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Abstract—Memory forensics is a powerful technique commonly
adopted to investigate compromised machines and to detect
stealthy computer attacks that do not store data on non-volatile
storage. To employ this technique effectively, the analyst has
to first acquire a faithful copy of the system’s volatile memory
after the incident. However, almost all memory acquisition tools
capture the content of physical memory without stopping the
system’s activity and by following the ascending order of the
physical pages, which can lead to inconsistencies and errors in
the dump. In this paper we developed a system to track all
write operations performed by the OS kernel during a memory
acquisition process. This allows us to quantify, for the first
time, the exact number and type of inconsistencies observed
in memory dumps. We examine the runtime activity of three
different operating systems and the way they manage physical
memory. Then, focusing on Linux, we quantify how different
acquisition modes, file systems, and hardware targets influence
the frequency of kernel writes during the dump. We also analyze
the impact of inconsistencies on the reconstruction of page tables
and major kernel data structures used by Volatility to extract
forensic artifacts. Our results show that inconsistencies are very
common and that their presence can undermine the reliability
and validity of memory forensics analysis.

Index Terms—memory forensics, data structures, memory
acquisition, inconsistencies

I. INTRODUCTION

Memory forensics is a powerful technique that can provide
valuable insights into the behavior and state of a computer
system. It is routinely used to investigate and respond to
computer incidents and as part of threat hunting, malware
analysis, and intrusion detection procedures. Most research
efforts in this area have been dedicated to reconstructing an
accurate representation of the content of the memory [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11]. However, before
analyzing the memory an analyst has to first acquire it.

Several approaches can be adopted to acquire a copy of
the physical memory of a bare-metal machine. One option
is to rely on specialized hardware devices that can access
the content of the RAM over DMA. Another popular option
is to use software-based memory acquisition tools that run
within the target system. In this case, the analyst installs
specialized software or leverages an integrated functionality of
the operating system to copy the contents of the system’s RAM
onto an external storage device or transmit it over the network.
Over time, multiple solutions [12], [13], [14], [15] have been
developed to accomplish this task. In most cases, they rely

on dedicated kernel modules that acquire the memory without
altering the kernel behavior and interrupting its execution.

Independently of the fact that the memory is acquired by a
software module or a hardware device, the acquisition process
usually retrieves the content of physical pages in ascending
order, according to their address in the physical address space.
This technique is easy to implement and minimizes the logic
required to track which pages have already been acquired,
thus reducing the memory footprint of the acquisition tool.
For this reason, this is also the technique adopted by almost
all currently existing acquisition software for major operating
systems such as Windows and Linux, and it is the only
technique that can be used when the OS is unknown. In fact,
in the context of the OS-agnostic memory forensics [16], the
lack of information about the structure of the operating system
prevents the analyst from giving precedence to those pages
that contain information of potential interest for a forensic
analysis [17], or that can be more easily altered.

A common misconception is that the content of a memory
dump faithfully reflects the content of the memory at the
moment of its capture. In reality, on a bare-metal machine1

memory acquisition occurs while the system is still running.
Consequently, memory dumps are not true atomic snapshots
of the system’s state but rather a collection of memory pages
captured at different moments in time. This can lead to incon-
sistencies in the analyzed data and errors in the investigation
results. For instance, researchers have reported inconsistencies
in page tables in at least 20% of the acquired images [18] and
a corrupted image once every five acquisitions [19]. This prob-
lem was first studied from a theoretical perspective in 2012 by
Vomel and Freiling [20], who introduced a set of definitions to
describe the various requirements that a memory image must
meet in order to be considered a faithful copy of the system’s
memory at a given point in time. The same authors also tested
various acquisition software and confirmed the presence of
inconsistencies in the dumps they produced [21], [22]. More
recently, Pagani et al. [17] investigated how to assess the
atomicity of data structures commonly used by Volatility [23]
to help the analyst during the forensics analysis. However,
even though these types of inconsistencies have been discussed
in numerous papers over the past fifteen years, their presence

1This is not true for virtual machines, where the hypervisor can suspend
the guest execution during the acquisition process.



and assessment have always been anecdotal, and to date, there
are no studies that precisely quantified the actual number of
inconsistencies in a memory dump and their impact on the
results of a forensics analysis.
Contribution – In this work, for the first time, we precisely
quantify the number and type of inconsistencies observed in
non-atomic memory dumps and pinpoint them to the exact
field of the affected kernel data structure. We employ the
PANDA [24] record-replay infrastructure to track all write
operations the OS kernel performs during a memory acqui-
sition process. Gathering comprehensive data over several
experiments allows us to study how different acquisition
techniques, target file systems, and operating systems influence
the frequency of kernel writes. We proceed to classify and
quantify potential types of inconsistencies that can impact page
tables (page smearing) and evaluate the resulting implications
for the accurate reconstruction of the virtual address spaces of
the kernel and user-space processes. We finally track all the
main kernel data structures that Volatility 2 uses to extract
forensic artifacts from memory images. This allows us to
assess how inconsistencies can undermine the reliability and
validity of the results presented to the analyst.

Although the risk of inconsistencies was already well known
within the forensic community, this paper is the first to provide
a precise quantification of the problem, yielding disconcerting
results. What the memory forensic community believed to be
a sporadic inconvenience is instead a systemic problem that
extensively affects all memory dumps. In fact, our experiments
show that the occasional errors analysts reported in their inves-
tigations were only the tip of the iceberg of a huge amount of
inconsistencies that affect a significant fraction of pointers and
kernel data structures. One of the pillars of digital forensics
is that the analysis should be based on a faithful copy of the
data. Our research shows that non-atomic acquisition methods
violate this principle, not just by introducing minor differences
but by providing a completely untrustworthy picture of the
state of the memory. This quantification and systematization
study aims to reveal the true scale of the problem and lay the
groundwork for developing future acquisition techniques.

II. PROBLEM STATEMENT

A memory acquisition is considered atomic if the content
retrieved by a dumping tool, despite requiring a non-negligible
amount of time, is indistinguishable from a hypothetical snap-
shot captured in a single, instantaneous operation. For practical
purposes, as pointed out by Vomel and Freiling in 2012 [20],
the definition can be relaxed to a snapshot of the memory
which “does not show any signs of concurrent system activity”.
This concept of atomicity allows for the collection of memory
pages at different points in time as long as the acquisition
procedure maintains the causal relationships between memory
operations and inter-process synchronization primitives. Al-
though this definition is remarkably elegant, it poses significant
challenges regarding practical measurement as it is difficult to
verify in practice. A more practical definition was introduced
by Pagani et al. in 2019 [17] and then formalized by Ottmann

et al. [25]. The authors said that a collection of physical pages,
subject to some causal relations, is considered time-consistent
if there exists a hypothetical atomic acquisition process that
could have yielded the same outcome. In other words, there
was a specific moment during the acquisition process when the
content of those pages coexisted in the system’s memory. If
we consider the set of all kernel structures and their relations
as a graph, a time-consistent dump produces a graph locally
equivalent to one obtained from an atomic dump. However, the
two graphs differ at a global scale because the individual links
between kernel structures retain their causality, but the pages
containing the structures are not acquired all simultaneously.
In order to produce a time-consistent dump, the imaging tool
must be aware of the relationships that exist between the
various pages of the physical memory and must be able to
find a dump sequence that satisfies all of them. While this is
possible in theory, it is not feasible in practice. Specifically,
when tools dump pages in a sequential order (which is the
case with most available tools for major operating systems),
achieving time-consistent atomicity is impossible if the entire
OS is not frozen during the acquisition process — a condition
that can only be met dumping a virtual machine from the
hypervisor.

