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Abstract—We introduce a resource allocation framework for
goal-oriented semantic networks, where participating agents
assess system quality through subjective (e.g., context-dependent)
perceptions. To accommodate this, our model accounts for agents
whose preferences deviate from traditional expected utility
theory (EUT), specifically incorporating cumulative prospect
theory (CPT) preferences. We develop a comprehensive an-
alytical framework that captures human-centric aspects of
decision-making and risky choices under uncertainty, such as
risk perception, loss aversion, and perceptual distortions in
probability metrics. By identifying essential modifications in
traditional resource allocation design principles required for
agents with CPT preferences, we showcase the framework’s
relevance through its application to the problem of power
allocation in multi-channel wireless communication systems.

Index Terms—Goal-oriented semantic communications, re-
source allocation, cumulative prospect theory, risk aversion,
behavioral semantic data networking.

I. INTRODUCTION

Departing from conventional approaches, goal-oriented se-
mantic communication prioritizes the effectiveness of trans-
mitted information by focusing on generating, processing, and
delivering content specifically relevant and important to the
application or user’s goals [1]–[3]. This foundational shift
in design philosophy minimizes redundant data, significantly
enhancing resource and computational efficiency, and will be
instrumental in enabling collaborative hyperconnected intelli-
gence and the Internet of Agents.

Goal-oriented semantic communication has unearthed two
game-changing principles. First, the semantic of information
(SoI), i.e., its value, importance, and utility, is inherently
relative and subjective. The significance of information in
communication is shaped by the goals, context of use, and
user perceptions, which can vary and may be distorted by
various factors and interactions with others. Second, the
content consumer (observer or decision maker) plays a central
role in evaluating the semantic value and perceived utility of
information, often through subjective assessment. In simple
terms, within a network where not all bits or packets are
equally important, the receiver may act both as an objective
observer and a subjective perceiver. In this context, a novel
multi-objective network optimization framework that incor-
porates semantics-aware utilities and subjective perceptions
of alternative outcomes, while accommodating diverse risk
attitudes under uncertainty, is of cardinal importance.

While recent studies have investigated various aspects
of goal-oriented semantic communications, semantics-aware

resource allocation and network optimization remain largely
unexplored and challenging. In this paper, we address these
aspects leveraging cumulative prospect theory (CPT) [4],
which captures information semantics via risk-sensitive mea-
sures, multi-attribute utility functions, and rank-dependent
weighting through nonlinear probability transformations. This
is a departure from the risk-neutral expected utility theory
(EUT) that has dominated conventional network optimization.
Previous studies in (wireless) communication and network-
ing [5]–[13] have applied prospect theory [14], despite its
known limitations and inconsistencies. However, to the best
of our knowledge, cumulative prospect theory remains largely
unexplored in this context. Our work is the first to propose
leveraging, adapting, and generalizing CPT for goal-oriented
semantic communications.

In this work, we propose a resource allocation framework
that incorporates agent interactions, preferences, and decision-
making under risk and uncertainty in goal-oriented semantic
networks. Our model incorporates agents’ subjective, context-
dependent perceptions by adopting CPT preferences, diverg-
ing from traditional expected utility theory. We develop an
analytical framework that integrates human-centric decision-
making, such as risk perception, loss aversion, and probability
distortions under uncertainty. The interest of this work is two-
fold. On one hand, we show how modified and generalized
versions of CPT can effectively capture the relativity and
subjectivity inherent in goal- and context-specific semantic
information and quality perception, as well as risk aversion.
On the other hand, we show how semantics-aware metrics
may contribute to further generalizations of CPT. Addition-
ally, we provide a generalized, risk-averse utility function to
support these advancements. By identifying key adaptations
in conventional resource allocation design to accommodate
agents with CPT preferences, we show the framework’s
effectiveness through its application to power allocation in
multi-channel wireless systems.

II. PRELIMINARIES IN CUMULATIVE PROSPECT THEORY

In this section, we provide a brief overview of the mathe-
matical framework of CPT [15].

In a nutshell, CPT has the following features that are
lacking from EUT: (i) reference dependence, (ii) loss aversion,
(iii) diminishing sensitivity to returns for both, gains and
losses, (iv) probabilistic sensitivity, (v) rank dependence and
cumulative probability weighting.



