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Abstract—We investigate the multiuser scheduling problem in
multiple-input multiple-output (MIMO) systems using orthogonal
frequency division multiplexing (OFDM) and hybrid beamforming
in which a base station (BS) communicates with multiple users
over millimeter wave (mmWave) channels in the downlink. Im-
proved scheduling is critical for enhancing spectral efficiency and
the long-term performance of the system from the perspective
of proportional fairness (PF) metric in hybrid beamforming
systems due to its limited multiplexing gain. Our objective is
to maximize PF by properly designing the analog and digital
precoders within the hybrid beamforming and selecting the users
subject to the number of radio frequency (RF) chains. Leveraging
the characteristics of mmWave channels, we apply a two-timescale
protocol. On a long timescale, we assign an analog beam to each
user. Scheduling the users and designing the digital precoder are
done accordingly on a short timescale. To conduct scheduling,
we propose combinatorial solutions, such as greedy and sorting
algorithms, followed by a machine learning (ML) approach. Our
numerical results highlight the trade-off between the performance
and complexity of the proposed approaches. Consequently, we
show that the choice of approach depends on the specific criteria
within a given scenario.

I. INTRODUCTION

Millimeter wave (mmWave) frequency band is a promising
candidate for 5G and beyond [1]. However, mmWave signals
are inherently susceptible to high path loss, necessitating base
stations (BSs) to be equipped with large antenna arrays and
beamforming techniques to mitigate interference and enhance
spectral efficiency. Hybrid beamforming has gained traction as
a viable solution in mmWave systems, offering fewer required
radio frequency (RF) chains. Hybrid beamforming enables
improved management of multiuser interference and strikes a
better balance of performance and efficiency than conventional
analog and digital beamforming [2]. Nevertheless, the reduced
number of RF chains restricts the multiplexing gain in multiuser
systems and limits the maximum number of users that each BS
can simultaneously serve. Consequently, multiuser scheduling
becomes essential such that the BS could dynamically select a
subset of users to serve at each time.

The literature contains several studies on hybrid beamform-
ing and user scheduling as part of radio resource management
(RRM) for multiple-input multiple-output (MIMO) systems.
The hybrid beamforming problem has been explored in [2]–
[5]. In [2], the authors assume that the number of users is
no greater than that of RF chains. Moreover, in [3]–[5], it is
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assumed that the BS serves a single user, where scheduling
is unnecessary. On the other hand, studies such as [6]–[9]
have investigated the hybrid beamforming and user scheduling
as a joint problem under the assumption that the number of
users exceeds the available RF chains. That being said, a flat-
fading channel model is adopted in [6]–[8] for mmWave hybrid
beamforming systems. In practice, this channel model is less
realistic for real-world applications. Addressing this issue, the
authors in [9] have considered a frequency-selective model and
formulated the joint user scheduling and hybrid beamforming
based on orthogonal frequency division multiplexing (OFDM)
systems. As two major limitations, their approach only relies
on an offline solution for a relaxed problem, which may be
impractical. It also lacks a comprehensive comparison of the
performance and complexity across different methods.

This paper falls within the realms of joint hybrid beamform-
ing and user scheduling in MIMO-OFDM systems. We build on
the work presented in [8] and extend it to OFDM systems under
frequency-selective fading models. We utilize a two-timescale
protocol to solve the joint problem of hybrid beamforming and
user scheduling. To select a subset of users, we leverage various
combinatorial methods along with a machine learning (ML)
approach, each offering distinct performance and complexity
profiles. Our numerical results reveal that, in terms of long-
term proportional fairness and required run time, one of these
approaches may be more suitable depending on its delivered
trade-off between performance and complexity.

II. SYSTEM MODEL

We consider a downlink multiuser system in which a BS
communicates with I users in a time-slotted manner over
MIMO mmWave channels (Fig. 1). We assume the channels
follow a frequency-selective fading model. Therefore, we exert
OFDM technology and adopt a hybrid beamforming architec-
ture at the BS assisted by NTX antennas and NRF RF chains,
where NRF < NTX. In this model, every user has NRX

antennas and a single RF chain. Each RF chain at the BS is
linked to an independent OFDM resource grid that consists
of K physical resource blocks (PRBs) within a single slot.
Every PRB has several subcarriers with equal bandwidths. We
assume that one1 user is scheduled per resource grid at each
slot and define Imax as the maximum number of users served
simultaneously, where Imax ≤ I . Thus, we have Imax = NRF,

1This assumption distinguishes between OFDM and orthogonal frequency
division multiple access (OFDMA). OFDMA allows scheduling multiple users
within each resource grid. However, we keep this technology for future studies.