In a running system, there are two main causes of incon-
sistencies: the virtual-to-physical address translation and the
internal and concurrent activity of the kernel and user space
programs. In modern kernels that support virtual memory
abstraction, each program operates within its own distinct
and private address space known as the virtual address space.
The virtual addresses used by a particular process are trans-
lated into physical memory locations where the data resides
through the combined efforts of the Memory Management
Unit (MMU) and the operating system. On Intel and ARM
architectures, this translation process requires in-memory data
structures, hierarchically organized, prepared by the kernel and
used by the MMU: the page tables [26]. Like all information
contained in memory, page tables can also be affected by
non-atomic acquisitions, a phenomenon called page table
smearing [18]. Page table smearing occurs when an acquired
page table references page tables of lower levels whose content
is modified by the kernel before they get acquired, resulting
in inconsistencies and errors in the virtual-to-physical address
translation, which is later performed by the forensic analysis
tool. As a result, the post-mortem analysis might miss entire
regions of the virtual space, it can show inconsistent permis-
sions bits (such as write permission, execution permission,
or accessibility in the kernel or user space), or it can make
errors in the reconstruction of the virtual memory of a process
(e.g., by including data pages that originally belonged to other
processes). This phenomenon can have serious repercussions
on the results of the forensic analysis. Page table smearing
can also occur in page tables that belong to kernel memory or
areas shared among multiple processes (e.g., for pages that
host dynamically linked libraries), further exacerbating the
problem.

The second source of inconsistencies is the concurrent



activity of the kernel and user processes during the memory
acquisition process. The scheduling routine allocates the avail-
able CPU time among processes ensuring that each process
is executed without monopolizing the system’s resources.
The kernel itself and all the other privileged software are
subjected to these rules. So, when the analyst runs an ac-
quisition tool, regardless of its level of privileges, its code
runs along with other processes of the system2. This means
that the acquisition software cannot, in general, pause all
other processes, including the kernel, to prevent them from
modifying the memory content during the dump procedure.
This can introduce numerous inconsistencies within a memory
dump because data structures allocated in distant regions in
the physical address space are dumped at different times due
to the scheduling policy. Things are even worse in multicore
systems, in which multiple processes can run simultaneously
on different physical CPUs, further increasing the chances of
inconsistency in the dump.

As a result, the kernel, with its ability to write to any
physical page in the system and the ability to interrupt any
process, is thus the major culprit in generating inconsistencies
within a memory dump. Moreover, since memory forensic
analysis of a system always requires the analysis of kernel data
structures, in this work, we will focus only on inconsistencies
in the address space of the kernel itself.

III. MEASUREMENT TECHNIQUE

In our work, we want to quantify the inconsistencies that
can be introduced by the kernel and the acquisition tool in the
content and links among different structures. Structures are
blocks of bytes that store data and have causal relations with
other structures in memory. To clarify, they can be imagined
as C structs containing data and pointers to other structures
of the same or different type. It is important to note that
this definition includes both data structures used by the kernel
linked by pointers containing virtual addresses and also page
tables used by the operating system and the MMU to translate
virtual addresses into physical ones. In the latter case, the
structures are the page tables themselves, and their entries can
be seen as pointers in physical address space to other lower-
level tables.

We consider the acquisition of a single 4KiB page as an
atomic event because all the acquisition tools treat pages as
atomic units and use a single call to the kernel to copy their
content. In fact, kernel APIs within the low-level memory
management system allow for mapping, allocating, and freeing
only entire pages, which is a direct consequence of the
functioning of the MMU.

To collect information about possible inconsistencies, it is
essential to observe and monitor the kernel’s activity through-
out the entire dumping process. Since this cannot be done

2If the CPU architecture supports more privileged modes than kernel
mode, such as VMM and SMM modes in Intel CPUs, the execution of a
acquisition tool in those modes cannot be interrupted by the kernel or user
space programs, resulting in an atomic view of the memory used by lower
privileged applications.

directly on a bare-metal machine without using specialized
hardware [27], in our approach, we use PANDA [24], an open-
source tool based on QEMU that offers the ability to record
and replay executions of an entire virtual machine. During the
replay of an execution trace, PANDA allows, through its plugin
framework, to perform sophisticated analysis and hook the
system in many different ways (e.g., by triggering a callback
when the CPU executes instructions at certain addresses or by
intercepting single writes on memory and reads the content of
CPU registers).

In our experiments, we record the execution of an operating
system under various conditions, such as during a memory
acquisition process using a kernel module, as if it were
performed on a bare-metal machine. Then, we replay the
execution traces and analyze them with a set of custom plugins
we designed to collect statistics about the activity of the kernel,
the acquisition tool, and the state of data structures that we
want to track. In particular, to monitor the evolution of the
relations among structures during memory acquisition, we
implemented a technique based on a versioning system. Before
starting the replay we analyze the virtual machine memory to
identify all the structures we want to track and explore their
relations. For each tracked structure that appears in memory,
we save the timestamp of its allocation and deallocation, and
we assign it a unique identifier. During the replay of the VM
execution, whenever there is a modification to an interesting
field or a pointer within a structure, we record the operation
and, if necessary, explore the newly pointed structures. In
addition, for each pointer that we track, we also maintain
the unique index of the structure it points to. We use a
unique index instead of its address because the kernel can
allocate and deallocate different objects at the same memory
location. When a page is dumped, we freeze the state of all the
structures it contains: for each structure, we save the value of
its fields and the value of the fields of the pointed structures. In
this way, at the end of the replay, we can detect inconsistencies
and also discriminate among their types by checking whether
the content of a pointed structure, saved when the page that
contained it was acquired, is equal to its content saved when
the pointing structure was acquired.

To study inconsistencies in memory dumps, we follow a
bottom-up approach, starting from individual pointers and
moving up to the composite kernel data structures that are
used in forensics analysis. We start, in Section IV, measuring
the activity of the kernels of three different OSs in idle
state. Then, in Section V, simulating a process of dump, we
collect statistics for the same three OSs about the relations
among physical pages containing kernel pointers and how
their physical page allocation strategy influences the number of
inconsistencies in the memory image. In Section VI, we study
how the tool, the different acquisition modes, and the target
filesystem influence the content of the memory snapshot on
Linux systems. Then, in Section VII, we classify the different
types of inconsistencies involving kernel structures that can ap-
pear in a memory dump. Finally, we study the inconsistencies
introduced by page table smearing in Linux and their impact



(Section VIII), and we measure the inconsistencies in Linux
kernel data structures used by Volatility 2 to extract forensics
artifacts (Section IX).

IV. IDLE KERNEL ACTIVITY

Before analyzing how, and how much, the activity of the
kernel introduces inconsistencies during the memory acquisi-
tion, we collect some statistics about the interaction of the
kernel with the memory in idle state (i.e., when left without
user interaction nor external network requests for a sufficiently
long interval of time).

For this experiment, we have chosen three OSs: Ubuntu
22.04 and Windows 10 22H2, two of the most used and widely
adopted OSs, respectively, in server and desktop environments,
and vxWorks 7, a popular real-time OS used in industrial
devices and the Internet of Things, but rarely discussed in
memory forensics literature. We recorded, using PANDA, the
execution trace of an x86 64 VM equipped with 4GiB of
RAM running the three different 64-bit OSs. To assure that the
amount of RAM allocated for the VM is sufficient to run the
different OSs without incurring effects due to page swapping
or race conditions, in which the kernel kills processes to free
RAM for new ones, we disabled the swap and, at the same
time, ensured that RAM usage in each run never exceeded
75% of the available memory. It is important to note that
systems with larger amounts of installed RAM, even if unused
by the operating system, may allocate physical pages causally
related more sparsely. This can lead to greater temporal gaps
between their dump, potentially increasing the likelihood of
inconsistencies. Our choice of dumps size represents therefore
a conservative lower bound on the potential inconsistencies
that may appear in memory dumps of systems with more
RAM. The selection of RAM size was also driven by a
technical trade-off, in addition to the reasons already exposed.
We observed a linear correlation between execution time and
the memory required to run the custom plugins we developed
for PANDA. On a 4 GiB dump, each single measurements can
require up to 3 machine days, utilizing 16 cores and up to 256
GiB of RAM limiting the possibility to perform experiments
on larger memory dumps.