Each agent is associated with a reference point x0 ∈ R, a
corresponding value function u : R → R, and two probability
weighting functions w± : [0, 1] → [0, 1], w+ for gains and
w− for losses, to model uncertainty perception. We say that
(x0, u, w

±) are the CPT features of that agent.

A. Reference Dependence

Agents perceive value (semantics) and indicate preferences
through deviations from an existing reference point x0. This
reference point may represent an acquired or expected op-
erating level or quantity (e.g., minimum achieved SoI under
typical system operation) and may differ across application
scenarios. The utility function domain is partitioned into two
regions relative to x0: the loss domain x < x0 and the gain
domain x ≥ x0. In the loss domain, u(x) < 0,∀x < x0 and
limx→x−

0
u(x) ≤ 0, and in the gain domain, u(x) > 0,∀x >

x0 and limx→x+
0
u(x) ≥ 0.

B. Utility function and curvature

Any utility or value function u(x) satisfies the following
fundamental properties in the framework of classical CPT in
terms of curvature and monotonicity: (i) it is continuous and
strictly increasing in x; (ii) u(x0) = 01; (iii) u(x) is concave
when x ≥ x0 and is convex when x < x0 (diminishing
marginal utility); (iv) u′(x+

0 ) < u′(x−
0 ) (loss aversion).

As u is strictly increasing in the whole domain, u(x1) <
u(x2),∀x1 < x2, hence 0 < ∂u

∂x ,∀x < x0 and 0 < ∂u
∂x ,∀x0 <

x.
The curvature of the utility function (marginal utility)

characterizes attitudes toward risk (risk aversion) and the
agent’s sensitivity to varying scales of change within each
subdomain. Specifically, in the gain domain, a convex utility
function suggests that the agent perceives changes further
from x0 more intensely, whereas a concave function indicates
that the agent is more sensitive to changes occurring closer
to x0. Conversely, in the loss subdomain, the opposite holds.
This differs significantly from the typical assumption in EUT
that the utility function is concave throughout. Furthermore,
for a symmetric bet—where potential gains and losses are
equal - centered around a point x1 within one subdomain
and remaining within that subdomain after the outcome, a
concave function represents a risk-averse agent, whereas a
convex function describes a risk-seeking agent.

Two widely used CPT utility functions proposed in the
literature are the following. The first one is the Kahneman
and Tversky utility function [4] given by

u(x) =

{
(x− x0)

α for x ≥ x0

−λ (x0 − x)
β for x < x0

(1)

where α, β ∈ (0, 1] (for S-shaped utility function) capture
the diminishing sensitivity to returns for gains and losses,
respectively, and λ > 0 captures the loss aversion. Two major
limitations are as follows: (i) it is not marginally differentiable

at x0, i.e., lim
x→0−

∂u

∂x
= −∞ and lim

x→0+

∂u

∂x
= +∞, and (ii)

1Generally speaking, u(x0) can have any value in the interval
lim

x→x−
0
u(x) ≤ u(x0) ≤ lim

x→x+
0
u(x); in classical CPT, it is assumed

to be zero, i.e., lim
x→x−

0
u(x) = lim

x→x+
0
u(x) = u(x0) = 0.

symmetric bet (loss) aversion can only be satisfied if α = β
and λ > 1 [16].

Another commonly used utility function, proposed by
Köbberling and Wakker [17], is given by

u(x) =

{
λ1

1−exp(−α(x−x0))
α for x0 ≤ x

−λ2
1−exp(−β(x0−x))

β for x < x0
(2)

where λ1, λ2, α, and β are goal- or agent-specific parameters,
all positive to ensure the function’s strictly increasing mono-
tonicity and S-shape. Moreover, the condition for increasing
symmetric bet aversion can be satisfied for α > β and
λ2 > λ1 [18]. The terms symmetric and increasing symmetric
bet aversion will be defined in the following subsection.

