubtedly enhance
the outcomes. For example, for recommending novel songs not yet
included in any playlist, it would be possible incorporate Sentence-
BERT similarity between a novel song title and existing playlists’
title. This approach may result in lower precision metrics, as it pri-
oritizes novelty over exact matches; the right trade-off between the
metric would depend on the use case. Additionally, two strategies,
could immediately help mitigate the popularity bias:

• with a ranking system powered by language models, as
demonstrated in [6]. The final ranking of tracks can indeed
include more than the 50 most similar playlists, introducing
more variability in the results;

• use our system for playlist continuation, where the first 𝑁
songs are used as seeds, to better compare with other sys-
tems. Alternative language models can be explored as substi-
tutes for Sentence BERT to provide a more comprehensive
comparison of their performance and capabilities.

Furthermore, specializing the model for specific languages could
enhance its performance and relevance in diverse linguistic con-
texts. Implementing the system in a production environment would
also be crucial to assess its real-world effectiveness and robustness.
This step would involve optimizing for scalability and efficiency,
ensuring the model can handle large volumes of data and user
interactions seamlessly. In addition, we plan to include explain-
ability of the recommendation system by providing users with
insights into why certain tracks were recommended. Lastly, we
believe that the value of this work has to be tested in combination
with a collaborative-based method, exploiting the best of the two
approaches.

Acknowledgments
This work was supported by the French Public Investment Bank
(Bpifrance) i-Demo programwithin the LettRAGraph project (Grant
ID DOS0256163/00).

No AI tools were used for data analysis, experimentation, or the
formulation of conclusions, except in the ways it is described in the
paper itself.

Author Contributions
Enzo Charolois–Pasqua:Methodology, Software, Writing – re-
view & editing; Eléa Vellard: Methodology, Software, Writing
– review & editing; Youssra Rebboud: Supervision, Methodol-
ogy, Writing – review & editing; Pasquale Lisena: Conceptualiza-
tion, Supervision, Methodology, Writing – original draft; Raphael
Troncy: Supervision, Writing – review & editing;

References
[1] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,

Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn
Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr,
Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Luko-
suite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi
Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy
Telleen-Lawton, Tom Conerly, TomHenighan, Tristan Hume, Samuel R. Bowman,
Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, SamMcCandlish,
Tom Brown, and Jared Kaplan. 2022. Constitutional AI: Harmlessness from AI
Feedback. arXiv:2212.08073 [cs.CL] https://arxiv.org/abs/2212.08073

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[3] Harrison Chase. 2022. LangChain. LangChain AI. https://github.com/langchain-
ai/langchain

[4] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. Recsys
challenge 2018: automatic music playlist continuation. In Proceedings of the 12th
ACM Conference on Recommender Systems (Vancouver, British Columbia, Canada)

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Charolois–Pasqua, Vellard, et al.

(RecSys ’18). Association for Computing Machinery, New York, NY, USA, 527–528.
doi:10.1145/3240323.3240342

[5] Sally Jo Cunningham, David Bainbridge, and Annette Falconer. 2006. ’More of
an Art than a Science’: Supporting the Creation of Playlists and Mixes. In 7th
International Conference on Music Information Retrieval (ISMIR). Victoria, Canada,
240–245.

[6] Mathieu Delcluze, Antoine Khoury, Clémence Vast, Valerio Arnaudo, Léa Briand,
Walid Bendada, and Thomas Bouabça. 2025. Text2Playlist: Generating Personal-
ized Playlists from Text on Deezer. In 47th European Conference on Information
Retrieval (ECIR). Industry Talk. Lucca, Italy. https://arxiv.org/abs/2501.05894

[7] Seungheon Doh, Keunwoo Choi, and Juhan Nam. 2025. TALKPLAY: Multimodal
Music Recommendation with Large Language Models. arXiv:2502.13713 [cs.IR]
https://arxiv.org/abs/2502.13713

[8] Seungheon Doh, Junwon Lee, and Juhan Nam. 2021. Music Playlist Title Gen-
eration: A Machine-Translation Approach. In Proceedings of the 2nd Workshop
on NLP for Music and Spoken Audio (NLP4MusA), Sergio Oramas, Elena Epure,
Luis Espinosa-Anke, Rosie Jones, Massimo Quadrana, Mohamed Sordo, and
Kento Watanabe (Eds.). Association for Computational Linguistics, Online, 27–31.
https://aclanthology.org/2021.nlp4musa-1.6/

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sra-
vankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra,
Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Maha-
jan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Bil-
lock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu,
JieWang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. 2024. The Llama 3
Herd of Models. CoRR abs/2407.21783 (2024). doi:10.48550/arXiv.2407.21783