Fig. 1: A multiuser MIMO-OFDM system in downlink.

and the spatial multiplexing gain of the considered hybrid
beamforming system is limited by min{NRF, I} = NRF [2].
At the time slot t, ∀t ∈ N, a user scheduler at the BS selects
a subset of users to be served, which is denoted by M(t) with
the size of |M(t)|= M(t) such that M(t) ≤ Imax, and

M(t) = {im | ∀m = 1, 2, ...,M(t)}. (1)

At the BS, a module with NRF antenna port mappers first
maps M(t) selected users’ data streams to the inputs of K
digital (baseband) precoders. In this context, an antenna port
can be seen as a logical entity associated with an independent
resource grid. Thus, each antenna port is uniquely assigned to
one of the selected users and maps the modulated symbols of
that user’s data stream to K PRBs, with each symbol being
mapped to one distinct subcarrier within a PRB. Subsequently,
the k-th precoder, where k = 1, 2, . . . ,K, applies baseband
precoding to all selected users’ symbols arranged side-by-side
in the k-th PRB. In this regard, the precoding matrix of the
k-th baseband precoder at the t-th slot is denoted by Fk(t) and
defined as follows

Fk(t) = [fk,i1(t), ..., fk,iM(t)
(t)] ∈ CM(t)×M(t). (2)

Afterward, inverse fast Fourier transform (IFFT) and cyclic
prefix (CP) adder modules followed by an RF chain at each
terminal port dedicated to one selected user construct an OFDM
symbol from K digitally precoded symbols of that user. We
consider a fully connected structure in which all RF chains are
connected to all antennas. Therefore, M(t) OFDM signals are
jointly precoded via an analog precoder under the precoding
matrix G(t) defined as

G(t) = [gi1(t), ...,giM(t)
(t)] ∈ CNTX×M(t). (3)

The analog precoder typically adopts a beamforming codebook
G = {ψ` | ` = 1, 2, . . . , |G|} in mmWave.2 In this scenario,
ψ` ∈ CNTX×1 represents the `-th analog beamforming vector.
Following the user scheduling, the corresponding beamforming
vector for the user im ∈ M(t) is selected from the codebook,
i.e., gim(t) ∈ G at the t-th slot.

Once the analog beamforming is performed, an outcome
signal xk(t) ∈ CNTX×1 is transmitted via an antenna array
within the k-th PRB at the t-th slot, which is modeled as

xk(t) = G(t)Fk(t)sk(t)

= G(t)
∑

im∈M(t)

fk,im(t)sk,im(t) (4)

2The codebook is defined since phase shifters take quantized angles [2].

where sk(t) = [sk,i1(t), ..., sk,iM (t)(t)] ∈ CM(t)×1 with
sk,im(t) ∈ C being the data stream of the user im ∈ M(t) to
be transmitted within the k-th PRB. Here, E[|sk,im(t)|2] = 1,
and E[s∗k,im(t)sk,jm(t)] = 0 for im 6= jm ∈ M(t). With
regard to (4), the transmission power of the BS is truncated
as E[|xk(t)|2] ≤ Pk with Pk ∈ R+ indicating the power
limit at the k-th PRB. Let us define hk,im(t) ∈ CNTX×NRX

as the channel matrix between the BS and the im-th user
through the k-th PRB at the t-th slot. The final processed signal
yk,im(t) ∈ C at that user is derived as

yk,im(t) = ĝH
im(t)hH

k,im(t)xk(t) + ĝH
im(t)nim(t) (5)

where nim(t) ∼ CN (0, σ2
im

) ∈ CNRX×1 is a white Gaussian
noise, and σ2

im
shows the noise power. In addition, ĝim(t) ∈

CNRX×1 denotes the analog combining vector that an analog
combiner at the user derives and then applies to the received
signal. Importing (5) into (4), the achievable rate for the user
im ∈M(t) is computed as

rim(t) =
K∑

k=1

Bk log2(1 + SINRk,im) [bits/sec/Hz] (6)

at the t-th slot, whereas rjm(t) = 0, ∀jm /∈ M(t). In (6), Bk

denotes the bandwidth factor of the k-th PRB, where its value
is equal to the product of the number of subcarriers per PRB
and the number of OFDM symbols per slot. Also, we have