C. Loss Aversion
The CPT utility function exhibits loss aversion, meaning

that agents are more sensitive to losses than to equivalent
gains. This property is mathematically formulated by re-
quiring that the right-hand marginal derivative of the utility
function at the reference point should be smaller than the
left-hand derivative, i.e., u′(x+

0 ) < u′(x−
0 ). Kahneman and

Tversky introduced the concept of symmetric bet aversion,
defined by u(x0+δ)+u(x0−δ) < 0,∀δ > 0 with u(x0) = 0
[14]. This criterion implies that all symmetric fair gambles
are rejected in favor of maintaining the status quo. They
further introduced a stricter version of this criterion, known
as increasing symmetric bet aversion, expressed as u(x0 +
δ1) + u(x0 − δ1) < u(x0 + δ2) + u(x0 − δ2),∀0 < δ2 ≤ δ1.
This can be reformulated as ∂u

∂x |x=x0+δ < ∂u
∂x |x=x0−δ,∀δ > 0

and u(x0) = 0. This definition implies that the rejection
of all symmetric fair gambles is an increasing function
(in absolute values) of the step δ. Neilson extended these
definitions by introducing weak loss aversion, given by
u(z)
z−x0

< u(y)
y−x0

,∀y < x0 < z and strong loss aversion,
given by ∂u

∂x |x=z < ∂u
∂x |x=y,∀y < x0 < z [19]. Strong

loss aversion implies weak loss aversion, and the two are
equivalent only when the utility function is strictly increasing,
twice continuously differentiable, and S-shaped on R.

D. Probability Weighting Function
A key attribute of CPT is the non-linear probability distor-

tion, in which objective probability is distorted when being
perceived by end users according to a probability weighting
function (PWF). The PWF typically models uncertainty per-
ception and captures the effect that human agents overweight
small probabilities and underweight moderate and high prob-
abilities. The PWFs w± : [0; 1] → [0; 1] are continuous and
strictly increasing, with w±(0) = 0 and w±(1) = 1.

One of the earliest PWFs was proposed in [4], and it is
defined as w(p) ≜ pδ

(pδ+(1−p)δ)
1
δ

with 0 < δ ≤ 1. The most

widely used probability weighting function is probably the
Prelec function [20], given by

w(p) = exp
(
−γ (− ln(p))

θ
)

(3)

where the parameter 0 < θ < 1 controls the curvature of the
PWF and the parameter γ > 0 the location of the inflection
point relative to the line w(p) = p. The effect of these
parameters is summarized in Table I.



0 < γ < 1 γ = 1 1 < γ

0 < θ < 1
inverse S-shape,

p̃ < w(p̃)
inverse S-shape,

p̃ = w(p̃)
inverse S-shape,

p̃ > w(p̃)

θ = 1
strictly concave,

p̃ < w(p̃)
linear,

p̃ = w(p̃)
strictly convex,

p̃ > w(p̃)

1 < θ
S-shape,
p̃ < w(p̃)

S-shape,
p̃ = w(p̃)

S-shape,
p̃ > w(p̃)

TABLE I: The effect of the parameters in Prelec function.
The inflection point is denoted with p̃.

III. PROPOSED RESOURCE CONTROL FRAMEWORK

In this section, we introduce our proposed goal-oriented
semantic resource allocation framework.

Consider a network with a set of agents or users, denoted by
N = {1, . . . , n}, and a (finite) set of allocations. Each agent
acquires semantic information from m sources (of risk), each
with a different importance (semantic payoff) with respect
to a reference point. Agent i makes choices or expresses
preferences according to CPT, based on a utility function ui

and a PWF wi. This allows agents to subjectively evaluate
performance, with distinct, individualized perceptions of risk
and semantic value.