[10] Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli. 2018. Efficient Similarity
Based Methods For The Playlist Continuation Task. In Proceedings of the ACM
Recommender Systems Challenge 2018 (Vancouver, BC, Canada) (RecSys Challenge
’18). Association for Computing Machinery, New York, NY, USA, Article 15,
6 pages. doi:10.1145/3267471.3267486

[11] Benjamin Fields, Christophe Rhodes, and Mark d’Inverno. 2010. Using Song
Social Tags and Topic Models to Describe and Compare Playlists, In WOMRAD
2010 Workshop on Music Recommendation and Discovery, colocated with ACM
RecSys 2010. CEUR Workshop Proceedings 633.

[12] Giovanni Gabbolini and Derek Bridge. 2023. Predicting the Listening Contexts of
Music Playlists Using Knowledge Graphs. In Advances in Information Retrieval,
Jaap Kamps, Lorraine Goeuriot, Fabio Crestani, Maria Maistro, Hideo Joho, Brian
Davis, Cathal Gurrin, Udo Kruschwitz, and Annalina Caputo (Eds.). Springer
Nature Switzerland, Cham, 330–345.

[13] Giovanni Gabbolini and Derek Bridge. 2024. Surveying More Than Two Decades
of Music Information Retrieval Research on Playlists. ACM Trans. Intell. Syst.
Technol. 15, 6, Article 114 (Nov. 2024), 68 pages. doi:10.1145/3688398

[14] Yun Hao. 2021. Towards a better understanding of music playlist titles and descrip-
tions. Ph. D. Dissertation. University of Illinois at Urbana-Champaign.

[15] Haven Kim, Seungheon Doh, Junwon Lee, and Juhan Nam. 2023. Music Playlist
Title Generation Using Artist Information. In The AAAI-23 Workshop on Creative
AI Across Modalities. Open Rewier, Washington DC, USA. https://openreview.
net/forum?id=nmtmjfJQLS

[16] Jaehun Kim, Minz Won, Cynthia C. S. Liem, and Alan Hanjalic. 2018. To-
wards Seed-Free Music Playlist Generation: Enhancing Collaborative Filter-
ing with Playlist Title Information. In Proceedings of the ACM Recommender
Systems Challenge 2018 (Vancouver, BC, Canada) (RecSys Challenge ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 14, 6 pages.
doi:10.1145/3267471.3267485

[17] Zhi Li, Min Song, Shen Duan, and Zhe Wang. 2022. Are users attracted by
playlist titles and covers? Understanding playlist selection behavior on a music
streaming platform. Journal of Innovation & Knowledge 7, 3 (2022), 100212.
doi:10.1016/j.jik.2022.100212

[18] Brian McFee and Gert R. G. Lanckriet. 2011. The Natural Language of Playlists.
In 12th International Society for Music Information Retrieval Conference (ISMIR),
Anssi Klapuri and Colby Leider (Eds.). Miami, Florida, USA, 537–542. http:
//ismir2011.ismir.net/papers/PS4-11.pdf

[19] Diego Monti, Enrico Palumbo, Giuseppe Rizzo, Pasquale Lisena, Raphaël Troncy,
Michael Fell, Elena Cabrio, andMaurizioMorisio. 2018. An Ensemble Approach of
Recurrent Neural Networks using Pre-Trained Embeddings for Playlist Comple-
tion. In Proceedings of the ACM Recommender Systems Challenge 2018 (Vancouver,
BC, Canada) (RecSys Challenge ’18). Association for Computing Machinery, New
York, NY, USA, Article 13, 6 pages. doi:10.1145/3267471.3267484

[20] Amrita Nair, Smriti Pillai, Ganga S Nair, and Anjali T. 2021. Emotion Based
Music Playlist Recommendation System using Interactive Chatbot. In 2021 6th
International Conference on Communication and Electronics Systems (ICCES). IEEE,
Coimbatore, India, 1767–1772. doi:10.1109/ICCES51350.2021.9489138