We booted each machine and left it without any interaction
for 30 minutes before performing the experiment to minimize
the activity of the OS3. We then recorded each kernel for 10
minutes, based on a conservative estimate of the time required
by existing tools to acquire 4GiB of memory (as we will
describe in more detail in Section VI).

Table I summarizes the results. Among the three operat-
ing systems, Windows 10 exhibits the highest activity, with
approximately 3 times more writing events per minute than
Linux and approximately 3 times more data written in terms
of quantity. As expected, vxWorks is instead the less active
OS, performing only one-thirteenth of the memory operation
compared to Windows, probably due to its real-time nature that

3Following preliminary tests we conducted, we observed that after just
15 minutes, the number of memory writes performed by each OS became
constant, indicating that the system had entered an idle state.

tends to minimize kernel activity in favor of tasks. Each of the
three operating systems demonstrates a notable preference for
8-byte writes (average 81.5%), possibly due to its optimized
use for copying large data quantities. On the other hand, 2-
byte writes appear to play a minor role in their operations,
accounting for only 1.55% in average. This suggests that
kernel data structures’ fields and variables of this size are
relatively uncommon. It is also interesting to observe that
while Linux writes less often to memory, it touches the
highest number of unique physical pages (1.45 times more
than Windows). However, due to the higher number of write
events per minute, on average, Windows performs more writes
per page per minute, approximately 4.5 times more than Linux.

For the Linux kernel, we can classify write events further,
as the kernel’s virtual address space is divided into regions
of fixed sizes [28]. The majority of writes events (62.03%)
happen in the vmalloc region that contains not-physically
continuous pages used to allocate buffers that require to be
contiguous in the virtual address space. vmalloc region is
used, in particular, to allocate memory for video framebuffers,
and this could explain the high number of writes and, at the
same time, the low number of unique virtual addresses written
(only 0.48%). 33.28% of write operations are performed on the
direct mapping region that permits the kernel to write directly
on every physical page of the system. This region contains the
majority of the unique kernel virtual addresses written during
the execution (97.35%). Another 1.67% of the operations are
performed on the virtual memory map area containing the
struct page data structures used by the kernel to track the
physical pages used in the system. Finally, in the remaining
3.02% of the events, the kernel writes on its internal global
variables, modules, and per-CPU pages.

V. OS MEMORY ALLOCATION STRATEGIES

The most common approach to obtain a copy of the system
memory is to acquire each physical page in ascending order
based on its address in the physical address space. This linear
dumping strategy is adopted by most software acquisition tools
for all major operating systems like Windows and Linux.

To study how different OSs use physical pages and the im-
pact of the linear acquisition technique on the kernel pointers,
we have replayed the execution traces of the same VMs used
in experiments of Section IV running a PANDA plugin that
emulates the linear acquisition of the memory. Our plugin, by
starting from the first physical page available, at a constant
rate, saves a hash of the content of each physical page. At the
same time, it scans the page by looking for 8-byte values that
can be valid kernel virtual addresses. The plugin validates can-
didate addresses by checking if they are correctly resolved to a
physical address by the MMU and if they are part of the canon-
ical range associated with the kernel memory (that for the three
OSs in our dataset starts at 0xffff800000000000). These
addresses represent possible pointers to kernel data structures
referenced by some structure contained in the page under
dump. Therefore, by saving the hash of the pointed physical
page and by comparing it with the one computed when the



TABLE I: Statistics about kernels in idle state per minute.

OS
Write operations
on kernel address
space (Millions)

Written Data
(MiB)

Writes operations
per size

Unique physical
pages

Unique virtual
address

1-byte 2-bytes 4-bytes 8-bytes

Linux 1242 8804 2.11% 0.36% 9.98% 87.5% 129,432 60,623,053
vxWorks 29 196 1.12% 0.71% 19.14% 78.90% 145 25,209
Windows 10 3885 3705 6.62% 3.55% 11.90% 77.93% 88,784 67,248,832

Fig. 1: Pages with at least one pointer inconsistency.

page is subsequently acquired, we can identify the presence
of a pointer inconsistency.

At the start of the acquisition, our PANDA plugin saves
the content of the OS page tables to collect information about
how the different OSs manage and map the physical pages
onto the kernel virtual address space. Linux and vxWorks,
for example, map the entire physical address space by using
2MiB large physical pages in order to directly access each
physical page available. This allows them to reduce the number
of page table entries needed to address each physical page.
When they need to allocate a smaller amount of memory, they
generally create a new, separated, mapping by using 4KiB
physical pages (sometimes removing the previous 2MiB one).
VxWorks tends to create these mappings by using adjacent
regions of the physical space, Linux uses more fragmented
but still compact regions, while Windows 10 uses large pages
to map only a fraction of the entire physical address space
and selects random 4KiB pages across the entire physical
address space to map smaller regions. On Windows, 47% of
the physical pages that contain a kernel pointer are mapped
using only 4KiB mappings, while, on Linux, this value is only
19% (vxWorks has kernel pointers only in 2MiB pages).

Table II shows the number and ratio of inconsistent pointers
in the three OSes. In absolute terms, both Windows and
Linux contain over 1 million each, while from a relative point
of view, we can see that Windows encounters this problem
more frequently (likely due to the much higher frequency at

TABLE II: Statistics about kernel pointers inconsistencies.

OS
Pointer

inconsistencies
(absolute)

Pointer
inconsistencies

(relative)

Average distance
among pointers

(MiB)

Linux 1,182,656 14.6% 1120
vxWorks 12,733 11.2% 14
Windows 10 1,009,818 26.7% 1740

which it updates pointers in memory), resulting in potential
inconsistencies in over 25% of pointers in kernel memory.
The last column shows the average distance (in the physical
address space) between a pointer and its pointed data. On
4GiB of memory, this distance is 1.1GiB for Linux pointers
and 1.8GiB for Windows pointers. For vxWorks, where the
memory is all allocated in contiguous chunks, the average
distance is instead only 14MB. This is confirmed by Figure 1,
which shows a Hilbert plot of the actual pages that contain
one or more inconsistent kernel pointers. Linux inconsistencies
happen in chunks; Windows ones are spread all over the
physical memory, while vxWorks ones are located in a small
area on the bottom-left of the figure.

As a reminder, the values provided in this section should
be considered as an upper bound on the number of pointer
inconsistencies in the acquired memory, as our measurement
cannot have false negatives but false positives are possible due
to the way we identify candidate pointers (i.e., a large unsigned
integer/large negative value that falls within a valid memory
range would be considered as a potential pointer).

A more precise measurement would require a detailed
knowledge of the OS internals and data structures, which we
will present in the following Sections.

Takeaways: Different operating systems adopt very differ-
ent allocation strategies, and this choice has a significant
impact on the presence of inconsistencies in the acquired
memory. Microsoft Windows is particularly vulnerable to
this problem, which can affect up to a quarter of its kernel
pointers. It is also interesting to note that in Windows
the physical distance between the location of a pointer
and the location of its pointed data is in average 1.8GB
(over a 4GB memory), which means that the two pieces
of information are collected several minutes apart by the
acquisition process.