Each agent i is allocated a prospect Πi =
{(pi(1), yi(1)), . . . , (pi(ki), yi(ki))} where yi(ℓi) ≥
0, ℓi ∈ Ki denotes an outcome (allocation profile),
with Ki = {1, . . . ki} denoting the set of outcomes for
agent i, and pi(ℓi), ℓi ∈ K is the probability with which
outcome yi(ℓi) is allocated. The objective is to maximize
the aggregate CPT utility for the agents such that a prospect
profile {Π1, . . . ,Πn} is feasible, i.e.,

max

n∑
i=1

Vi(Πi)

s.t.{Π1, . . . ,Πn} ∈ F

where F is the set of all feasible prospect profiles. The CPT
value of prospect Πi for the i-th agent is given by

Vi(Πi) =
∑
ℓi∈Ki

dℓi(pi, πi)u(ζi(ℓi)) (4)

where

dℓi(pi, πi) = wi(p̃i(1) + . . .+ p̃i(ℓi))

− wi(p̃i(1) + . . .+ p̃i(ℓi − 1))

p̃i(ℓi) = pi(π
−1
i (ℓi)),∀ℓi ∈ Ki

for permutation πi : Ki → Ki such that allocation ζi(1) ≥
. . . ≥ ζi(ℓi) and yi(ℓi) = ζi(πi(ℓi)), ∀ℓi ∈ Ki.

A longer version of this paper will delve into the CPT-
based semantic resource allocation framework and the in-
tricate solution to the general optimization problem, which
notably is challenging due to its typically nonconvex and
non-smooth objective function. The formulation presented
here offers guidance for optimally allocating risk in mission-
critical applications, where both risk and value are perceived
subjectively based on the agent’s goals and preferences.

For instance, suppose an agent has to allocate its resources
(budget) among m sources of risks (e.g., obtaining critical
or important data through a certain path or channel), each

offering a potential value (payoff) ci. For a set of allocations
A = {α1, . . . αm}, the agent seeks to maximize its CPT
value V (yi), where yi =

∑
αici. It can be shown that, in

the loss subdomain, concentrating risk (i.e., αi = 1 for some
i and αj = 0 for j ̸= i) is always optimal for a CPT agent,
whereas risk diversification (αi = 1/m, ∀i) is optimal in the
gain subdomain.

A. CPT and the Semantics of Information

We can show that the SoI metric is highly related to CPT
value function. Let Y = (Y1, . . . , Yk)

T a random vector of
K information attributes (random variables) {Yi}Ki=1. Given a
composite metric M(y) that depends on the random vector y
with multivariate probability density function (PDF) fY(y),
we can define the perceptual utility of this metric as

M̃ =

∫
RK

+

u(M(y))f̃Y(y)dy =

∫
RK

+

S(y)dy, (5)

where f̃Y(y) is the perceptual multivariate PDF of Y, which
is given by f̃Y(y) = dF̃Y(y)

dy = dw(FY(y))
dy , and S(y)

represents the SoI metrics [1], [21], with the PWF operating
as a context-dependent function that adapts qualitative infor-
mation attributes according to their importance in specific
applications. Loosely speaking, identifying the claims that
maximize the CPT value is roughly equivalent to determining
the optimal allocation that maximizes the SoI.

Here F̃Y(y) denotes the perceptual multivariate CDF,
which is typically a nonlinear transformation of the objective
multivariate CDF FY(y) by a PWF w(·).

The perceptual utility M̃ can be used to assess the subjec-
tive performance associated with the composite metric. Unlike
objective performance evaluation metrics, M̃ permits negative
values, which reflect a negative subjective perception of the
objective performance.

B. Generalized utility functions

We first propose a generalized form of the Köbberling and
Wakker utility function [17] as a foundation for modeling
agents whose behavior may slightly diverge from conventional
CPT, enabling the representation of a broader range of risk
behaviors.

u(x) =

 λ1

µ1−exp
(

α
γ1

·(x−x0)
)

α x0 ≤ x

λ2

µ2−exp
(

β
γ2

·(x−x0)
)

β x < x0

(6)

where α, β, λ1, λ2, γ1, γ2, µ1 and µ2 are user specific
parameters generally defined on R.

Gain Loss

Constant γ1 → 0−,0 < α,
0 < λ1 · µ1

γ2 → 0+,0 < β,
λ2 · µ2 < 0

Linear α → 0,λ1
γ1

< 0 β → 0,λ2
γ2

< 0

Convex λ1
γ1

< 0,0 < α
γ1

,µ1 ≤ 1 λ2
γ2

< 0,0 < β
γ2

,1 ≤ µ2

Concave λ1
γ1

< 0, α
γ1

< 0,1 ≤ µ1
λ2
γ2

< 0, β
γ2

< 0,µ2 ≤ 1

TABLE II: Summary of parameters values for each of the
subdomains and the possible shapes of the branch of the utility
function



We present the following observations regarding the impact
of parameters on the S-shaped utility function2.