[21] OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya
Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford,
Aleksander Mądry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Car-
ney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard
Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin
Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braun-
stein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, An-
drew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse,
Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak,
Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob Mc-
Grew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, BrandonWalkin,
Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu,
Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette,
Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris
Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine
McLeavey, Christopher Hesse, Claudia Fischer, ClemensWinter, Coley Czarnecki,
Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson,
David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong
Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth
Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler,
Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such,
Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene
Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao,
Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney,
Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren,
Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell,
Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya
Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick,
Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh,
Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero
Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schul-
man, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward,
Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh
Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla
Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin
Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad,
Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum,
Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz
Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Made-
laine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark
Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max
Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia
Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael
Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle
Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Mu-
rat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher,
Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas,
Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch,
Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk,
Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng,
Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe
Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora,
Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar
Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby,
Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael,
Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini
Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger,

https://doi.org/10.1145/3240323.3240342
https://arxiv.org/abs/2501.05894
https://arxiv.org/abs/2502.13713
https://arxiv.org/abs/2502.13713
https://aclanthology.org/2021.nlp4musa-1.6/
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.1145/3267471.3267486
https://doi.org/10.1145/3688398
https://openreview.net/forum?id=nmtmjfJQLS
https://openreview.net/forum?id=nmtmjfJQLS
https://doi.org/10.1145/3267471.3267485
https://doi.org/10.1016/j.jik.2022.100212
http://ismir2011.ismir.net/papers/PS4-11.pdf
http://ismir2011.ismir.net/papers/PS4-11.pdf
https://doi.org/10.1145/3267471.3267484
https://doi.org/10.1109/ICCES51350.2021.9489138

A Language Model-Based Playlist Generation Recommender System RecSys ’25, September 22–26, 2025, Prague, Czech Republic

Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto,
ShirongWu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve
Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu,
Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shad-
well, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom
Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Wal-
ters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad
Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will
Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu
Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. 2024.
GPT-4o System Card. arXiv:2410.21276 [cs.CL] https://arxiv.org/abs/2410.21276

[22] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Bal-
com, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff,
Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brit-
tany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah
Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet,
Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada
Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson,
Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gor-
don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny
Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali
Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kil-
patrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner,
Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kon-
drich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming
Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan
Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov,
Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew,
Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, VinnieMonaco, EvanMorikawa, Daniel Mossing, TongMu,MiraMurati,
Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind
Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub
Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascan-
dolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde
de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford,
Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schul-
man, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina
Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Pet-
roski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B.
Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle,
Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang,
Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter
Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter,
Samuel Wolrich, HannahWong, LaurenWorkman, SherwinWu, JeffWu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. 2024. GPT-4 Technical Report.
arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774

[23] Enrico Palumbo, Gustavo Penha, Andreas Damianou, José Luis Redondo García,
Timothy Christopher Heath, Alice Wang, Hugues Bouchard, and Mounia Lal-
mas. 2025. Text2Tracks: Prompt-based Music Recommendation via Generative
Retrieval. arXiv preprint arXiv:2503.24193 (2025).

[24] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics,
Hong Kong, China, 3982–3992. doi:10.18653/v1/D19-1410

[25] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
Unified Embedding for Face Recognition and Clustering. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, Boston, MA, USA,
815–823. doi:10.1109/CVPR.2015.7298682

[26] Guy Shani and Asela Gunawardana. 2011. Evaluating Recommendation Systems.
Springer US, Boston, MA, 257–297. doi:10.1007/978-0-387-85820-3_8

[27] Lewis Tunstall, Edward Emanuel Beeching, Nathan Lambert, Nazneen Rajani,
Kashif Rasul, Younes Belkada, Shengyi Huang, Leandro Von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero, Alexander M Rush,
and Thomas Wolf. 2024. Zephyr: Direct Distillation of LM Alignment. In First
Conference on Language Modeling. OpenReview, Philadelphia, PA, USA. https:
//openreview.net/forum?id=aKkAwZB6JV

[28] Ali Yürekli, Alper Bilge, and Cihan Kaleli. 2021. Exploring playlist titles for
cold-start music recommendation: an effectiveness analysis. Journal of Ambient
Intelligence and Humanized Computing 12, 11 (2021), 10125–10144. doi:10.1007/
s12652-020-02777-3

[29] Hongzhi Zhang and M. Omair Shafiq. 2024. Survey of transformers and towards
ensemble learning using transformers for natural language processing. Journal
of Big Data 11, 1 (2024), 25. doi:10.1186/s40537-023-00842-0

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1007/978-0-387-85820-3_8
https://openreview.net/forum?id=aKkAwZB6JV
https://openreview.net/forum?id=aKkAwZB6JV
https://doi.org/10.1007/s12652-020-02777-3
https://doi.org/10.1007/s12652-020-02777-3
https://doi.org/10.1186/s40537-023-00842-0

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Processing the dataset
	3.2 Clustering strategy
	3.3 Fine-tuning a language model
	3.4 Playlist generation
	3.5 Playlist generation using LLM

	4 Evaluation
	4.1 Quantitative results
	4.2 Qualitative assessment
	4.3 Evaluation of the LLM generation

	5 Conclusion and Future Work
	Acknowledgments
	References