VI. IMPACT OF THE ACQUISITION TECHNIQUE

So far, we have measured the activity and possible in-
consistencies of a kernel in an idle state. However, during
the acquisition process, the software acquisition tool itself
introduces additional noise in the system, as it requires reading
and writing a copy of the entire memory to a storage or
network device. To measure this impact, and in the rest of
the paper, we restrict our focus to the Linux kernel, as it is
easier to explore its internals and to modify acquisition tools
to collect additional information required by our tests.

User vs Kernel-based Acquisition: The first factor that
affects the acquisition noise is whether the acquisition is
performed completely in kernel mode or from user space by
taking advantage of an already-existent mechanism to access
the entire memory of the system. The kernel-based acquisition
is much more common, and it is used, for instance, by
LiME [14]. LiME is a Linux kernel module that dumps the
physical memory of a Linux system by copying it to a non-
volatile storage or by sending it through the network. After
it is loaded, it dumps physical pages by processing one page
at a time in ascending order of its physical address. Instead,
Microsoft AVML [15] is a user-space dumping tool that uses
the virtual device /proc/kcore to access the system RAM
from the user space. As LiME, AVML dumps the physical
pages in ascending order, permitting their saving on a file but
managing the entire dump process from the user mode.

We expect user-space solutions to trigger more activity (and,
therefore, potentially more inconsistencies) in the kernel. In
fact, when running these tools, the kernel has to copy the
requested page to user space. The tool then performs some
operations (e.g., adding a hash or compressing the data) and
then sends the result back to the kernel to write it onto
the disk. These additional back-and-forth copies force the
kernel to perform more operations, overwrite more pages, and
therefore compromise even more the atomicity and efficiency
of the acquisition process. To confirm this hypothesis, we
recorded the execution trace of a VM Ubuntu 22.04 desktop
machine (Kernel 5.19.0-40) equipped with 4GiB of RAM
while executing either a LiME or AVML acquisition.

During the execution of LiME, the kernel performed 5576
million write operations, affecting 573.861 different physical
pages and a total of 38 GiB of data. The execution of AVML
caused instead 9710 million write operations on 796.709 dif-
ferent physical pages, for a total of 68 GiB of data (1,82 more
than Lime). As expected, acquiring the memory from user
space almost doubles the amount of kernel write operations.
As such, this approach should be limited as much as possible,
preferring those in kernel space whenever available. Since
our purpose is to quantify the inconsistencies that occur in
a dump under the best possible experimental conditions, we
will use LiME as a memory acquisition tool for the rest of
our experiments.

Storage: We now look at the impact of the target storage
that is used to record the acquired memory image. In particular,
this covers the interplay of different aspects, including where

the image is saved (network vs. internal disk vs. USB disk),
how (by using kernel functions or direct access to the device),
and which filesystem is used to store it.

LiME has three main operating modes that can alter the
content of the memory during the dump process:

Dump on disk – In this mode, LiME uses kernel primitives
to write the memory content on a file. The specific type of
target hard drive, an internal SATA drive or an external USB
drive, can impact the number of physical pages marked as
”dirty” by the kernel during the dumping process. This is
because the kernel copies the content of a page being dumped
into various caches, including bus and device drivers, ring
buffers, page cache, and others. Furthermore, different target
filesystems use, internally, different algorithms, caches, and
data organization, resulting in different memory footprints
generated during the writing operations.

Dump on disk using Direct I/O – In this mode, LiME opens
the target file using the O_DIRECT flag, permitting the bypass
of the kernel’s page cache, reducing the number of physical
pages dirty. However, direct I/O is required to be supported
by the underlying filesystem.

Dump through the network – In this mode, LiME sends the
content of the RAM through a TCP connection established by
an external system.

To reduce the impact of kernel writes on memory due to user
space disk and network activity, and measure specifically the
effect of the different LiME dump modes, we use a minimal
VM running Linux equipped with 1 GiB of RAM that runs
only two userspace processes: getty and sh. After waiting
for the kernel to enter the idle state, we dump the memory
on an emulated USB external hard drive and on an emulated
internal SATA drive. We tested 8 commonly used file systems
in buffered and direct I/O mode, as well as, dump through
the network mode. LiME has been loaded with the options
timeout = 0 to disable the default timeout, beyond which
LiME ignores the page, and format = raw, which instructs
LiME to copy the memory as is without adding LiME file
format headers in order to enable O_DIRECT.

Table III presents the measurement results conducted on
file systems using an emulated external USB disk, an internal
SATA disk, and a network dump. In each column, the high-
lighted value is the best result among the test cases of the same
type. The most significant indicator to determine how much
the dump method dirties the memory content is the number of
different physical pages written during the dump. As we can
see in Column 5, for dump performed using buffered I/O, there
are no relevant differences, for the same file system, between
the number of physical pages written on a USB disk or SATA
one (a maximum difference of 0.23%) and, as well as, there
are no relevant differences in the number of pages written
between file systems tested (a maximum difference of 1%).
However, different file systems perform differently in terms
of the time needed to complete the dump and the number
of writing events. In particular, on a USB disk, XFS requires



45% less time and 56% less writing operations than the widely
adopted FAT32 file system. These differences can have an
impact on the number of inconsistencies inside a memory
dump because the more time and operations are required to
complete the dump process, the higher the probability for the
kernel to write on pointers located on pages already dumped.

Only 3 file systems in our tests (Btrfs, exFAT, and FAT32)
support direct I/O in kernel mode. In this case, as we can
see from Column 3, the number of writes on MMIO regions
is increased by a factor of 100, a sign that the kernel has
changed the method to access the physical device to directly
write on them. In all three file systems, we also observe a
drastic reduction, up to 99.8%, in the number of different
physical pages written during the dump process. This very
positive aspect is, however, counterbalanced by a dramatic
increase in the time required to acquire the memory, which
increased by up to 100 times. To understand the reasons for
this huge increase in dump time, we have analyzed calls to
the allocation/free functions used internally by the kernel to
manage disk write operations. During our investigation, we
found that for every page written on disk, the Block I/O
subsystem of the kernel allocates and releases a struct
bio along with its associated mempool. The memory for
these operations is obtained from the bio-160 memory
pool, which, in turn, relies on the kernel SLAB memory
pool system. All of these memory operations significantly
contribute to an increase in the dump time and the quantity of
data written in terms of metadata. Furthermore, unlike buffered
I/O, which optimizes disk writes by using the page cache and
adapts to the underlying hardware, direct I/O mode can reveal
differences due to the distinct interfaces involved. We have
observed a relevant disparity in the time required to perform
a dump on a USB drive compared to a SATA drive. This
discrepancy is not limited to PANDA artifacts, as we have
also observed it on real hardware. It can be attributed to
the different implementations of the USB and SATA kernel
subsystems, as well as the varying complexity and number of
layers in their respective protocol stacks.

Finally, the network dump is the most balanced method in
terms of physical pages modified (only 22 more than the fastest
direct I/O method), amount of time needed (1.5x the fastest
buffered I/O file system), total number of events, and total size
of data written.

Takeaways: Our experiments demonstrate that for Linux
bare-metal systems the most efficient software-based ap-
proach to acquire a complete memory dump—while min-
imizing the number of physical pages written during the
dumping process—is to use a kernel module that reads
system memory and transmits its contents over the network.
When this is not possible, we recommend adopting a
traditional method by saving the memory to an external disk
formatted with an EXT or XFS filesystems. External disks
formatted with the FAT32 system, unfortunately a very
popular choice among forensic analysts, provide instead the
worst performances.

VII. TYPES OF INCONSISTENCIES

CAUSAL ATOMIC
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Page D

S1
dS1

D1
dD1
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Fig. 2: Example of causal atomic dump.
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Fig. 3: Types of inconsistencies.