SINRk,im =
|uk,im(t)fk,im(t)|2∑

jm∈M(t)\{im}
|uk,im(t)fk,jm(t)|2+σ2

im

(7)

where uk,im(t) = [uk,imj1 , ..., uk,imjm ]H ∈ CM(t)×1 with its
element uk,imjm = ĝH

im
(t)hH

k,im
(t)gjm(t) ∈ C, ∀im, jm ∈

M(t), which is called an effective channel.

III. PROPORTIONAL FAIRNESS MAXIMIZATION

Within this section, we first define a proportional fairness
(PF) metric and then formulate the optimization problem.

A. The PF Metric

Let us consider Ri(T ) = (1 − ηi)Ri(T − 1) + ηiri(T ) the
cumulative data rate of the i-th user within the period of T time
slots in the form of an exponential moving average of the rates
[10], where ri(t) denotes the instantaneous rate from (6), and
0 ≤ ηi ≤ 1 is a tuning factor. To initialize, we have Ri(0) = 1
for i = 1, 2, ..., I . The PF metric is defined as

PF =
I∑

i=1

log(Ri(T )), (8)

which guarantees that no user is starved completely.

B. The Optimization Problem

The long-term objective is to maximize the defined PF in (8),
subject to the constraints imposed by the hybrid beamforming
system. Inspired from [11], maximizing PF within the period
of T slots could be decomposed into maximizing the weighted
sum of instantaneous data rates, i.e.,

∑I
i=1 wi(t)ri(t) at each



Fig. 2: Structure of the two-timescale protocol for one resource grid.

slot t = 1, 2, ..., T , as consecutive one-shot problems. In this
context, we consider wi(t) = 1/Ri(t − 1), which offers user
fairness such that the user scheduler would select the users that
have not been served for a long time. Therefore, the one-shot
problem P at the t-th slot is formulated as follows

P : max
M(t), {Fk(t)}Kk=1,G(t)

I∑
i=1

wi(t)ri(t)

s.t. C1 :M(t) ⊂ {1, 2, ..., I}, C2 : |M(t)|≤ Imax,

C3 :
∑

im∈M(t)

‖G(t)fk,im(t)‖2 ≤ Pk, k = 1, ...,K

C4 : gim(t) ∈ G, ∀im ∈M(t), (9)

where C1 and C2 are user scheduling requirements, the trans-
mission power constraint at the BS is shown in C3, and C4
implies the codebook utilization for analog RF beamforming.

The problem P is a mixed-integer problem (MIP) as M(t)
and G(t) exist in discrete spaces, whereas Fk(t), for k =
1, 2, ...,K, has a continuous outcome space. The total number
of possible combinations for the discrete solution variables
is derived as

∑Imax

i=1

((
I
i

)
× |G|i

)
, which grows fast with the

increase of Imax, I , and |G|. Also, to compute the users’ data
rates, i.e., ri(t) from (6), the BS needs to know the channel
information of all users within every PRB in advance. This
requires the users to estimate their channels and share them
with the BS, resulting in a large time overhead and waste of
energy. To address this, we develop a two-timescale protocol.

IV. TAILORED TWO-TIMESCALE PROTOCOL

A. Two-Timescale Protocol

The two-timescale protocol exploits mmWave characteristics,
where path gains vary slower than path angles [12]–[14].
We assume fixed path angles over long-time blocks, while
correlated gains may change among shorter blocks. Given the
limited number of clusters with distinct path angles in every
mmWave channel, relative to NTX, we can apply directional
analog beamforming on a long timescale such that the highest
gain of the beamformer is aligned with the dominant path
angle [12]. Digital beamforming adapts to path gains on a short
timescale, along with user scheduling at each short-time block.
The two-timescale protocol is shown in Fig. 2, where a long-
time block consists of NSB short-time blocks for a resource
grid, indexed by t ∈ N. The detailed steps follow.