• Firstly, parameters α and γ shape the utility function, act-
ing as a measure of risk aversion within each subdomain.
Specifically, as α → 0, the utility function approaches
a linear form with the steepest slope corresponding to
a risk-neutral agent. Conversely, as α increases, the
maximum value of the function decreases and the shape
approximates a step function with a nearly flat slope,
representing a fully risk-averse agent. Regarding the
parameter γ, its behavior is opposite to that of α: it starts
as a step function for small values and transitions into
a linear function with diminishing amplitude for large
values. This behavior is consistent with the Arrow-Pratt
measure of absolute risk aversion [22], [23], which, in
the context of our proposed utility function, is given
by α

γ . In summary, by appropriately adjusting the pa-
rameters α and γ, we can achieve the desired shape of
the utility function while mitigating the impact of the
decreasing amplitude.

• The parameter λ determines the maximum value (sat-
uration level) of the utility function and the slope of
the tangent line at the reference point. Additionally, the
saturation level can indicate the degree of importance
attributed to the agent.

• The parameter µ controls the vertical shift of the utility
function. Typically, µ is set to zero in nonlinear cases to
ensure continuity at the reference point, where the utility
value is zero.

IV. CASE STUDY: WIRELESS POWER CONTROL WITH
CPT AGENTS

In this section, we apply the proposed goal-oriented seman-
tic resource allocation framework to the problem of power
allocation with CPT agents. We consider the downlink of a
wireless system with N orthogonal channels and N agents.
Our objective is to determine the optimal power allocation
under a total power budget constraint, guided by a semantic
quality metric that is subjectively evaluated by each CPT
agent. The perceptual metric used here, which also defines
the domain, is the signal-to-noise ratio (SNR), given by
SNR = P ·|h|2

N0
, where P denotes the allocated transmit power,

h is the complex channel coefficient, and N0 is the power of
the additive white Gaussian noise (AWGN). Specifically, each
CPT agent, assigned to a specific channel3, uses the perceptual
subjective utility function defined in (6) with parameters set
as µ1 = µ2 = 1 and α, β, λ1, λ2 > 0 and γ1, γ2 < 0.
The reference point is denoted as SNR0. Under the condition
−λ1

γ1
< −λ2

γ2
and with the specified parameter values, (6)

satisfies Neilson’s definition of strong loss aversion. This
utility function is concave over both subdomains, representing
an extension of exponential utility to account for loss aversion.

2Since the gain and loss branches of the utility function follow identical
mathematical forms and shape conditions, our analysis of the gain branch
parameters also holds for the loss branch.

3We assume that the channel assignment is predetermined. The joint
assignment and power allocation problem - typically NP-hard - can be
approached using a game-theoretic formulation.

The power allocation optimization problem for our setup, is
formally expressed as follows:

max
P

N∑
i=1

w(pi)u(SNR(i))

s.t.
N∑
i=1

P (i) ≤ Ptotal

0 ≤ P (i) ∀i

(7)

where w(pi) is the PWF, modeling the i-th agent’s subjective
assessment of probability pi. This probability may reflect
aspects such as the channel activation the likelihood, success
rate, or availability of information flow. We will adopt a
divide-and-conquer approach, splitting it into two optimiza-
tion sub-problems (one for the gain and one for the loss).

The dual Lagrangian problem of (7) is the following:

max
k,µ

min
P

L(P,k, µ) (8)

where the k and µ are the Lagrangian multipliers and the
augmented, unconstrained Lagrangian function is given by

L(P,k, µ) = −
N∑
i=1

w(pi) · u(SNR(i)) +

N∑
i=1

k(i) · (−P (i))

+µ ·

(
N∑
i=1

P (i)− Ptotal

)
.

(9)
The original maximization problem (7) is concave and sat-
isfies Slater’s conditions, resulting in zero duality gap, when
Ptotal falls within specific intervals that we provide below.
Unavoidably, due to loss aversion, certain values of Ptotal do
not fall within these intervals, hence sequential quadratic pro-
gramming (SQP) can be employed to solve the optimization
problem effectively.