So far, we have discussed possible inconsistencies in re-
lation to kernel pointers that connect two physical pages.
However, in the case of structures of known sizes, such as
page tables and kernel data structures, we can perform a
more in-depth analysis and classification of different types of



TABLE III: Statistics about the dump process in different conditions.

Mode
Writes operations on
kernel address space

(Millions)

Writes on
MMIO regions

Total size
(GiB)

Unique physical
pages

Time required
(ratio)

USB SATA USB SATA USB SATA USB SATA USB SATA

Btrfs 874 811 59824 37778 6.01 5.58 249340 249204 1.81x 1.53x
exFAT 1005 938 96112 61772 6.89 6.43 251074 250728 1.79x 1.33x
Ext4 818 757 60692 35696 5.61 5.20 249421 248873 1.76x 1.16x
Ext4 no journal 776 719 61744 36443 5.33 4.95 249439 248864 1.78x 1.10x
F2FS 951 910 61329 36743 6.51 6.23 249406 249379 2.04x 1.33x
NTFS 796 739 61329 38711 5.48 5.09 249411 249129 1.75x 1.31x
FAT32 1404 1317 84456 89542 9.65 9.06 250328 250908 2.39x 1.82x
XFS 632 569 57605 34255 4.41 3.97 249405 249041 1.62x 1x

Btrfs D. I/O 49137 37708 9147061 6707022 344.04 265.19 75037 78885 255.76x 73.00x
exFAT D. I/O 10698 4713 5204034 3950081 73.20 32.11 466 497 109.34x 15.85x
FAT32 D. I/O 16657 6000 9138277 5773820 114.15 40.88 1125 1127 236.71x 19.58x

Network 1336 1000453 8.64 488 2.73x

inconsistencies. In our measurement, we consider five different
types of inconsistencies that affect memory structures. Four of
them are related to the order and time difference between the
acquisition of the pages that contain two different causally-
related structures. The last is instead caused by a timing
difference in the dump of two or more pages that contain
fragments of a single large structure. To visualize the various
inconsistencies, we will use a series of diagrams similar to
the one shown in Figure 2. The diagram shows two structures
S1 and D1 entirely contained in physical pages S and D. The
horizontal axis of the diagram represents time. Structure D1
is referenced by structure S1 through a pointer, depicted by a
vertical arrow on the left side of the figure.

At a specific moment, indicated by a vertical dashed line,
the dump tool saves the contents of page S, and consequently,
the contents of structure S1, to the dump file. From this
point on, in Figure 2, there are two bands associated with
the structure S1: the lower band, which continues to represent
the structure S1 in memory, and the upper knurled band dS1,
which represents the unmodifiable copy of structure S1 saved
within the dump file. After a while, also the page D is dumped,
resulting in a split of the associated band. After the dump
of page D, the kernel performs a memory write operation,
represented as a thunderbolt in Figure 2, invalidating the
reference to structure D1. Finally, the kernel deallocates both
structures, an operation represented as a cross in the diagram.

As shown in the right part of the figure dS1, the dumped
copy of S1 structure correctly contains a reference to dD1, the
dumped copy of D1 structure: the dump of the two structures
and their relation is causal atomic since the causal relationship
between the two structures is preserved by the dump.

We can classify inconsistencies into two categories: causal
inconsistencies and value inconsistencies. In causal inconsis-
tencies, the causal relation between structure S1 and structure
D1 is compromised, and the structure dS1 in the dump file
does not point to the correct structure dD1, but to generic
data that can be located at the same address. In value in-
consistencies, instead, the causal relation among structures
is preserved, but the content of the pointed structure D1

is changed during the dump process. Below, we detail the
five types of inconsistencies, four of which are illustrated in
Figure 3:

Type 1 (causal inconsistency) – The kernel de-allocates the
destination structure D1 after dumping S1 but before dumping
D1, potentially replacing the memory with different data. As
a result, the dumped dS1 structure references unrelated data,
and the dump does not contain the original content of structure
D1.

Type 2 (causal inconsistency) – The kernel allocates a couple
of structures, with the referenced one on an already dumped
page. It is the mirror case of Type 1 when the destination
structure D1 is dumped before S1.

Type 3 (value inconsistencies) – The kernel modifies the
content of the pointed structure before it is acquired but after
the dump of S1 structure: dS1 in the dump will reference
the modified version of D1 instead of the original one. This
inconsistency can also arise when, after discarding structure
S1, the kernel frees up structure D1 and substitutes it with an-
other structure of the same kind that has no causal connection
to S1. In this scenario, within the dumped data, a structure of
the same type as D1 exists, but it is impossible for the analyst
to determine whether it represents a modified version of D1 or
a subsequent allocation. An example of such a case can occur
in Linux if the D1 structure is a part of a kernel SLAB.

Type 4 (value inconsistencies) – It is the mirror case of Type
3 when the destination structure D1 is dumped before S1.

Type 5 (value inconsistencies) – This inconsistency, not
represented in Figure 3, occurs when a structure occupies more
than one physical page or it is on the fence between two. In
this scenario, after the dump of a page that contains a portion
of the structure, the kernel modifies one of the other pages
composing it: the version of the structure saved on the dump
will then consist of fragments obtained at different points in
time. As a result, the values within the dumped structure will
not be globally consistent.



TABLE IV: Total number of inconsistencies per type in page
tables.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Type 1 - - - - 35 - 302 - 1 -
Type 2 1 - - 3 22 6 45 - 63 -

Type 3 - 3 6 33 57 26 198 - 60 22
Type 4 2 3 5 21 24 40 24 10 23 21

TABLE V: Processes with inconsistencies in private page
tables.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Unique processes 2 2 4 11 14 12 26 3 24 19

Type 1 - - - - 4 - 19 - - -
Type 2 1 - - - 3 1 2 - 3 -

Type 3 - 2 2 9 12 9 18 - 17 11
Type 4 2 2 3 6 6 10 4 3 9 11

TABLE VI: Dumps with at least a kernel page table with
inconsistencies.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Type 1
Type 2 ✓ ✓

Type 3 ✓ ✓ ✓ ✓ ✓
Type 4 ✓ ✓ ✓ ✓

VIII. PAGE TABLE SMEARING

The first type of memory structure that we study in our
experiments is page tables, as page table smearing (i.e., the
presence of inconsistent or malformed page tables in memory
dumps) is often reported as one of the main problems of non-
atomic acquisitions.

To study this phenomenon, we developed a PANDA plugin
that tracks the creation/destruction of radix trees in the sys-
tem4, allocations and deallocations of page tables of lower-
levels5, and all the kernel writes. We performed our analysis
on memory dumps of a virtual machine runs Ubuntu 22.04
desktop (Kernel 5.19.0-40) equipped with 4GiB of RAM and
repeated each experiment 10 times to reduce the effect of
randomness.

For each run, we booted the machine and started a set of
commonly used applications. After 30 minutes of inactivity,
the kernel and user applications consumed about 25% of the
available memory. Then, we started a memory acquisition
using LiME and dumped the memory on an emulated external
USB drive formatted with the Ext4 file system. We decided on
this configuration because an external disk allows the analyst
to preserve the content of the hard disk of the target machine
(often a requirement in an investigation) and because Ext4 (see
Table III) introduces a minimal overhead compared with the

4Intercepting calls to functions pgd_ctor and pgd_free.
5Intercepting calls to functions ___pte_free_tlb,

___pmd_free_tlb, ___pud_free_tlb, pud_free_pmd_page,
__free_pages_ok and free_unref_page.

other filesystem (e.g., FAT32) whose support is compiled by
default in the kernels of all major distributions.