Step I. Analog beamforming: During the first short-time
block of each long-time block, i.e., t = 1, NSB + 1, ..., the

BS broadcasts a pilot symbol to all users by applying each
beamforming vector ψ` in the codebook G sequentially for ` =
1, 2, . . . , |G|. Then, each user selects its best beam based on
the received pilots and its derived analog combining vector.
The index of the best beam for the i-th user is derived as

`∗i (t) = arg max
`=1,2,. . . ,|G|

1

K

K∑
k=1

∣∣ĝH
i (t)hH

k,i(t)ψ`

∣∣2 . (10)

Afterward, each user shares the index of its best beam with the
BS, and the BS assigns an analog beamforming vector from
the codebook G to each user accordingly so that the analog
precoder of the i-th user is derived as g∗i (t) = ψ`∗i (t)

. From
(3), G∗(t) is constructed at time slots t = 1, NSB + 1, ... and
fixedly used through the following NSB − 1 short-time blocks.

Step II. Acquisition of effective channels: At the t-th
short-time block, the BS generates an effective channel matrix
denoted by Uk(I; t) = [u∗k,1(t), ...,u∗k,I(t)] ∈ CI×I . For
this, the i-th user measures the effective channels u∗k,ij =

ĝH
i (t)hH

k,i(t)g
∗
j (t) ∈ C for i, j = 1, ..., I within the k-th

PRB based on the assigned beams and then shares u∗k,i(t) =

[u∗k,i1, ..., u
∗
k,iI ]H ∈ CI×1 for k = 1, ...,K with the BS.

Step III. User scheduling and digital beamforming: Ac-
cording to the assigned analog beamforming vectors, i.e.,
G∗(t), the generated effective channel matrix, i.e., Uk(I; t),
and weights of the users, i.e., {wi(t)}Ii=1, from their cumu-
lative data rates, the BS conducts user scheduling and digital
beamforming at the t-th short-time block. Hence, P can be
reformed to reduce complexity, as discussed in Section IV-B.

Step IV. Data transmission: With the designed system, the
selected user im, ∀im ∈ M(t), at the t-th short-time block is
served under the rate of rim(t) as in (6). The weights of all
users are updated based on their cumulative data rates.

Steps II to IV are repeated for NSB − 1 short-time blocks
starting from the second block until the end of each long-time
block, i.e., t = 2, ..., NSB for the first long-time block.

B. Problem of User Scheduling and Digital Beamforming

We reach a new problem with reduced complexity owing to
the two-timescale protocol from Section IV-A. After selecting
users, i.e., M(t), the precoding matrix is derived as

G∗(t) = [g∗i1(t), ...,g∗iM(t)
(t)]. (11)

Having G∗(t), P in (9) is transformed into a joint problem of
user scheduling and digital beamforming as follows

P̂ : max
M(t), {Fk(t)}Kk=1

I∑
i=1

wi(t)ri(t)

s.t. C1 :M(t) ⊂ {1, 2, ..., I}, C2 : |M(t)|≤ Imax,

C3 :
∑

im∈M(t)

‖G∗(t)fk,im(t)‖2 ≤ Pk, k = 1, ...,K. (12)

With a given M(t) at the t-th time slot, the precoding matrix
of the k-th digital precoder, i.e., Fk(t), is derived by solving
P̂ in (12), with regard to (6) and (7).

To design the digital precoder, we apply zero-forcing (ZF)
beamforming [15], which offers near-optimal performance in



Algorithm 1: Greedy incremental user scheduling

Input: I , Imax, {uk,i(t)}Ii=1, and {fk,i(t)}Ii=1 for
k = 1, 2, ...,K.

Output: The set of the scheduled users, i.e.,
M(t) ⊂ {i | i = 1, 2, ..., I}.

