
Tail-Latency Aware Scheduler For Inference

Workloads

Khelifa Saif eddine∗, Miloud Bagaa∗, Sihem Ouahouah§, Messaoud Ahmed Ouameur ∗ and Adlen Ksentini¶

∗ Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.

Emails: {Saif.Eddine.Khelifa, miloud.bagaa, messaoud.ahmed.ouameur}@uqtr.ca

, §Aalto University, Otakaari 24, 02150 Espoo FINLAND (e-mail: sihem.ouahouah@aalto.fi),
¶EURECOM, Campus SophiaTech, France (e-mail: adlen.ksentini@eurecom.fr)

Abstract—In recent years, AI inference has seen widespread
adoption across fields like finance and healthcare, driving sig-
nificant demand for high-performing applications. This demand
brings about a complex relationship between inference appli-
cation types, such as real-time applications, and their specific
service level objectives (SLOs), like tail-latency. Tail-latency is
a metric requiring a defined percentage of requests to meet a
maximum response time, which is crucial for applications where
delays can impact user experience or decision-making. This
dependency creates a challenging research problem in scheduling
inference workloads. The core question becomes: How can we
deploy AI workloads in a way that minimizes SLO violations?

Specifically, we worked on real-time applications that re-
quire tail-latency guarantees. To address this, we developed a
tail-latency-aware scheduler designed for resource-constrained
devices. Our scheduler employs advanced machine learning
techniques to optimize task placement, aiming to minimize SLO
violations and enhance performance for latency-sensitive appli-
cations. We have developed and integrated our custom scheduler
into Kubernetes, which operates on a specially configured cluster
designed to test its performance. This cluster features diverse
computing capabilities, enabling a comprehensive evaluation of
the scheduler’s effectiveness. The experimental results highlight
that our proposed scheduler outperforms the native Kubernetes
scheduler in terms of efficiency.

Index Terms—Cloud-Edge-Computing-Continuum , Schedul-
ing , Kubernetes

I. INTRODUCTION

The rapid adoption of machine learning (ML) inference

across diverse domains—such as healthcare [1] and finance

[2]—has significantly increased the demand for robust in-

ference services, particularly within cloud infrastructure. In

fact, inference now constitutes more than 90% of AWS

infrastructure costs 1, and platforms like Facebook perform

tens of trillions of inferences daily [3] [4]. However, running

these workloads solely in the cloud introduces latency and data

privacy challenges, creating obstacles for industrial verticals

that require high data rates and/or low latency. In contrast,

deploying inference services closer to the user at the edge

significantly enhances data privacy and improves the user

experience. Thus, to address these issues, computation has

been extended to edge devices and the Internet of Things

(IoT), positioning inference tasks closer to end users. This

shift minimizes communication delays and enhances data

privacy. Consequently, deploying inference tasks has been

extended across the entire continuum—from cloud to edge

1https://d1.awsstatic.com/events/reinvent/2019/REPEAT 1 Deliver high
performance ML inference with AWS Inferentia CMP324-R1.pdf

to IoT—requiring diverse Service Level Objectives (SLOs),

such as latency, throughput, and energy efficiency at different

levels of the continuum. These SLO requirements create

a challenging scheduling problem. This problem has been

tackled by the state-of-the-art [5]–[10] using various AI-

based schedulers aimed at placing tasks on optimal nodes

to minimize SLO violations. In contrast, and to the best

of our knowledge, these studies have not fully considered

an important aspect of inference workloads. Specifically, AI

model characteristics which impact factors such as latency

and energy.These factors are critical for real-time applications

where responsiveness is essential. To overcome this gap, we

have proposed a new framework that considers both AI model

features and hardware profiles to account for the environment

state. We hypothesize that this combination will lead to better

scheduling decisions. Moreover, we prioritize tail-latency as

a target metric for our AI-based scheduling decision, as it

represents the ”worst-case” performance for a high percentage

of queries, typically at the 90th or 99th percentile [11].

In summary, our work focuses on real-time applications

deployed on resource-constrained devices with heterogeneous

computing characteristics (e.g., edge and IoT), emphasizing

tail-latency as the key performance metric (KPM). The result

is a tail-latency-aware scheduler that predicts tail-latency

based on model and hardware characteristics, optimizing

inference task placement in these complex environments. Our

framework is structured as follows.

• Framework Design: We developed a two-stage frame-

work with online and offline phases, supplemented by

a monitoring system to collect real-time data on model

performance and hardware status.