The running applications are chosen to simulate an office
environment and include: firefox with 6 tabs opened,
libreoffice, the thunderbird E-Mail client, and the
evince PDF reader. Before the start of the acquisition, we
counted an average of 210 processes running on the system.
The LiME acquisition took 9.18 ± 5.46 minutes to complete
(on 5 dumps, it requires less than 5 minutes while in one case,
Dump 6, up to 17 minutes). This variability in the acquisition
time could derive from the activity of the user space processes
which can slow down the dump and require the kernel to
perform privileged operations for them. LiME does not use
any mechanism to prioritize its activity, such as starting a high-
priority kernel task to dump the memory from.

Table IV summarizes the total number of inconsistencies,
categorized by type, for each of the 10 memory dumps. All
dumps exhibit inconsistencies, ranging from a minimum of 3
(Dump 0) to a maximum of 569 (Dump 6). Table V details
the number of individual processes in each dump affected by
at least one inconsistency in the private part of their address
spaces (i.e., address spaces not containing kernel data or code)
and the number of processes impacted by each specific type of
inconsistency. A comparison between the first row of the table
and the subsequent ones for each memory dump reveals that
multiple types of inconsistencies can simultaneously affect the
same process.

Additionally, Table VI highlights dumps that contain at least
one inconsistency in the kernel page tables. It is important to
note that, on the Intel architecture, if an inconsistency exists
in a kernel page table, it will appear in the radix trees of
all processes. This occurs because the kernel page tables are
included in the radix tree of every process in the system. In our
dataset, we observed this phenomenon in 60% of the memory
dumps. It may also occur that inconsistencies exist only in
kernel page tables part of a process radix tree but not in
the process private one, as seen for Type 2 inconsistencies
in Dump 3.

Furthermore, the level at which an inconsistency occurs
within the radix tree – whether in the page table corresponding
to the user or kernel address space – directly determines the
extent of its impact on the virtual address space. Specifically,
inconsistencies closer to the root of the tree affect larger
portions of the address space. Across the 10 memory dumps
analyzed, we identified 91 inconsistencies in entries of the top-
level page tables (level 0, closest to the root), 25 at level 1,
and 940 at level 2.

For inconsistencies of Types 2 and 3, we can distinguish
two cases: when the affected page table is only modified
by the kernel during the acquisition and when it is instead
deallocated and substituted by another one. In the first case,
our PANDA plugin also permits quantifying exactly how
much of the private virtual address space of each process is
affected by the anomaly: on average, 770 KiB (with a standard
deviation of 2.85 MiB) and up to a maximum of 64.63 MiB
present anomalies such as missing pages, wrong permissions



or errors in translation. In this case, the analyst might miss
pieces of evidence because she cannot fully explore the user-
space processes. In the second case, things are even worse, as
the page tables of one process can erroneously point to the
page tables of another one. As a result, the address space of
the first process will contain and refer to data belonging to
the second process without the analyst being able to tell the
difference. This virtual address space anomaly can potentially
deceive analysts in many ways. For instance, it can create the
illusion that pieces of code from one process exist within the
address space of another, implying potential manipulation or
injection of code. Moreover, it can lead to a scenario where
sections of one process’s heap are replaced by fragments
from another, rendering the analysis of the process’s data
structure unattainable. As rare and unlikely as this may seem,
in our dataset we have found two dumps, D4 and D6, in
which this anomaly occurs. In particular, in D6, two of the
office applications that we have started, (libreoffice and
thunderbird) have erroneously attributed memory pages
that belong to the graphical environment manager (gdm).

To make things worse, while in theory (even though for the
best of our knowledge, no tools attempt to do so), one could
try to detect, but not correct, causal inconsistencies (Type 1
and Type 2) the presence of a value inconsistency (Type 3 and
4) cannot be recognized nor corrected. In fact, the presence
of a false page table introduced by a causal inconsistency
could be detected by employing a validation model that checks
the page tables against the inviolable constraints defined by
the MMU, as recently discussed in [26]. However, in cases
of value inconsistency, the erroneous page tables introduced
may still appear valid as the automatic recognition of such
anomalies cannot identify them, and even a human analyst may
encounter difficulties in identifying them as inconsistencies.

Takeaways: Our experiments reveal that page smearing is
a very common problem, affecting user-space processes in
100% of the dumps in our dataset and affecting kernel
memory in 60% of them. The extent of anomalies in a
process’s address space depends directly on the level of
the page table radix-tree where the inconsistency occurs.
In our dataset, we observed a case where up to 64 MiB of
a process’s private address space was affected by anomalies.
Additionally, we show that a single process can simul-
taneously exhibit multiple types of inconsistencies in its
private address space, many of which are difficult—if not
impossible—to detect during the analysis. Furthermore, we
found cases in which these inconsistencies led to portions
of memory from different processes being mixed together
or erroneously assigned to the wrong process.

IX. KERNEL STRUCTURES

In our previous set of experiments, we observed that mem-
ory acquired in a non-atomic way contains a large number
of inconsistencies among pointers and page table entries. We
now focus on those inconsistencies that affect fields of kernel

TABLE VII: Total number of inconsistencies by type in kernel
data structures.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Type 1 22 37 6 16 5936 16 4733 7 131 7
Type 2 10 - 2 135 1455 11 1546 - 2227 7

Type 3 1773 1740 670 3496 9772 3551 4040 570 1400 597
Type 4 1961 2010 1272 5315 4245 4733 3183 1225 1981 1321

data structures that are commonly used by existing tools for
evidence recovery from memory dumps.

In particular, we consider as forensics-relevant data struc-
tures all those used by at least one of the base set of
Volatility 2 plugins. However, some of them that contain
very important forensic artifacts are rarely modified during
a normal execution. For instance, the modules linked list
(composed by struct module nodes) maintains informa-
tion about kernel modules loaded in the system and, therefore,
only experiences modifications when a module is loaded or
unloaded from the system, an operation that rarely happens
during the memory acquisition process. Therefore, non-atomic
inconsistencies among these structures are exceptionally rare
in practice. For this reason, we will focus our analysis on
those forensic relevant structures that are routinely modified
by a running kernel.

In particular, among those traversed and explored by Volatil-
ity 2’s plugins, we selected 17 important kernel data structures
that the OS frequently modifies. A complete list is shown
in Column 1 of Table VIII. These structures maintain highly
volatile forensics-relevant information about the running pro-
cesses, their resources, opened files and sockets, and part of
the file system information cached in memory.

To quantify the presence of inconsistencies in these struc-
tures, we created another PANDA plugin that tracks the
evolution of the content and links among kernel data structures
during an acquisition process. Before the start of the dump, the
plugin explores the memory content of the VM, identifying
kernel data structures and dereferencing pointers contained
in them. Then, during the replay of the execution trace, it
intercepts allocations of new data structures, deallocations,
and modifications of already tracked ones by maintaining
information about the version of each structure as already
explained in Section III.

For each of the 17 different structure types, we track
separately two types of fields: the pointer fields that maintain
relations among data structures and that are traversed by
Volatility plugins to reach other structures, and the data fields
that contain the information retrieved by the plugins. In total,
we tracked 38 pointers and 40 data fields in our experiments.
It is important to note that this number corresponds to the
subset of fields used by Volatility 2 and not all the fields in
the data structures since many have no forensics relevance.

Table VII reports the number of data structures affected by
at least one inconsistency in each of the ten images. As in
the case of page smearing, each dump contained at least one
value inconsistency (Type 3 and 4) and a causal inconsistency



TABLE VIII: Average number of inconsistencies per kernel structure over the 10 dumps.