The KKT conditions [24] for the dual problem are applied
as follows:

• Stationary condition: ∂L
∂P (i) = 0 ∀i ⇔

µ− k(i) = w(pi) · |h(i)|2
N0

· ∂u(SNR(i))
∂(SNR(i)) .

• Complementary slackness: −k(i) · P (i) = 0,∀i, which
means that k(i) = 0 if P (i) > 0 or k(i) > 0 if P (i) = 0.

• Complementary slackness: µ ·
(∑N

i=1 P (i)− Ptotal

)
=

0, which means that µ = 0 if
∑N

i=1 P (i) < Ptotal or
µ > 0 if

∑N
i=1 P (i) = Ptotal.

Hence, we can combine both conditions as follows:

µ = w(pi) ·
|h(i)|2

N0
· ∂u(SNR(i))

∂ (SNR(i))
iff P (i) > 0,∀i. (10)

The above condition can be solved separately for the gain and
loss subdomains, taking into account the utility function’s loss
aversion.

Gain subdomain: P (i) = N0

|h(i)|2 ·(
SNR0 +

γ1

α · ln
(
−µ · 1

w(pi)
· γ1

λ1
· N0

|h(i)|2

))
for

µ ≤ −w(pi) · λ1

γ1
· |h(i)|2

N0



Loss subdomain: P (i) = N0

|h(i)|2 ·(
SNR0 +

γ2

β · ln
(
−µ · 1

w(pi)
· γ2

λ2
· N0

|h(i)|2

))
for

µ > −w(pi) · λ2

γ2
· |h(i)|2

N0
.

Therefore, the value of µ determines whether the i-th agent
falls within the gain or loss subdomain, as well as its allocated
power P (i) and the total allocated power

∑N
i=1 P (i).

• If µ ≤ µ̂1 = −λ1

γ1
· min{w(pi)·|h(i)|2}

N0
, then all the agents

are in gain subdomain. The total allocated power which
is matched to µ̂1 is defined as P̂

(1)
total.

• If µ > µ̂2 = −λ2

γ2
· max{w(pi)·|h(i)|2}

N0
, then all the agents

are in loss subdomain. The total allocated power which
is matched to µ̂2 is defined as P̂

(2)
total.

• If µ ∈ R∗
+\A, A = A1 ∪ A2 where

A1 = (0, µ̂1] ∪ (µ̂2,+∞) and A2 ={⋃N
i=1

(
−w(pi) · λ1

γ1
· |h(i)|2

N0
,−w(pi) · λ2

γ2
· |h(i)|2

N0

]}
,

some agents will fall into the gain subdomain, while
others will belong to the loss subdomain. Given the
total power constraint, we can identify the range of
values for µ within which the total power lies as an
interior point. To determine the exact value of µ for a
specified total power consumption, a bisection search
can be applied within this interval.

It should be noted that P̂
(1)
total is always greater

than P̂
(2)
total due to loss aversion. Moreover, the

total power
∑N

i=1 P (i) generally decreases as µ
increases. It is important to emphasize that the
region of influence for the i-th agent is given by
the interval

(
−w(pi)

λ1

γ1
· |h(i)|2

N0
,−w(pi)

λ2

γ2
· |h(i)|2

N0

]
.

Specifically, any j-th agent within the interval(
w(pi)
w(pj)

· |h(i)|2
N0

, w(pi)
w(pj)

· λ2γ1

γ2λ1
· |h(i)|2

N0

]
falls under the influence

of the i-th agent. Consequently, the subdomain of the j-th
agent is determined by the subdomain of the i-th agent.
Thus, as loss aversion increases, the impact region expands.
Additionally, the inverse S-shaped PWF amplifies the
influence of agents with lower pi, while reducing the impact
of more active agents. Furthermore, if the j-th agent is less
active than the i-th agent (i.e., w(pi)

w(pj)
> 1), the influence

region of i-th agent expands accordingly.