• AI-Driven Scoring Function: At the scheduling level,

we introduce a scoring function that uses AI-based

regression models to predict tail-latency, selecting the

optimal computational node for each task based on

predicted tail-latency performance.

• Model Training and Fine-Tuning: The regression mod-

els are trained on data collected by the monitoring

system. We select the best-performing model and apply

grid search to fine-tune it, increasing its accuracy.

• Evaluation Against Kubernetes Scheduler: Finally, we

evaluate our scheduler compared to the native Kubernetes

scheduler, analyzing the performance and efficiency gains

in managing real-time inference workloads.

The remainder of the paper is organized as follows. The

next section presents the related work. Meanwhile, the prob-

lem is formulated in Section III. The framework design is

presented in Section IV. Section V summarizes the experi-

mental results, concludes our findings, and paves the way for

future work.
II. RELATED WORKS

Recent research has incorporated advanced AI techniques

into scheduling algorithms to optimize the placement of

microservice tasks on diverse computational nodes, using

metrics such as latency and energy consumption to achieve

optimal task distribution and meet Service Level Objectives

(SLO) [12]. These efforts have evolved to include DNN-

based workloads [10], given the increasing relevance of AI,

although most studies mainly focus on the scheduling of

DNN training workloads [12]. Few works in the literature

specifically target the placement of inference workloads. For

instance, authors in [5] explore scheduling ML inference

across a cloud-to-things continuum, considering factors like

CPU characteristics, energy efficiency, available cores, and

network latency to meet task requirements. Similarly, the work

[7] schedules inference across diverse edge processors: CPUs,

GPUs, and DSPs, matching tasks to suitable hardware for

latency and resource efficiency.

In the realm of cloud environments, [8] introduces DQoES,

a system that allows users to set Quality of Experience

(QoE) targets, such as response time for various applications,

dynamically adjusting resources to meet these goals. These

approaches tackle the problem of AI inference scheduling in

diverse ways but often lack consideration of model-specific

characteristics, such as parameters or FLOPs, which sig-

nificantly impact energy, latency, and quality of experience

(QoE). In contrast, some studies, such as [6], [9], [13], begin

to address model information, though only at a generalized

level using a binary vector to represent model types. For

instance, [6] uses multi-agent reinforcement learning with

a heterogeneous graph attention network to optimize task

placement in edge clusters, balancing resource utilization and

latency. [13] employs deep reinforcement learning to dynam-

ically adapt job placement based on model type and resource

needs. Meanwhile, the solution [9] predicts DNN response

times across nodes by incorporating hardware configurations

to determine if SLAs can be met under specific workloads.

Our work builds upon these efforts by introducing a tail-

latency-aware scheduler within Kubernetes, designed for in-

ference workloads in resource-constrained environments like

edge and IoT. Our approach uniquely combines both hardware

and model-specific information, capturing latent relationships

to predict P90 or tail-latency accurately, which is critical

for real-time applications. This predicted latency serves as

a scoring factor for optimal node selection, improving the

placement of the inference task.

III. PROBLEM FORMULATION

To address the scheduling challenges discussed in previous

sections, this section defines the real-time inference task

scheduling and latency prediction problems on heterogeneous,

resource-constrained systems.

A. Scheduling Problem Statement

In our scheduling problem, we have a computing cluster

N = {n1, n2, . . . , nm} that consists of multiple resource-

constrained computing nodes, each characterized by dis-

tinct hardware properties, such as different CPU capabilities

(e.g., clock speed and core count). Each node ni ∈ N

represents these characteristics as a vector, where ni =
[clock speedi, core counti]. In addition, it is worth noting that

these capabilities change over time due to resource contention,

where multiple tasks compete for finite processing capabili-

ties.

This diversity introduces computational heterogeneity

across the cluster, creating a scheduling challenge in which

the primary task of the scheduler is to place Deep Neural

Network (DNN) inference tasks on suitable nodes to ensure

minimal response time for queries, thereby meeting the tail-

latency service level objective.

Moreover, in this scheduling problem, the DNN task set

X = {x1, x2, . . . , xn} is defined such that each task xi =
{Mi, Fi} consists of the Model Size Mi and the Model

FLOPs Fi. FLOPs Fi (Floating Point Operations Per Second)

is a measure of computational workload commonly used to

evaluate the efficiency of operations in neural networks. Model

size Mi is determined by extracting key metrics (e.g., layer

parameters, activation functions, kernel size) from the DNN

model using tools like Torchinfo and converting the model to

megabytes.