Struct Type
Struct Size

(bytes)

Number
of

Instances
Inconsistencies

Percentage
with

inconsistencies
Type 1 Type 2 Type 3 Type 4

cred 176 2248 - - - - -
dentry 192 322,248 687 2630 13,445 16,686 7.36%
dentry_operations 128 118 - - - - -
fdtable 1188 1108 - 6 34 127 15.07%
fdtable array1 - 1107 21 67 59 148 19.42%
file 232 80,302 243 151 218 207 1.02%
file_system_type 72 402 - - - - -
files_struct 704 1108 - - 9 - 0.81%
fs_struct 56 1134 - 2 61 - 5.56%
inode 632 253,983 - 40 - - 0.02%
mm_struct 1048 1104 10 17 14 10 4.08%
sock 760 7302 - - - - -
socket_alloc 768 7210 35 52 19 41 2.04%
super_block 1472 236 - 1 - 10 4.66%
task_struct 9792 2132 62 29 312 412 22.56%
vfsmount 32 488 - 2 8 18 5.74%
vm_area_struct 208 348,551 9853 2396 13,430 9587 9.19%
1 This is a variable size array of pointers to struct files pointed by fdtable.fd field.

TABLE IX: Fields with at least one inconsistency in top 5
structures in terms of percentage of affected instances.

Structure Field Name Structure Field Name

task_struct children.next task_struct children.prev
task_struct comm task_struct cred
task_struct files task_struct parent
task_struct sibling.next task_struct sibling.prev
task_struct task.next task_struct task.prev
task_struct thread_group

fdtable array Array entries fdtable fd

vm_area_struct vm_end vm_area_struct vm_file
vm_area_struct vm_flags vm_area_struct vm_mm
vm_area_struct vm_next vm_area_struct vm_pgoff
vm_area_struct vm_rb.rb_left vm_area_struct vm_rb.rb_right
vm_area_struct vm_start

dentry d_child dentry d_inode
dentry d_name.name dentry d_op
dentry d_subdirs

of Type 1, ranging from 1950 to over 20K inconsistencies.
Again, as in the case of page smearing, dumps D4 and

D6 had the highest number of structures with inconsistencies.
At a closer look, these two dumps contain the largest total
number of tracked structures allocated and deallocated by the
kernel during the dump process, with 275,830 and 327,907,
respectively (the average is 185, 151). This suggests that the
kernel was more ‘active’ during the acquisition process. This
additional kernel activity can be attributed to various factors
that occur during the system’s normal operation, even in
an idle state. For example, memory allocation and open-
ing/closing file and network handles by system daemons, the
launch of scheduled processes like automatic system update
managers, or internal kernel optimizations, such as flushing
page caches.

In our kernel configuration, there are 9,593 different types
of kernel data structures6, of which only 103 (1.07%) have a

6These can be counted using the pahole utility.

size greater than a physical page. Among those tracked in this
experiment, only the task_struct falls into this category,
with a size of 9,792 bytes. Furthermore, our analysis of the
dump dataset revealed that less than 0.1% of tracked data
structures smaller than a page are allocated across two different
physical pages. These findings make Type 5 inconsistencies an
extremely rare event among forensically relevant structures,
and in fact, none were encountered in our experiments.

To better understand how the inconsistencies affect the
different types of kernel data structures in Table VIII, we
report the size of each structure, the mean value of the
number of structures present in a dump, the mean value
of the number of data structures affected by inconsistencies
and the ratio between the mean number of unique structures
affected and the mean number of structures of that type. The
four more common structures (vm_area_struct, dentry,
inode, file) account for over 98% of the structures we
track in memory and contain 98% of the inconsistencies.
Unfortunately, these are also the most used by Volatility 2
plugins, as we will discuss in more detail later in this section.
For example, inconsistencies in data structure related to cached
information about physical and virtual filesystems such as
dentry and inode can compromise the ability to extract
files from volatile filesystems like /tmp. Files in tmpfs
are not saved on disk but reside solely in RAM, making
their recovery challenging when these data structures are
compromised. It is also important to note that while there
are relatively few instances of task_struct, they contain
the highest number of inconsistencies among the traced data
structures (22%). In particular, they are affected by a large
number of value inconsistencies: this means that dereferencing
a traced pointer in a task_struct, the pointed structure
has, roughly, a 1 in 4 chance to contain information not in
sync with those of the task_struct itself. This can mislead
analysts in diverse ways. For instance, if the inconsistency
impacts the cred pointer, a process may falsely exhibit lower



privileges than it truly possessed. Similarly, if the inconsis-
tency affects the files pointer, the analyst might encounter
difficulties in identifying all the file descriptors opened by the
process. A similar amount of inconsistencies are also present
in the variable-sized arrays that hold pointers to the file
structures that hold the file and socket descriptors open by a
process (19%) and the fdtable structures that connect the
task_struct to the variable-sized arrays (15%).

In the case of Types 1 and 2 inconsistencies, it is possible
that a pointer that in memory refers to a type of structure, in
the dump file points instead to a different type of structure.
This occurs in our dataset in three dumps: D4, D5, and
D6. D6, in particular, contains 279 of these cases, mainly
related to the vm_file pointer in the vm_area_struct
which reference the file structure associated with a memory-
mapped file (167 times), the vm_next pointer (30 times),
or the rb_left and rb_right pointers of the substruc-
ture vm_rb (45 times). These two last cases are closely
related to each other from the point of view of a foren-
sics analyst: vm_next pointers maintain the linked list of
virtual memory areas of a process and are used by vari-
ous Volatility 2 plugins to explore process memory. Sup-
pose an analyst suspects a vm_next pointer is corrupted
or tampered. In that case, she can use a different Volatil-
ity plugin, linux_proc_maps_rb, to explore the virtual
memory areas of a process: this plugin walks the red-black
tree which links together, along with the linked list, all the
vm_area_struct. However, our experiments show that 18
vm_area_struct in D6 present value inconsistencies in the
linked list and in at least one field of the red-black tree, while
in 2 cases in both fields. In this scenario, the analyst cannot
recover the areas of the virtual address space in any way, as
all paths used by Volatility 2 are corrupted leading to several
issues. For example, the linux_library_list module,
designed to report all libraries loaded by a process, relies
on exploring the vm_area_struct linked list to identify
loaded libraries. If this linked list is corrupted, as well as the
red and black tree, it is possible that a library injected by
a malicious process into another might not be identified. For
reference, Table IX summarizes the forensically relevant fields
that show at least one inconsistency among the top 5 structures
ranked by the percentage of affected instances.

Finally, Table X in Appendix reports for each plugin
considered in our study, the number of tracked fields that
contain inconsistencies in our dumps. These affect the output
of Volatility 2 plugins in terms of the capability to extract
information (causal inconsistencies) and data reliability (value
inconsistencies). As the table shows, all plugins are affected
by at least one inconsistency with the only exception of
linux_psscan, which, in fact, relies on carving techniques
to extract the task_structs from a dump. As a result,
plugins can report incorrect information for all dumps except
D0 and D1. This is due to the fact that almost all the essential
Volatility 2 plugins need to traverse one of the top 4 data
structures per number of inconsistencies. In these cases, as
suggested by Pagani et al. in [29], it would be beneficial

to use alternative paths to traverse a ‘more stable’ kernel
data structure. By relying on multiple paths to reach the
same information, the analyst might be able to identify and
overcome Type 1 and 2 inconsistencies. However, Type 3 and
4 inconsistencies would still not be detectable automatically
since paths through these types of inconsistencies would
produce wrong but plausible results that would be hard to
identify in an automated fashion.

Takeaways: Our analysis demonstrates that inconsis-
tencies in the data structures used in memory foren-
sics are pervasive. In particular, four fundamental data
structures critical for forensic analysis (task_struct,
vm_area_struct, dentry and file) consistently ex-
hibited inconsistencies across all memory dumps we ana-
lyzed. These data structures are used by the majority of
Volatility plugins, and our findings indicate that inconsisten-
cies, in particular in the task_struct, make the majority
of them either unreliable or unusable.
We also observed cases where semantically related pointers
within the same structure simultaneously exhibited anoma-
lies, further complicating the use of plugins that rely on
alternative paths or pointer cross-validation to overcome
possibly inconsistencies. As a result, the only type of
Volatility plugins that proved to be more resilient to incon-
sistencies are those that use carving techniques to extract
data structures from memory without relying on pointers to
locate them.