1 Initialize M(t) = ∅ and r̄(M(t); t) = 0.
2 for n = 1, 2, ..., Imax do
3 Find the i∗-th user that offers the highest weighted

sum-rate user by the use of (16).
4 if r̄(M(t) ∪ {i∗}; t) > r̄(M(t); t) then

M(t)←M(t) ∪ {i∗};
5 else break;

6 return M(t).

mmWave due to the small number of clusters [2], [12]. Based
on M(t) in hand at the t-th short block, the effective channel
matrix is derived concerning the selected users, as below

Uk(M(t); t) = [u∗k,i1(t), ...,u∗k,im(t)] ∈ CM(t)×M(t). (13)

From (13), the ZF-based digital precoder for the k-th PRB
satisfies Uk(M(t); t)Fk(t) = IM(t), where IM(t) denotes the
identity matrix of size M(t). Thus, we can write

Fk(t) = UH
k (M(t); t)

[
Uk(M(t); t)UH

k (M(t); t)
]−1

. (14)

Considering a fair power allocation scheme for all M(t) data
streams within each PRB, we have ‖G∗(t)fk,im(t)‖2 = Pk

M(t)
for k = 1, ...,K. Hence, the beamforming vector for the user
im, ∀im ∈M(t), in Fk(t) is normalized such that

fk,im(t) =

√
Pk

M(t)

fk,im(t)

‖G∗(t)fk,im(t)‖2
. (15)

By the use of (11), (13)–(15), and the givenM(t), we compute
rim(t) for the user im, ∀im ∈M(t), from (6) and (7). Accord-
ingly, we can define r̄(M(t); t) =

∑
im∈M(t) wim(t)rim(t) as

the weighted sum-rate of the scheduled users at the t-th block.
To conduct scheduling, we aim to find the best set of users

at each short block to maximize the sum-rate at the respective
slot. In this sense, a naive approach is to employ the brute-
force algorithm or perform an exhaustive search by calculating
the ZF-based digital precoder for every possible combination
of M(t) users and then selecting the best case that yields the
highest r̄(M(t); t). However, either algorithm demands heavy
computation when dealing with large I and M(t).

V. MULTIUSER SCHEDULING DESIGN USING
COMBINATORIAL APPROACHES

A. Greedy Algorithm

1) Incremental approach: The idea behind the incremental
algorithm, as illustrated in Algorithm 1, is to start from an
empty setM(t) = ∅ at the t-th short-time block and add users
iteratively until the performance can no longer be improved.

Within the n-th iteration, where n = 1, 2, ..., Imax, the i∗-th
user that offers the highest weighted sum-rate is found by

i∗ = arg max
i∈{i|i=1,2,...,I}\M(t)

r̄(M(t) ∪ {i}; t). (16)

The user i∗ is added to M(t) if it improves the performance,
i.e., r̄(M(t)∪{i∗}; t) > r̄(M(t); t). The process terminates if
r̄(M(t) ∪ {i∗}; t) ≤ r̄(M(t); t) or M(t) reaches Imax.

2) Decremental approach: The greedy decremental algo-
rithm starts by initiating a full set of all users, i.e., M(t) =
{i | i = 1, 2, ..., I}, from a contrary perspective compared to
the incremental algorithm. In the n-th arbitrary iteration, the
j-th user that satisfies

j = arg max
j∈M(t)

r̄(M(t) \ {j}; t) (17)

is removed from M(t). The procedure continues down to the
subset of users that ensures the highest weighted sum-rate, i.e.,
r̄(M(t)\{j}; t) ≤ r̄(M(t); t), ∀j ∈M(t), and M(t) ≤ Imax.

The greedy incremental and decremental algorithms require
M(t)(2I − M(t) + 1)/2 and (I − M(t))(I + M(t) + 1)/2
number of user searches to schedule M(t) users, respectively
[16]. Thus, an increase in the number of users monotonically
increases the search complexity. Additionally, recalculating ZF-
based digital precoders within each iteration imposes heavy
computational complexity in both approaches.

B. Sorting Algorithm
The sorting algorithm relies on achievable rates of all users,

assuming that the users do not cause any interference with each
other. This allows us to obtain a diagonal effective channel
matrix with uk,ij = 0, ∀i 6= j, for the k-th PRB and design
the digital precoder. Then, we can derive rates, sort them in
descending order, and pick M(t) users with the highest rates.

VI. LEARNING-BASED MULTIUSER SCHEDULING

A. Neural Network Setup
To design learning-based scheduling, we employ supervised

learning to train a fully connected deep neural network (DNN)
with L0 input features and I outputs. The DNN consists of
three hidden layers, where the first, second, and third layers
have L1, L2, and L3 nodes, respectively. A sigmoid activation
function is utilized among all layers.