FLOPs are calculated at different stages. For instance, the

FLOPs for a convolutional layer are calculated in equation 1:

FLOPs = 2× IC ×OC ×KH ×KW ×OH ×OW (1)

where IC represents the input channels (i.e., the number of

channels in the input feature map), and OC represents the

output channels (i.e., the number of channels in the output

feature map). KH and KW represent the kernel height and

width, defining the dimensions of the convolution kernel or

filter. OH and OW denote the output height and width,

representing the dimensions of the output feature map after

applying the convolution.

For fully connected (dense) layers, with Nin input neurons

and Nout output neurons, the FLOPs are calculated in equation

2:
FLOPs = 2×Nin ×Nout (2)

where Nin is the number of input neurons and Nout is the

number of output neurons. The factor of 2 accounts for both

multiplication and addition operations per neuron.

For activation functions (e.g., ReLU, Sigmoid, Tanh), which

are typically applied element-wise, the FLOPs for an activa-

tion layer are simply the number of neurons in the layer, as

shown in equation 3:

FLOPs = Nneurons (3)

where Nneurons is the number of neurons in the layer.

Pooling layers, such as max pooling or average pooling,

generally do not involve multiplications and are computation-

ally less intensive, often counted as one operation per element

in the pooling region. Thus, for a pooling layer with an output

feature map of size H ×W and C channels, the FLOPs are

calculated via equation 4:

FLOPs = H ×W × C (4)

The total FLOPs (FLOPslayer) for a deep neural network are

computed by summing the FLOPs across all layers, which are

calculated using the previous equations 1, 2, 3, 4. This total

is calculated via equation 5:

Total FLOPs =
L∑

layer=1

FLOPslayer (5)

This general approach ensures a comprehensive calculation of

FLOPs for any CNN-based deep neural network model.

On the other hand, during the resource contention men-

tioned earlier, the hardware vector ni keeps changing; thus,

a real-time calculation is necessary. This is done using the

following equations:

CPUeff = CPU × (1− UC) (6)

FREQeff = FREQ× (1− UF) (7)

Available Capacity = {CPUeff , FREQeff} (8)

These equations describe how these changes are handled.

Equation 6 calculates the effective core count CPUeff , repre-

senting how many cores remain available each time a new task

arrives. This is achieved by calculating UC , which denotes

the fraction of cores currently in use, and multiplying it by

the total CPU cores CPU of the current computational node.

For the frequency, we follow the same logic by calculating

UF , which denotes the fraction of frequency in use, and

multiplying it by the node’s frequency FREQ. Combining

these results, the Available Capacity is calculated via equation

8.

Finally, the scheduling problem is based on a target P90

latency (pi), where pi is the latency threshold within which

90% of queries for task xi must complete. To measure P90

latency, we gather a list of response times for all queries

associated with a given task xi on node nj , represented as:

Ti,j = [t1, t2, . . . , tn] (9)

where each entry in Ti,j denotes the response time for a query

q, with q ∈ [1, N] for task xi on node nj . Using equation 9,

the P90 tail-latency P90 is then calculated via equation 10:

P90 = Ti,j [⌈0.9× n⌉] (10)

This value represents the response time at the 90th percentile,

meaning that 90% of the queries for task xi complete within

the P90 latency. The scheduling objective is to allocate each

task xi to a suitable node nj such that its P90 latency

constraint pi is met, represented by equation 11:

P(Ti,j ≤ pi) ≈ 0.9 (11)

Here, Ti,j denotes the set of response times for task xi on

node nj , ensuring that 90% of these queries meet the latency

threshold pi. This probabilistic approach enables predictable

performance for the majority of queries, which is crucial for

maintaining a stable real-time response. This predictable P90

latency is used as a target metric, while other equations for

calculating model information and CPU contention will be

used as inputs for the prediction problem statement, which

will be explained in a subsequent section.

B. Prediction Problem Statement

In this context, the focus is on predicting the 90th percentile

latency (P90) of DNN tasks to support tail-latency-aware

scheduling across the cluster. The goal is to develop a predic-

tion model capable of accurately estimating the P90 latency

of tasks on various nodes within the cluster. To facilitate this,

we define a dataset as:

D = {ND, XD, YD} (12)

where ND ⊂ N is a subset of nodes, XD ⊂ X is a subset

of DNN tasks, and YD ⊂ Y represents the observed P90

latencies of tasks in XD measured on each node in ND.