X. RELATED WORKS

Over time, numerous studies [30], [31], [32], [33] have
pointed out the challenges posed by the lack of atomicity
in memory dumps. Vomel and Freiling [20] were the first
2010 to introduce the concepts of atomicity, integrity, and
correctness of a dump. Later, Gruhn and Freiling [21] evalu-
ated acquisition tools based on these criteria, while in 2021,
Freiling et al. extended the concept to disk snapshots[25].
At the same time, Case and Richard, instead, highlighted
the pressing issue of page smearing [18]. In 2019, Pagani
et al. [17] introduced the ”temporal dimension” in memory
forensics to give the analyst an initial means of the atomicity
of the data structures in the dump. They also show that page
smearing introduces inconsistencies in page tables and impacts
any analysis involving user space data structures. Furthermore,
Sudhakaran et al. [34] have also studied the problem in user-
space Android apps. Recently, instead, Ottmann et al. [35]
and Rzepka et al. [36] have adopted a technique based on a
custom ”pivot process” that tracks internal memory changes
with vector clocks, letting the authors detect whether the
memory dump preserves causal consistency.

Among the first to propose a solution to the problem of
non-atomicity of memory dumps were Huebner et al. [37] that
suggest a kernel redesign to implement an automatic periodic
acquisition of the state of the kernel and user applications by
the operating system itself. Another solution was developed by
Schatza and Bradley [38] involving the injection of a minimal



kernel that stops the execution of the running OS and dumps
its memory. This approach, however, requires a tight and
preexistent integration between the dumping kernel and the
original OS. In 2009, an approach based on the data remanence
effect in memory chips after the reboot of the system was
used by Forenscope [39] to acquire the memory in an atomic
way. This technique, known as cold boot memory acquisition,
has been proven, unfortunately, to fail on specific chipset and
memory banks setups [40].

The following year Martignoni et al. have introduced
HyperSleuth [41], a custom hypervisor injected at runtime
to perform atomic memory dumps using dump-on-write and
dump-on-idle. This promising technology, however, is not
applicable in cases where another hypervisor is already run-
ning, such as in Windows 10 virtual secure mode, or if the
CPU virtualization extensions are not enabled in the BIOS at
boot time. Other solutions developed to obtain atomic dumps
involve using modified firmware to run the dump tool at higher
privilege levels [12] or with the operating system no longer
running but with the memory contents still available [13].
These two methods, however, require hardware access to the
machine to flash system firmware residing on the motherboard.
Recently, in ”Katana: Robust, Automated, Binary-Only Foren-
sic Analysis of Linux Memory Snapshots” [42], the authors
have collaterally introduced a Linux kernel module that allows
atomic memory dumps. However, the module, by temporarily
blocking system interrupts, can cause the crash of the kernel
modules responsible for hardware management at the end of
the dump process.

XI. IMPACT AND DISCUSSION

With the exception of few research prototypes running
in higher-privilege CPU modes (e.g., from SMM [12]), all
hardware-based and software-based memory acquisition tech-
niques do not stop the kernel during the acquisition process
on a bare-metal machine.

The fact that non-atomic memory acquisitions can lead to
inconsistent or corrupted data has been recognized since at
least 2005, when the initial prototypes of memory forensics
tools were proposed [43]. However, prior reports on ’unusable’
memory images have been largely anecdotal, without data
to understand the frequency of these errors in practice. For
example, although previous research noted errors in the page
tables in roughly 20% of acquired memory images [18], we
demonstrate that the issue is much more widespread, with
every single memory dump we acquired containing at least
one, and often many, such errors.

Our results show that even memory acquired from an
idle operating system can contain inconsistent data. While
most of these inconsistencies may be irrelevant for forensic
investigations, some are significant. Every dump we acquired
contain several processes with errors in their page tables,
sometimes leading to fragments of one process’s memory
being mistakenly attributed to another. Even if we limit our
analysis to the data structures used by Volatility 2 to extract
information from a memory dump, we observed tens of

thousands of inconsistencies. For certain structures, nearly
one in four instances contained errors in fields used by
Volatility. Furthermore, our experiments reveal for the first
time that the choice of target filesystem and dump technique
can significantly impact both the acquisition time and the
extent of kernel-modified data structures.

While these errors may not compromise every single in-
vestigation, the fragility of forensic analysis based on such
data is concerning. Even more if we remember that all our
results are conservative and represent only a lower bound of
the inconsistencies that could be encountered in real-world in-
vestigations. In fact, while PANDA does not support emulating
a system with more than one CPU core, on modern multi-
core systems the number of inconsistencies will likely increase
due to the higher number of writes per second performed by
parallel kernel threads and the synchronization mechanisms
(e.g., semaphores and locks) required to manage multiple CPU
units.

Moreover, in our experiments, we considered the best-
case scenario where the memory was 25% occupied, and no
user-triggered network activity occurred during the acquisition
process or in the 30 minutes prior. In real scenarios, memory
usage may be higher, leading to more fragmentation and a
larger number of page tables. Additionally, if the system must
remain operational during memory acquisition – for instance
when memory is acquired from a server as part of threat
hunting or incident response investigations – this would further
increase the number of inconsistencies.

Finally, even the size of the memory affects the outcome:
larger systems, even with unused RAM, may store their physi-
cal pages more widely apart, thus resulting in greater temporal
distance between their acquisition and therefore again in a
larger number of inconsistencies. Because of all these factors,
we expect our results to represent the best-case scenario, with
the number of errors to increase considerably in real-world
settings. More concerning is that, in most cases, the analyst
cannot ascertain the accuracy of the acquired data.

Previous efforts to mitigate this problem offer valuable
insights. For instance, Pagani et al. [17] developed a mem-
ory dump tool designed to sequentially capture causally-
related data structures, rather than indiscriminately acquiring
physical pages. Although this tool is no longer supported
and incompatible with modern Linux kernels, it represents a
promising direction for research that could significantly reduce
inconsistencies. By quantifying the problem, our work pro-
vides researchers with a deeper understanding and encourages
further exploration into developing more robust solutions for
atomic memory acquisition.

XII. CODE AVAILABILITY

The code of Strata PANDA plugins and datasets are avail-
able as an open-source project [44].
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APPENDIX

TABLE X: Fields involved in inconsistencies per plugin.

Plugin
Fields causal

inconsistencies
Fields value

inconsistencies

linux_check_creds 1 -
linux_check_inline_kernel 9 3
linux_check_syscalls 2 3
linux_dump_map 1 2
linux_elfs 9 1
linux_enumerate_file 2 3
linux_find_file 2 3
linux_getcwd 5 -
linux_info_regs 1 1
linux_ldrmodules 3 2
linux_library_list 3 1
linux_librarydump 3 2
linux_list_raw 6 -
linux_lsof 8 1
linux_malfind 3 3
linux_memmap 1 -
linux_mount 2 -
linux_netstat 2 1
linux_plthook 3 -
linux_proc_maps 12 6
linux_proc_maps_rb 2 1
linux_procdump 1 1
linux_process_hollow 3 2
linux_process_info 9 4
linux_psaux 1 1
linux_psenv 1 -
linux_pslist 1 2
linux_psscan - -
linux_pstree 2 1
linux_recover_fs 2 5
linux_threads 3 3
linux_tmpfs 2 1
linux_truecrypt 3 3
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