Genome Variation: From the Linear Reference to Graph Pangenomes

CONTENTS

- introduction
- genome evolution with linear assemblies
- graph pangenome approaches
- perpectives

Lorenzo Tattini 21 May 2025

genotypes

GTCGTGTACGTCAGTCGTGCTAGTCAG TCGTCATTGACTGCAGTCAGTCAGTCA GTCGTGTACGTCAGTCGTCGTGCTAGT CGGCTAGTCATCGCCAAATCATGCGTT GACTGCAGTTCTGACGTGTACGTCAGT CAGTCGAGTCCGTTGACGTCATGCAGT CGTGTACGTCAGTCGTGCTAGTCAGTC GTCATTGACTGCACCAGTCAGTCAGTC AGTCGTGTACGTCAGTCGTCGTGCTAG TCGGCTAGTCATGACGTACCAGTGTCA GTACTGTCAGTCAGTCAGTCAGTCA

GGCGTGTACGTCTGTCGTGCTAGTCAG

reference

phenotypes

why genome variation?

the reference bias

origin and consequences

Eizenga JM, ... & Garrison E. Pangenome graphs. ANNU REV GENOMICS HUM GENET. 2020.

the clinical reference bias

genotyping: SGS vs Sanger sequencing

legend: match mismatch

pushing the heterozygosity

genome variation in yeast hybrids using telomere-to-telomere assemblies

competitive mapping

a solution for mutation accumulation lines in hybrids

Tattini L[@], …, & Liti G[@]. Accurate tracking of the mutational landscape of diploid hybrid genomes. MOL BIOL EVOL. 2019.

what's a variation graph?

conceptual aspects

building a variation graph

the scrap/pggb variation graph

9

nature genetics

Article

https://doi.org/10.1038/s41588-023-01459-y

Telomere-to-telomere assemblies of 142 strains characterize the genome structural landscape in Saccharomyces cerevisiae

Saccharomyces cerevisiae reference assembly panel

Received: 1 November 2022				
Accepted: 26 June 2023				
Published online: 31 July 2023				

Check for updates

Samuel O'Donnell @ 1.7, Jia-Xing Yue @ 2.3.7, Omar Abou Saada⁴, Nicolas Agier¹, Claudia Caradec⁴, Thomas Cokelaer ^{5,6}, Matteo De Chiara³, Stéphane Delmas¹, Fabien Dutreux⁴, Téo Fournier⁴, Anne Friedrich ⁴, Etienne Kornobis^{5,6}, Jing Li ^{© 2,3}, Zepu Miao², Lorenzo Tattini ^{© 3}, Joseph Schacherer ^{© 4,8} Gianni Liti 🕲 3.8 🖂 & Gilles Fischer 🕲 1.8 🖂

nature methods

Brief Communication

Received: 30 July

Accepted: 26 Aug Published online: 21

https://doi.org/10.1038/s41592-024-02430-3

Building pangenome graphs

pangenome graph builder

Received: 30 July 2023	Erik Garrison 🕲 ^{1,30} 🖂, Andrea Guarracino 🕲 ^{1,2,30} , Simon Heumos 🕲 ^{3,4,5} ,
Accepted: 26 August 2024	Flavia Villani © ¹ , Zhigui Bao © ^{6,7} , Lorenzo Tattini ^{8,9} , Jörg Hagmann © ¹⁰ , Sebastian Vorbrugg ⁶ , Santiago Marco-Sola © ^{11,12} , Christian Kubica ⁶ ,
Published online: 21 October 2024	David G. Ashbrook @ ¹ , Kaisa Thorell @ ¹³ , Rachel L. Rusholme-Pilcher @ ¹⁴ ,
Dheck for updates	Gianni Liti ⁸ , Emilio Rudbeck ¹⁵ , Agnieszka A. Golicz ¹⁰ , Sven Nahnsen ^{3,4,5,17} , Zuyu Yang ¹⁰ , Moses Njagi Mwaniki ¹⁹ , Franklin L. Nobrega ⁰²⁰ , Yi Wu ²⁰ ,
	Hao Chen ²¹ , Joep de Ligt [©] ²² , Peter H. Sudmant [©] ²³ , Sanwen Huang [©] ⁷ , Detlef Weigel [©] ^{6,24} , Nicole Soranzo ^{2,25,26,27,28} , Vincenza Colonna [©] ^{1,29} , Robert W. Williams ¹ & Pjotr Prins [©] ¹