With this dataset, we establish a hybrid model- and hardware-

conditioned prediction model as follows:

f(xi, ni; γ) : X ×N → R (13)

where xi ∈ X is characterized by Model Size Mi and

FLOPs Fi, calculated via the previous equation 5, repre-

senting the computational requirements. The computing node

ni ∈ N is characterized by CPU features or available capacity

(Clockni
,Coresni

) under contention, detailing clock speed

and core count, which are calculated via equation 8. Here,

γ represents the regressor f(·) parameters.

The objective is to learn a regressor f(xi, ni; γ) that ac-

curately predicts the P90 latency y ∈ YD by minimizing the

empirical loss L, such as the Residual Mean Squared Error

(RMSE), between predicted and observed values from the

dataset D:

min
γ

L(f(xD, nD; γ), yD) (14)

The regressor described in equation 14 relies on DNN model

characteristics while taking underlying system hardware char-

acteristics into account. These inputs outline the intersection

between hardware features and model features, aiming to

capture system stability through the prediction of P90 latency.

This prediction enables the scheduler to allocate resources

effectively, meeting latency constraints and ensuring reliable

and efficient task processing across the cluster.

IV. FRAMEWORK DESIGN

This section introduces our framework design illustrated

via the Figure 1 based on the de facto orchestration platform

known as Kubernetes. The framework aims to solve the task

placement problem within a Kubernetes cluster where the

nodes are heterogeneous and resource-constrained. To tackle

this challenge,We designed two phases: an offline phase,

where a regression model is trained to accurately predict

the P90 latency, and an online phase, where this model is

integrated into the scheduling framework. This integration is

exemplified by incorporating the model into custom scoring

logic. The model predicts the P90 latency, which is then

used to score nodes and assign tasks to the most suitable

node. These phases are explained in detail in the following

subsections.

OFFLINE Training

Monitoring
Data

Hardware
Data Hardware information

Training
Dataset

Step 2 : Train and Select Model

Pick next model

Train Model

Metrics extraction ML Models

Eval Model

Grid Search

Window smoothing
(optional)

Step 3 : parameter tuning

Step 1 : Extract and Aggergate

MLP
RandomForest
xgboost

Step 4: Save Model
Model
Repo

Model information

P90 Latency

[CPU Cores..]

[FLOPS,..]

Control Plane Control Plane

.Yaml

Control Plane

API
Server

#Node
Hardware

informations Cloud
Metrics

#Pod#Node
Hardware

informations
Cloud

Metrics

#Pod

Hardware
informations

Monitoring
Metrics

#Pod

Etcd

Cluster

Edge

User

#Node
Hardware

informations Cloud
Metrics

#Pod#Node
Hardware

informations

#Pod
Hardware

informations

FarEdge

Model
Repo

Kubectl apply
Monitoring

Metrics

#Node

#Node

Custom Scheduler

Scheduler Extension
points

Custom Filtering

Plugin Other
plugins

Process

Implicit
communication

K8s
Component

Direct
Communication

Random Forest
Regressor

Repeated for all
selected node

C_Score

Monitoring
Data

PROMETHEUS

ONLINE

Fig. 1: Figure explains our conducted study with two phases online and offline

A. Offline: Training

The methodology for identifying the suitable regressor to

serve as the core of our scoring function is illustrated in

Figure 1. This approach centers on offline training to get

the best model for predicting the P90 latency. Specifically,

this is done first by using performance metrics and hardware

specifications. The process begins with a data extraction and

aggregation phase.

This phase involves extracting the monitoring data, which

includes metrics such as P90 latency. This data is gathered

from the system using Prometheus2. In addition to P90 latency,

hardware data (CPU cores, clock speeds) are also extracted.

Since hardware information is often textual, a preprocessing

step then converts it into a structured format for further

analysis.

Finally, the model information is extracted via a Python

script that inspects the model using the aforementioned equa-

tions 1, 2, 3, 4, 5. These data points are aggregated based on

common timestamps to ensure temporal alignment, forming

our training dataset. The training dataset includes both the

hardware information and the model information as inputs,

while the P90 latency serves as the target. Moreover, before

the training step, an optional window smoothing step is

applied to reduce noise in the dataset, using the formula:

Mi =
1

min(w, i)

i∑

j=max(1,i−w+1)

log(Sj + 1), (15)

where Mi represents the smoothed value at the i-th time

step, Sj is the original data point at time step j, and w is the

size of the smoothing window. This log-based transformation

minimizes the impact of outliers in time-series data, thereby

stabilizing it for model training.