1) Input features: The reasonable set of the input fea-
tures must encapsulate a combination of the designed analog
precoder, i.e., G∗(t), in Step I of the protocol, the derived
effective channel matrix, i.e., Uk(I; t), in Step II, and the
known weights of the users, i.e., {wi(t)}Ii=1, from Step IV. Our
model takes an input set of features in the form of a vector of
size 2I2 + I(NTX +1), which is comprised of four subvectors.
The first and the second subvectors contain the amplitudes and
angles of the effective channel averaged over all PRBs, i.e.,∑K

k=1 uk,ij/K, for i, j = 1, 2, ..., I , respectively, each with the
size of I2. The third subvector encompasses the angles of the
analog beams assigned to the users, having the size of NTXI .
The fourth subvector carries the users’ weights with the size of
I . All subvectors are normalized to tackle different orders of
magnitude between different subvectors.



2) Output decisions: Multiuser scheduling can be seen as a
binary classification problem where the users are classified as
selected or deselected. We consider that the i-th rounded output
of the DNN is associated with the selection or deselection
of the i-th user, where i = 1, 2, ..., I . Let us define αi as a
selection variable for the i-th user, where αi = 1 if that user
is selected; otherwise, αi = 0. Thus, the set of the scheduled
users according to the outputs of the DNN is derived by

M̂(t) = {i | αi = 1,∀i = 1, 2, ..., I}. (18)

As the DNN could potentially make an incorrect decision that
results in |M̂(t)|> Imax, we cascade a selection filter with
the DNN. The filter sorts the users in M̂(t) based on their
weights and selects the top Imax of them, which constructs
the corresponding M(t). If |M̂(t)|≤ Imax, inputs are directly
forwarded to the output such that M(t) = M̂(t).

B. Training and Evaluation

A sample set is generated using greedy incremental user
scheduling over N1 episodes, each spanning N2 slots. Every
episode involves varying initial channel realizations, user dis-
tributions, and movement directions. It is considered to allocate
a fraction 0 ≤ β ≤ 1 of the generated samples for training the
model while reserving the remaining 1 − β for evaluating the
trained model. We break the training set into batches of size N3

and train the model for N4 epochs. We use the cross-entropy
loss function to evaluate performance.

VII. NUMERICAL RESULTS

A. Setup and Assumptions

We assume I = 20 users, each with a single antenna, i.e.,
NRX = 1, are randomly distributed around the BS in a circular
area of 100 [m] radius. The BS is assumed to be located at
a height of 7 [m]. Its antenna array has NTX = 16 antennas
arranged in a uniform planar array (UPA) structure, with 8
elements in the horizontal and 2 in the vertical. The antenna
boresight of the BS is tilted downward by 10◦, where the BS
can cover horizontally from −180◦ to 180◦ and vertically from
−30◦ to 30◦. The analog precoding codebook, i.e., G, consists
of a 32× 8 grid of beams evenly spaced in the horizontal and
vertical directions. Regarding the OFDM technology, we adopt
numerology µ = 5 from 5G NR [17], where a subframe consists
of 32 slots. Every slot contains 14 OFDM symbols, each having
a duration of 2.23 [µsec] including a CP of 0.15 [µsec]. Also, 12
subcarriers build one PRB. This results in a subcarrier spacing
(SCS) of 480 [KHz] and bandwidth factor Bk = 168 for k =
1, 2, ...,K. Unless otherwise specified, we use the remaining
parameter values listed in Table I.

B. Channel Model

We use the mmWave channel model from [12, Eq. (9)] to
derive the channel matrix, i.e., hk,i(t), between the BS and
the i-th user within the k-th PRB at the t-th. Accordingly, we
consider the same large-scale parameters as given in [12] for
a carrier frequency of fc = 28 [GHz]. However, to model the
small-scale fading, we assume 20 subpaths within each cluster

TABLE I: Parameters for Numerical Results

Name Symbol Value
No. RF chains at the BS NRF 8

Maximum no. served users Imax 8

Power limit at the k-th PRB Pk 20 [dBm]

Noise power at the im user σ2
im

−30 [dBm]