O'Donnell S, Yue JX, ..., Fischer G. Telomere-to-telomere assemblies of 142 strains characterize the genome structural landscape in S. cerevisiae. NAT GENET. 2023. Garrison E, Guarracino A, ..., Prins P. Building pangenome graphs. NATURE METHODS. 2024.

materials & methods

- scrap collection subset
 - 107 S.c. haplotypes
 - 86 diploid strains

- pggb
- vg
- odgi
- impg
- distBWT2

- sgp-eva
- panda

investigations on the scrap graph

- pangenome (annotations)
- chromosome-ends
- origin
- admixture
- pangenome (variants)
- phylogeny

SGP VA

03.B

01.W4

Peter J, De Chiara M, ... Liti G & Schacherer J. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. NATURE. 2018.

the Saccharomyces graph phylogeny evaluation tool

Guerrini V, ..., & Tattini L. phyBWT2: phylogeny reconstruction via eBWT positional clustering. ALGORITHMS MOL BIOL. 2023.

quantifying tree similarity

with a generalised Robinson-Foulds distance

Smith MR. Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic trees. BIOINFORMATICS. 2020.

comparing phylogenies

nucmer

pggb + vg (vs SGD)

pggb (SNVs) benchmark

pangenome	time (hours)	memory (GB)	compression	N(SNV) / N(genomes)	F1 score (mean)
ecoli500	41.39	210.87	23.75	60,243	0.967
scerevisiae142.hc	20.46	119.68	57.12	61,439	0.972
athaliana82	204.06	130.59	36.28	572,924	0.920
tomato23	22.34	42.06	19.73	861,654	0.968
mouse36.chr19	3.80	28.66	11.68	166,734	0.940
hsapiens90.chr6	18.46	135.52	137.72	86.88	0.976

graph phylogenies

reference-based vs reference-free

origin & admixture on a graph

only 80% of chrIX can be traced to unadmixed strains

the missing origin

ADI chrIX coordinate [bp]

the missing origin

ADI chrIX coordinate [bp]

panda

pangenome annotations data analysis

which strain bears the largest number of RID genes? N(RID) strain ADI 263 how many RID genes are on chrIX? CQS_1a 65 -ATM_1a 62 65 -AIF_HP2 60 BBM_1a 49 how many are at chromosome-ends? **DBVPG6044** 37 CNT_HP1 36 all -35 CEQ_1a

summary

- sgp: ADI unique features otherwise missed
- origins: the expansions at chromosome-ends (chrIX)
- panda: high RID genes content
- est1- (ineffective telomerase system)
- est1 is (slightly) transcribed
- ultra-long reads
- graph multi-scale investigation

Bergström A, ..., R & Liti G. A high-definition view of functional genetic variation from natural yeast genomes. MOL BIOL EVOL. 2014.

Skelly DA, ..., & Akey JM. Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. GENOME RES. 2013.

Lundblad V & Blackburn EH. An alternative pathway for yeast telomere maintenance rescues est1- senescence. CELL. 1993.

p<mark>ggb</mark> + odgi

perspectives

fundamental questions

dynamics at chromosome-ends

what are the evolutionary trajectories at subtelomeres and telomeres?

heritability

the missing

why GWAS fails to fully associate phenotypes to genotypes?

gene flow

what is the genomic impact of introgression and HGT?

disease-specific pangenomes

- cancer genomics - ageing

- novel genetic risk factors - personalised medice*

- gene therapy*

- drug resistance reversion

Musunuru K, ..., & Ahrens-Nicklas RC. Patient-specific in vivo gene editing to treat a rare genetic disease. NEW ENGLAND JOURNAL OF MEDICINE. 2025.

acknowledgements

"Progress in science depends on new techniques, new discoveries, and new ideas, probably in that order."

- Sydney Brenner, 2002 Nobel Prize Winner -