2https://prometheus.io/

Following that, a set of machine learning models are trained

on the resulting training dataset. The models used in this phase

include Multi-Layer Perceptrons (MLP), Random Forest, and

XGBoost, each evaluated based on Root Mean Square Error

(RMSE)—a metric that measures the average magnitude of

the errors between predicted and actual values, giving greater

weight to larger errors. Once the models are trained, the best-

performing model is selected, followed by a parameter-tuning

phase using grid search [14] to optimize hyperparameters

(e.g., learning rate). This fine-tuning step ensures optimal

prediction accuracy.

The final model is then saved to a model repository,

where it can be accessed and deployed for real-time inference

tasks. Furthermore, saved models are periodically updated

with new cluster performance data, facilitating continuous

improvements in predictive performance.

B. Online : Scheduling

In the online scheduling phase, as illustrated in Figure 1, the

process begins with the user creating a deployment YAML file

to deploy their application. This YAML file contains essential

information for the inference task, such as the URL for model

storage. The scheduler uses this URL to extract model-specific

details, such as model size and FLOPs, as explained in the

offline stage. Hardware information is provided by an agent

deployed using a DaemonSet, which retrieves this information

from the cluster nodes and saves it into a ConfigMap, stored

at the etcd level for access during the scheduling phase.

The main objective of the scheduler is to determine which

node r will be assigned to a task x. To do so, it goes through

several phases, starting with filtering, where nodes that cannot

support the job are excluded using the pre-defined default

scheduling algorithm.

As described in Algorithm 1, the scoring function iterates

over the nodes selected in the filtering phase. Each selected

node is evaluated using a pre-trained regressor from the offline

phase, accepting as input the node vector Vr, which includes

CPU clock speed and CPU cores, as well as the task vector Vx,

containing model size and model FLOPs. The node with the

lowest predicted tail-latency, denoted as P90, is then assigned

to the task x. To complete the process, a monitoring phase

is launched to gather metrics on the deployed task using

Prometheus. These metrics are stored in a database for offline

training to refine the regressor further, aiming to minimize

Service Level Objective (SLO) violations as much as possible.

Algorithm 1 Latency-Aware Scheduler

Input: Deployment manifest, task characteristics Vx, hard-

ware characteristics Vr, latency regressor f , tail-latency

threshold : P90T
Output: Job manifest with assigned node and estimated

latency

1: ⊲ PL: is the Predicted latency based on task and

hardware characteristics

2: Initialize CandidateNodes ← ∅
3: for each node ni in available nodes do

4: PL= f(Vx, Vr)
5: Add (ni, PL) to CandidateNodes

6: (SelectedNode) ← argminni∈CandidateNodes PL(ni, Vx, Vr)
7: Update job manifest with SelectedNode.

8: Submit the updated manifest and monitor job execution

V. PRELIMINARY RESULTS

During our preliminary results, we used the setup presented

in Table I, and the candidate models are listed in Table II with

their respective model sizes and FLOPs. We chose different

models for different tasks, such as ResNet-50 [15], which

is a deep convolutional neural network designed for image

classification, and RetinaNet [16], which is a one-stage object

detection model that identifies and localizes objects within

images. We used these models along with publicly available

datasets: ImageNet [17] and OpenImages [18].

Our experiment used the open-source MLPerf Inference

Benchmark [11], integrated with Kubernetes. The MLPerf

Benchmark provides a standardized way to evaluate model

performance in various scenarios, such as single-stream,

multi-stream, server, and offline modes. Prometheus calculated

the P90 latency during the benchmark. We opted for the

single-stream scenario, where queries are sent sequentially,

as it represents our case for real-time applications [11].