Carrier frequency fc 28 [GHz]
No. PRBs K 12

No. OFDM subframes per frame − 10

Duration of each OFDM subframe − 10−3 [sec]
No. long-time blocks − 100

No. slots per long-time block NSB 1

No. input features in the DNN L0 1140

No. nodes in the DNN’s hidden layers (L1, L2, L3) (1200, 500, 200)

No. sampling episodes N1 120

No. slots per sampling episode N2 100

Sample splitting fraction β 0.8

Length of each DNN training batch N3 16

No. DNN training epochs N4 300

and a maximum Doppler shift of fc,max = 258 [Hz] concerning
the carrier frequency. Since the Doppler shift is a function of
frequency, its value changes among different PRBs, each having
a bandwidth of 12 × 480 [KHz]. In this sense, for modeling
hk,i(t), the induced Doppler shift f ′k,max [Hz] based on the
central frequency of the k-th PRB is given as follows

f ′k,max = fc,max

(
1 +

∆fk
fc

)
= 258

(
1 +

∆fk
28 [GHz]

)
(19)

where ∆fk is equal to the subtraction of the k-th PRB’s central
frequency from the carrier frequency.

C. Results and Discussion

In Fig. 3 (a), we analyze the impact of increasing the maxi-
mum number of users that can be served per slot, i.e., Imax, on
the offered PF using different user scheduling approaches. The
graph indicates that the incremental algorithm yields the highest
PF, followed by the decremental algorithm. The learning-based
approach shows moderate performance compared to the others,
particularly for higher Imax. Both greedy algorithms are flexible
to refrain from selecting more users if adding them worsens
the interference, leading to a reduced achievable rate and PF.
The learning-based approach also possesses this adaptability.
On average, the incremental, decremental, and learning-based
approaches select 18.8%, 29.49%, and 16.62% of the users,
respectively. In contrast, the sorting and random approaches
blindly schedule all possible users to be served.

The run time of each user scheduling algorithm considering
the maximum number of users that can be served is depicted in
Fig. 3 (b). The decremental approach comes with a significant
disadvantage in terms of long run time, resulting in much
higher complexity than the others. The learning-based and
random scheduling approaches require the shortest run time,
independent of Imax. The sorting algorithm takes longer, and
the incremental one lies in between, with its run time increasing
as Imax increases from 1 to 5. After that, the run time remains
constant, as the algorithm chooses not to select more users to
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Fig. 3: The impact of the maximum number of users served per slot on (a) the average PF and (b) the required run time of the algorithms,
alongside (c) the trade-off between their average performance and run time.

Fig. 4: Timing profiles of the main user scheduling components.

keep the induced interference low. The same reasoning applies
to the decremental approach for Imax > 10.

In Fig. 3 (c), the trade-off between performance, measured
as the average PF or sum-rate, and complexity, in terms of
the average run time, for different user scheduling approaches
is demonstrated. The most suitable approach is selected based
on the key criterion of interest. For example, the incremental
(decremental) approach provides 1.76 (1.47) times higher PF
at the cost of 2.3 (16.1) times longer run time compared to the
learning-based one. Therefore, greedy scheduling is selected
if a higher PF is more important; otherwise, learning-based
scheduling might offer a much shorter run time.

Moreover, Fig. 4 displays the timing profiles of the three
main components involved in scheduling users within a short-
length block. We observe that the longer time the incremental
and decremental algorithms take to run is not only due to user
search but also because of the time needed to obtain effective
channel matrices and calculate the precoding matrix in each
iteration. This confirms the higher complexity of the greedy
incremental and decremental algorithms (see Section V-A).

VIII. CONCLUSION

We studied the multiuser scheduling challenge in mmWave
MIMO-OFDM systems with hybrid beamforming. We defined
PF as a long-term evaluation metric and formulated the opti-
mization problem aimed at maximizing PF by optimally de-
signing the digital and analog precoders, as well as scheduling

the users to be served by the BS. To achieve this, we tailored
a two-timescale protocol and implemented various scheduling
methods, including greedy and learning-based approaches. Our
results demonstrated the trade-off between performance and
computational complexity for each approach. Additionally, we
observed that the learning-based approach strikes a favorable
balance between the average PF and the required run time.
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