V. SIMULATION RESULTS

In this section, we present simulation results for the power
allocation problem solved above, for N = 6 CPT agents.
The reference point is set to SNR0 = 7 dB, spectral density
of noise N0 = −174 dBm/Hz, and the parameters of the
utility function are α = 3, β = 2, λ1 = 2, and λ2 = 4.
For both subdomains, we set the normalization parameters
γ1 and γ2 to 5. To provide further insight, Fig. 1 shows the
perceived cumulative distribution function (CDF) of channel
quality under Rayleigh fading, for different parameters of
Prelec function.

In Fig. 2, we plot the allocated power for each agent,
ordered by increasing objective unit power channel quality
(|h|2/N0), with pi = 1,∀i. The CPT-based power allocation
is compared against both equal power allocation and water-
filling strategy. With all agents in the gain subdomain in Fig.

Fig. 1: Perceived CDF of channel quality in Rayleigh fading
under various parameter configurations.

2a, the power allocation can be understood as an inverse
water-filling scheme, primarily due to the utility function’s
loss aversion. As we transition to the intermediate region in
Fig. 2b, where some agents fall within the gain subdomain and
others in the loss subdomain, the power allocation starts to
transform from an inverse water filling profile of allocation to
a more equalized power allocation, going towards an inverse-
U shape profile during the passage to the loss subdomain in
Fig. 2c. We should mention that the inverse-U shape profile
is asymmetric. As the total power decreases further and the
agents falls deeper to the loss subdomain, the peak of the
inverse-U curve shifts to the right.

In Fig. 3, we plot the power allocation for each agent,
arranged by ascending channel quality, with pi drawn from a
uniform distribution over [0, 1]. When all agents are within the
gain subdomain, in Fig. 3a, the allocation follows an inverse
water filling pattern, differing from the unit w(p) case and
taking into consideration the weight of each agent. In the
intermediate region, shown in Fig. 3b, the inverse water-filling
profile begins to decrease, albeit maintaining a weighted by
w(pi) perspective. The most pronounced difference between
Fig. 2 and Fig. 3 appears in the subfigures 2c and 3c,
which depict the scenario where all agents are within the
loss subdomain. Comparing the two figures, we observe
that, in the first, the allocation profile exhibits an inverse-
U shape, whereas in the second, the power allocation profile
is strongly influenced by each agent’s probability distortion
through w(pi).

VI. CONCLUSIONS

In this paper, we presented a novel resource allocation
framework for goal-oriented semantic networks, addressing
the subjective and context-dependent nature of observer/agent
perceptions in evaluating system quality. Leveraging cumu-
lative prospect theory, we account for deviations from tra-
ditional expected utility optimization theory, allowing for a
more accurate representation of human-centric, risk-averse
decision-making under uncertainty. Our analytical framework
captured essential aspects such as asymmetric risk perception,
loss aversion, and perceptual biases in probability assessment,
which are often overlooked in conventional resource alloca-
tion approaches.



(a) All agents in the gain subdomain. (b) Intermediate region. (c) All agents in the loss subdomain.

Fig. 2: Optimal power allocation with equal weights w(pi) = 1,∀i

(a) All agents in the gain subdomain. (b) Intermediate region. (c) All agents in the loss subdomain.

Fig. 3: Optimal power allocation with unequal weights w(pi)
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[17] V. Köbberling and P. P. Wakker, “An index of loss aversion,” J. Econ.
Theory, vol. 122, no. 1, pp. 119–131, 2005.

[18] S. S. Dhami, The Foundations of Behavioral Economic Analysis.
Boston: Oxford University Press, 2016.

[19] W. S. Neilson, “Comparative risk sensitivity with reference-dependent
Preferences,” J. Risk Uncertain., vol. 24, no. 2, pp. 313–142, 2002.

[20] D. Prelec, “The probability weighting function,” Econometrica, vol. 66,
no. 3, pp. 497–527, 1998.

[21] N. Pappas and M. Kountouris, “Goal-oriented communication for real-
time tracking in autonomous systems,” in IEEE Int. Conf. Auton. Syst.
(ICAS), 2021, pp. 1–5.

[22] K. J. Arrow, Aspects of the Theory of Risk Bearing. Helsinki: Yrjö
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