TABLE I: Cluster setup

Node Name CPU Cores CPU Clock Speed RAM

controller 16 2.30 GHz 16 GiB

node1 4 2.30 GHz 6 GiB

node2 8 2.30 GHz 8 GiB

node3 12 2.30 GHz 16 GiB

node4 16 2.30 GHz 12 GiB

TABLE II: Model Sizes and FLOPs

Model Size (MB) FLOPs

ResNet-50 97.66 MB 4 billion FLOPs

RetinaNet 129.7 MB 3.8 bilion FLOPs

We evaluate the effectiveness of our custom scheduler,

which uses a Random Forest Regressor, XGBoost Regressor,

and MLP Regressor to predict tail-latency for scheduling tasks

in a multi-node environment. The evaluation scenario, referred

to as the immediate scheduling scenario [19], simulates real-

world conditions where inference tasks arrive sequentially, one

after another, and are processed immediately without delay.

This immediate scheduling scenario demonstrates the need

to handle single-query, single-stream workloads typical of

real-time applications. In such scenarios, tasks are processed

as soon as they arrive, requiring highly accurate latency

predictions to optimize scheduling decisions. Following this

rationale, a total of 10 pods is deployed across the nodes.

Each task consists of a single inference query with a batch

size of 1, which arrives and is scheduled sequentially. Once

all pods are assigned to nodes, we initiate query execution in a

single stream, processing a total of 1024 queries per pod—the

recommended number of queries from the MLPerf Inference

benchmark [11].

During the scheduling process, regression models predict

P90 latency, which is eventually used by the scheduler to

assess the placement choice of pods. This prediction is based

on input features such as core count, frequency, and model

size and FLOPs. The models’ performance is assessed during

offline (training) and online (inference) phases using the Root

Mean Squared Logarithmic Error (RMSLE) and Root Mean

Squared Error (RMSE), as presented in Table III.

TABLE III: Regressor performance metrics

Model RMSLE RMSE

Random Forest Regressor 0.206 1.833

XGBoost Regressor 0.202 1.784

MLP Regressor 0.281 2.326

The relatively low RMSE values reflect the nature of our

single-query, single-stream workload. Given the limited range

of latency values, which are inherently small due to the single-

sample batch size (fixed at 1 sample per query), the overall

prediction task remains less complex. The performance of the

models is further influenced by the relatively small size of

the machine learning models used—such as ResNet-50 and

RetinaNet—which simplifies the prediction process.

Using the models in Table II, we proceeded to test our solu-

tion. The metrics were collected using Prometheus3, applying

the equation 16:

AVG NP90 =

∑
(P90 Latencies for all pods on the node)

Number of pods on the node
(16)

The AVG NP90 equation calculates the average P90 latency

across all pods deployed on a particular node. By sum-

ming the P90 latencies of each pod and dividing by the

number of pods on that node, we obtain a representative

latency value that accounts for the resource contention and

workload assigned to that node. This calculation is executed

after every 1024 queries. For the first 1024 queries, we plot

AVG NP90, as depicted in Figure 2, which is a stacked

bar chart comparing the default Kubernetes scheduler and

3https://prometheus.io/

(a) AVG NP90 for ResNet-50 (b) AVG NP90 for RetinaNet

Fig. 2: Figure shows AVG NP90 for each candidate model

our custom scheduler.Our custom scheduler uses predicted

latencies to make more informed scheduling decisions, reduc-

ing AVG NP90 latency across the cluster. Moreover, in the

plot, the default Kubernetes scheduler (represented by blue

bars) does not account for predicted tail-latency or resource

contention, leading to suboptimal pod distribution and higher,

more variable P90 latencies. This inefficiency is particularly

pronounced on nodes with fewer cores and lower frequencies,

where contention further exacerbates latency. In contrast, the

green bars illustrate the significant improvements achieved

with our custom scheduler. By using regression models to

predict P90 latency, our scheduler makes more efficient task

allocations, reducing both mean and variance of latency. This

optimization is especially beneficial for nodes with limited

resources, where accurate latency predictions are crucial.

VI. CONCLUSION

Our experimental results highlight the effectiveness of using

predictive models—particularly Random Forest and XGBoost

Regressors—for inference scheduling, leading to lower aver-

age P90 latency across deployed inference tasks. This val-

idation underscores the importance of hardware-aware and

model-aware scheduling mechanisms in modern inference-

serving systems. However, this study primarily focused on

single-stream workloads, providing a foundation for future

research. In subsequent work, we aim to extend this scheduler

to support multi-stream scenarios, varying batch sizes, and dy-

namic scheduling strategies, further enhancing adaptability to

real-world cloud-edge computing environments. By bridging

the gap between model characteristics, hardware constraints,

and inference scheduling, our work lays the groundwork

for more efficient, scalable, and latency-aware scheduling

frameworks, ensuring optimal performance for real-time AI

applications.

REFERENCES

[1] H. Abdel-Jaber, D. Devassy, A. Al Salam, L. Hidaytallah, and M. EL-
Amir, “A review of deep learning algorithms and their applications in
healthcare,” Algorithms, vol. 15, no. 2, p. 71, 2022.

[2] A. Arévalo, J. Niño, G. Hernández, and J. Sandoval, “High-frequency
trading strategy based on deep neural networks,” in Intelligent Comput-

ing Methodologies, D.-S. Huang, K. Han, and A. Hussain, Eds. Cham:
Springer International Publishing, 2016, pp. 424–436.

[3] U. Gupta, C.-J. Wu, X. Wang, and e. a. Naumov, “The architectural
implications of facebook’s dnn-based personalized recommendation,” in
2020 IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2020, pp. 488–501.

[4] K. Hazelwood, S. Bird, and e. a. Brooks, “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE

International Symposium on High Performance Computer Architecture

(HPCA), 2018, pp. 620–629.
[5] I. Syrigos, D. Kefalas, N. Makris, and T. Korakis, “Eelas: Energy

efficient and latency aware scheduling of cloud-native ml workloads,”
in 2023 15th International Conference on COMmunication Systems and

NETworkS (COMSNETS), 2023, pp. 819–824.
[6] Y. Li and X. e. a. Zhang, “ Task Placement and Resource Allocation for

Edge Machine Learning: A GNN-Based Multi-Agent Reinforcement
Learning Paradigm ,” IEEE Transactions on Parallel & Distributed

Systems, vol. 34, no. 12, pp. 3073–3089, Dec. 2023. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TPDS.2023.3313779

[7] W. Seo, S. Cha, Y. Kim, J. Huh, and J. Park, “Slo-aware inference
scheduler for heterogeneous processors in edge platforms,” ACM Trans.

Archit. Code Optim., vol. 18, no. 4, Jul. 2021. [Online]. Available:
https://doi.org/10.1145/3460352

[8] Y. Mao, W. Yan, Y. Song, Y. Zeng, M. Chen, L. Cheng, and Q. Liu,
“Differentiate quality of experience scheduling for deep learning infer-
ences with docker containers in the cloud,” IEEE Transactions on Cloud

Computing, vol. 11, no. 2, pp. 1667–1677, 2023.
[9] S. Shah, Y. Amannejad, and D. Krishnamurthy, “Predicting the per-

formance of dnns to support efficient resource allocation,” in 2023

19th International Conference on Network and Service Management

(CNSM), 2023, pp. 1–7.
[10] Z. Ye and e. a. Gao, “Deep learning workload scheduling in gpu

datacenters: A survey,” New York, NY, USA, Jan. 2024. [Online].
Available: https://doi.org/10.1145/3638757

[11] V. J. Reddi, C. Cheng, D. Kanter, and e. a. Mattson, “Mlperf inference
benchmark,” in 2020 ACM/IEEE 47th Annual International Symposium

on Computer Architecture (ISCA), 2020, pp. 446–459.
[12] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and

challenges,” New York, NY, USA, Dec. 2022. [Online]. Available:
https://doi.org/10.1145/3539606

[13] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters with heterogeneous workloads,”
IEEE/ACM Transactions on Networking, vol. 31, no. 2, pp. 634–647,
2023.

[14] S. B H and G. Dagnew, “Grid search-based hyperparameter tuning and
classification of microarray cancer data,” 02 2019, pp. 1–8.

[15] N. Saleem, J. Gao, M. Irfan, E. Verdú, and J. Fuente, “E2e-v2sresnet:
Deep residual convolutional neural networks for end-to-end video driven
speech synthesis,” Image and Vision Computing, vol. 119, p. 104389,
01 2022.

[16] Y. Li and F. Ren, “Light-weight retinanet for object detection,” arXiv

preprint arXiv:1905.10011, 2019.
[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition. IEEE, 2009, pp. 248–255.
[18] A. Kuznetsova and H. R. et al, “The open images dataset v4: Unified

image classification, object detection, and visual relationship detection
at scale,” International Journal of Computer Vision, 2020.

[19] R. Gu, Y. Chen, and L. et al, “Liquid: Intelligent resource estimation
and network-efficient scheduling for deep learning jobs on distributed
gpu clusters,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 11, pp. 2808–2820, 2022.

Powered by TCPDF (www.tcpdf.org)

